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Abstract

This study examines the intertemporal distribution of productivity risk.
Focusing on post-war US data, I show that the conditional mean of pro-
ductivity growth is time-varying and extremely persistent. This generates
uncertainty about the long-run perspectives of economic growth and affects
asset prices. The data suggest that stock market prices are very sensitive to
long-run news about productivity growth. After establishing this empirical
link, I develop a production-based asset pricing model featuring long-run un-
certainty about the productivity growth rate, convex adjustment costs, and
recursive preferences à la Epstein-Zin. This model reproduces key features of
both asset prices and macroeconomic quantities, including consumption, in-
vestment, and output. I also provide a detailed examination of the role of the
intertemporal elasticity of substitution, relative risk aversion, and adjustment
costs in this type of economy.
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Appendix

A.1 Empirical Analysis: Short-Sample Properties

Consider the following model:

∆at+1 = µ + xt + σǫa,t+1 (A.1)

xt = ρxt−1 + σxǫx,t[
ǫa,t+1

ǫx,t+1

]
∼ iidN

([
0

0

]
,

[
1 0

0 1

])
.

Then the productivity growth rate has the following Wold representation (Hamilton (1994)):

∆at+1 = µ(1 − ρ) + ρ∆at − bǫa,t + σaǫa,t+1, (A.2)

where

b = ρK, 0 < K < 1

ǫa,t+1 ∼ iidN(0, 1).

The scalar K and the volatility σa are both endogenous and depend on the ratio of the

variance of the predictable component x and the total variance of ∆a. When the long-run

component x is not present, K = 1, implying that the AR root and the MA root are equal.

In this case, these two roots perfectly cancel out each other and ∆a collapses to a simple

i.i.d. process. When productivity growth instead has a long-run component, the two roots

differ from each other, and the MA root is smaller than the AR root in population.

In table 1, I show that past information about productivity growth can explain at least

10% of the total variance of future productivity growth over an annual horizon. At the

same time, however, the maximum likelihood point estimate of the AR root, ρ̂, is smaller

than that one of the MA root, b̂. Such an empirical outcome might appear to contrast

with the theoretical results derived above. In this section, however, I show that in reality

this can simply be a small sample problem.

In order to study the small-sample properties of my estimator of the ARMA(1,1), I

simulate model (A.1) at an annual frequency and I generate 1000 independent samples

with 55 observations (the sample I use in the empirical part of this study is for the years

1948–2003). For the sake of simplicity I keep the volatility constant. In these simulations, I

impose ρ = .80, a conservative figure that is consistent with the estimate obtained working

with the data. I assume σ = 2% in order to match the historical variance of productivity
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growth. I impose σx = .19σ so that the long-run component explains about 10% of the

total variance of productivity growth.

For each sample, I estimate the model reported in eq. (A.2) through maximum likeli-

hood. First of all, the point estimate of the MA root, b̂, is lerger than that of the RA root,

ρ̂, in 476 samples. Furthermore, the point estimate of MA root is greater than one in 215

samples, implying that in small samples, the maximum likelihood estimates frequently do

not satisfy the invertibility condition.

These results suggest that the model in eq. (A.1) can be considered a reasonable

candidate to describe the long-run dynamics of productivity growth, even if in the data

b̂ > ρ̂.

A.2 Numerical methods

This section presents the model used to examine the link between productivity, asset

prices and other macroeconomic fundamentals. To keep the analysis as simple as possible,

I focus only on the representative agent consumption-saving problem and I keep constant

the labor supply. The representative agent has preferences defined only by aggregate

consumption:

Ut =



(1 − δ)C
1− 1

Ψ

t + δ
(
Et

[
U1−γ

t+1

]) 1−
1
Ψ

1−γ





1

1−
1
Ψ

0 ≤ Ct

The consumption good is produced according to the following constant returns-to-scale

neoclassical production function:

Yt = Kα
t [Atn]1−α ,

where Kt is the fixed stock of capital carried into date t, n is the fix labor input, and At

is an aggregate productivity shock. The productivity growth rate, ∆at+1 ≡ log(At+1/At),

has a long-run risk component and evolves as described below:

∆at+1 = µ + xt + σǫa,t+1

xt = ρxt−1 + σxǫx,t[
ǫa,t+1

ǫx,t+1

]

∼ iidN

([
0

0

]

,

[
1 0

0 1

])

.
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In this paper I want to study the role of uncertainty about the conditional mean

of productivity growth. For this reason I assume that the volatility of the shocks to

productivity is constant.

The resource constraint of this economy is:

Ct + It ≤ Yt

The capital stock evolves according to:

Kt+1 = (1 − δk)Kt + G

(
It

Kt

)
Kt

where

G
( It

Kt

)
=

[
a1

1 − 1
τ

(
It

Kt

)1− 1

τ

+ a2

]
.

The rate of depreciation of capital is denoted by δk and the function G(.) transforms

investment in new capital.

Let us define the following stationary variables:

{ct, it, yt, kt, ut} ≡

{
Ct

At−1
,

It

At−1
,

Yt

At−1
,

Kt

At−1
,

Ut

At−1

}
. (A.3)

Let st ≡ [∆at, xt, kt] denote the vector of the states of the economy. Let u(s) be the

value of the planner’s problem evaluated at the optimum for given state s. The planner’s

problem can be rewritten in the following recursive way:

u(s) = max
c,k′

[
(1 − δ)c1− 1

Ψ + δe(1− 1

Ψ
)∆a

(
Es[u(s′)1−γ ]

1−
1

Ψ

1−γ

)] 1

1−
1

Ψ

s.t.

c ≥ 0, k′ ≥ 0

c + i = y ≡ e(1−α)∆akαn̄(1−α)

k′e∆a = (1 − δ)k + G

(
i

k

)
k

x′ = ρx + σxǫ′a

∆a′ = µ + x + σǫ′a

ǫ′a ⊥ ǫ′x

I solve this problem numerically by standard value function iterations. I program my
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algorithm in Fortran, Compaq Visualizer 6.a-professional, by HP.

The first thing I do is to discretize the state space. I use: (1) Na equidistant points for

∆a on the interval [−2std[∆a] +2std[∆a]]; (2) Nx equidistant points for x on the interval

[−2std[x] + 2std[x]]; (3) Nk equidistant points for k on the interval [.1kss 1.9kss], where

kss is the value of capital at the deterministic steady-state. At this point I guess a value

function u(∆a, x, k) that is an array Na×Nx×Nk. From now on, similarly to that done in

Fortran, I use ’:’ to indicate all the elements in one dimension. So, for example, u(:, xi, kl)

indicates all the values of the utility function with respect to the state ∆a, given x = xi

and k = kl. Now I am ready to start an iteration, I list below the required steps:

STEP 1: Computing Q(∆a, x, k) ≡ Es[u(∆a′, x′, k)1−γ ]

I discretize a shock distributed according to a standard normal using Ns points. Looking

at the definition of Es[u
′(1−γ)], one can see that this object is in reality invariant with

respect to ∆a. The only two variables that have predictive power and really matter for

the conditional expected value are k and x. So, in order to accelerate this step, for every

(xi, kl) in the grid, I compute the following expression:

H(xi, kl) =

Ns∑

h=1

Ns∑

f=1

u(µ + xi + σǫh, ρx + σxǫf , kl)
1−γφfφh

I compute H(xi, kl) only Nk × Nx times and then impose Q(:, xi, kl) = H(xi, kl). In or-

der to compute H(·, ·) I have to be able to compute u(µ + xi + σǫh, ρx + σxǫf , kl). The

initial guess gives information only on u(∆aj , xi, kl), so I need to be able to approximate

and interpolate u(·, ·, kl) on points that are outside the grid of the states. For a given kl,

log(u(:, :, kl)) gives me a set of points—over a two-dimensional surface—which I approxi-

mate using a tensor product of Chebyshev polynomials in ∆a and x. This surface is very

close to being linear, so I do not need many polynomials to produce a good approximation.

In particular, the number of polynomials is smaller than N∆a × Nx, and for this reason

I compute the polynomials coefficients by a standard projection method (for every kl in

the grid, I apply OLS on log(u(:, :, kl)), using as regressors all the polynomials I have in

∆a and x). Once I have the Chebyshev coefficients, I interpolate log(u) in correspondence

of the generic points (µ + xi + σǫh, ρx + σxǫf , kl). After this, the computation of H is

straightforward.

STEP 2: Interpolating Q(∆a, x, k) with Respect to Capital.
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I want to solve the maximization problem by applying a standard Newton-algorithm to

the control variable k′. In order to apply this algorithm I need to be able to evaluate the

right-hand side of the recursion for every admissible value of the control variable k′. This

means that I have to be able to evaluate Q for every feasible value of capital k′. For every

xi in my grid, I project through OLS-method log(H(xi, :)) on a constant, log(
−→
k ) and

log(
−→
k )2, where:

−→
k indicates the vector that collects the log-values of capital in my grid

and log(
−→
k )2 is a vector collecting the square of log-values of capital. This transformation

is very useful since log(H(xi, :)) is very close to being linear in log-capital and allows me

to have very small interpolation residuals (in the order of 1.e-6, log units). For every xi,

I run this OLS interpolation and I get an OLS coefficients-vector that I denote as βi. At

this point, using the interpolation implies the following fast way to evaluate the expected

value of future utility at k′: H(xi, k
′) = exp([1 k′ (k′)2]βi).

STEP 3: Maximizing

Given the state s = [ ∆aj xi kl ], I solve the following maximization problem using the

Fortran subroutine ’DUVMIF’:

max
c≥0

[
(1 − δ)c1− 1

Ψ + δe(1− 1

Ψ
)∆aj

(
exp([1 k′ (k′)2]βi)

1−
1

Ψ

1−γ

)] 1

1−
1

Ψ

s.t.

i = e(1−α)∆aj kα
l n̄(1−α) − c

k′ =
(1 − δ) + G

(
i
kl

)

e∆aj
kl

k′ ≥ 0

The subroutine also evaluates the objective function at the optimum and allows me to

update the value function.

STEP 4: Stopping Rule.

Once finished with step 3, I measure the distance between the new value function, u′, and

the initial one using a standard sup-norm. If ||(u′)1−
1

Ψ−(u)1−
1

Ψ ||
1−β

< 1.e−8, I stop. Otherwise

I use the new value function as an initial guess and I go back to step 1.
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A.3 Spectrum

Given a stochastic process X, its spectral density evaluated at the frequency f is:

SX(f) =
1

2π

∞∑

k=−∞

γkcos(kf),

where

γk = cov(Xt,Xt−k).

Given the following moving average representation for X:

Xt =
∞∑

j=0

θX
j ǫX

t−j ,

the auto-covariances can be computed in the following way:

γk =

∞∑

j=0

θX
j θX

j−k(σX)2.

Notice also that given two orthogonal stochastic processes X and Y , the spectrum of their

sum is equal to the sum of their spectral densities:

S(X+Y )(f) = SX(f) + SY (f)

If we ignore nonlinear terms, the consumption growth rate obtained by the model can be

represented as:

∆ct+1 − ∆c =

∞∑

j=0

θx
j ǫx,t−j

︸ ︷︷ ︸
∆clrr

+

∞∑

j=0

θa
j ǫa,t−j

︸ ︷︷ ︸
∆csrr

.

The IRF produced by giving a one-pulse positive shock to the short-run component yields

the sequence {θa
j σ}, which allows me to compute the auto-covariances and the spectral

density of ∆clrr. The IRF produced by giving a one-pulse positive shock to the long-run

component yields the sequence {θx
j σx}, which allows me to compute the auto-covariances

and the spectral density of ∆csrr. Since the long-run component news is orthogonal to

the short-run news, the spectral density of the consumption growth is equal to the sum of

the spectral densities of the consumption growth sub components that I denoted as ∆csrr

and ∆clrr. Finally, I note the following:
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(1) When I compute the monthly spectral density, for computational reasons I truncate

the moving average and I consider only the first two hundred coefficients (i.e., I compute

the IRF.s only for 200 periods).

(2) In order to have a consistent estimate of the spectrum of the quarterly consumption

data I actually compute SX(f) = 1
2π

∑8
k=1 γkcos(kf)(1 − k

9 ).

(3) When I compute the quarterly spectral density produced by the model, I use the same

formula that I apply to the data: SX(f) = 1
2π

∑8
k=1 γkcos(kf)(1 − k

9 ).

A.4 Long-Horizon Variance

Let me define the long-run variance of the monthly productivity growth rate at the horizon

h as: V ar[∆at+h|t]/h. Since I assume that the long-run and short-run news are uncorre-

lated, I can easily decompose the previous long-horizon variance in two subcomponents:

V ar[∆at+h|t]/h = V ar

[
h−1∑

k=1

xt+k−1

]
/h

︸ ︷︷ ︸
V arlrr

h
(∆a)

+ V ar

[
h∑

k=1

ǫa,t+k

]
/h

︸ ︷︷ ︸
V arsrr

h
(∆a)

.

Since the short-run risk in productivity is i.i.d., V arsrr
h (∆a) = σ. The long-run component

is, instead, persistent over time and for this reason:

V arlrr
h (∆a) = V ar(x) +

2

j

h−1∑

k=1

(h − k)ρkV (x).

If we ignore nonlinear terms, the consumption growth rate obtained in the production

economy can be represented as:

∆ct+1 − ∆c =

∞∑

j=0

θx
j ǫx,t−j

︸ ︷︷ ︸
∆clrr

+

∞∑

j=0

θa
j ǫa,t−j

︸ ︷︷ ︸
∆csrr

.

The coefficients {θa
j , θx

j } can be recovered from the IRFs of the model as shown in the

previous section. The auto-covariances generated by the short-run news can be computed

in the following way:

γa
k ≡

∞∑

j=0

θa
j θa

j−kσ
2.
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The implied long-run variance is computed as follows:

V arsrr
h (∆c) = γa

0 +
2

j

h−1∑

k=1

(h − k)γa
k .

Similarly, the auto-covariances generated by the long-run news can be computed as:

γx
k ≡

∞∑

j=0

θx
j θx

j−k(σx)2.

The implied long-run variance is computed as follows:

V arlrr
h (∆c) = γx

0 +
2

j

h−1∑

k=1

(h − k)γx
k .

For computational reasons I truncate the moving average and I consider only the first

three hundred coefficients: {θa
j , θx

j }
300
j=1.
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Fig. A 1 – Quantities Impulse Response Functions (IES=RRA−1=2)

This figure shows monthly log-deviations from the steady state. Units are multiplied

by 100. All the parameters are calibrated to the values reported in Table 6. The

policy functions are computed numerically.

10



0 5 10 15
0

0.5

1

Shock to 
a

 A

0 5 10 15
0

0.02

0.04

Shock to 
x

0 5 10 15
-0.2

0

0.2

m
t

0 5 10 15
-0.1

0

0.1

0 5 10 15
-0.5

0

0.5

 r
t

0 5 10 15
-0.5

0

0.5

0 5 10 15
-0.5

0

0.5

q
t/q

t-
1

Months
0 5 10 15

0

0.5

Months
Fig. A 2 – Prices Impulse Response Functions (IES=RRA−1=.8)

This figure shows monthly log-deviations from the steady state. Units are multiplied

by 100. All the parameters are calibrated to the values reported in Table 6. The

policy functions are computed numerically. Returns are not levered.
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Fig. A 3 – Quantities Impulse Response Functions (IES=RRA−1=.8)

This figure shows monthly log-deviations from the steady state. Units are multiplied

by 100. All the parameters are calibrated to the values reported in Table 6. The

policy functions are computed numerically.
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This figure shows monthly log-deviations from the steady state. Units are multiplied

by 100. All the parameters are calibrated to the values reported in Table 6. The

policy functions are computed numerically. Returns are not levered.
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