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Abstract

This paper proposes a general model of non-Bayesian social learning in networks that accounts

for heuristics and biases in opinion aggregation, as well as the coexistence of layers of networks

corresponding to different interaction levels. We provide conditions on the layers of networks

that guarantee opinions’ convergence, consensus formation, and effi cient or biased information

aggregation. Under the descriptive phenomena that we capture, at times agents ignore some of

their neighbors’opinions, reducing the number of effective connections. This generates new channels

toward the formation of disagreement and polarization of opinions in networks. Moreover, we show

that our class of updating procedures precisely characterizes agents’optimal behavior in response

to a concern of disagreeing with others. Our framework bridges several scattered models and

phenomena in the non-Bayesian social learning literature, thereby providing a unifying approach

to the field.
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1 Introduction

The rise in social media use and the parallel formation of global social networks have given more

importance to studying how people change and influence their opinions over time. The economists’

classical approach considers agents as statisticians whose opinions (or beliefs) are influenced by the

information received and evolve according to Bayesian rationality. At the other extreme, we have naive

agents that repeatedly take weighted averages of the opinions they observe, i.e., DeGroot’s learning.

In both cases, the social network is unique and independent of the current distribution of opinions.

However, in many real-life situations of economic interest, individuals fail to adjust their opinions

according to either of the procedures described, for example, because of uncertainty concerns or be-

havioral biases.1 First, the complex information structures in a social network induce high uncertainty

about the data generating process, suggesting that even entirely rational but cautious agents should

rely on more robust estimation procedures. Second, as we consider lower degrees of sophistication and

expertise about a given topic, we observe that people rely on simpler heuristics to aggregate informa-

tion. In these cases, the process of opinion aggregation is often influenced by documented biases such

as attraction to extreme or intermediate opinions and confirmatory bias, which cannot be captured

by naive repeated averaging. Furthermore, all these phenomena imply that the network structure

revealed by the opinions’dynamics is different from the one revealed by the totality of social connec-

tions. For example, individuals who disregard extreme stances (robustness concerns) or are attracted

by positions closer to their own (confirmatory bias) might sometimes ignore a subset of their friends’

opinions. Overall, these aspects induce a degree of long-run disagreement and opinions’polarization

that would be inconsistent with either Bayesian or DeGroot’s learning.

This paper proposes a unifying and functional-form-free social learning model based on intuitive

properties that account for robustness concerns for the uncertainty in social networks and heuris-

tics and biases in opinion aggregation. These features alter from period to period the links of the

underlying social network depending on society’s current opinions. Therefore, rather than fixing a

unique exogenous network structure, we derive, directly from the updating rules, two extreme layers

of networks that capture the maximum and the minimum possible degrees of influence. We provide

conditions on the extreme layers of networks that guarantee opinions’convergence, consensus forma-

tion, and effi cient or biased information aggregation. In addition, we show that our class of updating

procedures precisely characterizes agents’optimal behavior in response to a concern of disagreeing

with others (i.e., distance-based loss functions).

Along the way, we illustrate the broad reach of our model in terms of old and new documented

phenomena captured. In particular, to more standard properties such as long-run agreement and the

wisdom of the crowd, we contrast novel effects such as opinion segregation and the bias of the crowd.

Opinion segregation obtains when two possibly connected groups of agents have intrinsic preferences

for median opinions but receive very different initial information: each agent of one group would

ignore the other group’s opinions because they were considered too extreme for their tastes. The bias

of the crowd obtains when in large networks, despite consensus being reached and the noise of the

1See the empirical evidence in Breza et al. [13], Chandrasekhar et al. [20], and the references therein. In addition,
when modeling Bayesian updating in a network, tractability is easily lost, see Breza et al. [12]. Notable exceptions are
Mossel et al. [56] and Mueller-Frank [57].
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original sources of information being washed away, the common long-run opinion is bounded away

from the truth due to society’s systematic biases toward extreme opinions. Importantly, these effects

are obtained without relying on the presence of stubborn agents. More in general, our framework

bridges several scattered models and phenomena in the social learning literature, thereby providing a

unifying approach to answer the main questions arising in this growing field.

Robust opinion aggregators We consider a discrete-time model of opinions’dynamics in a social

network. The initial opinions are equal to a common fundamental parameter plus some agent-specific

noise. Agents observe their neighbors’opinions and repeatedly incorporate them to update their own

through robust opinion aggregators. These aggregators map the last-period opinions of the neighbors

of each agent into her current stance and satisfy the following properties:

1. Normalization: If the agents have reached a consensus, then none of them further updates her

opinion.

2. Monotonicity: If two opinion profiles are such that the first coordinatewise dominates the
second, then this relation is preserved after aggregation.

3. Translation invariance: If each agent’s opinion is shifted by the same constant, then the
updates are shifted accordingly.

The first two properties have a straightforward interpretation as a minimal trust in the neighbors’

opinions. Translation invariance is equivalent to assume that agents only care about the opinions’

differences rather than their intrinsic levels and rules out explosive/chaotic dynamics. In addition,

this property is a natural consequence of a distance-minimization procedure consistent with the inter-

pretations of the updating rule proposed in our foundation.2 As we illustrate with several examples,

our main motivation for analyzing this broad class of aggregators is to incorporate robustness con-

cerns about the uncertainty on the data-generating process or intrinsic biases, all within a unifying

framework.

A key feature of our model, implied by these properties, is that the influence among agents depends

on their original opinions. Hence, it is particularly suited to capture economic phenomena such as

dislike for (or attraction to) relatively extreme positions, confirmatory bias, disregard for redundant

information, and assortativeness. For example, if there is an attraction to extreme opinions, then

each agent’s influence depends on her centrality and how extreme her original belief is relative to the

entire population. This novel effect has immediate and relevant implications for designing intervention

policies in networks.3 To the best of our knowledge, the current work is the first to propose a unifying

framework that allows for all the aforementioned effects.

On the empirical side, the recent field studies that compare Bayesian to non-Bayesian social learn-

ing models have obtained evidence consistent with our properties. For instance, Chandrasekhar et al.

[20] find that if the sampled subjects come to a consensus most of the time, they remain stuck on

2We defer the comparison with the existing models to the related literature.
3These policy interventions can assume different forms such as incentive distortions (Galeotti et al. [28]) or information

design (Galperti and Perego [30]).
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their beliefs even when such behavior is objectively suboptimal: this is consistent with normalization.

Similarly, they also find that the overwhelming majority of subjects respond monotonically to changes

in their neighbors’opinions.

The dynamics of robust opinion aggregation A few fundamental questions arise. Are the

new dynamics induced by robust opinion aggregators completely undisciplined? Is it still possible to

obtain convergence of opinions? Also, if the answer is yes, can we say anything about the formation

of consensus? Do large crowds learn the true parameter?

In Theorem 1, we show that the opinions’time averages induced by any robust opinion aggregator

uniformly converge, so that a profile of long-run opinions always exists. This first benchmark result

implies that an external agent can test the long-run learning properties of the updating procedure by

computing time averages, a feature that we exploit in our results on large networks. Moreover, it is the

stepping stone to derive proper convergence and consensus formation from the opinion aggregators’

network properties. Indeed, we already pointed out that robust opinion aggregators may induce several

layers of networks, each capturing an increasing influence level. We next focus on the two extremes

of such layers and show their relevance for the long-run evolution of opinions.

We say that an agent is strongly influenced by another if the former always reacts to variations

in the latter’s opinion, regardless of the current opinion profile in the society. This is a sharp form

of connection among agents and may capture relationships such as parenthood, mentorship, or part-

nership with esteemed colleagues. In Theorem 2, we show that if each agent has at least one strong

link and the induced strong network is aperiodic, then opinions converge. This result is powerful for

two reasons. First, it guarantees that, in a comprehensive class of models, the sole iteration of the

aggregation procedure always leads to a stable distribution of opinions in the population (i.e., a Nash

equilibrium under the best-response dynamics interpretation). Second, it highlights the critical role

of the strong ties in the society to stabilize opinions in the long run.4

Instead, we say that an agent is weakly influenced by another if the former reacts to variations in

the latter’s opinion for at least one opinion profile. This is a minimal form of connection that captures

any relationship between two agents that can hear their reciprocal opinions (e.g., some agents might

be listened to only when stating very extreme opinions). In Theorem 3, we show that opinions always

converge only if the weak network is aperiodic. As an immediate corollary, we obtain that whenever

the two extreme networks coincide (as, for example, in DeGroot’s model), opinions’convergence is

characterized by network aperiodicity. However, whenever robustness concerns or behavioral biases

in the updating rules induce a wedge between the two extreme networks, we cannot dispense from

studying both these layers to have a complete picture of the opinions’long-run behavior.

Our analysis of long-run consensus confirms this pattern. In Proposition 2 we show that if the

strong network forms a unique, cohesive, and aperiodic class, convergence to consensus always obtains.

Moreover, a necessary condition for forming consensus, regardless of the initial opinions, is that the

4We follow one of the two interpretations that Granovetter [37] assigned to the adjectives “strong” and “weak”
for social ties. Indeed, as also argued by Centola and Macy [17], there is a dual meaning behind the “strong-weak”
classification of ties: one is relational, and the other is structural. Even though the latter one has been mostly associated
with Granovetter’s theory, we stick to the former interpretation, whereby “strong” ties “connect close friends or kin
whose interactions are frequent, affectively charged, and highly salient to each other”, [17, pp. 703].
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weak network is composed of a unique, cohesive, and aperiodic class. As before, whenever the two

networks coincide, convergence to consensus is fully characterized by the previous cohesiveness prop-

erty. However, if the two networks do not coincide, then even in cohesive societies, we might observe

persistent disagreement in the long run due to the weakness of these connections, and we need to rely

on different tools for the analysis of long-run opinions.

Motivated by a more detailed study of long-run disagreement and opinion segregation, we next

focus on rank-dependent aggregators, whereby agents assign to each other fixed weights, which are then

distorted depending on the ranking among the agents’current opinions.5 Relevant examples of this

class are: weighted means (no distortion), quantiles (extreme distortion), and trimmed means (flat

distortion at the extremes). For this class, we first illustrate that opinion segregation naturally arises

even when the weights induce a strongly connected network, and we perturb an established consensus.

The intuition is that flat regions of the distortion function endogenously remove links induced by

having positive weights. With this, original connections are broken, and opinions may become more

and more segregated. In Propositions 4 and 5, we characterize the structure of long-run disagreement

for rank-dependent aggregators formalizing the previous intuition. In general, this class of aggregators

can be used to incorporate complex contagion in DeGroot’s model. For example, agents trimming

the outliers from their observations need to be exposed a higher number of extreme opinions before

changing theirs to a similar level. Notably, this is consistent with recent theoretical and empirical

findings in both economics and sociology (see, e.g., Centola and Macy [17] and Beaman et al. [10]).

Vox populi, vox Dei? We next study the information-aggregation properties of the consensus

emerging from robust opinion aggregators in large networks.6 This question is critical to understand

to what extent the phenomenon of the wisdom of the crowd, whereby agents’ consensus coincides

with the fundamental parameter (cf. Golub and Jackson [33]), is robust to a broader class of opinion

aggregators. It would seem plausible that, similarly to DeGroot’s model, if a generalized measure of

the influence of every agent in the revealed network is vanishing, then effi cient information aggregation

obtains. However, Theorem 4 shows that this condition is suffi cient only for making the variance of

the consensus disappear in the limit, regardless of the data generating process. In this case, if we also

have symmetry of the distribution of agents’signals and of the opinion aggregator, then we obtain

the wisdom of the crowd. Otherwise, we obtain a phenomenon that we call the bias of the crowd : the

consensus opinion in large populations converges to a constant that can be bounded away from the

true fundamental parameter. Interestingly, as we formally show in a parametric example, the bias’s

magnitude depends on the original information sources’noisiness. This unveils a critical link between

more dispersed sources of information and the polarization between the consensus of two biased and

disconnected populations.

5The adjective “rank-dependent”has been extensively used in decision theory to describe decision criteria under risk
or uncertainty where a probability over states is distorted depending on the ranking over the possible outcomes. Given
the analogy with the class of opinion aggregators we study, we have used the same adjective. However, the analogy is
purely mathematical, and we interpret our weights as degrees of confidence rather than likelihoods.

6Vox populi, vox Dei is Latin for: The voice of the people is the voice of God. It is often shortened to just “Vox
populi”as in the original paper of Galton [31] on the wisdom of the crowd. In that paper, Galton “aggregated”opinions
using the empirical median, a robust opinion aggregator.
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Foundation and discrete opinions The properties of robust opinion aggregators arise when we

generalize the two foundations for non-Bayesian opinions’dynamics: repeated estimation of the under-

lying parameter with naive agents (cf. DeMarzo et al. [23]) and best-response dynamics in coordina-

tion games (cf. Golub and Jackson [34]). In both cases, we allow for more general distance-based loss

functions that nest the one proposed by Huber [39] for robust estimation of a location parameter. In

particular, an opinion aggregator is robust if and only if there is a profile of distance-based loss func-

tions with positive complementaries whose unique solution map coincides with the aggregator itself.

Given this characterization, it is possible to reinterpret the previous results in terms of convergence

to Nash equilibria and consistency of robust estimators induced by opinion aggregation.

Finally, our foundation highlights the common structure of two network phenomena that are usually

modeled with very different methods: aggregation of continuous opinions and diffusion/contagion of a

binary behavior such as adoption of a new technology. Indeed, when we focus on a subclass of robust

opinion aggregators that we call discrete, we obtain a generalization of the threshold models of Morris

[55], Kempe et al. [44], and Centola and Macy [17]. This implies that the new tools and results

that we develop can help bridge the two different approaches to opinion aggregation and diffusion in

networks.

Related literature This paper belongs to the literature on non-Bayesian opinion aggregation. In

particular, we nest the benchmark of this class: DeGroot’s model [22].7 In this simple model, there

is a clear link between the underlying network structure’s properties and the long-run evolution of

opinions. These features are exploited in Golub and Jackson [33] to fully characterize convergence

and convergence to consensus in terms of the network structure and the wisdom of the crowd. For

the former, we substantially extend the conditions of [33, Theorem 2] and we show that they are

still suffi cient for convergence and convergence to consensus when imposed on the strong network.

Nevertheless, given the different layers of networks in our model, these conditions are necessary when

imposed on the weak network. For the wisdom of the crowd, we derive a general law of large numbers

for robust opinion aggregators specializing to the one of [33] for the linear case. Here the two main

novelties are that: i) The maximal influence in the network, which generalizes the notion of maximal

eigenvector centrality, has to vanish suffi ciently fast. ii) Both the noise distribution and the opinion

aggregators must satisfy a symmetry property without which we only obtain the bias of the crowd.

DeMarzo et al. [23] provide a microfoundation of DeGroot’s model as a repeated naive maximum

likelihood estimation of an underlying parameter that captures a form of persuasion bias.8 In their

model, aggregation’s linearity crucially relies on the assumption that the error terms are normal and

independent. Our approach can also be seen as a generalization of [23] that does not impose any

parametric specification and independence assumption.

Among the recent papers, the one closest to ours is Molavi et al. [54]. However, both the questions

and the methodology are rather different from ours. First, they follow Jadbabaie et al. [42] in

considering social learning when agents both repeatedly receive external signals about an underlying

7For a comprehensive treatment of this literature see, for example, Acemoglu and Ozdaglar [1] and Golub and Sadler
[36].

8They also allow agents to vary over time the weight they give to their own past beliefs relative to the others. Banerjee
et al. [8] consider a different asynchronous departure from DeGroot’s model.
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state of the world and naively combine the beliefs of their neighbors. Instead, we follow the wisdom

of the crowd approach of [33], and we study the long-run opinions as the size of the society grows

to infinity. Therefore, we single out the role of the network structure and the opinion aggregator in

effi ciently combining the agents’ initial information as the network’s size increases. In the Online

Appendix, we show that for the questions we explore, log-linear aggregators a la [54] can be studied

in an equivalent linear system, thus making use of the results developed for DeGroot’s model and its

time-varying versions. So, our results cover their aggregators too after an opportune transformation.

Our work is related to a multidisciplinary literature on repeated averaging procedures mostly

focused on convergence to consensus. In this setting, Krause [45, Theorem 8.3.4] characterizes conver-

gence to consensus with respect to a form of strict internality of the averaging procedure. Importantly,

a similar internality condition is linked to the underlying network structure by Mueller-Frank [58]. Our

opinion aggregators do not satisfy in general these forms of internality and have an additional nor-

mative appeal given by our characterization. Both Mueller-Frank [58] and Arieli et al. [4] address

different robustness concerns in a social learning setting: in [58] it is with respect to external manip-

ulation of the initial opinions, while in [4] it is with respect to the initial information structure of the

agents. In the Appendix (see Remarks 3—6), we discuss the relation between our contribution and the

mathematical literature.

Our results also make use of some techniques coming from decision theory, and in particular

Ghirardato et al. [32], Maccheroni et al. [51], and Schmeidler [63]. The papers [32] and [51] are

the first to study functionals that satisfy normalization, monotonicity, and translation invariance,

using nonstandard differential techniques. These techniques turn out to be particularly useful when

we discuss the wisdom of the crowd. The third paper introduces the class of comonotonic additive

functionals that include rank-dependent aggregators.

2 The model

In this section, we introduce a model of opinion aggregation in social networks that captures either a

heuristic process of information acquisition or an intrinsic preference to conform. Let N = {1, ..., n},
with n ∈ N, denote a finite set of agents and let I be a closed interval of R with nonempty interior
denoting the set of possible opinions. For example, if I = [0, 1], then we interpret c ∈ I as either a
measure of agreement on a particular instance or a subjective probability of an event. Let B = In ⊆ Rn

denote the set of opinion profiles x = (xi)
n
i=1. Agents are connected through different (directed)

networks. In this paper, we identify an arbitrary network with an n× n adjacency matrix A′, that is,
a′ij = 1 if there is a directed link from agent i to agent j, and a′ij = 0 otherwise.

Time is discrete, t ∈ N, and the initial opinion of agent i ∈ N at period 0 is given by a signal

X0
i = µ+ εi

where µ ∈ R is an underlying fundamental parameter and each εi : Ω → R is a random variable

defined over a common probability space (Ω,F , P ).9 Let A denote the observation network with

9For completeness, we present the stochastic structure of initial opinions here. However, this does not have a relevant
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Ni = {j ∈ N : aij = 1} denoting the neighborhood of agent i. The interpretation is that agent i can
only observe the signal realizations, and in general the current opinions, of her neighbors j ∈ Ni.

Let x0
i denote the realization of the period-0 opinion of agent i. We model the evolution of

opinions in the following periods through an opinion aggregator, that is, a selfmap T : B → B that for

each profile of period-t opinions xt ∈ B returns the profile of period-(t+ 1) updates xt+1 = T
(
xt
)
. In

particular, we let Ti : B → I denote the i-th component of T , the updating rule of agent i. Conditional

on the initial opinions x0, the deterministic sequence of updates that we study is
{
T t
(
x0
)}

t∈N.
10 We

are particularly interested in the long-run properties of these dynamics with respect to convergence,

consensus formation, and effi cient information aggregation.

Next, we propose three descriptively appealing properties of opinion aggregators. Let e ∈ Rn

denote the vector whose components are all 1s.

Definition 1 Let T be an opinion aggregator. We say that:

1. T is normalized if and only if T (ke) = ke for all k ∈ I.

2. T is monotone if and only if for each x, y ∈ B

x ≥ y =⇒ T (x) ≥ T (y) .

3. T is translation invariant if and only if

T (x+ ke) = T (x) + ke ∀x ∈ B, ∀k ∈ R s.t. x+ ke ∈ B.

We say that T is robust if and only if T is normalized, monotone, and translation invariant.

Normalization requires that, whenever all the agents share the same opinion, each of the next-

period updates coincides with that opinion. Monotonicity embodies a form of trust of the agents in

the opinions observed from others.11 Finally, translation invariance naturally arises when agents only

care about their opinions’differences. In our related work [19], we provide a game-theoretic foundation

that relaxes this property to translation subinvariance, that is, agents react less than proportionally

to uniform shifts. It turns out that our main convergence results would continue to hold.

Robust opinion aggregators nest several opinion aggregation models and, at the same time, are rich

enough to describe new behavioral phenomena such as aversion/attraction for extreme opinions, rank-

dependent social influence, confirmatory bias, and pure right/left bias (for illustrations, see Section

3). An example is the widely studied DeGroot’s model in (2) below, where T is also linear. Even

role in the analysis until Section 5 on the wisdom of the crowd.
10The network structure (N,A) can be reflected in the opinion aggregator T by assuming that for each i ∈ N and for

each x, x′ ∈ B
xj = x′j ∀j ∈ Ni =⇒ Ti (x) = Ti

(
x′
)
.

It is a natural assumption satisfied by all the illustrations in Section 3, but it can be dispensed with for the general
analysis.
11Although natural, monotonicity may exclude some behavior patterns such as agents listening to each other only

when their opinions are closer than some threshold (cf. Krause [45]). However, we can capture a similar effect in a
continuous monotone model of confirmation bias (see Section 3).
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though this simple model has been often generalized to capture some of the aforementioned behavioral

phenomena, each of these extensions relies on ad hoc tools to analyze convergence and the consensus

properties. Differently, our three functional properties define a unifying and tractable framework to

analyze the dynamics of opinion aggregation as well as diffusion on networks (for the latter, see Section

6.3).

In Section 6.1, we characterize the dynamics induced by robust opinion aggregators in terms of

repeated minimization of loss functions by agents who dislike to disagree with each other. This provides

a foundation for our class of opinion aggregators that naturally generalizes the one of the linear model,

without committing to any specific functional form and gives a rationale for their names.12 Here, we

briefly mention two particular economic interpretations for these dynamics.

Best-response dynamics Consider n agents playing a pure coordination game where I is the set

of feasible actions of each player and the payoff function of agent i is

ui (x) = −φi (x− xie) ∀x ∈ B

for some loss function φi : Rn → R+ that is constant in its i-th argument. In particular, the payoff of

each agent only depends on the differences between her action and the ones of her coplayers capturing,

together with additional complementarity properties considered in Section 6.1, the willingness of the

agents to adapt to each other’s actions. Under these properties, the updating procedure T corresponds

to the myopic best-response dynamics of this game whenever each Ti is a selection from the best-

response correspondence of agent i. As a concrete example, consider the quadratic loss function

φi (x− xie) =

n∑
j=1

wij (xj − xi)2 (1)

for some vector of weights wi ∈ ∆ such that wii = 0 and wij = 0 for all j ∈ N\Ni where ∆ ={
p ∈ Rn+ :

∑n
j=1 pj = 1

}
. This is the simplest payoff function considered in coordination games on

networks (Ballester et al. [7]), beauty contests (Golub and Morris [35]), team problems (Calvó-

Armengol et al. [16]), and public-good games (Elliott and Golub [26]). In this case, the best-response

map is

T (x) = Wx ∀x ∈ B (2)

whereW ∈ W is the matrix collecting the vectors of weights, andW denotes the collection of stochastic

matrices. Finally, according to this interpretation, the fixed points of T coincide with the Nash

equilibria of the underlying coordination game.

Repeated robust estimation Alternatively, consider agents on a network that try to estimate µ

by repeatedly pooling the last-period estimates of their neighbors via the opinion aggregator T , that

is, Ti is the time-independent estimator used by i. DeMarzo et al. [23] considered agents updating

their opinions by maximum likelihood with Gaussian initial signals and proposed a “persuasion bias”

12 In particular, we point out a tight link between our aggregation procedure and the theory of robust statistics.
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justification of DeGroot’s iteration procedure where agents ignore the information redundancies in

their neighbors’estimates. However, even in the first period, this estimation approach is optimal only

when the agents know the specific (Gaussian) parametric form of the errors. Instead, in many real-

world situations (see Breza et al. [13]), the complexity of the environment does not allow the agents

to attach probabilistic beliefs to the data generating process, including the network structure. Under

this uncertainty, the standard approach taken in robust statistics is to minimize a loss function (see

for example the seminal contribution by Huber [39]) that usually induces an updating rule satisfying

the properties we studied above: e.g., the absolute loss, the p-loss where the quadratic function in

(1) is replaced by a general power p ≥ 1 function, and the Huber loss. Therefore, one foundation

for the behavior of the agents we study is that, in the face of uncertainty, they repeatedly perform a

generalized robust estimation procedure.

Turning to the analysis of opinions’ dynamics, we will be dealing with two kinds of limit of{
T t (x)

}
t∈N, the standard one induced by the supnorm ‖ ‖∞ as well as the one of Cesaro (i.e., time-

average limit):

C-lim
t

T t (x) = lim
τ

1

τ

τ∑
t=1

T t (x)

where the limit on the right-hand side of the definition is the standard one.

Definition 2 Let T be an opinion aggregator. We say that T is Cesaro convergent if and only if

C-limt T
t (x) exists for all x ∈ B. We say that T is convergent if and only if limt T

t (x) exists for all

x ∈ B.

Given the initial opinions x0, if the updates converge, then it is well known that Cesaro convergence

obtains and the time-average and the standard limit coincide. When the time averages converge we

define the long-run opinion aggregator T̄ : B → B by

T̄ (x) = C-lim
t

T t (x) ∀x ∈ B. (3)

If convergence obtains, we study whether the profile of long-run opinions is represented by a unique

consensus across all agents or by several coexisting conventions, i.e., long-run disagreement. We denote

by D ⊆ B the consensus subset, that is, x ∈ D if and only if xi = xj for all i, j ∈ N .

Definition 3 Let T be an opinion aggregator. We say that convergence to consensus always obtains
under T if and only if T is convergent and T̄ (x) ∈ D for all x ∈ B.

When the opinion aggregator T is clear from the context, we drop the qualification “under T”in

the previous definition.

3 Illustrations

In this section, we provide some examples of robust opinion aggregators and illustrate the long-run

dynamics of opinions induced.
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Median Assume that the agents best respond to the previous opponents’opinions, but instead of

minimizing a weighted quadratic loss function (1), they minimize the weighted absolute deviations:

φi (x− ce) =
n∑
j=1

wij |xj − c| ∀x ∈ B, ∀c ∈ I (4)

where the values wij are the entries of a stochastic matrix W . It is well known that the solution

correspondence admits as a selection the robust opinion aggregator T ,

Ti (x) = min

c ∈ R :
∑
j:xj≤c

wij ≥ 0.5

 ∀x ∈ B, ∀i ∈ N, (5)

that is, Ti (x) is the (weighted) median of x. We next illustrate via a simple example the dynamics

induced by this particular robust opinion aggregator.

Example 1 A group of agents N = {1, 2, 3, 4} share their opinions x0 ∈ B = [0, 1]4. The weights

assigned to the other agents are represented by the matrix

W =


0.4 0.3 0.3 0

0.3 0.4 0.3 0

0.1 0.1 0.2 0.6

0 0 0.6 0.4

 .

Aggregation through weighted averages would achieve consensus in the limit (see, e.g., [33, Proposition

1]). However, the dynamics induced by using the median are qualitatively different.

If x0 =
(
x0

1, 1, 1, 1
)
, then the block of agents agreeing on the higher opinion is suffi ciently large

to attract agent 1 to the same opinion, and the limit (consensus) opinion of (1, 1, 1, 1) is reached in

one round of updating. Note that the initial opinion of agent 1 is irrelevant given the agreement

of the other agents. Similarly, the same limit consensus obtains if agent 2 disagrees with the initial

consensus, that is, if x0 =
(
1, x0

2, 1, 1
)
.

Instead, convergence to consensus fails if the initial opinions of both agents 1 and 2 fall. If x0 =

(0, 1/2, 1, 1), then their first round of updating gives x1 = (1/2, 1/2, 1, 1), and this opinion segregation

will be the limit outcome: a strongly connected society fails to reach consensus without a suffi ciently

large block of initial agreement. This highlights how, contrarily to DeGroot’s aggregator, with median

aggregation a joint deviation from consensus by a group of agents might be necessary to destabilize

an initial consensus.13 In Propositions 4 and 5, focusing on a class of opinion aggregators that we

introduce next, we characterize the coalitions of agents that, with a joint deviation, can destabilize

consensus.

If x0 = (0, 1/2, 0, 1), then the agents’first update is x1 = (0, 0, 1, 0) and agents 1 and 2 never

change their opinions again, whereas agents 3 and 4 keep on reciprocally switching their opinions.

This shows that even convergence may not be guaranteed. On the one hand, in Proposition 8 we give

13Note that in the corresponding DeGroot’s model with matrix W , both an individual and a joint deviation would
still lead to a consensus but on a different opinion.
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necessary and suffi cient conditions for convergence of a class of robust opinion aggregators including

the median. On the other hand, in spite of the failure of global convergence, the current example

suggests to focus on the convergence of the updates’time averages given their cyclical dynamics. In

this case, it is possible to show that

C-lim
t

T t
(
x0
)

= (0, 0, 1/2, 1/2) .

In general, Theorem 1 shows that each robust opinion aggregator is Cesaro convergent. N

Rank-dependent influence The median aggregator features at the same time rank-dependent

influence across agents and, possibly, polarizing dynamics. The former property characterizes a more

general class of robust opinion aggregators that we now define. Consider a stochastic matrix W whose

positive entries implicitly define the observation network. But differently from DeGroot’s model, we

allow for agents who use a distorted collection of weights. Formally, we say that T f is a rank-dependent

aggregator if and only if for each i ∈ N

T fi (x) =
n∑
j=1

xπ(j)

[
fi

(
j∑
l=1

wiπ(l)

)
− fi

(
j−1∑
l=1

wiπ(l)

)]
∀x ∈ B, (6)

where π is a permutation of N such that xπ(1) ≤ ... ≤ xπ(n) and fi : [0, 1]→ [0, 1] is a weakly increasing

distortion function such that fi (0) = 0 and fi (1) = 1.14

In Figure 1 we illustrate some natural distortions. The first graph shows two distortion functions

where the red and blue agent are respectively attracted by extreme and moderate stances. The second

graph shows two distortions that truncate part of the observed sample. The third graph shows pure

directional biases: indeed, convex (resp. concave) distortion functions capture overweighting of higher

(resp. lower) opinions.

Figure 1

14The map T fi : B → I is a Choquet integral against the capacity obtained by distorting the probability vector wi ∈ ∆
with respect to the conjugated distortion f̄i (·) = 1 − fi (1− ·) (see [52, Example 4.6]), hence, T f is robust. Note in
particular that the functional form of T fi is analogous to the decision criterion in rank-dependent utility theory.
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An example of a strictly increasing distortion function with a clear psychological interpretation is

given by

fi (s) = q

(
ln s
ln qi

)αi
i ∀s ∈ (0, 1] (7)

where qi ∈ (0, 1) and αi ∈ R++.15 The parameter αi captures the attitudes of agent i with respect to

extreme opinions: (relative to qi) attraction (αi ∈ (0, 1)) or aversion (αi ∈ (1,∞)). The parameter qi
captures the relative concern of agent i for stating an opinion that is higher (qi ∈ (0, 1/2)) or lower

(qi ∈ (1/2, 1)) than the opinions of her neighbors. To see why the parameter qi captures the asymmetric

concerns for disagreement of agent i, note that, as aversion to extreme opinions increases (αi → ∞),
under a mild assumption, the corresponding rank-dependent aggregator converges pointwise to

T qii (x) = min

c ∈ R :
∑
j:xj≤c

wij ≥ qi

 ∀x ∈ B, (8)

that is, the weighted qi-quantile.16 In particular, we get back to the weighted median in (5) when

qi = 0.5. The qi-quantiles capture the idea of an extreme truncation of the sample of opinions effectively

taken into account. Indeed, the essential feature of these particular rank-dependent aggregators is the

extreme flatness of the corresponding weight distortion function fi (s) = 1[qi,1] (s) for all s ∈ [0, 1].

With this, for each opinion profile x ∈ B, agent i is only influenced by the neighbor with the opinion
corresponding to the qi-quantile of the distribution of opinions induced by the profile x and the weights

wi ∈ ∆. In the case of continuous opinions, a less extreme form of truncation might be desirable. For

example, agent i aggregates opinions with a trimmed mean with thresholds q
i
, q̄i ∈ [0, 1], q

i
< q̄i, if

her distortion function is

fi (s) =


0 if s < q

i
s−q

i
q̄i−qi

if q
i
≤ s ≤ q̄i

1 if s > q̄i

∀s ∈ [0, 1] . (9)

The qi-quantile is the limit case in which both qi and q̄i converge to qi ∈ (0, 1). Notice that flat regions

of fi imply that agent i disregards the opinions of some of her neighbors depending on the current

ranking of opinions. For example, suppose that the opinion of j is currently the lowest among the

opinions of the neighbors of agent i. If the weight that agent i puts on j’s opinion is not too high, that

is wij < q
i
, then i completely ignores j’s opinion. Differently, whenever the weight on the opinion of j

is high enough, that is wij > max
{
q
i
, 1− q̄i

}
, agent i will be always influenced by j regardless of the

current opinion profile. In this second case, we say that j strongly influences i. It turns out that this

relation can be defined for an arbitrary robust opinion aggregator T and it allows us to derive (see

15Clearly, fi is defined only on (0, 1], but it also admits a unique continuous extension to [0, 1]. The extension takes
value 0 in 0. In particular, we obtain Prelec’s probability weighting function [60] when qi = 1\e. More generally, using
an fi different from the identity map is a way to introduce a perception bias a la Banerjee and Fudenberg [9] in a model
of naive and nonequilibrium learning.
16 It is well known that, given a probability vector wi ∈ ∆ and x ∈ B, the qi-quantile of x is not uniquely defined, but

rather it can be any value in an interval
[
q−i (x) , q+

i (x)
]
. In the paper, we always consider q−i (x) which corresponds to

(8). As αi → ∞, T fi (x) converges to a value which belongs to
[
q−i (x) , q+

i (x)
]
. Finally,

[
q−i (x) , q+

i (x)
]
collapses to a

singleton, whenever there does not exist a subset M of N such that
∑
l∈M wil = qi. A similar observation holds for (9).
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Definition 4 and Proposition 3) an endogenous network A (T ). This strong network is at the heart of

all our suffi cient conditions for convergence and convergence to consensus in Section 4. Importantly,

for rank-dependent aggregators, it is clear that flat regions of the distortion functions (fi)
n
i=1 generate

a wedge between the observation network implicit in W and the strong network A
(
T f
)
. This is a

crucial feature that we exploit in Section 4.4 to show how, with our opinion aggregators, long-run

disagreement may or may not arise in the same strongly connected network. We next illustrate this

point in a particular example.

Example 2 (The islands model) Suppose that the agents are partitioned in m groups {Mp}mp=1,

that is,

N =
⋃
p∈G

Mp,

where Mp ∩ Mp′ = ∅ for all p, p′ ∈ G = {1, ...,m} such that p 6= p′. For example, these groups

might capture similar cultural or social backgrounds of the agents. Also, consider a strongly connected

observation network A with aii = 1 for all i ∈ N . So far, there is no relation between the neighborhood
Ni of an agent i and the only group she belongs to, denoted Mpi . In order to relate these two objects,

let us define the internal linking fraction of i ∈ N as

`i =
|{j ∈Mpi : aij = 1}| − 1

|Ni|
.

According to our interpretation of the groups, the (`i)i∈N capture the degree of homophily in the given

network structure: agents with a high `i are connected with many neighbors belonging to their own

groupMpi . A stylized picture of real-world networks that has been fruitfully used in the literature (cf.

Golub and Jackson [34]) is the islands structure with a large internal linking fraction for each agent.

Consider the uniform stochastic matrix W such that wij = 1
|Ni| if j ∈ Ni and wij = 0 otherwise.

Suppose that each agent i ∈ N aggregates the opinions she observes in her neighborhood using a

trimmed mean Ti with weights given by W and q
i

= 1 − q̄i = α/2 where α ∈ [0, 1). In words, every

agent computes the arithmetic average of the opinions she observes discarding both the α/2 highest

and lowest opinions. DeGroot’s model, obtained as a particular case by setting α = 0, would still

predict convergence to consensus in the long run. However, if there is suffi ciently high homophily

`i ≥ 1− α/2 ∀i ∈ N ,

then disagreement is a typical outcome for the long-run dynamics. We next illustrate this point by

studying the opinions’evolution in the society when, starting from a consensus ke ∈ B, the stances
of a nonempty subset M ⊆ N of agents are shifted upwards, that is,

x0
i =

{
k + δ if i ∈M
k otherwise,

with δ > 0 and k + δ ∈ I for all i ∈ M . For example, we can interpret this shock as follows: a

subset of agents M is targeted by a marketing campaign and persuaded to increase the use of a
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certain technology (as in Sadler [61]). Crucially, the extent of opinion segregation in the new long-

run dynamics will depend on the identities of the agents in the subgroup in relation to the islands

structure. If the shock is local, that is, M = Mp for some p ∈ G, then the long-run limit will be

such that limt T
t
i

(
x0
)
> k if i ∈M , and limt T

t
i

(
x0
)

= k if instead i 6∈M . Differently, if the shock is
dispersed, that is |M ∩Mp| ≤ 1 for all p ∈ G, then the long-run limit will be such that limt T

t
i

(
x0
)

= k

for all i ∈ N .
If the number of islands m is much greater than the size of each island |Mp|, then the second shock

involves a much larger subgroup of agents. Nevertheless, the deviation of each agent in the subgroup

is washed out within each island and the original consensus is restored. Instead, if the targeted set of

agents M is smaller but more cohesive, as in the first case, then the original consensus is broken. This

phenomenon resembles the so called “complex contagion”theory of Centola and Macy [17], whereby

a few long ties are not suffi cient to spread an increased opinion globally, and it is supported by the

evidence on technology adoption in developing countries, see Beaman et al. [10]. In contrast, in

DeGroot’s model, both shocks would have lead to the formation of a new higher consensus. N

The failure of global convergence to consensus in spite of a strongly connected observation network

is due to the wedge between the latter and the strong network. It is easy to see that, whenever

`i ≥ 1− α/2 for each i ∈ N , no agent strongly influences any other agent, that is, the strong network
is empty. Examples like this one suggest to analyze other layers of networks that are weaker than the

one of strong ties. The weakest possible layer can be defined as follows: agent j weakly influences i if

there exists at least one opinion profile where i is responsive to marginal changes in the opinion of j

(see Definition 5). This weak network Ā (T ) is at the heart of our necessary conditions for convergence

and convergence to consensus in Section 4. In the islands model just analyzed, the weak network

coincides with the observation network.

In general, in Proposition 3 we completely characterize both the strong and the weak networks for

rank-dependent aggregators in terms of the distortion functions (fi)
n
i=1 and the matrix of weights W .

Agent j strongly influences i if and only if her incremental weight with respect to any baseline group

of agents is strictly positive. Similarly, agent j weakly influences i if and only if her incremental weight

with respect to some baseline group of agents is strictly positive. This, together with our general

results on convergence and convergence to consensus, allows us to study the long-run properties of

opinions under rank-dependence.

Confirmatory bias In some societies, individuals tend to trust more those sources of information

whose opinions confirm their original stance.17 This phenomenon can be captured by a modification

of DeGroot’s model which is a generalization of the one proposed by Jackson [40]. Let I = [0, 1] and

assume that the observation network A has a strictly positive diagonal. As in the linear model, society

is represented by a stochastic matrix W (x) where wij (x) is the weight assigned by individual i to

agent j. Differently from the linear model, the weight is allowed to depend on the vector x. Moreover,

it is assumed that each individual downweights the agents who disagree the most with her:

T (x) = W (x)x ∀x ∈ B
17See, e.g., Golub and Jackson [34].
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where

wij (x) =
aije

−γij |xi−xj |∑n
l=1 aile

−γil|xi−xl|
∀x ∈ B

with γij ∈ (0, 1] for all i, j ∈ N and
∑n

j=1 γij ≤ 1 for all i ∈ N . Here, 1/γij captures the relative

strength of the weight assigned by individual i to agent j net of the difference in their opinions. It is

easy to see that the opinion aggregator T is robust. In Section 4, we obtain two general results that

cover the dynamics induced by confirmatory bias. In particular, here we exploit the fact that both the

strong and the weak network induced by T coincide with the observation network. First, by Theorem

2, T is convergent. Second, by Proposition 2, convergence to consensus always obtains under T if and

only if the network A has a unique strongly connected and closed group of agents. Finally, even if we

consider the opinion aggregator T as a primitive object, our characterization theorem in Section 6.1

provides a formal microfoundation of these dynamics.

Quasi-arithmetic biased aggregation and opinions’dispersion Consider again agents that

best respond to the previous opinions of the opponents at each period. Within this interpretation

of our dynamics, a restriction imposed by the quadratic loss in (1) is that upward and downward

discrepancies are felt as equally harming by every agent. It might be the case that (some) agents

dislike more one or the other. A smooth and tractable robust opinion aggregator that takes in account

these asymmetries is obtained by minimizing

φλi (x− ce) =
n∑
j=1

wij [exp (λ (xj − c))− λ (xj − c)] ∀x ∈ B, ∀c ∈ I (10)

where λ 6= 0 and the values wij are the entries of a stochastic matrix W . In particular, whenever

λ > 0, upward deviations from i’s current opinion are more penalized than downward deviations and

vice versa whenever λ < 0.

We next show that there exists a unique solution function T λi for each minimization problem

induced by φλi . Furthermore, the specific properties of the induced robust opinion aggregator offer a

glimpse into our more general findings about long-run opinions and how they differ from the linear

case. In particular, for this parametric class, we derive an explicit formula for the induced long-run

opinion aggregator.

Proposition 1 Let φ be the profile of loss functions
(
φλi : Rn → R+

)n
i=1

as in (10) with W ∈ W and

λ ∈ R\ {0}. The following statements are true:

1. For each i ∈ N we have that

T λi (x) = argminc∈R φ
λ
i (x− ce) =

1

λ
ln

 n∑
j=1

wij exp (λxj)

 ∀x ∈ B (11)

and T λ is a robust opinion aggregator.
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2. For each i ∈ N we have that

lim
λ→λ̂

T λi (x) =


maxj:wij>0 xj if λ̂ =∞∑n

j=1wijxj if λ̂ = 0

minj:wij>0 xj if λ̂ = −∞
∀x ∈ B.

3. If there exists a vector s ∈ ∆ such that

lim
t
W tx =

(
n∑
i=1

sixi

)
e ∀x ∈ Rn, (12)

then T λ is convergent and

T̄ λ (x) =
1

λ
ln

(
n∑
i=1

si exp (λxi)

)
e ∀x ∈ B.

Point 1 gives an explicit functional form for the opinion aggregator. Point 2 shows that this func-

tional form encompasses the linear case as a limit, but also allows for behaviors which are nonneutral

toward the direction of disagreement. Condition (12) in point 3 is satisfied when W is strongly con-

nected and aperiodic. In this case, we see how it is not just the network structure that determines the

limit influence of each agent, but the initial opinion also plays a key role. Indeed, the marginal contri-

bution to the limit of agent i’s initial opinion is proportional to si exp (λxi). Therefore, when λ > 0,

the higher the initial signal realization of an individual is, the higher is her marginal contribution to

the limit. This fact has extremely relevant consequences. For example, consider one of the classical

applications of non-Bayesian learning, technology adoption in a village of a developing country, with

an opinion vector representing how much the agents have invested in the new technology (e.g., the

share of land cultivated with the new technology). There, λ > 0 captures the idea that the most in-

novative members of the society have a disproportionate influence on the others, maybe because their

performance attracts relatively more attention. If resources are limited, i.e., if the external actor can

only increase adoption for an agent directly, relying on the network aggregation for the rest, the policy

prescription is qualitatively different. Indeed, she should choose the agent j for which sj exp (λxj) is

maximized, combining the standard eigenvector centrality sj with a distortion increasing in the initial

opinion xj of agent j.

Finally, we observe that the functional form obtained in Proposition 1 links the dispersion of the

initial opinions of the agents to the level of their limit consensus. More precisely, consider two agents

i and j sharing the same influence under the linear model, i.e., such that si = sj > 0. If their initial

opinions are strictly more dispersed (resp. more concentrated) in terms of mean preserving spreads,

then the limit consensus is strictly higher (lower) if and only if λ > 0. Therefore, there is scope

for manipulating the informativeness of the agents’initial opinion to increase (or decrease) the limit

consensus. More in general, in Section 5, we show that, for large populations, the long-run consensus

converges in probability to a constant that may differ from the fundamental parameter µ, and if the
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error terms {εi}i∈N are uniformly bounded and i.i.d., then the probability limit is

µ+
1

λ
ln (E (exp (λεi))) .

Here, the bias of the crowd depends on the distribution of εi and increases with the noisiness of the

initial signals. In Example 4, we leverage this observation to match some stylized facts that link the

noisiness of information to opinions’bias and polarization.

We close this section with an observation. Even though in each illustration presented all the agents

aggregate opinions according to functionals of the same subclass (e.g., the median, quantiles, rank-

dependent, quasi-arithmetic), all the next results, with the exception of Sections 4.4 and 6.3, apply to

arbitrary robust opinion aggregators.

4 The dynamics of robust opinion aggregation

In the rest of the paper, we analyze the dynamics induced by robust opinion aggregation. In this

section, we focus on the opinions’ limit for a given population size. In Section 5, we let the size

of the network grow to analyze the asymptotic properties of the consensus opinion emerging from

aggregation.

4.1 Convergence of the time averages

Example 1 suggests that, even if the updates of a robust opinion aggregator might not converge, their

time averages might. Next result shows that indeed the opinions’time averages always stabilize in the

long run.

Theorem 1 If T is a robust opinion aggregator, then T is Cesaro convergent. Moreover, the long-run
opinion aggregator T̄ is a robust opinion aggregator such that T̄ ◦T = T̄ , and if B̂ is a bounded subset

of B, then

lim
τ

(
sup
x∈B̂

∥∥∥∥∥1

τ

τ∑
t=1

T t (x)− T̄ (x)

∥∥∥∥∥
∞

)
= 0. (13)

The Cesaro limit is described by the long-run opinion aggregator T̄ that, for each initial profile of

stances x ∈ B, returns the long-run average opinion of each agent (see equation (3)). In particular, T̄
is robust and satisfies the fixed point equation T̄ ◦ T = T̄ , hence generalizing the well-known notion

of eigenvector centrality of DeGroot’s model (cf. influence vector in [33]). In Section 5, we exploit

this fact to give conditions under which the long-run opinion converges in probability to the true

underlying parameter µ, provided the size of society goes to infinity. If the robust opinion aggregator

T happens to be convergent, then this implies the wisdom of the crowd : agents are going to learn

the true parameter. Instead, if T is not convergent, still there is wisdom from the crowd : an external

observer that has access to the time averages of at least a subset of the society can extract enough

information to learn the truth.

Finally, whenever the initial opinions of the agents are known to belong to a bounded set, the

initial realizations of their signals do not affect the rate of convergence of the time averages. Therefore,
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the time needed for the information to stabilize on average does not depend on the objective data

generating process, but only on the updating procedures used by the agents.

4.2 Stable long-run opinions

In the standard DeGroot’s model, convergence is tied to the properties of an underlying network

structure. The latter can either be implicit and given by the indicator matrix A (W ) of W , that is

the matrix collecting the unweighted links (e.g., Golub and Jackson [33]), or be explicit and given

by a primitive observation network (e.g., DeMarzo et al. [23]).18 In this section, we follow the first

approach and derive different network structures from a robust opinion aggregator T . In Section 6.2,

we derive a robust aggregator from an observation network and a profile of loss functions, providing

conditions under which the two approaches are equivalent.

We recall some routine terminology from the network literature first. Consider an arbitrary network

A′ and let ∅ 6= M ⊆ N denote an arbitrary group. The network A′ is nontrivial if and only if for each

i ∈ N there exists j ∈ N such that a′ij = 1. A path inM is a finite sequence of agents i1, i2, ..., iK ∈M
with K ≥ 2, not necessarily distinct, such that a′ikik+1

= 1 for all k ∈ {1, ...,K − 1}. In this case, the
length of the path is K − 1. A cycle in M is a path in M such that i1 = iK . A cycle is simple if

and only if the only repeated index in the sequence is the starting (and ending) one.19 We say that

M is strongly connected if and only if for each i, j ∈M there exists a path in M such that i1 = i and

iK = j. We say that M is closed if and only if for each i ∈M , a′ij = 1 implies j ∈M . We say that M
is aperiodic if and only if the greatest common divisor of the lengths of its simple cycles is 1. Finally,

we say that A′ is aperiodic if and only if each closed group M is aperiodic.20

In principle, there are multiple layers of networks corresponding to the same robust aggregator T .

We start with a natural definition capturing only the strong ties among agents. A piece of notation:

ej ∈ Rn denotes the j-th vector of the canonical basis.

Definition 4 Let T be an opinion aggregator. We say that j strongly influences i if and only if there
exists εij ∈ (0, 1) such that for each x ∈ B and for each h > 0 with x+ hej ∈ B

Ti
(
x+ hej

)
− Ti (x) ≥ εijh. (14)

We say that A (T ) is the network of strong ties of T if and only if for each i, j ∈ N the ij-th entry is

such that

aij =

{
1 if j strongly influences i

0 otherwise
.

Equation (14) reflects uniform responsiveness of i to j: no matter what is the current opinion profile,

the update of i increases at least linearly in the opinion of j. For example, when T is linear, the matrix

A (T ) coincides with the indicator matrix A (W ) ofW . In general, the strong directed network A (T ) is

18Formally, the indicator matrix A (W ) of an arbitrary W ∈ W is such that its ij-th entry is equal to 1 if wij is strictly
positive and 0 otherwise.
19More formally, a cycle (of length K − 1) is simple if and only if for each k, k′ ∈ {1, ...,K − 1}: ik = ik′ =⇒ k = k′.
20Our definition of aperiodic network coincides with the definition of strongly aperiodic network proposed by Golub

and Jackson [33, Definition 7].
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the minimal network underlying the opinion aggregator T and as such it is instrumental in providing

suffi cient conditions for convergence.

The next result builds on the convergence of the time averages to obtain standard convergence

of the updates from the aperiodicity of the network of strong ties. However, an agent might not be

strongly influenced by anyone.21 Therefore, to guarantee convergence we also assume that the strong

network is nontrivial.

Theorem 2 Let T be a robust opinion aggregator. If the network of strong ties A (T ) is aperiodic and

nontrivial, then T is convergent.

This result has important implications for our game-theoretic interpretation. Even if there ex-

ist multiple closed groups that do not strongly influence each other, simple best-response dynamics

converge to a Nash equilibrium, provided that these groups are aperiodic under A (T ).

Instead, under our alternative interpretation of repeated robust estimation, it is natural to assume

that information gathered in the past is not entirely dismissed in light of new evidence. Indeed, in the

empirical social learning literature, Chandrasekhar et al. [20] find that the behavior of most of the

subjects is consistent with a form of own-history dependence, even when it is objectively suboptimal.

This translates into the property that each agent strongly influences herself, a condition that guarantees

convergence via Theorem 2.

Corollary 1 Let T be a robust opinion aggregator. If T is self-influential, that is aii = 1 for all i ∈ N ,
then T is convergent.

Observe that even if an agent does not strongly influence another, this does not completely prevent

communication between the two. Indeed, j strongly influencing i requires that i listens to j no matter

what are the current stances of the society: a stringent requirement. As a consequence, the above

conditions are suffi cient, but not necessary, for convergence (see Example 6 in the Online Appendix).

In real social networks, strong links characterize only a subset of all the connections: close friends,

own past opinions (anchoring effect), or an extremely reliable source (more generally, the relational

“strong ties”as in Granovetter [37] and Centola and Macy [17]). However, there might be additional

links (i.e., relational “weak ties”) not in A (T ) that are active only under exceptional circumstances.

On the one hand, this might be the case if a person completely discards the opinion of a distant friend

of hers when this is too extreme compared to the ones of the rest of her neighbors. On the other

hand, this might happen for topics involving potential high stakes risks (e.g., vaccinations) for which a

person may well be influenced by the opinion of someone outside her personal network, whenever the

latter reports an extremely negative stance (e.g., isolated serious adverse reactions to vaccines). These

considerations suggest the presence of several layers of networks associated with the same observation

network.22

21This is always ruled out in the linear case, since by W being a stochastic matrix, each row has a nonzero element.
22These layers can be mapped into the data collected on the field. For example, in their analysis of the network

structure of the Indonesian villages Alatas et al. [2] identify both the strong familial ties and the links due to the
extreme relative wealth of some agents.
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Our model has the advantage to easily differentiate these facets of a social network. On one

extreme, A (T ) captures the strong connections in the society as already observed. On the other

extreme, it is possible to capture the weak connections as follows.

Definition 5 Let T be an opinion aggregator. We say that j weakly influences i if and only if there
exist x ∈ B and h > 0 such that x+ hej ∈ B and

Ti
(
x+ hej

)
− Ti (x) > 0.

We say that Ā (T ) is the network of weak ties of T if and only if for each i, j ∈ N the ij-th entry is

such that

āij =

{
1 if j weakly influences i

0 otherwise
.

Intuitively, i is weakly influenced by j if there are circumstances under which a change in the

opinion of j affects her update. It is plain to see that, in general, A (T ) ≤ Ā (T ) and, if T is linear

with matrix W , then A (W ) = A (T ) = Ā (T ). Therefore, in DeGroot’s model, it is impossible to

separate these two extreme layers of networks. In general, the weak directed network Ā (T ) is the

maximal network underlying the opinion aggregator T and as such it is instrumental in providing

necessary conditions for convergence.

Theorem 3 Let T be a robust opinion aggregator. If T is convergent, then the network of weak ties
Ā (T ) is aperiodic and nontrivial.

This result states that if there exists a cyclic behavior in a group that is closed with respect to weak

ties, then there exists a profile of initial opinions such that the updates of this group will not stabilize.

Indeed, given that the agents in this group are never affected by the opinions of the outsiders, the

cycle cannot be broken.

Combining the last two theorems we obtain the following immediate corollary about robust opinion

aggregators that do not differentiate between weak and strong ties.

Corollary 2 Let T be a robust opinion aggregator. If the networks of weak and strong ties coincide,
then T is convergent if and only if Ā (T ) = A (T ) is aperiodic and nontrivial.

This result significantly generalizes Golub and Jackson [33, Theorem 2] which states that aperiod-

icity of A (W ) characterizes convergence for linear aggregators. The previous corollary covers a large

class of robust opinion aggregators which is not exhaustive.23 Indeed, as we have illustrated in Section

3, there often exists a wedge between the two extreme networks A (T ) and Ā (T ).

Remark 1 In applications, the computation of the networks of strong and weak ties might be sim-
plified by the following differential observation. Robust opinion aggregators are differentiable almost

23See the confirmatory bias example in Section 3 as well as the formal results in Sections 4.4 and 6.2 for suffi cient
conditions under which Ā (T ) = A (T ).
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everywhere, as they are Lipschitz continuous. If we denote by D any subset of interior points of B

where T is differentiable and such that intB\D has 0 measure, then easy computations give

j strongly influences i ⇐⇒ ∃εij ∈ (0, 1) s.t.
∂Ti
∂xj

(x) ≥ εij ∀x ∈ D. (15)

In words, j strongly influences i if and only if the partial derivative of Ti with respect to xj is uniformly

bounded away from zero.24 Similarly, we have that

j weakly influences i ⇐⇒ ∃x ∈ D s.t. ∂Ti
∂xj

(x) > 0, (16)

that is, j weakly influences i if and only if the partial derivative of Ti with respect to xj is strictly

positive somewhere. N

4.3 Long-run consensus

Our next result shows that a network property capturing cohesiveness is suffi cient for convergence to

consensus when satisfied by the strong network, whereas it is necessary when satisfied by the weak

network.

Proposition 2 Let T be a robust opinion aggregator. The following statements are true:

1. If the network of strong ties A (T ) is nontrivial, has a unique strongly connected and closed group

M , and M is aperiodic under A (T ), then convergence to consensus always obtains.

2. If convergence to consensus always obtains, then the network of weak ties Ā (T ) is nontrivial,

has a unique strongly connected and closed group M , and M is aperiodic under Ā (T ).

Intuitively, point 1 states that if there exists a unique set of agents in the society that are strongly

cohesive then all the outsiders will eventually conform to this group. Instead, if even the weak ties are

not suffi cient to make the society cohesive, then long-run disagreement can occur. With this, whenever

A (T ) = Ā (T ), the cohesiveness condition considered above characterizes convergence to consensus,

extending a well-known fact of DeGroot’s model (cf. Jackson [40, Corollary 8.1]).

Corollary 3 Let T be a robust opinion aggregator. If the networks of weak and strong ties coincide,
then convergence to consensus always obtains if and only if Ā (T ) = A (T ) is nontrivial, has a unique

strongly connected and closed group M , and M is aperiodic.

This result confirms a general principle for robust opinion aggregators: if weak and strong ties

coincide, then the results for convergence and consensus of DeGroot’s model extend plainly. However,

as we show in several illustrations, and more in general for the class of rank-dependent aggregators,

without suffi ciently many strong ties disagreement can persist despite the presence of a high number of

24One implication trivially follows by definition. The other is a consequence of Lebourg’s Mean Value Theorem (see,
e.g., [21, Theorems 2.3.7 and 2.5.1]). A similar observation holds for (16). We confine the details to the Online Appendix.
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weak connections. It then becomes critical to identify strong and weak ties in the society to understand

whether an intervention might generate a global consensus or just a localized one.

In general, there are simple properties of the strong network structure A (T ) that imply long-run

consensus. For example, whenever N as a whole is strongly connected and aperiodic under A (T ), then

the condition in point 1 of Proposition 2 is satisfied. Another condition implying always convergence

to consensus via Proposition 2 is that T has the pairwise common influencer property : for all agents

i, j ∈ N , there is a common influencer l ∈ N such that l strongly influences both i and j. This

is a minimal requirement about the presence of a direct source of information relied upon by both

agents. A typical situation where we expect the pairwise common influencer property to hold is one of

asymmetric networks with a bunch of media followed by the agents. If there is a minimal overlapping

in the media trusted by the agents, the property holds. Moreover, Jackson et al. [41] show that

strategic considerations naturally lead to networks that satisfy this property (see also Allcott et al.

[3] for an empirical investigation of the relation between the network size and this property).

Corollary 4 Let T be a robust opinion aggregator. If T has the pairwise common influencer property,
then convergence to consensus always obtains.

Note that a particular case in which T has the pairwise common influencer property is that each

agent is strongly influenced by a common influencer k ∈ N . Therefore, Corollary 4 implies that, if
agents share (pairwise or uniformly) a strong first-hand source of information, then consensus is always

achieved in the limit.

Remark 2 Point 1 of Proposition 2 and Corollary 4 are derived from our main convergence result:

Theorem 2. This proof strategy has the drawback of not elaborating on the rate of convergence.

Alternatively, we could obtain these results via a nonlinear version of a well-known fact: in DeGroot’s

model, convergence to consensus happens if there exists t̂ ∈ N such that some column k of W t̂ is

strictly positive (see, e.g., Jackson [40, Corollary 8.2]). In our model, this condition generalizes as

follows: there exist t̂ ∈ N and k ∈ N such that agent k strongly influences every other agent in the

population under the network of strong ties A
(
T t̂
)
. If this condition holds, which is implied by point

1 in Proposition 2, not only we would have that convergence to consensus always obtains, but we

could also derive bounds on the rate of convergence: there exists ε ∈ (0, 1) such that25∥∥T̄ (x)− T t (x)
∥∥
∞ ≤ 2 (1− ε)b

t
t̂
c ‖x‖∞ ∀t ∈ N,∀x ∈ B.

In particular, if T satisfies point 1 of Proposition 2 with M = N , then t̂ can be chosen to be the

smallest integer such that each entry of A (T )t̂ is strictly positive, i.e., t̂ is the smallest integer such

that for each i, j ∈ N there exists a path of length t̂ from i to j. This allows us to provide several

bounds, for example, it is known that t̂ ≤ d2 + 1 where d is the diameter of the network A (T ) (see,

e.g., Neufeld [59]) or t̂ ≤ n+ s (n− 2), provided the shortest (simple) cycle has length s ≥ 1 (see, e.g.,

Horn and Johnson [38, Theorem 8.5.7]). N
25Recall that, given s ∈ (0,∞), bsc is the integer part of s, that is, the greatest integer l ∈ N0 such that s ≥ l.
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4.4 Rank-dependence and long-run disagreement

We close this section by focusing on rank-dependent aggregators introduced in Section 3 and their

opinion segregation properties. We first leverage Remark 1 to characterize the extreme network layers

of a rank-dependent aggregator. For each W ∈ W, i ∈ N , and N ′ ⊆ N , define wi (N ′) =
∑

j∈N ′ wij .

Proposition 3 Let T f be a rank-dependent aggregator with matrix of weights W ∈ W. We have

j strongly influences i⇔ min
M⊆N\{j}

[fi (wi (M ∪ {j}))− fi (wi (M))] > 0

and

j weakly influences i⇔ max
M⊆N\{j}

[fi (wi (M ∪ {j}))− fi (wi (M))] > 0.

In particular, if fi is strictly increasing for all i ∈ N , then A
(
T f
)

= Ā
(
T f
)

= A (W ).

When the distortion functions of all the agents are strictly increasing, as in equation (7), we then

immediately have that T f is convergent if and only if A (W ) is aperiodic. Moreover, convergence to

consensus always obtains under T f if and only if A (W ) has a unique strongly connected and closed

group M , and M is aperiodic under A (W ). At the same time, Proposition 3 and Example 2 point

out the importance of flat regions of the distortion functions for differentiating the layers of networks

under rank-dependence (e.g., trimmed means). In particular, regardless of the matrix of weights,

locally flat distortion functions can induce richer dynamics where disagreement obtains in the limit.

This point is formalized in our next proposition.

Proposition 4 Let T f be a rank-dependent aggregator with matrix of weights W ∈ W. We have
(i) =⇒ (ii), where

(i) There exist two nonempty disjoint subsets N,N ⊆ N such that

fi
(
wi
(
N\N

))
= 0 ∀i ∈ N and fl (wl (N)) = 1 ∀l ∈ N ;

(ii) There exists x ∈ B, such that T̄ f (x) ∈ B\D.

Moreover, if T f is convergent, then (i) and (ii) are equivalent and, for each N,N ⊆ N as in (i)

and for each x ∈ B,
min
j∈N

xj > max
j∈N

xj =⇒ min
j∈N

T̄ fj (x) > max
j∈N

T̄ fj (x) . (17)

Proposition 4 establishes that if there are two groups of agents that distort suffi ciently toward

zero the total weights of the outsiders, then long-run disagreement might obtain. This can happen,

independently of distortions (i.e., also in DeGroot’s model), when the two groups are completely

isolated from the rest of the society. More interestingly, this can happen even in a completely connected

society provided that the distortions are suffi ciently large compared to the weights among groups

(e.g., society with very cohesive groups as in Example 2). If T f is convergent, then our condition
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fully characterizes long-run disagreement and, in addition, whenever the two groups start with non-

overlapping opinions, these remain segregated.

Proposition 4 is mute with respect to the residual group of agents outside the segregated sets.

This suggests that the exact composition of these sets is flexible and might change depending on their

initial stances. This point is illustrated in the following example.

Example 3 Consider a society segmented along two different dimensions: left vs. right and younger
vs. elder. For simplicity, restrict attention to four “representative”agents N = {1, 2, 3, 4} such that
agents 1 and 2 are left-leaning and agents 3 and 4 are right-leaning, whereas agents 1 and 3 are younger

and agents 2 and 4 are elder. For each agent i ∈ N , the neighborhood Ni is the set of agents that

share their type with i, at least on one dimension. Each agent i assigns a weight of 0.25 to j for every

dimension with a shared trait:

W =


0.5 0.25 0.25 0

0.25 0.5 0 0.25

0.25 0 0.5 0.25

0 0.25 0.25 0.5

 .

Observe that the linear opinion aggregator induced by W is always convergent to consensus. Instead,

we assume that each agent i ∈ N aggregates opinions via a trimmed mean over the observations in

her neighborhood with q
i

= 1 − q̄i = 0.3 (see equation (9)). By Proposition 3, the induced opinion

aggregator T is self-influential, hence convergent by Corollary 1. Also, suppose that each opinion

profile x ∈ B = [0, 1]4 collects the measures of agreement of the agents on a particular instance.

First, consider degrees of agreement with a policy that reduces restrictions on work migration.

In this case, it is realistic to assume that the distribution of initial opinions is supported on profiles

x ∈ B such that x1 > x2 > x3 > x4. For each of such initial opinion profile x, the long-run limit

is T̄ (x) = (x2, x2, x3, x3). On the one hand, the long-run polarization is obtained along the political

dimension. On the other hand, agents 1 and 4 are the ones adjusting their original stances toward the

ones of agents 2 and 3 respectively.

Second, consider degrees of agreement with a policy that incentivizes the creation of an individual

pension system and cuts on expenses for a national pension system. In this case, it is realistic to assume

that the distribution of initial opinions is supported on profiles x ∈ B such that x3 > x1 > x4 > x2.

For this initial opinion profile x, the long-run limit is T̄ (x) = (x1, x4, x1, x4). In this case, the long-run

polarization is obtained along the age dimension. Moreover, agents 2 and 3 are the ones adjusting

their original stances toward the ones of agents 4 and 1 respectively. N

Note that, in the previous example, we obtained polarization even if the agents were symmetric in

the way they aggregated the observations of their neighbors’opinions. Moreover, we reached different

segmentations of the population of agents with respect to their long-run opinions depending on the

initial ranking of stances. Next proposition, instead, provides necessary and suffi cient conditions such

that the society is segregated along a given binary segmentation. For each nonempty proper subset
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N of N define

B (N) =

{
x ∈ B : max

j∈N\N
xj = min

j∈N\N
xj > max

j∈N
xj = min

j∈N
xj

}
,

that is, the set of profiles of opinions with segregation between N and N\N and agreement within

each of them.

Proposition 5 Let T f be a convergent rank-dependent aggregator with matrix of weights W ∈ W and

N a nonempty proper subset of N . The following statements are equivalent:

(i) There exists x∗ ∈ B (N) such that T f (x∗) = x∗;

(ii) fi (wi (N)) = 0 for all i ∈ N\N and fl (wl (N)) = 1 for all l ∈ N ;

(iii) T̄ f (x) ∈ B (N) for all x ∈ B (N).

Consider a candidate binary segmentation of the society N and N\N . Proposition 5 gives two
alternative characterizations of persistent disagreement across this segmentation (i.e., point (iii)).

Condition (ii) is the simpler binary version of the distortion-weight structure in Proposition 4. Condi-

tion (i) instead requires the existence of a stable opinion profile where the two groups are completely

separated. In particular, under our best-response interpretation of T f , the previous corollary gives a

characterization for the existence of a Nash equilibrium with coexisting conventions as in Morris [55].

5 Vox populi, vox Dei?

In the previous sections, we considered a given deterministic profile of initial opinions and studied the

corresponding evolution of opinions. However, for every given population size, the stochastic nature

of the vector of initial opinions X = µ+ ε implies that the long-run outcome T̄ (X) will be stochastic

as well. In this section, we consider large networks to study the aggregate variability of opinions

under robust opinion aggregation. This limit variability disappears provided that no single agent is

excessively influential. Without additional symmetry properties of the error terms and the opinion

aggregators, the long-run opinions will concentrate around a biased estimate of the fundamental

parameter µ. This bias of the crowd implies that completely disconnected but still large subgroups

may have persistent disagreements even if their initial signals follow the same data generating process.

More interestingly, the extent of this disagreement depends on the noisiness of the initial signals. In

particular, in large networks, the noisier are the sources of information and the more polarized are the

limit opinions.

Formally, we consider the same setup of Section 2, with the caveat that here everything is para-

metrized by the size n of the population.

Assumptions In this section, we maintain the following assumptions:

1. I = R.

2. For each n ∈ N we assume that Xi (n) = µ + εi (n) for all i ∈ N , where {εi (n)}i∈N,n∈N is an
array of uniformly bounded and independent random variables.
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3. T̄i (n) = T̄j (n) for all i, j ∈ N and for all n ∈ N.

Assumption 3 holds whenever T (n) is a robust opinion aggregator that satisfies (i) of Proposition

2. Even though Assumption 3 is not strictly necessary for the entire set of agents to learn µ, it seems

natural to consider a situation in which the result of the updating procedure is common across agents.

Some additional notation is useful for the following analysis.

Notation With Î, we denote a bounded open interval such that Xi (n) (ω) ∈ Î for all ω ∈ Ω, i ∈ N ,
and n ∈ N. We denote by ` def

= sup Î − inf Î the length of Î. Moreover, we denote the collection of

probability vectors in Rn by ∆n.26

We are interested in whether a growing society becomes wise (cf. Golub and Jackson [33]), that

is, whether there is effi cient aggregation of the information available in the network in the limit.

Definition 6 Let {T (n)}n∈N be a sequence of robust opinion aggregators. The sequence {T (n)}n∈N
is wise if and only if

max
i∈N

∣∣T̄i (n) (X1 (n) , ..., Xn (n))− µ
∣∣ P→ 0. (18)

If T (n) is linear with matrix W (n), so is T̄ (n) and the latter is represented by a matrix W̄ (n).

In this case, Assumption 3 yields that all the rows of W̄ (n) coincide with the left Perron-Frobenius

eigenvector s (n) ∈ ∆n associated with the eigenvalue 1 of W (n): a standard measure of network

centrality. DeMarzo et al. [23] as well as Golub and Jackson [33] call s (n) the influence vector and

the latter show that if limn→∞maxk∈N sk (n)→ 0 and the errors εi (n) have 0 mean, then {T (n)}n∈N
is wise. In this case, the vector s (n) coincides with the gradient of T̄i (n), thereby capturing the idea

of “marginal contribution”of the agents to the common limit opinion.

As suggested by Theorem 1, for robust opinion aggregators the marginal contributions to the

limit opinion are captured by the partial derivatives of T̄i (n). Unfortunately, we face the technical

complication that our opinion aggregators might be nondifferentiable. Nevertheless, being Lipschitz

continuous, by Rademacher’s Theorem, they are almost everywhere differentiable. Let D
(
T̄ (n)

)
⊆ În

be the subset of În where T̄ (n) is differentiable.

Definition 7 Let T (n) : Rn → Rn be a robust opinion aggregator. We say that s (T (n)) ∈ Rn is the
influence vector of T (n) if and only if

si (T (n)) = sup
x∈D(T̄ (n))

∂T̄1 (n)

∂xi
(x) ∀i ∈ N .

As we mentioned, the above definition of influence vector coincides with the one of Golub and

Jackson whenever T (n) is linear since s (T (n)) = s (n). In the general case, si (T (n)) captures the

maximal marginal contribution of a change of the opinion of agent i to the final consensus.

We say that the array {εi (n)}i∈N,n∈N is symmetric if and only if for each i ∈ N and for each n ∈ N

P ({ω ∈ Ω : εi (n) (ω) ∈ C}) = P ({ω ∈ Ω : −εi (n) (ω) ∈ C})
26Recall that all the random variables we consider are defined over a common probability space (Ω,F , P ).
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for all Borel sets C ⊆ R. Moreover, we say that the sequence {T (n)}n∈N is odd if and only if
T (n) (−x) = −T (n) (x) for all x ∈ Rn and for all n ∈ N.27

Theorem 4 Let {T (n)}n∈N be a sequence of robust opinion aggregators. If there exist two sequences
{c (n)}n∈N and {w (n)}n∈N such that for each n ∈ N: c (n) ∈ R, w (n) ∈ ∆n, and

s (T (n)) ≤ c (n)w (n) as well as c (n)2 max
k∈N

wk (n)→ 0 as n→∞, (19)

then

max
i∈N

Var
(
T̄i (n) (X1 (n) , ..., Xn (n))

)
→ 0. (20)

If in addition {T (n)}n∈N is odd and {εi (n)}i∈N,n∈N is symmetric, then {T (n)}n∈N is wise.

As long as the maximal influence in the society is vanishing fast enough, the variance of the limit

consensus is going to 0, thereby establishing the absence of aggregate variability of the long-run opinion

in large crowds.28 In particular, this result exploits McDiarmid’s concentration inequality to link the

variance of the long-run consensus to the maximal influence in the society. Moreover, if both the errors

and the opinion aggregator are symmetric, then the long-run opinion of large crowds is also correct.29

Relatedly, the next corollary shows that a convergence rate of 1/
√
n is suffi cient to guarantee wisdom.

Corollary 5 Let {T (n)}n∈N be a sequence of odd robust opinion aggregators and {εi (n)}i∈N,n∈N
symmetric. The sequence {T (n)}n∈N is wise provided that

max
k∈N

sk (T (n)) ≤ o
(

1√
n

)
.

In general, there are two main differences between the previous results (e.g., Golub and Jackson

[33] and Levy and Razin [48]) about the wisdom of the crowd and ours. First, we neither impose

any parametric form of the opinion aggregators nor assume that agents aggregate opinions according

to functionals belonging to the same subclass (e.g., the median, quantiles, rank-dependent, quasi-

arithmetic). Second, our results encompass the case of nonconvergent robust opinion aggregators. In

such a case, T̄ (n) is the limit of the updates’time averages. This extra layer of generality is interesting

if we think about the following question: can an external observer learn µ by observing only part of

the updating dynamics of a subset of the agents? Theorems 1 and 4 together yield a positive answer:

the external observer can use T̄ (n) to extract information about the underlying parameter, even if

the agents’opinions are not converging.

One positive message of the wisdom of the crowd result in Golub and Jackson is that, even if the

society is partitioned in disconnected, yet large, echo chambers, the existence of an “objective truth

27 In the foundation of robust opinion aggregators that we propose in Section 6.1, loss functions that are symmetric
with respect to opinions’deviations, that is even, induce odd opinion aggregators.
28The proof of Theorem 4 also gives a bound on the speed of convergence of the variance of T̄i (n) to 0 as a function

of the bound of s (T (n)) and the range of initial realizations `.
29Note that, in the linear case, opinion aggregators are always odd and our condition (19) is equivalent to the one of

Golub and Jackson. Therefore, in the linear case, Theorem 4 differs only in one central aspect: our result relies on the
signals being symmetric around µ.
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µ”still leads to an agreement between them. However, if each component features some homophily

in their behavioral biases, then this may not happen and differences in beliefs may persist in the

limit. Even more importantly, our model predicts that the extent of this polarization increases in

the noisiness of the agents’initial information. This suggests a formal channel to link the increased

polarization of political opinions to the diffusion of noisier sources of information such as social rather

than professional media (see, e.g., Bail et al. [5], Lelkes et al. [47], and Levy and Razin [49]).

Example 4 Consider a sequence of stochastic matrices {W (n)}n∈N such that, for each n ∈ N, N =

{1, ..., n} is partitioned in two closed, strongly connected, and aperiodic groups {H (n) , L (n)}, that is

W (n) =

(
WH (n) 0

0 WL (n)

)

where the sizes nH and nL of the square matrices in both sequences {WH (n)}n∈N and {WL (n)}n∈N
are unboundedly increasing with n.30 For each n ∈ N, the opinions’evolution in the H (n) group is

governed by a quasi-arithmetic opinion aggregator T λH (n) as defined in Section 3, equation (11), with

respect to the stochastic matrix WH (n) and λH > 0. Similarly, for the L (n) group we consider the

opinion aggregator T λL (n) with matrix WL (n) and λL < 0.31 The interpretation here is that agents

are partitioned in two groups characterized by their intrinsic preference for one extreme or the other

of the spectrum of opinions. We further assume that the errors are also identically distributed with

εi (n)
d∼ ε for some bounded random variable ε with mean 0.

By Proposition 1, our assumptions guarantee that, for each n ∈ N,

T̄ λHi (n) (x) =
1

λH
ln

 nH∑
j=1

(sH (n))j exp (λHxj)

 ∀x ∈ Rn, ∀i ∈ H (n)

where sH (n) is the left Perron-Frobenius eigenvector of WH (n). Since each T̄ λH (n) is translation

invariant, we immediately obtain that, for each n ∈ N,

E
(
T̄ λHi (n) (X1 (n) , ..., Xn (n))

)
= µ+ E

 1

λH
ln

 nH∑
j=1

(sH (n))j exp (λHεj (n))

 ∀i ∈ H (n) .

(21)

Clearly, the second term on the right hand side will be typically different from 0 and, in particular,

T̄ λHi (n) will be biased. At the same time, by Proposition 1, it can be seen that there exists c ∈ R such
that s

(
T̄ λH (n)

)
≤ csH (n) for all n ∈ N.32 Thus, by (20) and (21), if limn→∞maxj∈H(n) (sH (n))j → 0,

30For notational simplicity, we avoid repeating the index n for the groups H and L when it is already clear, e.g., we
write WH (n) instead of WH(n) (n).
31Notice that TλH (n) and TλL (n) are respectively selfmaps on IH(n) and IL(n).
32 Indeed, observe that ∂T̄

λH
1 (n)

∂xi
(x) =

(sH (n))i exp(λHxi)∑nH
l=1

(sH (n))l exp(λHxl)
≤ (sH (n))i exp

(
λH
(

sup Î − inf Î
))

for all x ∈
D
(
T̄λH (n)

)
and for all i ∈ N .
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then for each sequence of agents {in}n∈N such that in ∈ H (n) for all n ∈ N, we have

T̄ λHin (n) (X1 (n) , ..., Xn (n))
P→ µ+

1

λH
ln (E (exp (λHε))) . (22)

The right-hand side of the previous equation gives an explicit representation for the “bias of the

crowd”as a function of λH as well as of all the moments of the distribution of ε, through the cumulant

generating function. A completely analogous formula of the limit bias for a sequence of agents in the

L (n) groups is obtained by replacing λH with λL. In both cases, it is easy to see that the magnitude

of the limit bias within each group is increasing in the absolute value of the corresponding λ.

Next, define the polarization in the society as the difference between the limit consensus in the

two groups obtained as in (22):

POL (λH , λL, ε) =
1

λH
ln (E (exp (λHε)))−

1

λL
ln (E (exp (λLε))) ≥ 0.

It is immediate to see that whenever ε is a mean-preserving spread of ε′, then

POL (λH , λL, ε) ≥ POL
(
λH , λL, ε

′)
that is, polarization is larger when the information is noisier. Notice that in the linear case, i.e.,

λH , λL → 0, the quality of information would be irrelevant with respect to the extent of polarization.

In particular, we have limλH ,λL→0 POL (λH , λL, ε) = 0 regardless of the distribution of ε. N

Theorem 4 and Corollary 5 give us easy-to-interpret suffi cient conditions on the sequence of long-

run opinion aggregators for both absence of aggregate variability and wisdom. However, it is important

to have properties of the primitive sequence of robust opinion aggregators that induce long-run wisdom.

We close this section with a result addressing this point.

Proposition 6 Let {T (n)}n∈N be a sequence of odd robust opinion aggregators and {εi (n)}i∈N,n∈N
symmetric. The sequence {T (n)}n∈N is wise provided that

max
i,j∈N

sup
x∈D(T (n))

∂Tj (n)

∂xi
(x) ≤ o

(
1√
n

)
.

This last condition is exactly the same as the one in Corollary 5, but imposed on the original robust

opinion aggregator rather than directly on its long-run counterpart. Intuitively, if the maximum one-

period influence across agents is converging to 0 fast enough, then no group of agents is able to subvert

the effi cient aggregation of information in the social network. In Example 5 in the next section, we

illustrate how to use the suffi cient conditions of Proposition 6 to obtain the wisdom of the crowd in a

model where agents repeatedly solve a robust estimation problem for the fundamental parameter µ.

6 Discussion: foundation and discrete opinions

In this closing section, we discuss two important points that were left out of the main analysis: a

microfoundation of robust opinion aggregators and the relation with models of diffusion/contagion in
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networks.

6.1 A characterization of robust opinion aggregators

Here, we characterize robust opinion aggregators as the solution of a distance minimization problem.

Formally, we endow each agent i with a loss function φi : Rn → R+ and we assume that at each period

she solves

min
c∈R

φi (x− ce) (23)

where x ∈ B is the opinion profile of the previous period. Intuitively, in choosing her current opinion

c, agent i minimizes a loss function that penalizes the disagreement (i.e., differences of opinions) with

the last-period opinions of her neighbors.33

We next impose two minimal restrictions on the profile of loss functions φ = (φi)
n
i=1.

Definition 8 The profile of loss functions φ is sensitive if and only if φi (he) > φi (0) for all i ∈ N
and for all h ∈ R\ {0}.

If agent i observes a unanimous opinion (including herself), then her loss is minimized by declar-

ing that same opinion. In particular, under our best-response dynamics interpretation of Section 2,

sensitivity implies that all the constant profiles of actions are Nash equilibria of the induced game.

Definition 9 The profile of loss functions φ has increasing shifts if and only if for each i ∈ N ,

z, v ∈ Rn, and h ∈ R++

z ≥ v =⇒ φi (z + he)− φi (z) ≥ φi (v + he)− φi (v) .

It has strictly increasing shifts if and only if the above inequality is strict whenever z � v.

The property of increasing shifts is a form of complementarity in disagreeing with two or more

agents from the same side. It is implied by stronger properties usually required on games played on

networks, such as degree complementarity (see, e.g., Galeotti et al. [29]). In particular, it implies

that the coordination game in Section 2 has strategic complementarities, that is, the payoff function

of each player has increasing differences in her own action and the profile of opponents’actions.

We call robust a profile of loss functions which is sensitive and has increasing shifts. The collection

of all these profiles is denoted by ΦR. Given a robust profile of loss functions φ, we denote with

T φ : B → B an arbitrary selection of the argmin correspondence

T φ (x) ∈
n∏
i=1

argminc∈R φi (x− ce) ∀x ∈ B. (24)

33The network structure (N,A) can be reflected in the profile of loss functions φ = (φi)
n
i=1 by assuming that for each

i ∈ N and for each z, z′ ∈ Rn
zj = z′j ∀j ∈ Ni =⇒ φi (z) = φi

(
z′
)
.

It is a natural assumption but it can be dispensed with.
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The selfmap T φ is an opinion aggregator and describes one possible updating rule induced by φ. Note

that this updating procedure is consistent with both best-response dynamics and repeated robust

estimation as pointed out in Section 2. We first characterize robust opinion aggregators as solution

functions derived from robust loss functions. Then, we come back to the two interpretations of the

opinions’dynamics induced.

The next theorem shows that our loss-function-based updating procedure naturally generalizes the

one of DeGroot’s model (cf. Golub and Sadler [36]) without committing to any specific functional

form (e.g., quadratic) of the loss function.34

Theorem 5 Let T be an opinion aggregator. The following statements are equivalent:

(i) There exists φ ∈ ΦR which has strictly increasing shifts and is such that T = T φ, that is, for

each i ∈ N
Ti (x) = argminc∈R φi (x− ce) ∀x ∈ B; (25)

(ii) T is a robust opinion aggregator.

The property of strictly increasing shifts guarantees that argminc∈R φi (x− ce) is a singleton. How-
ever, it is violated for few interesting specifications of φ (see, e.g., equation (4)). In Proposition 13

in Appendix C, we show that the solution correspondence of problem (23) always admits a selection

which is a robust opinion aggregator.

6.2 Loss functions and long-run dynamics

Next, we illustrate how our foundation is linked to the convergence and wisdom results for robust

opinion aggregators. We focus on the familiar and particularly tractable class of loss functions given

by

φi (z) =

n∑
j=1

wijρi (zj) ∀z ∈ Rn,∀i ∈ N

where W ∈ W is a stochastic matrix whose positive entries implicitly define the observation network,

and ρ = (ρi : R→ R+)ni=1 is a profile of positive functions. The weight wij captures the relative

importance of the opinion of j as perceived by i. We call such a profile additively separable and write

φ = (W,ρ). We denote the set of robust and additively separable profiles of loss functions with ΦA.

Easy computations yield that (W,ρ) ∈ ΦA if and only if each ρi is convex, strictly decreasing on R−,
and strictly increasing on R+. Additionally, if each ρi is strictly convex, then there exists a unique

robust opinion aggregator T φ that satisfies (24).

Three relevant examples of robust opinion aggregators stemming from additively separable loss

functions are DeGroot’s aggregators (1), the quantile aggregators (see equation (4) for the loss function

inducing the median aggregator), and the opinion aggregator of Proposition 1 (with loss function in

equation (10)). More in general, the functional properties characterizing additively separable robust

loss functions correspond to the ones considered by Huber [39], thereby highlighting the link between

our foundation and robust statistics (see also the related discussion in Section 2).

34 In particular, it is always possible to derive a DeGroot’s aggregator via the loss function (1).
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Natural conditions on the profile of loss functions φ = (W,ρ) yield that both the strong network

A
(
T φ
)
and the weak network Ā

(
T φ
)
coincide with the observation network given by W .35

Proposition 7 Let φ = (W,ρ) ∈ ΦA. If I is compact and ρi is twice continuously differentiable and

strongly convex for all i ∈ N , then there exists a unique T φ that satisfies (24) and A
(
T φ
)

= Ā
(
T φ
)

=

A (W ).

Note that Proposition 7 paired with Corollary 2 and Corollary 3 characterizes, respectively, con-

vergence and convergence to consensus in terms of the observation network A (W ), provided that each

ρi is suffi ciently smooth and convex.

Finally, we illustrate how Proposition 6 can be applied to check the wisdom of the crowd in terms

of the profile of loss functions. As a by-product, we obtain that, under Assumptions 1-3 of Section 5,

the wisdom of the crowd can be achieved as long as the minimum degree of connections gets larger as

the population size increases.

Example 5 Consider a sequence {T (n)}n∈N of odd robust opinion aggregators as in Section 5 such
that:

Ti (n) (x) ∈ argminc∈R
∑

j∈Ni(n)

ρi (n) (xj − c)
|Ni (n)| ∀x ∈ Rn

where the profile of loss functions φ (n) = (W (n) , ρ (n)) ∈ ΦA used by the agents satisfies the as-

sumptions in Proposition 7 and is such that ρi (n) (−z) = ρi (n) (z) for all z ∈ R, for all i ∈ N , and
for all n ∈ N. In particular, the weights wij (n) of each W (n) are uniform over their (nonempty)

neighborhoods Ni (n). Moreover, assume that there exists c̄ ∈ R such that

ρ′′i (n) (z)

ρ′′i (n) (z′)
≤ c̄ ∀i ∈ N, ∀n ∈ N,∀z, z′ ∈ [−2`, 2`] .

In particular, this condition is satisfied if ρi (n) = ρ̄ for all i ∈ N and for all n ∈ N. By the Implicit
Function Theorem, we have that T (n) is Frechet differentiable and

∂Tj (n)

∂xi
(x) ≤ c̄ 1

mink∈N |Nk (n) | ∀i, j ∈ N, ∀x ∈ În, ∀n ∈ N.

In words, the uniform bound on the sensibility of the loss functions implies that the reciprocal influence

among the agents can be bounded using the size of the minimal neighborhood in the growing network.

By Proposition 6, wisdom is reached (i.e., (18) holds) if {εi (n)}i∈N,n∈N is symmetric and the minimal
degree in the society is growing suffi ciently fast, that is,

1

mink∈N |Nk (n) | = o

(
1√
n

)
. (26)

In particular, note that condition (26) allows each agent to be connected to a vanishing fraction of

the society. N
35 In general, we can prove a similar result for profiles of loss functions which are not additively separable. In this case,

the assumptions of differentiability and strong convexity can also be weakened and replaced with a coercivity condition
and a Lipschitz property of the difference quotients.
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6.3 Discrete robust opinion aggregators and contagion

We next show how our framework can deal with discrete opinions. Even if we considered continuous

opinions that belong to an interval, the properties defining robust opinion aggregators do not strictly

rely on these assumptions and allow us to consider diffusion models with binary opinions. A set

function ν : 2N → {0, 1} is a {0, 1}-valued capacity if ν (∅) = 0, ν (N) = 1, and ν (M) ≥ ν (M ′) for all

M,M ′ ∈ 2N such that M ⊇ M ′. We say that T is a discrete robust opinion aggregator if and only if

there exists a profile (νi)i∈N of {0, 1}-valued capacities such that

Ti (x) = min {c ∈ R : νi ({j ∈ N : xj ≤ c}) = 1} ∀x ∈ B, ∀i ∈ N .

It is immediate to see that these aggregators satisfy the properties in Definition 1, thereby falling

within the class of robust opinion aggregators. We call them “discrete”because they satisfy:

Ti (x) ∈ {x1, ..., xn} ∀x ∈ B, ∀i ∈ N .

Next, let B = [0, 1]n and consider an initial opinion profile such that x0 ∈ {0, 1}n. The interpretation
is that an opinion equal to 1 corresponds to the adoption of a certain technology/behavior or the

contagion of an idea, and all the agents i with x0
i = 1 are the initial seeds. With this, we can keep

track of the evolution of adopters/infected in the society just by considering the set of agents whose

opinions at a given period are equal to 1.

Note that this is a generalization of the q-threshold contagion models in Morris [55], Kempe et al.

[44], and Centola and Macy [17]. In particular, we obtain the aforementioned models whenever each

Ti is a qi-quantile. In this case, given a stochastic matrix of weightsW ∈ W, the defining {0, 1}-valued
capacity νi of agent i is given by νi (M) = 1 if and only if

∑
j∈M wij ≥ qi. Indeed, quantile aggregators

are at the intersection of rank-dependent aggregators and discrete ones. In general, this discussion

shows how robust opinion aggregators, and in particular rank-dependent aggregators, provide a bridge

between models of continuous opinion aggregation such as the one of DeGroot and models of simple

and complex diffusion in networks. Moreover, robust opinion aggregators encompass both the classes

of threshold models. In particular, quantiles correspond to fractional threshold models, often used

to describe the diffusion of pro-social behavior like proper garbage disposal. Instead, order statistics,

such as the aggregator that takes the second highest value in the neighborhood, correspond to the

numerical threshold models that have been used to describe the diffusion of knowledge about job

opportunities in a different city or diseases.

Although weak, the suffi cient conditions of Theorem 2 do not apply to discrete robust opinion

aggregators, other than trivial cases. Our final result characterizes convergence for these aggregators.

Proposition 8 Let T be a discrete robust opinion aggregator. If x ∈ B and m is the number of

distinct values of x, then either
{
T t (x)

}
t∈N converges or it is eventually periodic, that is, there exist

t̄, p ≤ mn such that

T t+p (x) = T t (x) ∀t ≥ t̄.

Moreover,
{
T t (x)

}
t∈N converges if and only if T

mn (x) = Tm
n+1 (x).
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For discrete robust opinion aggregators, there is a finite number of opinion profiles that can be

reached, each corresponding to an assignment of the agents to the stances that were present in the

initial vector of opinions. Therefore, either one of these configurations is a fixed point of the operator

and it is reached in a finite time, or the system alternates forever between different opinion profiles.

We conclude this section by arguing that other relevant social phenomena can be easily captured

by rank-dependent and discrete robust opinion aggregators. For example, in DeGroot’s model, one

can interpret the sum of weights wij + wil as a measure of the joint informativeness of the opinions

of j and l, as perceived by i. However, in social networks, it might well be the case that i perceives

the information sources of j and l as strongly correlated. In this case, given the observation from j,

the additional information obtained from l is (perceived as) much lower than if observed alone (see,

e.g., Liang and Mu [50]). Therefore, i might assign a total weight to j and l that is less than the sum

wij + wil. Clearly, this behavior is ruled out by the linear model, but can be described by discrete

robust opinion aggregators with a capacity that is subadditive with respect to j and l, i.e., such

that νi ({j, l}) < νi ({j}) + νi ({l}). Finally, another important social phenomenon is assortativeness:
individuals with lower opinions assign a higher weight to individuals with low opinions (see, e.g., Frick

et al. [27]). In the working paper version of this manuscript [18], we formalize this idea and show how

it simplifies the analysis of the updating dynamics and the limit opinions.

A Appendix: convergence

All the missing proofs are in the Online Appendix (see Section D.1.2). The next three ancillary lemmas

highlight the properties of T and the limiting operator T̄ , whenever it exists. Their proofs are based

on routine arguments.

Lemma 1 Let T be an opinion aggregator. The following statements are true:

1. If T is robust, then it admits an extension S : Rn → Rn which is also robust.

2. If T is normalized and monotone, then
∥∥T t (x)

∥∥
∞ ≤ ‖x‖∞ for all x ∈ B and for all t ∈ N.

Lemma 2 If T is a robust opinion aggregator, then T t is nonexpansive (i.e., Lipschitz continuous of
order 1) for all t ∈ N. In particular, T is nonexpansive.

Despite being easy to derive, the property of nonexpansivity plays an important role in what

follows and it also rules out the presence of chaotic behavior. The proof of next lemma instead relies

on the property of “being a limit”. It thus shows that the properties of T are often inherited by T̄ ,

provided the latter exists.

Lemma 3 Let T be an opinion aggregator. If T is such that

C-lim
t

T t (x) exists ∀x ∈ B,

then T̄ : B → B, defined by T̄ (x) = C-limt T
t (x) for all x ∈ B, is well defined and T̄ ◦ T = T̄ .

Moreover,
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1. If T is nonexpansive, so is T̄ . In particular, T̄ is continuous.

2. If T is normalized and monotone, so is T̄ .

3. If T is robust, so is T̄ .

4. If T is odd, so is T̄ , provided I is a symmetric interval, that is, k ∈ I if and only if −k ∈ I.

We can now prove that any sequence of updates of a robust opinion aggregator converges a la

Cesaro and this convergence is uniform on bounded subsets of B.

Proof of Theorem 1. Consider x ∈ B. By point 2 of Lemma 1, we have that
{
T t (x)

}
t∈N is a

bounded sequence and, in particular, relatively compact. By Lemma 2, T is nonexpansive. By Baillon

et al. [6, Theorem 3.2 and Corollary 3.1], we can conclude that C-limt T
t (x) exists for all x ∈ B. By

Lemma 3, T̄ is a robust opinion aggregator such that T̄ ◦ T = T̄ . Next, consider a bounded subset B̂

of B. Define by B̃ the closed convex hull of B̂. Since B̂ is bounded and B is closed and convex, B̃ is

a closed and bounded subset of B and, in particular, compact. For each τ ∈ N define Sτ : B̃ → Rn by

Sτ (x) =
1

τ

τ∑
t=1

T t (x) ∀x ∈ B̃.

By Lemma 2, Sτ is well defined and nonexpansive for all τ ∈ N. The collection {Sτ}τ∈N belongs to the
space C

(
B̃,Rn

)
of continuous functions from B̃ to Rn. This space is a Banach space once endowed

with the supnorm: ‖f‖∗ = supx∈B̃ ‖f (x)‖∞ for all f ∈ C
(
B̃,Rn

)
. By [24, pp. 135—136] and since

{Sτ}τ∈N is a collection of nonexpansive maps, this implies that the sequence {Sτ}τ∈N ⊆ C
(
B̃,Rn

)
is equicontinuous. By contradiction, assume that Sτ

‖ ‖∗
6→ T̄|B̃ . This would imply that there exist

ε > 0 and a subsequence {Sτm}m∈N ⊆ {Sτ}τ∈N such that
∥∥∥Sτm − T̄|B̃ ∥∥∥∗ ≥ ε for all m ∈ N. By

the Arzela-Ascoli Theorem (see, e.g., [24, Theorem 7.5.7]) and since {Sτm}m∈N is equicontinuous and
{Sτm (x)}m∈N ⊆ Rn is bounded for all x ∈ B̃, this would imply that there exists a subsequence{
Sτm(l)

}
l∈N

and a function Ŝ ∈ C
(
B̃,Rn

)
such that liml

∥∥∥Sτm(l)
− Ŝ

∥∥∥
∗

= 0. By the previous part

of the proof, recall that limτ Sτ (x) = T̄ (x) for all x ∈ B̃. By definition of ‖ ‖∗, it would follow
that T̄ (x) = liml Sτm(l)

(x) = Ŝ (x) for all x ∈ B̃, that is, T̄ = Ŝ on B̃. This would imply that

0 < ε ≤ liml

∥∥∥Sτm(l)
− T̄|B̃

∥∥∥
∗

= 0, a contradiction. We can conclude that

0 ≤ lim
τ

sup
x∈B̂

∥∥∥∥∥1

τ

τ∑
t=1

T t (x)− T̄ (x)

∥∥∥∥∥
∞

≤ lim
τ

sup
x∈B̃

∥∥∥∥∥1

τ

τ∑
t=1

T t (x)− T̄ (x)

∥∥∥∥∥
∞

= lim
τ

∥∥∥Sτ − T̄|B̃ ∥∥∥∗ = 0,

proving the last part of the statement. �

Remark 3 Theorem 1 could be seen as a version of the classic nonlinear ergodic theorem of Baillon

(see, e.g., Krengel [46, Section 9.3]). The generalization we are relying upon is the one contained in

Baillon et al. [6, Theorem 3.2 and Corollary 3.1]. Compared to our version, the part that would

be missing is the one contained in (13). Observe that (13), not only guarantees uniform Cesaro
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convergence of
{
T t (x)

}
t∈N, but also the independence from the initial condition of the rate of such

convergence. This latter property might play an important role in applications and is missing in the

aforementioned works. Finally, in the working paper version of this manuscript, exploiting the finite

dimensionality of our framework, we provide a self-contained proof. N

We next prove our first result on standard convergence: Theorem 2. First, we identify a technical

property, termed asymptotic regularity, which characterizes convergence. Second, we show how A (T )

being nontrivial is equivalent to T having a useful decomposition. Finally, via this decomposition, we

show that aperiodicity of A (T ) yields asymptotic regularity, hence convergence.

Lemma 4 Let T be a robust opinion aggregator. The following statements are equivalent:

(i) T is asymptotically regular, that is, limt

∥∥T t+1 (x)− T t (x)
∥∥
∞ = 0 for all x ∈ B;

(ii) T is convergent.

Remark 4 Asymptotic regularity is weaker than the Cauchy property, yet paired with uniform Cesaro
convergence, is enough to grant convergence. Our techniques, use Lorentz’s Theorem to transform

Cesaro convergence of the orbits of T into standard convergence. This technique seems to have first

appeared in Bruck [15]. Proving that asymptotic regularity is equivalent to convergence can also be

obtained using the techniques of Browder and Petryshyn [14, Theorem 2]. N

Proposition 9 Let T be a robust opinion aggregator. The following statements are equivalent:

(i) A (T ) is nontrivial;

(ii) There exist W ∈ W and ε ∈ (0, 1) such that

T (x) = εWx+ (1− ε)S (x) ∀x ∈ B (27)

where S is a robust opinion aggregator.

Moreover, we have that W in (ii) can be chosen to be such that A (W ) = A (T ).

Proof. (i) implies (ii). For each i, j ∈ N if j strongly influences i, consider εij ∈ (0, 1) as in (14)

otherwise let εij = 1/2. Define W̃ to be such that w̃ij = aijεij for all i, j ∈ N where aij is the

ij-th entry of A (T ). Since each row of A (T ) is not null, for each i ∈ N there exists j ∈ N such

that aij = 1 and, in particular, w̃ij > 0. This implies that
∑n

l=1 w̃il > 0 for all i ∈ N . Define also
ε = min {mini∈N

∑n
l=1 w̃il, 1/2} ∈ (0, 1). Define W ∈ W to be such that wij = w̃ij/

∑n
l=1 w̃il for all

i, j ∈ N . Clearly, we have that for each i, j ∈ N

wij > 0 ⇐⇒ w̃ij > 0 ⇐⇒ aij = 1. (28)

This yields that A (W ) = A (T ). Next, consider x, y ∈ B such that x ≥ y. Define y0 = y. For each

t ∈ {1, ..., n− 1} define yt ∈ B to be such that yti = xi for all i ≤ t and yti = yi for all i ≥ t+ 1. Define
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yn = x. Note that x = yn ≥ ... ≥ y1 ≥ y0 = y. It follows that for each i ∈ N

Ti (x)− Ti (y) =

n∑
j=1

[
Ti
(
yj
)
− Ti

(
yj−1

)]
≥

n∑
j=1

aijεij

(
yjj − y

j−1
j

)
=

n∑
j=1

w̃ij (xj − yj)

=

(
n∑
l=1

w̃il

) n∑
j=1

w̃ij∑n
l=1 w̃il

(xj − yj)

 =

(
n∑
l=1

w̃il

) n∑
j=1

wij (xj − yj)

 ≥ ε n∑
j=1

wij (xj − yj) .

It follows that

x ≥ y =⇒ T (x)− T (y) ≥ εW (x− y) = ε (Wx−Wy) . (29)

Define S : B → Rn by

S (x) =
T (x)− εWx

1− ε ∀x ∈ B. (30)

By definition of S and since W ∈ W and T is normalized and translation invariant, it is immediate to

see that S (ke) = ke for all k ∈ I and that S is translation invariant. Since (29) holds and ε ∈ (0, 1),

routine computations yield that S is monotone. Since S is normalized and monotone, then S (B) ⊆ B,
that is, S is a selfmap and, in particular, S is a robust opinion aggregator. By rearranging (30), (27)

follows.

(ii) implies (i). Consider i ∈ N . Since W is a stochastic matrix, there exists j ∈ N such that

wij > 0. Let x ∈ B and h > 0 be such that x + hej ∈ B. By (27) and since S is monotone, we have
that

Ti
(
x+ hej

)
− Ti (x) = εwijh+ (1− ε)Si

(
x+ hej

)
− (1− ε)Si (x) ≥ εwijh,

proving that j strongly influences i and aij = 1. It follows that the i-th row of A (T ) is not null. Since

i was arbitrarily chosen, the statement follows.

Finally, by (28), note that W in (ii) can be chosen to be such that A (W ) = A (T ). �
Theorem 2 builds on two assumptions: i) The matrix of strong ties A (T ) has no null row. ii) Each

closed group of A (T ) is aperiodic. The first assumption allows for a decomposition of T into a convex

linear combination of a linear opinion aggregator with matrix W and a robust opinion aggregator S

(cf. Proposition 9). We next show that if W takes a very particular form, which we dub partition

matrix, then T is asymptotically regular and, in particular, convergent (Lemma 5 and Proposition

10 below). The second assumption yields that W can be always chosen such that W t is eventually a

partition matrix. This will prove Theorem 2.

Definition 10 Let J : B → B be an opinion aggregator. We say that J is a partition operator/matrix

if and only if there exists a family of disjoint nonempty subsets
{
N̂l

}m
l=1

of N such that ∪ml=1N̂l = N

and for each l ∈ {1, ...,m} there exists kl ∈ N̂l such that Ji (x) = xkl for all i ∈ N̂l.

Note that a partition operator is linear. With a small abuse of notation, we will denote the matrix

and the operator by the same symbol.

Lemma 5 Let T be a robust opinion aggregator such that T = εJ + (1− ε)S where ε ∈ (0, 1), J is a

partition operator, and S : B → B is a robust opinion aggregator. Let C be a nonempty subset of B
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such that there exists k > 0 satisfying

‖T (x)− x‖∞ < k ∀x ∈ C. (31)

If there exists δ > 0 such that for each t ∈ N0 there exists x ∈ C satisfying∥∥T t+1 (x)− T t (x)
∥∥
∞ ≥ δ, (32)

then
{
T t (x) : x ∈ C and t ∈ N0

}
is unbounded.

Remark 5 The proof of Lemma 5, which is contained in the Online Appendix, is a tedious adaptation
of the techniques contained in the proof of Edelstein and O’Brien [25, Lemma 1]. Their case is more

general in terms of domain of T in that B can be any convex subset of a normed vector space. Their

generality comes at the cost of having J equal to the identity operator which in our case would only

cover Corollary 1. A similar observation applies to Proposition 10. N

Proposition 10 Let T be a robust opinion aggregator. If T is such that T = εJ + (1− ε)S where
ε ∈ (0, 1), J is a partition operator, and S is a robust opinion aggregator, then T is asymptotically

regular and, in particular, convergent.

Proof. Fix x ∈ B. In Lemma 5, set C = {x}. Clearly, there exists k > 0 that satisfies ‖T (x)− x‖∞ <

k. By point 2 of Lemma 1 and since T is a robust opinion aggregator, it follows that
{
T t (x)

}
t∈N0

is

bounded. By Lemma 5, we have that for each δ > 0 there exists t̄ ∈ N0 such that∥∥∥T t̄+1 (x)− T t̄ (x)
∥∥∥
∞
< δ. (33)

Since T is nonexpansive,
{∥∥T t+1 (x)− T t (x)

∥∥
∞
}
t∈N0

is a decreasing sequence. By (33) and since{∥∥T t+1 (x)− T t (x)
∥∥
∞
}
t∈N0

is a decreasing sequence, we have that for each δ > 0 there exists t̄ ∈ N
such that

∥∥T t+1 (x)− T t (x)
∥∥
∞ < δ for all t ≥ t̄, that is, limt

∥∥T t+1 (x)− T t (x)
∥∥
∞ = 0. Since x was

arbitrarily chosen, it follows that T is asymptotically regular. By Lemma 4, this implies that T is

convergent. �
Lemma 6 shows that if A (T ) is aperiodic and nontrivial, then there exists t̄ ∈ N such that

T t̄ = γJ + (1− γ)S (resp. T t̄+1 = γJ + (1− γ)S) where J is a partition operator, γ ∈ (0, 1), and S

is a robust opinion aggregator. The operator J only depends on A (T ) while γ and S both depend on

t̄ (resp. t̄+ 1). In turn, Proposition 10 yields that T t̄ and T t̄+1 are convergent. This will be suffi cient

to imply the convergence of T .

Lemma 6 Let T be a robust opinion aggregator. If A (T ) is aperiodic and nontrivial, then there exists

t̄ ∈ N such that T t̄ and T t̄+1 are convergent.

Proof. By Proposition 9 and since A (T ) is nontrivial, we have that there exists W ∈ W, ε ∈ (0, 1),

and a robust opinion aggregator S : B → B such that

T (x) = εWx+ (1− ε)S (x) ∀x ∈ B. (34)
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Moreover, W can be chosen to be such that A (W ) = A (T ). By [33, Theorems 2 and 3] and since

A (T ) is aperiodic, this implies that there exist t̄ ∈ N and a partition
{
N̂l

}m
l=1

of N such that for each

l ∈ {1, ...,m} there exists kl ∈ N̂l satisfying w
(t̄)
ikl
, w

(t̄+1)
ikl

> 0 for all i ∈ N̂l.36 It follows that

W t̄ = δt̄J + (1− δt̄) W̃t̄ and W
t̄+1 = δt̄+1J + (1− δt̄+1) W̃t̄+1 (35)

where δt̄, δt̄+1 ∈ (0, 1), J is a partition operator/matrix,37 and W̃t̄ as well as W̃t̄+1 are stochastic

matrices. By (34) and induction, we also have that

T t̄ (x) = εt̄W t̄x+
(

1− εt̄
)
S̃t̄ (x) ∀x ∈ B

and

T t̄+1 (x) = εt̄+1W t̄+1x+
(

1− εt̄+1
)
S̃t̄+1 (x) ∀x ∈ B

where S̃t̄ and S̃t̄+1 are robust opinion aggregators. By (35), it follows that

T t̄ = γt̄J + (1− γt̄) Ŝt̄ and T t̄+1 = γt̄+1J + (1− γt̄+1) Ŝt̄+1

where γt̄ = εt̄δt̄ (resp. γt̄+1 = εt̄+1δt̄+1) and Ŝt̄ (x) = εt̄(1−δt̄)
1−εt̄δt̄

W̃t̄x + 1−εt̄
1−εt̄δt̄

S̃t̄ (x) (resp. Ŝt̄+1 (x) =

εt̄+1(1−δt̄+1)
1−εt̄+1δt̄+1

W̃t̄+1x+ 1−εt̄+1

1−εt̄+1δt̄+1
S̃t̄+1 (x)) for all x ∈ B. It follows that γt̄, γt̄+1 ∈ (0, 1) and Ŝt̄ as well as

Ŝt̄+1 are robust opinion aggregators. By Proposition 10, this implies that T t̄ and T t̄+1 are convergent.

�
Proof of Theorem 2. We adopt the usual convention T 0 (x) = x for all x ∈ B. By Lemma 6 and
since A (T ) is aperiodic and nontrivial, there exists t̄ ∈ N such that T t̄ and T t̄+1 are convergent. We

next show that this implies that T is convergent. Fix x ∈ B. Since T t̄ is convergent, we can conclude
that limk T

kt̄ (x) exists. Denote x̄ = limk T
kt̄ (x). Since T is continuous and so is T t̄, it is plain that

T t̄ (x̄) = x̄. This implies that

T t̄ (T s (x̄)) = T t̄+s (x̄) = T s+t̄ (x̄) = T s
(
T t̄ (x̄)

)
= T s (x̄) ∀s ∈ N0.

By induction on k, this yields that for each s ∈ N0

T (k+1)t̄ (T s (x̄)) = T kt̄
(
T t̄ (T s (x̄))

)
= T kt̄ (T s (x̄)) = T s (x̄) ∀k ∈ N.

In particular, by setting k = s, we obtain that for each s ∈ N

T s(t̄+1) (x̄) = T st̄ (T s (x̄)) = T s (x̄) . (36)

Since T t̄+1 is convergent, we have that lims T
s(t̄+1) (x̄) exists. By (36), this implies that lims T

s (x̄)

exists. Denote x̂ = lims T
s (x̄). Since T is continuous, it is plain that T (x̂) = x̂. Since

{
T kt̄ (x̄)

}
k∈N
⊆

36As usual, we denote by w(t̄)
ikl
(resp. w(t̄+1)

ikl
) the entry in the i-th row and kl-th column of the matrix W t̄ (resp. W t̄+1).

37That is, Ji (x) = xkl for all i ∈ N̂l and for all l ∈ {1, ...,m} where
{
N̂l
}m
l=1

and {kl}ml=1 have been defined above.
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{T s (x̄)}s∈N and T kt̄ (x̄) = x̄ for all k ∈ N, we have that

x̄ = lim
k
T kt̄ (x̄) = lim

s
T s (x̄) = x̂ and T (x̂) = x̂. (37)

We can now prove that
{
T t (x)

}
t∈N converges too. By (37) and since T is nonexpansive, we have that∥∥x̄− T t+1 (x)

∥∥
∞ =

∥∥T (x̄)− T
(
T t (x)

)∥∥
∞ ≤

∥∥x̄− T t (x)
∥∥
∞ ∀t ∈ N,

yielding that
{∥∥x̄− T t (x)

∥∥
∞
}
t∈N is a decreasing sequence. Moreover, since x̄ = limk T

kt̄ (x), we have

that the subsequence
{∥∥∥x̄− T kt̄ (x)

∥∥∥
∞

}
k∈N
⊆
{∥∥x̄− T t (x)

∥∥
∞
}
t∈N converges to 0. This implies that

limt T
t (x) = x̄. Since x was arbitrarily chosen, the statement follows. �

Proof of Corollary 1. Since T is self-influential, it follows that each row of A (T ) is not null, yielding

that A (T ) is nontrivial. Moreover, since there is a simple cycle of length 1 from i to i for all i ∈ N ,
each closed group is aperiodic. By Theorem 2, the statement follows. �

We next prove our second result on standard convergence: Theorem 3. We proceed by proving some

intermediate results. To begin, we need some piece of notation. Assume that
{
C[r]

}
r∈{0,...,d−1} is a

family of disjoint nonempty subsets ofN such that ∪d−1
r=0C[r] = N with d ≥ 1. Given

{
x[r]
}
r∈{0,...,d−1} ⊆

B, we denote by

x =
d−1∑
r=0

x[r]1C[r]
∈ B

the vector whose i-th generic component is such that xi = x
[r′]
i when i ∈ C[r′] and C[r′] is the only

element in
{
C[r]

}
r∈{0,...,d−1} containing i. In this part, we focus on the network of weak ties Ā (T ).

Lemma 7 Let T be an opinion aggregator and
{
C[r]

}
r∈{0,...,d−1} a family of disjoint nonempty subsets

of N such that ∪d−1
r=0C[r] = N with d ≥ 1. If T is normalized and monotone, then Ā (T ) is nontrivial.

Moreover, if ı̄ ∈ N and {j ∈ N : āı̄j = 1} ⊆ C[rı̄] for some rı̄ ∈ {0, ..., d− 1}, then

x =

d−1∑
r=0

x[r]1C[r]
=⇒ Tı̄ (x) = Tı̄

(
x[rı̄]

)
. (38)

In order to prove Theorem 3, we first show that the result holds in a particular case. Namely, we

begin by further assuming that N is also strongly connected under Ā (T ). This, in turn, will allow us

to obtain the general result by focusing on a single closed group when N is not strongly connected.

Proposition 11 Let T be a robust opinion aggregator such that N is strongly connected under Ā (T ).

If T is convergent, then the network of weak ties Ā (T ) is aperiodic and nontrivial.

Proof. By Lemma 7 and since T is normalized and monotone, Ā (T ) is nontrivial. By contradiction,

assume that Ā (T ) is not aperiodic, that is, there exists a closed group M which is not aperiodic

under Ā (T ). Since N is strongly connected under Ā (T ), we have that N is the only closed group,

yielding that the greatest common divisor of the lengths of the simple cycles in N is d ≥ 2. For each

i ∈ N define N̄i = {j ∈ N : āij = 1}. It follows that there exists a partition of N in cyclic classes
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{
C[r]

}
r∈{0,...,d−1} such that ∪i∈C[r]

N̄i ⊆ C[r]⊕[1] for all r ∈ {0, ..., d− 1} where [r] are the elements of

Zd and ⊕ is the standard sum in Zd.38 Since I has nonempty interior, there exist a, b ∈ I such that
a > b. Define the vector x ∈ B to be such that

x =
d−1∑
r=0

(
k[r]e

)
1C[r]

where k[0] = a and k[r] = b for all r ∈ {1, ..., d− 1}. By Lemma 7 and induction and since ∪i∈C[r]
N̄i ⊆

C[r]⊕[1] for all r ∈ {0, ..., d− 1}, we have that

T t (x) =

d−1∑
r=0

(
k[r]⊕t[1]e

)
1C[r]

∀t ∈ N.

This implies that
∥∥T t+1 (x)− T t (x)

∥∥
∞ ≥ a− b > 0 for all t ∈ N, a contradiction with Lemma 4 and

T being convergent. �
Proof of Theorem 3. By Lemma 7 and since T is normalized and monotone, Ā (T ) is nontrivial.

Next, we consider a family of disjoint subsets
{
N̂l

}m+1

l=1
of N such that ∪m+1

l=1 N̂l = N where m ≥ 1

and the first m sets are nonempty. Given [62, Section 1.2], we choose the first m elements of
{
N̂l

}m+1

l=1
to be the classes (the partition) of essential indexes of Ā (T ) and we collect all the possible inessential

indexes of Ā (T ) in N̂m+1. If l ∈ {1, ...,m}, then N̂l is closed and strongly connected and āij = 0

for all i ∈ N̂l and for all j ∈ N̂ c
l . The set N̂m+1 might be empty. If m = 1 and N̂m+1 = ∅, then N

is strongly connected under Ā (T ). In this case, by Proposition 11, Ā (T ) is aperiodic. Assume that

either m > 1 or m = 1 and N̂m+1 6= ∅. By contradiction, assume that Ā (T ) is not aperiodic. This

implies that there exists a closed group M which is not aperiodic under Ā (T ). It is immediate to

see that there exists l ∈ {1, ...,m} such that N̂l ⊆ M . Since N̂l has (simple) cycles and the simple

cycles of N̂l are simple cycles of M and M is not aperiodic, the greatest common divisor of the

lengths of the cycles of N̂l is greater than the one of the cycles of M and, in particular, ≥ 2. Set

N̂l = {i1, ..., ir}. Clearly, r ≥ 2. We introduce two maps P : Rr → Rn and π : Rn → Rr. The first
is defined by x = P (x̃) where xi = minh∈{1,...,r} x̃h if i 6∈ N̂l and xih = x̃h for all h ∈ {1, ..., r}. The
second one is defined by x̃ = π (x) where x̃h = xih for all h ∈ {1, ..., r}. It is immediate to check that
P (π (z)) = z1N̂l +

(
minh∈{1,...,r} zihe

)
1N̂c

l
for all z ∈ Rn. Note that P

(
B̃
)
⊆ B and π (B) ⊆ B̃ where

B̃ = Ir. Next, we define S : B̃ → B̃ by S (x̃) = π (T (P (x̃))) for all x̃ ∈ B̃. It is routine to check that
S is a robust opinion aggregator. Moreover, by construction and since N̂l is strongly connected and

not aperiodic, we also have that the restricted set of agents Ñ = {1, ..., r} is strongly connected and
not aperiodic under Ā (S). Note that St (x̃) = π

(
T t (P (x̃))

)
for all x̃ ∈ B̃. Indeed, by Lemma 7 and

induction and since āij = 0 for all i ∈ N̂l and for all j ∈ N̂ c
l , we have that for each t ∈ N and for each

38See Seneta [62, Section 1.3] and Kemeni and Snell [43, Section 1.4]. There is a minor caveat. The definition of
aperiodic used in these works, and more in general in the Markov chains literature, is formally different from the one
of Golub and Jackson [33], which we also adopt. Yet, when N is strongly connected, they are equivalent. Formally, N
is aperiodic according to our current formulation if and only if the greatest common divisor of the lengths of all cycles,
starting and ending at any node i ∈ N , is 1 (cf. Seneta [62, Definition 1.6]).
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x̃ ∈ B̃

St+1 (x̃) = π
(
T
(
P
(
π
(
T t (P (x̃))

))))
= π

(
T

(
T t (P (x̃)) 1N̂l +

(
min

h∈{1,...,r}
T tih (P (x̃)) e

)
1N̂c

l

))
= π

(
T
(
T t (P (x̃))

))
= π

(
T t+1 (P (x̃))

)
.

Since T is convergent and π is continuous, this implies that S is convergent. By Proposition 11 and

since S is a convergent robust opinion aggregator such that Ñ is strongly connected under Ā (S), this

is a contradiction with Ñ not being aperiodic. �
In order to prove Proposition 2, we begin by making two simple observations about convergence

and fixed points of the opinion aggregator T : i) Convergence is always toward a fixed point of T .

ii) Simple properties on the network A (T ) yield that those fixed points are constant vectors. We

denote by E (T ) the set of fixed points/equilibria of T . Recall that D is the consensus subset, that is,

x ∈ D ⊆ B if and only if xi = xj for all i, j ∈ N .

Proposition 12 Let T be a robust opinion aggregator. We have E (T ) = D provided one of the

following holds:

a. T has the pairwise common influencer property;

b. A (T ) is nontrivial, has a unique strongly connected and closed group M , and M is aperiodic

under A (T ).

Proof of Proposition 2. 1. Since A (T ) is nontrivial, has a unique strongly connected and closed

group M , and M is aperiodic under A (T ), we have that any other closed group M ′ is a superset of

M , yielding that M ′ is aperiodic under A (T ). By Theorem 2 and Proposition 12 and since standard

convergence implies Cesaro convergence and T is continuous, it is immediate to see that T is convergent

and T̄ (x) = limt T
t (x) ∈ E (T ) = D for all x ∈ B, proving the statement.

2. Consider the same family of disjoint subsets
{
N̂l

}m+1

l=1
of N , as in the proof of Theorem 3.

Recall that if l ∈ {1, ...,m}, then N̂l is closed and strongly connected and āij = 0 for all i ∈ N̂l and

for all j ∈ N̂ c
l . Recall also that N̂m+1 might be empty. By Theorem 3 and since T is convergent

(to consensus), Ā (T ) is aperiodic and nontrivial. By contradiction and since Ā (T ) is nontrivial and

each closed group is aperiodic under Ā (T ), assume that T does not have a unique strongly connected

and closed group. Since Ā (T ) is nontrivial, this implies that there are at least two distinct strongly

connected and closed groups and, in particular, m ≥ 2. Since I has nonempty interior, consider

a, b ∈ I such that a > b. Consider a vector x ∈ B such that xi = a for all i ∈ N̂1, xi = b for all i ∈ N̂l

and for all l ∈ {2, ...,m}. Since T is convergent, define x̄ = limt T
t (x). By Lemma 7 and induction

and since āij = 0 for all i ∈ N̂l, for all j ∈ N̂ c
l , and for all l ∈ {1, ...,m}, we have that

T ti (x) = xi ∀i ∈ N̂l,∀l ∈ {1, ...,m} ,∀t ∈ N,

proving that x̄i = xi for all i ∈ N̂l and for all l ∈ {1, ...,m}. Since a 6= b, we have that x̄ is not a

constant vector, a contradiction with convergence to consensus. �
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Proof of Corollary 4. Since T has the pairwise common influencer property, A (T ) is nontrivial.

Since A (T ) is nontrivial, consider a stochastic matrix W ∈ W such that A (W ) = A (T ). Define

S : B → B by S (x) = Wx for all x ∈ B. Since Ā (S) = A (S) = A (W ) = A (T ) and T has the pairwise

common influencer property, W is scrambling and it is well known that W t converges to a stochastic

matrix with identical rows (see Seneta [62]). This implies that convergence to consensus always obtains

under S. By point 2 of Proposition 2 applied to S, this implies that A (T ) = Ā (S) is nontrivial, has

a unique strongly connected and closed group M , and M is aperiodic under Ā (S) = A (T ). By point

1 of Proposition 2 applied to T , the statement follows. �

Remark 6 Our Proposition 2 and Corollary 4 belong to the literature on discrete dynamical sys-
tems/repeated averaging, where agents aggregate opinions at each point in time with a potential

time-varying averaging procedure. These works are typically concerned in providing the more general

conditions possible on the sequence of averaging procedures which guarantee convergence to consen-

sus. In this setting, Krause [45, Theorem 8.3.4] shows that convergence to consensus is achieved if and

only if a form of strict internality is satisfied, that is, the range of opinions of the agents eventually

shrinks no matter what is the initial vector of opinions. Our results differ from the ones above in two

dimensions. In our Theorems 1-3, we tackle the issue of convergence in general and we do not restrict

ourselves just to convergence to consensus. This significantly complicates the analysis and we need to

resort to completely different techniques coming from functional analysis which we discussed in the

previous remarks of this appendix. The overlap with Krause’s result is therefore restricted to point 1

of Proposition 2 and Corollary 4, which we obtain from our more general Theorem 2. Finally, since our

opinion aggregators are microfounded, under mild conditions, they inherit the primitive observation

network structure of the foundation (see Proposition 7). In turn, this imposes a strong discipline on

the averaging process that has never been exploited before and allows us to provide bounds on the

rate of convergence which are function of the underlying network (see Remark 2). N

B Appendix: vox populi, vox Dei?

All the missing proofs are in the Online Appendix (see Section D.1.3).

Proof of Theorem 4. Define B̂ = În. We first show that (19) yields that T̄i (n) is not extremely sensi-

tive to changes coming from a single observation. Then, by applying McDiarmid’s inequality, we obtain

(20). Before starting, we make a few observations. By Assumption 3, we have that T̄i (n) = T̄j (n) for

all i, j ∈ N and for all n ∈ N. Since the random variables {Xi (n)}i∈N,n∈N are uniformly bounded and
T̄i (n) is continuous for all i ∈ N and for all n ∈ N, it follows that ω 7→ T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))

is integrable for all i ∈ N and for all n ∈ N.
Claim. For each i, j ∈ N and for each n ∈ N

sup
{(x,t)∈B̂×R:x+tej∈B̂}

∣∣T̄i (n)
(
x+ tej

)
− T̄i (n) (x)

∣∣ ≤ `c (n)wj (n) .

Proof of the Claim. Fix i ∈ N and n ∈ N. By Rademacher’s Theorem and since T̄ (n) is nonexpansive,

this implies that T̄ (n) is almost everywhere Frechet differentiable. Let D
(
T̄ (n)

)
⊆ În = B̂ be the
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subset of B̂ where T̄ (n) is Frechet differentiable. Clearly, T̄i (n) is Frechet differentiable on D
(
T̄ (n)

)
and, in particular, Clarke differentiable. Since T̄i (n) is monotone and translation invariant, note that

∇T̄i (n) (x) ∈ ∆n for all x ∈ D
(
T̄ (n)

)
. Consider x̄ ∈ B̂. Recall that Clarke’s differential is the set

(see, e.g., [21, Theorem 2.5.1]):

∂T̄i (n) (x̄) = co

{
p ∈ ∆n : p = lim

k
∇T̄i (n)

(
xk
)
s.t. xk → x̄ and xk ∈ D

(
T̄ (n)

)}
. (39)

By Definition 7 and (39) and since T̄1 (n) = T̄i (n), note that

0 ≤ pj ≤ sj (T (n)) ∀p ∈ ∂T̄i (n) (x) ,∀x ∈ B̂, ∀j ∈ N. (40)

Consider j ∈ N , x ∈ B̂, and t ∈ R such that x + tej ∈ B̂. Define y = x + tej . By Lebourg’s Mean

Value Theorem, we have that there exist λ ∈ (0, 1) and p̄ ∈ ∂T̄i (n) (z) where z = λy + (1− λ)x ∈ B̂
such that

T̄i (n)
(
x+ tej

)
− T̄i (n) (x) = T̄i (n) (y)− T̄i (n) (x) =

n∑
l=1

p̄l (yl − xl) .

It follows that
∣∣T̄i (n)

(
x+ tej

)
− T̄i (n) (x)

∣∣ = |p̄j (yj − xj)| = p̄j |yj − xj | ≤ `p̄j . By (40), this implies
that ∣∣T̄i (n)

(
x+ tej

)
− T̄i (n) (x)

∣∣ ≤ `p̄j ≤ `sj (T (n)) ≤ `c (n)wj (n) .

Since x and t were arbitrarily chosen, it follows that

sup
{(x,t)∈B̂×R:x+tej∈B̂}

∣∣T̄i (n)
(
x+ tej

)
− T̄i (n) (x)

∣∣ ≤ `c (n)wj (n) .

Since i, n, and j were also arbitrarily chosen, the statement follows. �
Let n ∈ N and i ∈ N . By McDiarmid’s inequality as well as the previous claim, we can conclude

that for each δ > 0

P
({
ω ∈ Ω :

∣∣T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))− E
(
T̄i (n) (X1 (n) , ..., Xn (n))

)∣∣2 ≥ δ})
= P

({
ω ∈ Ω :

∣∣T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))− E
(
T̄i (n) (X1 (n) , ..., Xn (n))

)∣∣ ≥ √δ})

≤ 2 exp

(
− 2δ∑n

j=1 (`c (n)wj (n))2

)
≤ 2 exp

(
− 2δ

`2c (n)2 maxk∈N wk (n)
∑n

j=1wj (n)

)

= 2 exp

(
− 2δ

`2c (n)2 maxk∈N wk (n)

)
.
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Next, by [11, Equation 21.9] and Assumption 3, observe that

Var
(
T̄i (n) (X1 (n) , ..., Xn (n))

)
= E

((
T̄i (n) (X1 (n) , ..., Xn (n))− E

(
T̄i (n) (X1 (n) , ..., Xn (n))

))2)
=

∫ ∞
0

P
({
ω ∈ Ω :

(
T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))− E

(
T̄i (n) (X1 (n) , ..., Xn (n))

))2 ≥ t}) dt
=

∫ `2

0
P
({
ω ∈ Ω :

∣∣T̄i (n) (X1 (n) (ω) , ..., Xn (n) (ω))− E
(
T̄i (n) (X1 (n) , ..., Xn (n))

)∣∣2 ≥ t}) dt
≤
∫ `2

0
2 exp

(
− 2t

`2c (n)2 maxk∈N wk (n)

)
dt

= `2c (n)2 max
k∈N

wk (n)

[
1− exp

(
− 2

c (n)2 maxk∈N wk (n)

)]
→ 0 as n→∞,

proving (20).

For the second part, assume that {εi (n)}i∈N,n∈N is symmetric and that T (n) is odd for all n ∈ N.
It is enough to show that T̄i (n) is an unbiased estimator of µ for all i ∈ N and for all n ∈ N. By
Theorem 1 as well as points 3 and 4 of Lemma 3 and since I = R and T (n) is an odd robust opinion

aggregator for all n ∈ N, we have that T̄ (n) is a well-defined odd robust opinion aggregator for all

n ∈ N. Next, recall that Xi (n) = µ+ εi (n) for all i ∈ N and for all n ∈ N where {εi (n)}i∈N,n∈N is a
collection of uniformly bounded and independent random variables. Since T̄i (n) is continuous for all

i ∈ N and for all n ∈ N, it follows that ω 7→ T̄i (n) (ε1 (n) (ω) , ..., εn (n) (ω)) is integrable for all i ∈ N
and for all n ∈ N. Since T̄ (n) is odd for all n ∈ N and {εi (n)}i∈N,n∈N is symmetric, this implies that
for each i ∈ N and for each n ∈ N∫

Ω
T̄i (n) (ε1 (n) , ..., εn (n)) dP =

∫
Ω
T̄i (n) (−ε1 (n) , ...,−εn (n)) dP

= −
∫

Ω
T̄i (n) (ε1 (n) , ..., εn (n)) dP.

It follows that for each i ∈ N and for each n ∈ N

2

∫
Ω
T̄i (n) (ε1 (n) , ..., εn (n)) dP = 0.

Since T̄ (n) is translation invariant, we can conclude that for each i ∈ N and for each n ∈ N

E
(
T̄i (n) (X1 (n) , ..., Xn (n))

)
=

∫
Ω
T̄i (n) (X1 (n) , ..., Xn (n)) dP

=

∫
Ω
T̄i (n) (µ+ ε1 (n) , ..., µ+ εn (n)) dP = µ+

∫
Ω
T̄i (n) (ε1 (n) , ..., εn (n)) dP = µ,

proving that T̄i (n) is an unbiased estimator of µ. Given that i and n were arbitrarily chosen, this

concludes the proof. �
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C Appendix: discussion

All the missing proofs are in the Online Appendix (see Section D.1.4). Given the profile of loss

functions φ = (φi)
n
i=1, define T

φ : B ⇒ B as

Tφ (x) =
n∏
i=1

argminc∈R φi (x− ce) ∀x ∈ B. (41)

The next two ancillary lemmas are instrumental in showing that Tφ is well defined and behaved.

Lemma 8 Let φ be a profile of loss functions. If φ ∈ ΦR, then for each i ∈ N and z̃ ∈ Rn

z̃ � 0 =⇒ φi (z̃) > φi

(
z̃ −min

j∈N
z̃je

)
,

and

0� z̃ =⇒ φi (z̃) > φi

(
z̃ −max

j∈N
z̃je

)
.

Lemma 9 Let φ be a profile of loss functions. If φ ∈ ΦR, then for each i ∈ N and for each x ∈ Rn

the function fi,x : R → R+, defined by fi,x (c) = φi (x− ce) for all c ∈ R, is continuous and convex.
Moreover, if φ has strictly increasing shifts, then fi,x is strictly convex for all i ∈ N and for all x ∈ Rn.

To prove (i) implies (ii) of Theorem 5, we prove a more general result, namely, that the solution

correspondence of problem (23), that is (41), always admits a selection which is a robust opinion

aggregator.

Proposition 13 Let φ be a profile of loss functions. If φ ∈ ΦR, then the correspondence Tφ is well

defined and admits a selection T φ which is a robust opinion aggregator. Moreover, if φ has strictly

increasing shifts, then Tφ = T φ is single-valued and, in particular, is a robust opinion aggregator.

Proof. Fix i ∈ N . We begin by considering the correspondence Tφi : B ⇒ I defined by

Tφi (x) = argminc∈R φi (x− ce) ∀x ∈ B.

We next show that Tφi is well defined, nonempty-, convex-, and compact-valued, and such that for

each x, y ∈ B
x ≥ y =⇒ Tφi (x) ≥SSO T

φ
i (y) (42)

where ≥SSO is the strong set order. Fix x ∈ B. We next show that

∀d 6∈
[
min
j∈N

xj ,max
j∈N

xj

]
, ∃c ∈

[
min
j∈N

xj ,max
j∈N

xj

]
s.t. φi (x− ce) < φi (x− de) . (43)

Consider d as above. We have two cases either d < minj∈N xj or d > maxj∈N xj . In the first case, we

have that x− de � 0, in the second case, we have that 0 � x− de. By Lemma 8 and since φ ∈ ΦR,

if we set c̃ = minj∈N xj − d (resp. maxj∈N xj − d), we obtain that

φi (x− de) > φi (x− de− c̃e) = φi (x− ce)
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where c = minj∈N xj ∈ [minj∈N xj ,maxj∈N xj ] (resp. c = maxj∈N xj ∈ [minj∈N xj ,maxj∈N xj ]),

proving (43). By (43), we can conclude that

min
c∈R

φi (x− ce) = min
c∈I

φi (x− ce) = min
c∈[minj∈N xj ,maxj∈N xj]

φi (x− ce) (44)

as well as

argminc∈R φi (x− ce) = argminc∈I φi (x− ce) = argminc∈[minj∈N xj ,maxj∈N xj] φi (x− ce) .

By Weierstrass’Theorem and since, by Lemma 9, the map c 7→ φi (x− ce) is continuous and convex,
it follows that the above minimization problems admit solution and each argmin is a compact and

convex set. Since x was arbitrarily chosen, this implies that Tφi is well defined, nonempty-, convex-,

and compact-valued and, in particular,

∅ 6= Tφi (x) ⊆
[
min
j∈N

xj ,max
j∈N

xj

]
⊆ I ∀x ∈ B. (45)

We next prove (42). In order to do so, we rewrite explicitly (44) as a problem of parametric optimiza-

tion/monotone comparative statics. Next, define f : I ×B → R by

f (c, x) = −φi (x− ce) ∀ (c, x) ∈ I ×B.

It is immediate to see that

Tφi (x) = argmaxc∈I f (c, x) ∀x ∈ B.

We next show that f has increasing differences in (c, x). Consider x, y ∈ B as well as c, d ∈ I such
that c ≥ d and x ≥ y. Define z = x − ce, v = y − ce, and h = c − d. Note that z ≥ v and h ∈ R+.

Since φ ∈ ΦR, it follows that

f (c, x)− f (d, x) = φi (x− de)− φi (x− ce) = φi (z + he)− φi (z)

≥ φi (v + he)− φi (v) = φi (y − de)− φi (y − ce) = f (c, y)− f (d, y) .

This shows that f satisfies the property of increasing differences in (c, x). By [53, Theorem 5], Tφi
satisfies (42). We finally show that Tφi is such that for each x ∈ B and for each k ∈ R such that

x+ ke ∈ B
c? ∈ Tφi (x) ⇐⇒ c? + k ∈ Tφi (x+ ke) . (46)

Fix x ∈ B. Consider k ∈ R such that x+ ke ∈ B. Consider c? ∈ Tφi (x). By definition, it follows that

φi (x− c?e) ≤ φi (x− ce) for all c ∈ R. This implies that

φi (x+ ke− (c? + k) e) = φi (x− c?e) ≤ φi (x− (d− k) e) = φi (x+ ke− de) ∀d ∈ R.
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By definition of Tφi , this implies that c
? + k ∈ Tφi (x+ ke). Vice versa, if c? + k ∈ Tφi (x+ ke), then

φi (x+ ke− (c? + k) e) ≤ φi (x+ ke− de) ∀d ∈ R,

yielding that

φi (x− c?e) = φi (x+ ke− (c? + k) e) ≤ φi (x− ce) ∀c ∈ R,

proving that c? ∈ Tφi (x).

To sum up, since i ∈ N was arbitrarily chosen, we proved that, for each i ∈ N , Tφi is well

defined, nonempty-, convex-, and compact-valued, and satisfies (42) as well as (46). Observe also that

Tφ : B ⇒ B is the product correspondence Tφ=
∏n
i=1T

φ
i . We are ready to show that T

φ admits a

selection T φ which is a robust opinion aggregator. Define T φ : B → B to be such that

T φi (x) = minTφi (x) ∀x ∈ B, ∀i ∈ N.

Since Tφi (x) is nonempty and compact for all x ∈ B and for all i ∈ N , it follows that T φi (x) is well

defined and, in particular, T φi (x) ∈ Tφi (x) for all x ∈ B and for all i ∈ N , proving that T φ is a

selection of Tφ. By (45), it follows that Tφi (ke) = {k} for all k ∈ I and for all i ∈ N , proving that
T φi (ke) = k for all k ∈ I and for all i ∈ N , that is, that T φ is normalized. Next, consider x, y ∈ B
such that x ≥ y. By (42), we have that T φi (x) ≥ T φi (y) for all i ∈ N , proving monotonicity of T φi
for all i ∈ N and so of T φ. Finally, consider x ∈ B and k ∈ R such that x + ke ∈ B. By (46) and
definition of T φi (x) as well as T φi (x+ ke), we have that T φi (x) ∈ Tφi (x) for all i ∈ N , yielding that
T φi (x) + k ∈ Tφi (x+ ke) for all i ∈ N and, in particular, T φi (x) + k ≥ T φi (x+ ke) for all i ∈ N . This
implies that T φi (x+ ke) = T φi (x) + k for all i ∈ N , proving translation invariance.39

Finally, by Lemma 9, if φ has strictly increasing shifts, then the map c 7→ φi (x− ce) is strictly
convex, yielding that each Tφi is single-valued and so is T

φ. �
Proof of Theorem 5. (i) implies (ii). By Proposition 13 and since φ ∈ ΦR and has strictly increasing

shifts, the implication follows.

(ii) implies (i). Let T : B → B be a robust opinion aggregator. By point 1 of Lemma 1, there

exists an extension from Rn to Rn. With a small abuse of notation, we denote it by the same symbol
T . Fix i ∈ N . Define φTi : Rn → R+ by φTi (z) = (Ti (z))2 for all z ∈ Rn. Next, consider h ∈ R\ {0}.
Since T is normalized, it follows that φTi (he) = (Ti (he))2 = h2 > 0 = (Ti (0))2 = φTi (0). Since i and

h were arbitrarily chosen, this implies that φ =
(
φTi
)n
i=1

is sensitive. Since T is translation invariant,

we have that

φTi (z + he) = (Ti (z + he))2 = (Ti (z) + h)2 = (Ti (z))2 + 2hTi (z) + h2 ∀h ∈ R,∀z ∈ Rn. (47)

39Fix i ∈ N . By the previous part of the proof, for each x ∈ B and for each k ∈ R such that x+ ke ∈ B, we have that
Tφi (x+ ke) ≤ Tφi (x) + k. Next, note that if x ∈ B and x+ ke ∈ B, then (x+ ke)− ke = x ∈ B. It follows that

Tφi (x) = Tφi ((x+ ke)− ke) ≤ Tφi (x+ ke)− k,

proving the opposite inequality.
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Consider z, v ∈ Rn and h ∈ R++. By (47) and since T is monotone, we can conclude that

z ≥ v =⇒ φTi (z + he)− φTi (z) = 2hTi (z) + h2 ≥ 2hTi (v) + h2 = φTi (v + he)− φTi (v) .

Since i was arbitrarily chosen, it follows that φ =
(
φTi
)n
i=1

has increasing shifts and, in particular,

φ ∈ ΦR. Next, consider z, v ∈ Rn such that z � v. Set k = minj∈N (zj − vj). It follows that k > 0

and z ≥ v + ke. Since T is monotone and translation invariant and k > 0, we can conclude that

T (z) ≥ T (v + ke) = T (v) + ke � T (v). Since z, v ∈ Rn were arbitrarily chosen, it follows that
z � v =⇒ T (z)� T (v). By (47), this implies that if z, v ∈ Rn and h ∈ R++, then

z � v =⇒ φTi (z + he)− φTi (z) = 2hTi (z) + h2 > 2hTi (v) + h2 = φTi (v + he)− φTi (v) .

Since i was arbitrarily chosen, it follows that φ =
(
φTi
)n
i=1

has strictly increasing shifts. We next

prove (25). By Proposition 13 and since φ =
(
φTi
)n
i=1
∈ ΦR has strictly increasing shifts, we have

that Tφi (x) = argminc∈R φ
T
i (x− ce) is well defined and single-valued for all x ∈ B and for all i ∈ N .

Finally, fix i ∈ N and x ∈ B. By (47), we have that

φTi (x− ce) = (Ti (x))2 − 2cTi (x) + c2 ∀c ∈ R

which, as a function of c, is quadratic and minimized at c = Ti (x), proving the statement. �
Proof of Proposition 8. Let x ∈ B. Call V the set of values the components of x take: V =

{x1, ..., xn}. Define U to be the subset of vectors y in B such that each component of y coincides with

the value of some component of x, formally,

U = {y ∈ B : yi ∈ V ∀i ∈ {1, ..., n}} .

Note that the cardinality of U is mn. Since T is a discrete robust opinion aggregator, note that

Ti (y) ∈ V for all y ∈ U and for all i ∈ {1, ..., n}. This implies that T (x) ∈ U . By induction, it follows
that T t (x) ∈ U for all t ∈ N. This implies that the sequence

{
T t (x)

}
t∈N can take at most a finite

number of values. We have two cases:

1.
{
T t (x)

}
t∈N converges. If

{
T t (x)

}
t∈N converges, then the previous part implies that

{
T t (x)

}
t∈N

becomes constant, that is, there exists t̃ ∈ N such that

T t (x) = T t̃ (x) ∈ U ∀t ≥ t̃. (48)

Call x̄ the limit of
{
T t (x)

}
t∈N. Note that x̄ = T t̃ (x) and T t (x̄) = x̄ for all t ∈ N. In particular,

we have that

T (x̄) = x̄. (49)

Define now t̄ ∈ N to be such that t̄ = min
{
t ∈ N : T t (x) = x̄

}
. By (48), t̄ is well defined. By

(49), we have that T t (x) = x̄ for all t ≥ t̄. If t̄ = 1, then
{
T t (x)

}
t∈N is constant to begin

with and so it becomes constant after at most mn periods. Assume t̄ > 1. We next show that

T t (x) 6= T l (x) for all l, t < t̄ such that l 6= t. By contradiction, assume that there exist l, t < t̄
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such that l 6= t and T t (x) = T l (x). Without loss of generality, we assume that l > t. This

would imply that T t+n (x) = Tn
(
T t (x)

)
= Tn

(
T l (x)

)
= T l+n (x) for all n ∈ N. In particular,

by setting n = t̄ − l > 0, we would have that T t+n (x) = T l+n (x) = T t̄ (x) = x̄. Note that

t̂ = t + n < l + n = t̄. Thus, this would imply that T t̂ (x) = x̄ and t̂ < t̄, a contradiction with

the minimality of t̄. By definition of t̄, we can also conclude that T t (x) 6= x̄ for all t < t̄. This

implies that
{
T t (x)

}t̄−1

t=1
is contained in U\ {x̄}. Since U contains mn elements and the elements

of
{
T t (x)

}t̄−1

t=1
are pairwise distinct, it follows that t̄ − 1 ≤ mn − 1, proving that

{
T t (x)

}
t∈N

converges only if it becomes constant after at most mn periods.

2.
{
T t (x)

}
t∈N does not converge. Define ñ = mn. Recall that

{
T t (x)

}ñ+1

t=1
⊆ U where the latter

set has cardinality ñ. This implies that there exist m̂, t̂ ≤ ñ+ 1 such that T m̂ (x) = T t̂ (x) and

m̂ 6= t̂. Without loss of generality, we assume that m̂ > t̂. It follows that

T t̂+n (x) = Tn
(
T t̂ (x)

)
= Tn

(
T m̂ (x)

)
= T m̂+n (x) ∀n ∈ N0.

Define p = m̂− t̂ > 0. Since t̂ ≥ 1 and m̂ ≤ ñ+ 1, note that m̂− t̂ ≤ ñ and t̂ ≤ ñ. We have that
T t̂+n (x) = T t̂+n+p (x) for all n ∈ N0, proving that T t (x) = T t+p (x) for all t ≥ t̂.

Points 1 and 2 prove the first part of the statement as well as the “only if” of the second part.

The “if”part is trivial. �
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D Online Appendix

D.1 Missing proofs

In this section, we confine all the missing proofs. They appear in the order in which the corresponding
statements appear in the text, unless they are new ancillary results.

D.1.1 Illustrations

Proof of Proposition 1. We omit the proof of point 2 which follows from well-known facts.40 Recall
that for each i ∈ N

φλi (z) =
n∑
j=1

wijρi (zj) ∀z ∈ Rn

where λ ∈ R\ {0} and ρi : R→ R+ is defined by ρi (s̃) = eλs̃ − λs̃ for all s̃ ∈ R. It is easy to see that
ρi is convex, strictly decreasing on R−, and strictly increasing on R+ for all i ∈ N . As mentioned in
Section 6.2, this implies that φ ∈ ΦA ⊆ ΦR. Since ρ′′i > 0 for all i ∈ N , ρi is strictly convex for all
i ∈ N . Standard computations yield that φ has strictly increasing shifts.

1. By Proposition 13, it follows that Tφ = T φ = T λ is single-valued and is a robust opinion
aggregator. We are only left to compute it. Fix i ∈ N . Consider x ∈ B. Note that the function
c 7→ φλi (x− ce) is strictly convex and differentiable. We compute the first order conditions where c?
is the optimal value:

−
n∑
j=1

wij [λ exp (λ (xj − c?))− λ] = 0 =⇒
n∑
j=1

wij exp (λxj) = exp (λc?) =⇒

=⇒ c? =
1

λ
ln

 n∑
j=1

wij exp (λxj)

 ,

proving the rest of the statement.
3. Let S : Rn → Rn++ be defined by Si (x) = exp (λxi) for all i ∈ N and for all x ∈ Rn. Define

T̂ : Rn → Rn by T̂ (x) = Wx for all x ∈ Rn. We next show that(
T λ
)t

= S−1T̂ tS ∀t ∈ N. (50)

By definition of T λ, if t = 1, then T λ (x) = S−1 (WS (x)) for all x ∈ Rn, yielding (50). Next, assume
that (50) holds for t. We have that(

T λ
)t+1

= T λ
(
T λ
)t

= S−1T̂ SS−1T̂ tS = S−1T̂ t+1S,

proving that (50) holds for t+ 1. By induction, (50) follows. Consider x ∈ B. By (12), it follows that

lim
t
T̂ t (S (x)) = lim

t
W tS (x) =

(
n∑
i=1

si exp (λxi)

)
e ∈ Rn++.

40The result for λ̂ =∞ is also known as Laplace’s method (see, e.g., [3, Theorem 4.1]). The case for λ̂ = −∞ is instead
obtained from the previous one and by observing that λxj = −λ (−xj) and that λ→ −∞ yields −λ→∞. The case of
λ̂ = 0 is a standard result in risk theory.
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By (50) and since S−1 is continuous, we have that

lim
t

(
T λ
)t

(x) =

(
1

λ
ln

(
n∑
i=1

si exp (λxi)

))
e = T̄ λ (x) .

Since x was arbitrarily chosen, the statement follows. �

D.1.2 Convergence

Proof of Lemma 1. 1. Since T is robust, we have that Ti : B → R is monotone and translation
invariant for all i ∈ N .41 By [4, Theorem 4], Ti is a niveloid for all i ∈ N . By [4, Theorem 1], Ti admits
an extension Si : Rn → R which is a niveloid for all i ∈ N . By [4, Theorem 4], Si is monotone and
translation invariant for all i ∈ N . Define S : Rn → Rn to be such that the i-th component of S (x)
is Si (x) for all i ∈ N and for all x ∈ Rn. It is immediate to see that S is monotone and translation
invariant. Fix k′ ∈ I. Since S is translation invariant and T is normalized, it follows that for all k ∈ R

S (ke) = S
(
k′e+

(
k − k′

)
e
)

= S
(
k′e
)

+
(
k − k′

)
e = T

(
k′e
)

+
(
k − k′

)
e = k′e+

(
k − k′

)
e = ke,

proving that S is normalized and, in particular, that S is robust.

2. By induction, if T is normalized and monotone, then T t is normalized and monotone for
all t ∈ N. Consider x ∈ B and t ∈ N. Define k? = mini∈N xi and k? = maxi∈N xi. Note that
‖x‖∞ = max {|k?| , |k?|}, k?, k? ∈ I, and k?e ≤ x ≤ k?e. Since T t is normalized and monotone, we
have that

k?e = T t (k?e) ≤ T t (x) ≤ T t (k?e) = k?e,

yielding that
∣∣T t (x)

∣∣ ≤ max {|k?| , |k?|} e and
∥∥T t (x)

∥∥
∞ ≤ ‖x‖∞. Since t and x were arbitrarily

chosen, the statement follows. �
Proof of Lemma 2. Since T is a robust opinion aggregator, Ti is normalized, monotone, and
translation invariant for all i ∈ N . By [4, Theorem 4], it follows that Ti is a niveloid for all i ∈ N . By
[4, p. 346], it follows that |Ti (x)− Ti (y)| ≤ ‖x− y‖∞ for all x, y ∈ B and for all i ∈ N . This implies
that

‖T (x)− T (y)‖∞ = max
i∈N
|Ti (x)− Ti (y)| ≤ ‖x− y‖∞ ∀x, y ∈ B,

proving that T is nonexpansive.
By induction, we next show that T t is nonexpansive for all t ∈ N. Since we have shown that T

is nonexpansive, T t is nonexpansive for t = 1, proving the initial step. By the induction hypothesis,
assume that T t is nonexpansive, we have that for each x, y ∈ B∥∥T t+1 (x)− T t+1 (y)

∥∥
∞ =

∥∥T (T t (x)
)
− T

(
T t (y)

)∥∥
∞ ≤

∥∥T t (x)− T t (y)
∥∥
∞ ≤ ‖x− y‖ ,

proving the inductive step. The statement follows by induction. �
Proof of Lemma 3. Let x ∈ B. Since T is a selfmap, we have that

{
T t (x)

}
t∈N ⊆ B. Since B is

convex, we have that
1

τ

τ∑
t=1

T t (x) ∈ B ∀τ ∈ N.

Since x was arbitrarily chosen, this implies that Aτ : B → B, defined by Aτ (x) =
∑τ

t=1 T
t (x) /τ

for all x ∈ B, is well defined for all τ ∈ N. Since B is closed, we have that T̄ (x) = limτ Aτ (x) =

41With a small abuse of terminology, we use the same name for similar properties that pertain to functionals and
operators.
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limτ
1
τ

∑τ
t=1 T

t (x) ∈ B for all x ∈ B, proving that T̄ is well defined. By the same computations
contained in [1, Lemma 20.12], despite T being nonlinear, one has

Aτ (T (x)) =
τ + 1

τ
Aτ+1 (x)− 1

τ
T (x) ∀x ∈ B, ∀τ ∈ N.

This implies that

T̄ (T (x)) = lim
τ
Aτ (T (x)) = lim

τ

τ + 1

τ
lim
τ
Aτ+1 (x)− lim

τ

1

τ
T (x) = T̄ (x) ∀x ∈ B,

proving that T̄ ◦ T = T̄ .

1. By the same inductive argument contained in the proof of Lemma 2, we have that for each
t ∈ N the map T t : B → B is nonexpansive. Since the convex linear combination of nonexpansive
maps is nonexpansive, the map Aτ : B → B is nonexpansive for all τ ∈ N. We can conclude that for
each x, y ∈ B∥∥T̄ (x)− T̄ (y)

∥∥
∞ =

∥∥∥lim
τ
Aτ (x)− lim

τ
Aτ (y)

∥∥∥
∞

= lim
τ
‖Aτ (x)−Aτ (y)‖∞ ≤ ‖x− y‖∞ ,

proving that T̄ is nonexpansive. Continuity of T̄ trivially follows.

2. By induction, we have that for each t ∈ N the map T t : B → B is normalized and monotone.
Since the convex linear combination of normalized and monotone operators is normalized and monotone,
the map Aτ : B → B is normalized and monotone for all τ ∈ N. We can conclude that T̄ (ke) =
limτ Aτ (ke) = ke for all k ∈ I as well as

x ≥ y =⇒ T̄ (x) = lim
τ
Aτ (x) ≥ lim

τ
Aτ (y) = T̄ (y) ,

proving that T̄ is normalized and monotone.

3. Since T is robust, T is normalized, monotone, and translation invariant. By the previous point,
T̄ is normalized and monotone. By induction, we have that for each t ∈ N the map T t : B → B
is translation invariant. Since the convex linear combination of translation invariant operators is
translation invariant, the map Aτ : B → B is translation invariant for all τ ∈ N. We can conclude
that for each x ∈ B and for each k ∈ R such that x+ ke ∈ B

T̄ (x+ ke) = lim
τ
Aτ (x+ ke) = lim

τ
[Aτ (x) + ke] = T̄ (x) + ke,

proving that T̄ is translation invariant and, in particular, robust.

4. By induction, we have that for each t ∈ N the map T t : B → B is odd. Since the convex linear
combination of odd maps is odd, the map Aτ : B → B is odd for all τ ∈ N. We can conclude that

T̄ (−x) = lim
τ
Aτ (−x) = lim

τ
[−Aτ (x)] = −T̄ (x) ∀x ∈ B s.t. − x ∈ B,

proving that T̄ is odd. �
In order to prove Lemma 4, we are going to rely upon Lorentz’s Theorem.

Theorem 6 (Lorentz) Let
{
xt
}
t∈N ⊆ R

n be a bounded sequence. The following statements are equiv-
alent:
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(i) There exists x̄ ∈ Rn such that

∀ε > 0 ∃τ̄ ∈ N ∀m ∈ N s.t.
∥∥∥∥∥1

τ

τ∑
t=1

xm+t − x̄
∥∥∥∥∥
∞

< ε ∀τ ≥ τ̄

and limt

∥∥xt+1 − xt
∥∥
∞ = 0;

(ii) limt x
t = x̄.

Proof of Lemma 4. By Theorem 1 and since T is robust, we have that if B̂ is a bounded subset of
B, then

lim
τ

(
sup
x∈B̂

∥∥∥∥∥1

τ

τ∑
t=1

T t (x)− T̄ (x)

∥∥∥∥∥
∞

)
= 0 (51)

where T̄ : B → B is a robust opinion aggregator such that T̄ ◦ T = T̄ . Since T̄ (T (x)) = T̄ (x) for all
x ∈ B, by induction, we have that T̄ (Tm (x)) = T̄ (x) for all m ∈ N and for all x ∈ B.

(i) implies (ii). Fix x ∈ B. Define the sequence xt = T t (x) for all t ∈ N. By point 2 of Lemma 1,
we have that

{
xt
}
t∈N is bounded. Set B̂ =

{
xt
}
t∈N. Note that for each τ ∈ N and for each m ∈ N

1

τ

τ∑
t=1

xm+t =
1

τ

τ∑
t=1

Tm+t (x) =
1

τ

τ∑
t=1

T t (Tm (x)) .

Since (51) holds, if we define x̄ = T̄ (x), then we have that for each m ∈ N

lim
τ

1

τ

τ∑
t=1

xm+t = lim
τ

1

τ

τ∑
t=1

T t (Tm (x)) = T̄ (Tm (x)) = T̄ (x) = x̄.

It follows that

sup
m∈N

∥∥∥∥∥1

τ

τ∑
t=1

xm+t − x̄
∥∥∥∥∥
∞

= sup
m∈N

∥∥∥∥∥1

τ

τ∑
t=1

T t (Tm (x))− T̄ (Tm (x))

∥∥∥∥∥
∞

≤ sup
x∈B̂

∥∥∥∥∥1

τ

τ∑
t=1

T t (x)− T̄ (x)

∥∥∥∥∥
∞

.

Since (51) holds and T is asymptotically regular, we have that
{
xt
}
t∈N satisfies point (i) of Theorem 6.

By Theorem 6, we have that limt T
t (x) = limt x

t exists. Since x was arbitrarily chosen, the implication
follows.

(ii) implies (i). Fix x ∈ B. Define xt = T t (x) for all t ∈ N. Since T is convergent, we have that{
xt
}
t∈N converges and, in particular, is bounded. By Theorem 6, we have that limt

∥∥T t+1 (x)− T t (x)
∥∥
∞ =

limt

∥∥xt+1 − xt
∥∥
∞ = 0. Since x was arbitrarily chosen, the implication follows. �

Proof of Lemma 5. We first offer two definitions and make two observations. Define the diameter
of
{
T t (x) : x ∈ C and t ∈ N0

}
by D̄.42 Given x ∈ B, define xt = T t (x) as well as yt = S

(
xt
)
for all

t ∈ N0. Since T is nonexpansive, recall that
{∥∥xt − xt−1

∥∥
∞
}
t∈N is a decreasing sequence for all x ∈ B.

Note that this implies that ‖T (x)− x‖∞ ≥
∥∥T t+1 (x)− T t (x)

∥∥
∞ for all t ∈ N0 and for all x ∈ B,

yielding that k > δ.

42Recall that the diameter of a subset Â of B is the quantity

sup
{
‖x− y‖∞ : x, y ∈ Â

}
.
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By contradiction, assume that
{
T t (x) : x ∈ C and t ∈ N0

}
is bounded. This implies that D̄ <∞.

Consider M ∈ N\ {1} and P ∈ N to be such that

Mδ > D̄ + δ + 1 and
⌊
P

M

⌋
> max

{
1,

k

(1− ε) εM

}
.

By (32) and since P ∈ N, there exists x ∈ C such that∥∥xP+1 − xP
∥∥
∞ =

∥∥TP+1 (x)− TP (x)
∥∥
∞ ≥ δ.

Now, we list seven useful facts:

1. By (31) and since
{∥∥xt − xt−1

∥∥
∞
}
t∈N is a decreasing sequence, it follows that

k ≥
∥∥xi+1 − xi

∥∥
∞ ≥ δ ∀i ∈ {1, ..., P} .

2. By definition of
{
yt
}
t∈N0

and since S is nonexpansive, we have that∥∥yt − yt−1
∥∥
∞ =

∥∥S (xt)− S (xt−1
)∥∥
∞ ≤

∥∥xt − xt−1
∥∥
∞ ∀t ∈ N.

3. By definition of
{
xt
}
t∈N0

and since T = εJ+(1− ε)S, we have that xt = T
(
xt−1

)
= εJ

(
xt−1

)
+

(1− ε) yt−1 for all t ∈ N, that is,

yt−1 =
1

1− εx
t − ε

1− εJ
(
xt−1

)
∀t ∈ N.

By point 2, this yields that for each t ∈ N∥∥∥∥ 1

1− ε
(
xt+1 − xt

)
− ε

1− ε
(
J
(
xt
)
− J

(
xt−1

))∥∥∥∥
∞

=
∥∥yt − yt−1

∥∥
∞ ≤

∥∥xt − xt−1
∥∥
∞ .

4. Let L be an integer in N such that
L >

k

(1− ε) εM . (52)

Define bm = δ + m (1− ε) εM for all m ∈ {0, ..., L}. It follows that the collection of intervals
{[bm, bm+1]}L−1

m=0 contains L elements whose union is a superset of [δ, k].

5. Note that εM−1 1−εi
εi = εM−i−1 − εM−1 ≤ εM−i−1 for all i ∈ {1, ...,M − 1}. Since ε ∈ (0, 1), this

implies that

(1− ε) εM
M−1∑
i=1

1− εi
εi

≤ (1− ε) ε
M−1∑
i=1

εM−i−1 = (1− ε) ε
M−2∑
i=0

εi

≤ (1− ε) ε 1

1− ε ≤ ε < 1.

6. Let t ∈ N, j ∈ N , and b, κ, c ≥ 0. If xt+1
j − xtj ≥ b− c and

∥∥xt − xt−1
∥∥
∞ ≤ b+ κ, then (by point

3):
b− c
1− ε −

ε

1− ε
(
xtkl − x

t−1
kl

)
=
b− c
1− ε −

ε

1− ε
(
Jj
(
xt
)
− Jj

(
xt−1

))
≤ b+ κ

57



where l is such that j ∈ N̂l. This yields that

xtkl − x
t−1
kl
≥ b− c

ε
− 1− ε

ε
κ. (53)

7. Let t ∈ N, j ∈ N , and b, κ, c ≥ 0. If xtj − xt+1
j ≥ b− c and

∥∥xt − xt−1
∥∥
∞ ≤ b+ κ, then (by point

3):
b− c
1− ε −

ε

1− ε
(
xt−1
kl
− xtkl

)
=
b− c
1− ε −

ε

1− ε
(
Jj
(
xt−1

)
− Jj

(
xt
))
≤ b+ κ

where l is such that j ∈ N̂l. This yields that

xt−1
kl
− xtkl ≥ b−

c

ε
− 1− ε

ε
κ. (54)

By definition of P , we have that bP/Mc satisfies (52). By point 4, there exists a collection of
intervals {[bm, bm+1]}bP/Mc−1

m=0 which covers [δ, k]. By point 1, [δ, k] contains
{∥∥xi+1 − xi

∥∥
∞
}P
i=1
. Since

we have bP/Mc intervals and the first P elements (of the sequence
{∥∥xt+1 − xt

∥∥
∞
}
t∈N) belong to these

intervals, we have that there exists one of them, Î = [bm̄, bm̄+1], which contains at least M elements
of
{∥∥xi+1 − xi

∥∥
∞
}P
i=1
. Since

{∥∥xt − xt−1
∥∥
∞
}
t∈N is decreasing, we have that there exists K ∈ N0 such

that ∥∥xK+i+1 − xK+i
∥∥
∞ ∈ Î ∀i ∈ {1, ...,M} .

This implies that there exists j ∈ {1, ..., n} such that
∣∣∣xK+M+1
j − xK+M

j

∣∣∣ ≥ bm̄ and ||xK+M −
xK+M−1||∞ ≤ bm̄+1 = bm̄ + (1− ε) εM . We have two cases:

a. xK+M+1
j − xK+M

j ≥ bm̄. Set b = bm̄, c = 0, and κ = (1− ε) εM . By (53), we can conclude that

xK+M
kl

− xK+M−1
kl

≥ bm̄ − (1− ε) εM (1− ε)
ε

. (55)

By (finite) induction, we next prove that

xK+M+1−i
kl

− xK+M−i
kl

≥ bm̄ − (1− ε) εM
(
1− εi

)
εi

∀i ∈ {1, ...,M − 1} , (56)

that is,

xK+M+1−i
kl

≥ xK+M−i
kl

+ bm̄ − (1− ε) εM
(
1− εi

)
εi

∀i ∈ {1, ...,M − 1} . (57)

By (55), the statement is true for i = 1. Next, we assume it is true for i ∈ {1, ...,M − 1} and
prove it is still true for i + 1 when i + 1 ∈ {1, ...,M − 1}. This implies that i ≤ M − 2. Define
t = K +M − i. By the induction hypothesis, we have that

xt+1
kl
− xtkl = xK+M+1−i

kl
− xK+M−i

kl
≥ bm̄ − (1− ε) εM

(
1− εi

)
εi

.

Moreover, we also have that
∥∥xt − xt−1

∥∥
∞ =

∥∥xK+M−i − xK+M−i−1
∥∥
∞ ≤ bm̄ + (1− ε) εM . Set

58



b = bm̄, c = (1− ε) εM (1−εi)
εi , and κ = (1− ε) εM . By (53), we can conclude that

x
K+M+1−(i+1)
kl

− xK+M−(i+1)
kl

= xK+M−i
kl

− xK+M−i−1
kl

= xtkl − x
t−1
kl

≥ bm̄ − (1− ε) εM
(
1− εi

)
εi

1

ε
− 1− ε

ε
(1− ε) εM

= bm̄ − (1− ε) εM
(
1− εi+1

)
εi+1

,

proving (56). By (57), repeated substitution, and point 5, this implies that

xK+M
kl

≥ xK+1
kl

+ (M − 1) bm̄ − (1− ε) εM
M−1∑
i=1

1− εi
εi

≥ xK+1
kl

+ (M − 1) bm̄ − 1,

that is, ∥∥xK+M − xK+1
∥∥
∞ ≥ x

K+M
kl

− xK+1
kl

≥ (M − 1) bm̄ − 1.

Since bm̄ ≥ δ > 0, we have that (M − 1) bm̄ ≥ (M − 1) δ > D̄ + 1. We can conclude that

D̄ ≥
∥∥xK+M − xK+1

∥∥
∞ ≥ (M − 1) bm̄ − 1 > D̄,

a contradiction.

b. xK+M
j − xK+M+1

j ≥ bm̄. Set b = bm̄, c = 0, and κ = (1− ε) εM . By (54), we can conclude that

xK+M−1
kl

− xK+M
kl

≥ bm̄ − (1− ε) εM 1− ε
ε

. (58)

By (finite) induction, we next prove that

xK+M−i
kl

− xK+M+1−i
kl

≥ bm̄ − (1− ε) εM
(
1− εi

)
εi

∀i ∈ {1, ...,M − 1} , (59)

that is,

xK+M−i
kl

≥ xK+M+1−i
kl

+ bm̄ − (1− ε) εM
(
1− εi

)
εi

∀i ∈ {1, ...,M − 1} . (60)

By (58), the statement is true for i = 1. Next, we assume it is true for i ∈ {1, ...,M − 1} and
prove it is still true for i + 1 when i + 1 ∈ {1, ...,M − 1}. This implies that i ≤ M − 2. Define
t = K +M − i. By the induction hypothesis, we have that

xtkl − x
t+1
kl

= xK+M−i
kl

− xK+M+1−i
kl

≥ bm̄ − (1− ε) εM
(
1− εi

)
εi

.

Moreover, we also have that
∥∥xt − xt−1

∥∥
∞ =

∥∥xK+M−i − xK+M−i−1
∥∥
∞ ≤ bm̄ + (1− ε) εM . Set
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b = bm̄, c = (1− ε) εM (1−εi)
εi , and κ = (1− ε) εM . By (54), we can conclude that

x
K+M−(i+1)
kl

− xK+M+1−(i+1)
kl

= xK+M−i−1
kl

− xK+M−i
kl

= xt−1
kl
− xtkl

≥ bm̄ − (1− ε) εM
(
1− εi

)
εi

1

ε
− 1− ε

ε
(1− ε) εM

= bm̄ − (1− ε) εM
(
1− εi+1

)
εi+1

,

proving (59). By (60), repeated substitution, and point 5, this implies that

xK+1
kl

≥ xK+M
kl

+ (M − 1) bm̄ − (1− ε) εM
M−1∑
i=1

1− εi
εi

≥ xK+M
kl

+ (M − 1) bm̄ − 1,

that is, ∥∥xK+1 − xK+M
∥∥
∞ ≥ x

K+1
kl
− xK+M

kl
≥ (M − 1) bm̄ − 1.

Since bm̄ ≥ δ > 0, we have that (M − 1) bm̄ ≥ (M − 1) δ > D̄ + 1. We can conclude that

D̄ ≥
∥∥xK+1 − xK+M

∥∥
∞ ≥ (M − 1) bm̄ − 1 > D̄,

a contradiction.

Points a and b prove the statement. �
Proof of Lemma 7. Consider generic x, y ∈ B and l ∈ N . Define y0 = y. For each t ∈ {1, ..., n− 1}
define yt ∈ B to be such that yti = xi for all i ≤ t and yti = yi for all i ≥ t + 1. Define yn = x. Note
that yj − yj−1 = (xj − yj) ej for all j ∈ {1, ..., n}. We also have that

Tl (x)− Tl (y) = Tl (y
n)− Tl

(
y0
)

=

n∑
j=1

[
Tl
(
yj
)
− Tl

(
yj−1

)]
. (61)

Since I has nonempty interior, we have that there exist a, b ∈ I such that a > b. By contradiction,
assume that Ā (T ) is not nontrivial, that is, there exists i ∈ N such that āij = 0 for all j ∈ N , yielding
that Ti

(
z + hej

)
= Ti (z) for all h ∈ R and for all z ∈ B such that z+hej ∈ B. Set x = ae and y = be.

By (61) and since T is normalized, it follows that 0 < a − b = Ti (ae) − Ti (be) = 0, a contradiction,
proving the first part of the statement. Next, consider ı̄ ∈ N and define N̄ı̄ = {j ∈ N : āı̄j = 1}. By
assumption, we have that N̄ı̄ ⊆ C[rı̄]. Let x be as in (38) and y = x[rı̄]. By definition of Ā (T ), it is
immediate to see that āı̄j = 0 only if Tı̄

(
z + hej

)
= Tı̄ (z) for all h ∈ R and for all z ∈ B such that

z + hej ∈ B. Consider j ∈ {1, ..., n}. We have two cases: either j ∈ N̄ı̄ or j 6∈ N̄ı̄. In the first case,

since N̄ı̄ ⊆ C[rı̄], we have that y
j − yj−1 =

(
x

[rı̄]
j − x

[rı̄]
j

)
ej = 0 and Tı̄

(
yj
)
− Tı̄

(
yj−1

)
= 0. In the

second case, since āı̄j = 0, we have that Tı̄
(
yj
)

= Tı̄

(
yj−1 +

(
xj − x[rı̄]

j

)
ej
)

= Tı̄
(
yj−1

)
, yielding

that Tı̄
(
yj
)
− Tı̄

(
yj−1

)
= 0. By (61), it follows that Tı̄ (x)− Tı̄

(
x[rı̄]

)
= 0. �

Proof of Remark 1. By Rademacher’s Theorem and since robust opinion aggregators are Lipschitz
continuous (see Lemma 2), a robust opinion aggregator T is almost everywhere Frechet differentiable
in the interior of B. Let D be any subset of interior points of B where T is differentiable and such
that intB\D has 0 measure. Since T is monotone and translation invariant, note that ∂Ti∂xj

(x) ≥ 0 and
∇Ti (x) ∈ ∆ for all x ∈ D and for all i, j ∈ N . Fix i, j ∈ N . Let x ∈ D. Since x ∈ intB, there exists
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δ > 0 such that x+ hej ∈ intB for all h ∈ (0, δ). By Definition 4, we have that

aij = 1 =⇒ Ti
(
x+ hej

)
− Ti (x) ≥ εijh ∀h ∈ (0, δ) =⇒ ∂Ti

∂xj
(x) ≥ εij

for some εij ∈ (0, 1). Since x ∈ D was arbitrarily chosen and εij does not depend on x, this proves
one implication of (15). As for the opposite, recall that Clarke’s differential of Ti at x ∈ intB is the
set (see, e.g., [2, Theorem 2.5.1])

∂Ti (x) = co

{
p ∈ ∆ : p = lim

k
∇Ti

(
xk
)
s.t. xk → x and xk ∈ D

}
.

We have that

∃εij ∈ (0, 1) s.t.
∂Ti
∂xj

(x) ≥ εij ∀x ∈ D =⇒ pj ≥ εij ∀p ∈ ∂Ti (x) ,∀x ∈ intB.

By Lebourg’s Mean Value Theorem (see, e.g., [2, Theorem 2.3.7]), we have that if x ∈ intB and h > 0
are such that x+ hej ∈ intB, then there exist z ∈ intB and p ∈ ∂Ti (z) such that

Ti
(
x+ hej

)
− Ti (x) =

n∑
l=1

plhe
j
l = pjh ≥ εijh.

Since x was arbitrarily chosen, Ti
(
x+ hej

)
− Ti (x) ≥ εijh for all x ∈ intB and h > 0 such that

x+ hej ∈ intB. Since T is Lipschitz continuous, we have that the same condition holds for all x ∈ B
and h > 0 such that x + hej ∈ B, proving that aij = 1. As for (16), since ∂Ti

∂xj
(x) ≥ 0 for all x ∈ D

and for all i, j ∈ N , (16) is equivalent to

āij = 0 ⇐⇒ ∀x ∈ D s.t. ∂Ti
∂xj

(x) = 0. (62)

The same steps above then trivially yield that (62) is also true. �
Proof of Proposition 12. By Proposition 9, if A (T ) is nontrivial, then there exist W ∈ W and
ε ∈ (0, 1) such that

T (x) = εWx+ (1− ε)S (x) ∀x ∈ B (63)

where S : B → B is a robust opinion aggregator. Moreover, W can be chosen to be such that
A (W ) = A (T ). By induction and (63), we have that if t ∈ N, then there exist γ ∈ (0, 1) and a robust
opinion aggregator S̃ : B → B (which both depend on t) such that

T t (x) = γW tx+ (1− γ) S̃ (x) ∀x ∈ B. (64)

Finally, since T is normalized, observe that E (T ) ⊇ D.
a. Before starting, observe that if T has the pairwise common influencer property, then A (T )

is nontrivial. By contradiction, assume that there exists x ∈ B\D such that T (x) = x. Define
xi = minl∈N xl and xj = maxl∈N xl. It follows that xj > xi and i 6= j. Since A (W ) = A (T ), W is
scrambling and there exists k = k (i, j) ∈ N such that wik > 0 and wjk > 0. We have two cases:
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1. xk < xj . It follows that

0 = ‖T (x)− x‖∞ ≥ |Tj (x)− xj | =
∣∣∣∣∣ε

n∑
l=1

wjlxl + (1− ε)Sj (x)− xj

∣∣∣∣∣
= ε

n∑
l=1

wjl (xj − xl) + (1− ε) (xj − Sj (x)) ≥ εwjk (xj − xk) > 0,

a contradiction.

2. xk > xi. It follows that

0 = ‖T (x)− x‖∞ ≥ |Ti (x)− xi| =
∣∣∣∣∣ε

n∑
l=1

wilxl + (1− ε)Si (x)− xi

∣∣∣∣∣
= ε

n∑
l=1

wil (xl − xi) + (1− ε) (Si (x)− xi) ≥ εwik (xk − xi) > 0,

a contradiction.

Cases 1 and 2 prove that the only equilibria of T are the constant vectors in B, proving the
statement.

b. By induction, if t ∈ N, then D ⊆ E (T ) ⊆ E
(
T t
)
. Since A (W ) = A (T ) and A (T ) is nontrivial,

it follows that A (W ) has a unique strongly connected and closed group M , and M is aperiodic under
A (W ). By [7, Corollaries 8.1 and 8.2], W is such that there exist t̄ ∈ N and j ∈ N such that w(t̄)

ij > 0

for all i ∈ N . By Proposition 9 and (64), this implies that T t̄ has the pairwise common influencer
property. By the previous part, we can conclude that E

(
T t̄
)

= D. Since D ⊆ E (T ) ⊆ E
(
T t
)
for all

t ∈ N, this implies that E (T ) = D. �
Proof of Proposition 3. We first make few observations in order to apply Remark 1. Denote the
set of permutations of N by Π. For each π̃ ∈ Π set

Bπ̃ =
{
x ∈ B : xπ̃(1) ≤ ... ≤ xπ̃(n)

}
and

◦
Bπ̃ =

{
x ∈ intB : xπ̃(1) < ... < xπ̃(n)

}
.

Clearly, we have that B = ∪π̃∈ΠBπ̃, ∪π̃∈Π

◦
Bπ̃ is an open subset of interior points of B, and intB\∪π̃∈Π

◦
Bπ̃ has 0 (Lebesgue) measure. Set D = ∪π̃∈Π

◦
Bπ̃. Recall that for each i ∈ N

T fi (x) =

n∑
j=1

xπ(j)

[
fi

(
j∑
l=1

wiπ(l)

)
− fi

(
j−1∑
l=1

wiπ(l)

)]
∀x ∈ B (65)

where π : N → N is a permutation such that xπ(1) ≤ ... ≤ xπ(n). Let π̃ ∈ Π and i ∈ N . Set pπ̃,i ∈ ∆
by

pπ̃,iπ̃(j) = fi

(
j∑
l=1

wiπ̃(l)

)
− fi

(
j−1∑
l=1

wiπ̃(l)

)
∀j ∈ N. (66)

By (65), it follows that T fi (x) =
∑n

j=1 xπ̃(j)p
π̃,i
π̃(j) =

∑n
j=1 xjp

π̃,i
j for all x ∈ Bπ̃. This implies that Ti is

linear over the open set
◦
Bπ̃ ⊆ Bπ̃, yielding that it is Frechet differentiable there and ∂Ti

∂xj
(x) = pπ̃,ij for
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all j ∈ N and for all x ∈
◦
Bπ̃. Since π̃ and i were arbitrarily chosen, we have that T is differentiable

over D and intB\D has 0 measure. Consider j̄ ∈ N . LetM ⊆ N\ {j̄}. Since I has nonempty interior,
there exist a, b ∈ I such that a > b. Set x ∈ B to be such that xj = b for all j ∈M and xj = a for all
j ∈M c. Observe that |M | ∈ {0, ..., n− 1}. Consider also πM ∈ Π such that xπM (1) ≤ ... ≤ xπM (n) and
πM (|M |+ 1) = j̄. By (66), it follows that

fi (wi (M ∪ {j̄}))− fi (wi (M)) = pπM ,iπM (|M |+1) = pπM ,i
j̄

∀i ∈ N. (67)

Similarly, we have that for each i ∈ N and for each π̃ ∈ Π

pπ̃,i
j̄

= fi

π̃−1(j̄)∑
l=1

wiπ̃(l)

− fi
π̃−1(j̄)−1∑

l=1

wiπ̃(l)

 = fi (wi (Mπ̃ ∪ {j̄}))− fi (wi (Mπ̃)) (68)

where Mπ̃ = ∪π̃
−1(j̄)−1
l=1 {π̃ (l)} ⊆ N\ {j̄}. We can now prove the statement.

By Remark 1 and since D = ∪π̃∈Π

◦
Bπ̃ and Π is finite, we have that

aij = 1 ⇐⇒ ∃εij ∈ (0, 1) s.t. pπ̃,ij ≥ εij ∀π̃ ∈ Π ⇐⇒ pπ̃,ij > 0 ∀π̃ ∈ Π.

By (67) and (68), this clearly implies that

aij = 1 ⇐⇒ pπ̃,ij > 0 ∀π̃ ∈ Π ⇐⇒ fi (wi (M ∪ {j}))− fi (wi (M)) > 0 ∀M ⊆ N\ {j} .

Since the family of subsets of N\ {j} is finite, the first part of Proposition 3 follows. By Remark 1
and since D = ∪π̃∈Π

◦
Bπ̃, we have that

āij = 1 ⇐⇒ ∃π̃ ∈ Π s.t. pπ̃,ij > 0.

By (67) and (68) and since the family of subsets of N\ {j} is finite, this clearly implies that

āij = 1 ⇐⇒ ∃π̃ ∈ Π s.t. pπ̃,ij > 0 ⇐⇒ ∃M ⊆ N\ {j} s.t. fi (wi (M ∪ {j}))− fi (wi (M)) > 0,

proving the second part of Proposition 3. Finally, consider i, j ∈ N . By the previous part and since
each fi is strictly increasing, observe that

aij = 1 ⇐⇒ fi (wi (M ∪ {j}))− fi (wi (M)) > 0 ∀M ⊆ N\ {j}
⇐⇒ wi (M ∪ {j})− wi (M) > 0 ∀M ⊆ N\ {j} ⇐⇒ wij > 0

⇐⇒ wi (M ∪ {j})− wi (M) > 0 for some M ⊆ N\ {j}
⇐⇒ fi (wi (M ∪ {j}))− fi (wi (M)) > 0 for some M ⊆ N\ {j}
⇐⇒ āij = 1,

proving the last part of the statement. �
Given two nonempty disjoint subsets N,N ⊆ N , define

B
(
N,N

)
=

{
x ∈ B : min

j∈N
xj > max

j∈N
xj

}
.

Proof of Proposition 4. For ease of reference set T = T f and T̄ = T̄ f .
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(i) implies (ii). Since I has nonempty interior, consider a, b ∈ I such that b > a. Let x ∈ B be such
that xi = b for all i ∈ N , xi ∈ [a, b] for all i ∈

(
N ∪N

)c
, and xi = a for all i ∈ N . By (6), we have that

Ti (x) = b for all i ∈ N , Ti (x) ∈ [a, b] for all i ∈
(
N ∪N

)c
, and Ti (x) = a for all i ∈ N . By induction,

we obtain that T ti (x) = b for all i ∈ N , T ti (x) ∈ [a, b] for all i ∈
(
N ∪N

)c
, and T ti (x) = a for all

i ∈ N . By Theorem 1 and since T is a robust opinion aggregator, we can conclude that T̄i (x) = b for
all i ∈ N as well as T̄i (x) = a for all i ∈ N , yielding that T̄ (x) ∈ B\D.

Assume that T is convergent.
(ii) implies (i). Set x̄ = T̄ (x) ∈ B\D. Since T is a convergent robust opinion aggregator and,

in particular, continuous, we have that T (x̄) = x̄. Define N = {i ∈ N : x̄i = maxj∈N x̄j} and N =
{i ∈ N : x̄i = minj∈N x̄j}. Since x̄ ∈ B\D, we have that N and N are two nonempty disjoint subsets
of N . By (6) and since T (x̄) = x̄, we have that

Ti (x̄) = x̄i = max
j∈N

x̄j ∀i ∈ N =⇒ fi
(
wi
(
N\N

))
= fi

(
1− wi

(
N
))

= 0 ∀i ∈ N

and
Ti (x̄) = x̄i = min

j∈N
xj ∀i ∈ N =⇒ fi (wi (N)) = fi (1− wi (N\N)) = 1 ∀i ∈ N,

proving the missing implication.
Finally, by (6), standard computations yield that if x ∈ B

(
N,N

)
, thenminj∈N Tj (x) ≥ minj∈N xj >

maxj∈N xj ≥ maxj∈N Tj (x). This implies that if x ∈ B
(
N,N

)
, then minj∈N Tj (x)−maxj∈N Tj (x) ≥

minj∈N xj −maxj∈N xj > 0 and T (x) ∈ B
(
N,N

)
. By induction, this implies that if x ∈ B

(
N,N

)
,

then minj∈N T
t+1
j (x)−maxj∈N T

t+1
j (x) ≥ minj∈N T

t
j (x)−maxj∈N T

t
j (x) ≥ minj∈N xj−maxj∈N xj >

0 and T t (x) ∈ B
(
N,N

)
for all t ∈ N. By passing to the limit and since T is convergent, this implies

that if x ∈ B
(
N,N

)
, then minj∈N T̄j (x)−maxj∈N T̄j (x) ≥ minj∈N xj−maxj∈N xj > 0, proving (17).

�
Proof of Proposition 5. Before starting, we make three observations. If x ∈ B (N), then xj = b for
all j ∈ N\N and xj = a for all j ∈ N where b, a ∈ I and b > a. By (6), in this case, we have that

T fi (x) = bqi,N + a
(
1− qi,N

)
∀i ∈ N (69)

where qi,N = 1 − fi (1− wi (N\N)) = 1 − fi (wi (N)) ∈ [0, 1] for all i ∈ N . Finally, since T f

is a convergent robust opinion aggregator and, in particular, continuous, we have that T̄ f (x) =

limt

(
T f
)t

(x) for all x ∈ B, yielding that T f
(
T̄ f (x)

)
= T̄ f (x) for all x ∈ B.

(i) implies (ii). Let x∗ ∈ B (N) be such that T f (x∗) = x∗. By (69) and given the initial discussion
and notation, we have that

b∗qi,N + a∗
(
1− qi,N

)
= T fi (x∗) = x∗i = b∗ ∀i ∈ N\N =⇒ qi,N = 1 ∀i ∈ N\N
=⇒ fi (wi (N)) = 0 ∀i ∈ N\N

and

b∗qi,N + a∗
(
1− qi,N

)
= T fi (x∗) = x∗i = a∗ ∀i ∈ N =⇒ qi,N = 0 ∀i ∈ N
=⇒ fi (wi (N)) = 1 ∀i ∈ N,

proving the implication.
(ii) implies (iii). Let x ∈ B (N). By (69) and given the initial discussion and notation, we have

that qi,N = 1 for all i ∈ N\N and qi,N = 0 for all i ∈ N , proving that T f (x) = x. By induction, this

implies that
(
T f
)t

(x) = x for all t ∈ N. By Theorem 1 and since T f is a robust opinion aggregator,
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we can conclude that T̄ f (x) = x ∈ B (N).
(iii) implies (i). Let x ∈ B (N). Set x∗ = T̄ f (x) ∈ B (N). Since T

(
T̄ f (x)

)
= T̄ f (x) for all x ∈ B,

we have that T f (x∗) = x∗ with x∗ ∈ B (N). �

D.1.3 Vox populi, vox Dei?

Proof of Corollary 5. For each n ∈ N and for each i ∈ N set

wi (n) =
1

n
and c (n) = nmax

k∈N
sk (T (n)) .

It is immediate to see that c (n) ∈ R and w (n) ∈ ∆n for all n ∈ N. Moreover, we have that for each
n ∈ N

si (T (n)) ≤ max
k∈N

sk (T (n)) = c (n)wi (n) ∀i ∈ N. (70)

Since 0 ≤ maxk∈N sk (T (n)) ≤ o
(

1√
n

)
, we have that

c (n)2 max
k∈N

wk (n) = n

(
max
k∈N

sk (T (n))

)2

→ 0 as n→∞. (71)

By (70) and (71), it follows that (19) holds. By Theorem 4 and since {T (n)}n∈N is a sequence of odd
robust opinion aggregators and {εi (n)}i∈N,n∈N is symmetric, this implies the statement. �

Lemma 10 Let {T (n)}n∈N be a sequence of odd robust opinion aggregators and {εi (n)}i∈N,n∈N sym-
metric. If there exist two sequences {c (n)}n∈N and {w (n)}n∈N such that for each n ∈ N: c (n) ∈ R,
w (n) ∈ ∆n, and for each x ∈ D (T (n)) and i, j ∈ N

∂Tj (n)

∂xi
(x) ≤ c (n)wi (n) and c (n)2 max

k∈N
wk (n)→ 0 as n→∞,

then (19) holds and {T (n)}n∈N is wise.

Proof. Define B̂ = În. Fix n ∈ N. Since T (n) is a robust opinion aggregator, we have that T (n) is
Lipschitz continuous. By Rademacher’s Theorem, this implies that T (n) is almost everywhere Frechet
differentiable on B̂ and, in particular, Clarke differentiable. Clearly, Tj (n) is Frechet differentiable on
D (T (n)) for all j ∈ N . Since Tj (n) is monotone and translation invariant, note that ∇Tj (n) (x) ∈ ∆n

for all x ∈ D (T (n)). Consider x̄ ∈ B̂. Recall that Clarke’s differential is the set (see, e.g., [2, Theorem
2.5.1]):

∂Tj (n) (x̄) = co

{
p ∈ ∆n : p = lim

k
∇Tj (n)

(
xk
)
s.t. xk → x̄ and xk ∈ D (T (n))

}
. (72)

Similarly, we have that

∂T̄1 (n) (x̄) = co

{
p ∈ ∆n : p = lim

k
∇T̄1 (n)

(
xk
)
s.t. xk → x̄ and xk ∈ D

(
T̄ (n)

)}
.

By Theorem 1, recall that T̄ (n) ◦ T (n) = T̄ (n), yielding that T̄1 (n) ◦ T (n) = T̄1 (n). Fix x̄ ∈ B̂.
Define by Πn

j=1∂Tj (n) (x̄) the collection of all n× n square matrices whose j-th row is an element of
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∂Tj (n) (x̄). From the previous part of the proof, we have that Πn
j=1∂Tj (n) (x̄) ⊆ W. Define

∂T̄1 (n) (T (n) (x̄)) Πn
j=1∂Tj (n) (x̄)

=
{
w̃ ∈ ∆n : ∃p ∈ ∂T̄1 (n) (T (n) (x̄)) , ∃W ∈ Πn

j=1∂Tj (n) (x̄) s.t. pTW = w̃T
}
.

In words, w̃ ∈ ∂T̄1 (n) (T (n) (x̄)) Πn
j=1∂Tj (n) (x̄) only if it is a stochastic vector which is a convex

linear combination of the rows of some matrix W ∈ Πn
j=1∂Tj (n) (x̄). By the Chain Rule (see, e.g., [2,

Theorem 2.6.6 and point e of Proposition 2.6.2]) and since T̄1 (n) = T̄1 (n) ◦ T (n), we have that

∂T̄1 (n) (x̄) ⊆ co
{
∂T̄1 (n) (T (n) (x̄)) Πn

j=1∂Tj (n) (x̄)
}
. (73)

By assumption, we have that for each i, j ∈ N

sup
x∈D(T (n))

∂Tj (n)

∂xi
(x) ≤ c (n)wi (n) and c (n)2 max

k∈N
wk (n)→ 0 as n→∞. (74)

By (72) and (74), we have that

0 ≤ pi ≤ c (n)wi (n) ∀p ∈ ∂Tj (n) (x̄) , ∀i, j ∈ N.

By (73), we can conclude that

0 ≤ pi ≤ c (n)wi (n) ∀p ∈ ∂T̄1 (n) (x̄) ,∀i ∈ N.

Since x̄ was arbitrarily chosen, this implies that

0 ≤ pi ≤ c (n)wi (n) ∀p ∈ ∂T̄1 (n) (x) , ∀x ∈ B̂, ∀i ∈ N.

Finally, observe that if x ∈ D
(
T̄ (n)

)
, we have that ∇T̄1 (n) (x) ∈ ∂T̄1 (n) (x) and, in particular,

∂T̄1(n)
∂xi

(x) ≤ c (n)wi (n) for all i ∈ N . This yields that

si (T (n)) = sup
x∈D(T̄ (n))

∂T̄1 (n)

∂xi
(x) ≤ c (n)wi (n) .

It follows that (19) holds. By Theorem 4 and since {T (n)}n∈N is a sequence of odd robust opinion
aggregators and {εi (n)}i∈N,n∈N is symmetric, this implies the statement. �
Proof of Proposition 6. Similarly to the proof of Corollary 5, for each n ∈ N and for each i ∈ N
set

wi (n) =
1

n
and c (n) = n max

i,j∈N
sup

x∈D(T (n))

∂Tj (n)

∂xi
(x) .

The result then follows from Lemma 10. �

D.1.4 Discussion

Proof of Lemma 8. Fix i ∈ N . Consider z̃ ∈ Rn such that z̃ � 0. Define z = z̃−minj∈N z̃je, v = 0,
and h = minj∈N z̃j . Note that z ≥ v as well as h ∈ R++. Since φ has increasing shifts and is sensitive,
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we obtain that

φi (z̃)− φi
(
z̃ −min

j∈N
z̃je

)
= φi (z + he)− φi (z)

≥ φi (v + he)− φi (v) = φi

(
min
j∈N

z̃je

)
− φi (0) > 0,

proving the first inequality. A symmetric argument yields the second inequality. �
Proof of Lemma 9. Fix i ∈ N and x ∈ Rn. Define gi,x : R → R+ by gi,x (c) = φi (x+ ce) for all
c ∈ R. Consider c1, c2 ∈ R such that c1 > c2 and h > 0. Since φ ∈ ΦR and x+ c1e ≥ x+ c2e, it follows
that

gi,x (c1 + h)− gi,x (c1) = φi ((x+ c1e) + he)− φi (x+ c1e)

≥ φi ((x+ c2e) + he)− φi (x+ c2e) = gi,x (c2 + h)− gi,x (c2) .

By [10, Problem N, pp. 223—224], it follows that gi,x is midconvex. Next, fix c ∈ R and c′ ∈
(c− 1, c+ 1). Set c1 = 2c− c′, c2 = c− 1, and h = c′ − (c− 1). Since c1 > c2, h > 0, and φi ≥ 0, we
have that

gi,x
(
c′
)
− gi,x (c− 1) ≤ gi,x (c+ 1)− gi,x

(
2c− c′

)
=⇒ 0 ≤ gi,x

(
c′
)
≤ gi,x (c− 1) + gi,x (c+ 1) .

Since c′ was arbitrarily chosen, we have that gi,x is bounded on (c− 1, c+ 1). By [10, Theorem C, p.
215], it follows that gi,x is continuous and convex. Finally, observe that fi,x = gi,x ◦h where h (c) = −c
for all c ∈ R, yielding that fi,x is convex and continuous being the composition of a convex and
continuous function with an affi ne and continuous function. Next, assume that φ has also strictly
increasing shifts and, in particular, has increasing shifts. By the previous part of the proof, gi,x is
convex. By contradiction, assume that gi,x is not strictly convex. This implies that there exists an
interval [d2, d1], with d2 < d1, where gi,x is affi ne. Define c1 = 1

2d1 + 1
2d2, c2 = d2, and h = (d1 − d2) /2.

Note that c1 > c2 and h > 0. Since φ has strictly increasing shifts, by the same computations of the
previous part of the proof, we have that

gi,x (d1)− gi,x
(

1

2
d1 +

1

2
d2

)
= gi,x (c1 + h)− gi,x (c1)

> gi,x (c2 + h)− gi,x (c2) = gi,x

(
1

2
d1 +

1

2
d2

)
− gi,x (d2) ,

yielding that gi,x
(

1
2d1 + 1

2d2

)
< 1

2gi,x (d1)+ 1
2gi,x (d2), a contradiction with affi nity. Since gi,x is strictly

convex, so is fi,x = gi,x ◦ h. �
Proof of Proposition 7. Before starting, we make few observations about strong convexity (see,
e.g., [10, p. 268]). Since each ρi is strongly convex and twice continuously differentiable, we have that
for each i ∈ N there exists αi > 0 such that ρ′′i (s) ≥ αi for all s ∈ R. Moreover, we have that for each
i ∈ N (

ρ′i (s1)− ρ′i (s2)
)

(s1 − s2) ≥ αi (s1 − s2)2 ∀s1, s2 ∈ R. (75)

Finally, since each ρi is twice continuously differentiable and I is compact, for each i ∈ N we have
that there exists Li > 0 such that∣∣ρ′i (s1)− ρ′i (s2)

∣∣ ≤ Li |s1 − s2| ∀s1, s2 ∈ [min I −max I,max I −min I] . (76)

Recall that φi : Rn → R+ is defined by φi (z) =
∑n

j=1wijρi (zj) for all z ∈ Rn and for all i ∈ N . By
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assumption, φ ∈ ΦA ⊆ ΦR. Since ρ′′i ≥ αi > 0 for all i ∈ N , this implies that ρi is strictly convex for
all i ∈ N . Standard computations yield that φ has strictly increasing shifts. By Proposition 13, we
have that Tφ = T φ is single-valued and a robust opinion aggregator from B to B. Moreover, T φi (x)
is the unique solution of

min
c∈R

φi (x− ce) = min
c∈I

φi (x− ce) ∀i ∈ N, ∀x ∈ B. (77)

Fix i ∈ N . Since ρi is differentiable and convex, so is the map c 7→ φi (x− ce) for all x ∈ B. The
solution of (77) is then given by the first order condition

n∑
j=1

wijρ
′
i

(
xj − T φi (x)

)
= 0 ∀x ∈ B.

Consider x ∈ B, h > 0, and l ∈ N such that x+ hel ∈ B. We have that

n∑
j=1

wijρ
′
i

(
xj − T φi (x)

)
= 0 and

n∑
j=1

wijρ
′
i

(
xj + helj − T

φ
i

(
x+ hel

))
= 0. (78)

Note that if wil = 0, then
∑n

j=1wijρ
′
i

(
xj + helj − c

)
=
∑n

j=1wijρ
′
i (xj − c) for all c ∈ R, proving that

T φi
(
x+ hel

)
= T φi (x). Since x and h were arbitrarily chosen, we have that wil = 0 implies āil = 0. In

particular, since i and l were arbitrarily chosen, we have that A (W ) ≥ Ā
(
T φ
)
.

Next, assume that wil > 0. By (76), (78), and (75) and since T φ is monotone and h > 0, we can
conclude that

Li

(
T φi

(
x+ hel

)
− T φi (x)

)
≥

n∑
j=1

wijρ
′
i

(
xj + helj − T

φ
i (x)

)
−

n∑
j=1

wijρ
′
i

(
xj + helj − T

φ
i

(
x+ hel

))
=

n∑
j=1

wijρ
′
i

(
xj + helj − T

φ
i (x)

)
−

n∑
j=1

wijρ
′
i

(
xj − T φi (x)

)
= wil

[
ρ′i

(
xl + h− T φi (x)

)
− ρ′i

(
xl − T φi (x)

)]
≥ wilαih,

proving that T φi
(
x+ hel

)
− T φi (x) ≥ εilh where εil = L−1

i wilαi/2 ∈ (0, 1). Since x and h were
arbitrarily chosen, we have that wil > 0 implies ail = 1. In particular, since i and l were arbitrarily
chosen, we have that A

(
T φ
)
≥ A (W ). Since Ā

(
T φ
)
≥ A

(
T φ
)
, we can conclude that A (W ) =

Ā
(
T φ
)

= A
(
T φ
)
, proving the statement. �

D.2 Additional Examples

Example 6 Let B = R2 and let T : R2 → R2 be defined to be such that

T1 (x) =

{
x2 if x1 > x2

1
2x1 + 1

2x2 if x2 ≥ x1
and T2 (x) = x1 ∀x ∈ B.
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Agent 2 always discards her own opinion. Agent 1 discards her own opinion if and only if it is the
highest of the two. Easy computations yield that T is a robust opinion aggregator and

A (T ) =

(
0 1
1 0

)
.

Thus, N is the unique closed group under A (T ), but A (T ) fails to be aperiodic. Moreover, it is easy
to show that limt T

t (x) = min {x1, x2} e for all x ∈ B, showing that aperiodicity and nontriviality of
A (T ) are suffi cient for convergence, but not necessary. N

D.3 Comparison with Molavi, Tahbaz-Salehi, and Jadbabaie

In this section we show that for the issues analyzed in this paper, namely convergence and the wisdom
of the crowd, when each agent observes a unique initial signal, the log-linear learning rule axiomatized
in Molavi et al. [9] can be equivalently analyzed by means of a linear system. However, the equivalence
with a linear system may be lost for a problem of learning with repeated signals like the one in [9].

Formally, [9] considers the case of agents having a full support belief µ ∈ ∆ (Θ) where Θ is a finite
set of possible states of the world. In particular, there is a bijection between beliefs and the profile of

likelihood ratios
(
x
(
θ, θ̂
))

(θ,θ̂)∈Θ×Θ
with

x
(
θ, θ̂
)

=
µ (θ)

µ
(
θ̂
) ∀

(
θ, θ̂
)
∈ Θ×Θ.

Their assumption of IIA allows to study the evolution of x
(
θ, θ̂
)
∈ R++ independently from the value

of the other likelihood ratios. Therefore, we fix a particular
(
θ, θ̂
)
and denote the likelihood ratio

obtained from the belief of agent i at time t as

xti =
µti (θ)

µti

(
θ̂
) ∀i ∈ N, ∀t ∈ N.

When the agents do not observe any additional signal at period t equation (3) in [9] reads as

lnxti =
∑
j∈Ni

aij,t lnxt−1
j

where aij,t > 0 for all i, j ∈ N and for all t ∈ N. We can explicitly write the law of motion of
{
xt
}
t∈N

as

xti = exp

∑
j∈Ni

aij,t lnxt−1
j

 ∀i ∈ N, ∀t ∈ N. (79)

For each t ∈ N define the operator St : Rn++ → Rn++ to be such that the i-th component is x 7→
exp

(∑
j∈Ni aij,t lnxj

)
. Thus, we can rewrite (79) as xt = St

(
xt−1

)
for all t ∈ N. Each operator St is

not a robust opinion aggregator, since it does not satisfy translation invariance.
At the same time, we can analyze an equivalent system whose law of motion is described by

time-varying linear aggregation. Toward this end, fix x0 and let
{
xt
}
t∈N be recursively defined as in
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equation (79). Define At to be the matrix whose ij-th entry is aij,t. Next, define
{
yt
}
t∈N0

by

yti = lnxti ∀i ∈ N, ∀t ∈ N0 (80)

and note that
yt = Aty

t−1 ∀t ∈ N.

Note that, whenever each At is equal to the same stochastic matrix W ∈ W, the iterates
{
yt
}
t∈N are

described by the standard DeGroot’s model with matrix W . Therefore, in this case, it is possible to
appeal to the results in [5] to study the limit behavior of

{
yt
}
t∈N. In general, whenever each At ∈ W,

one can rely on the more general results for time-varying matrices (see, e.g., Seneta [11] and Krause
[6]). Given the continuity of the transformation in (80), we have that

lim
t
xt exists in Rn++ ⇐⇒ lim

t
yt exists in Rn.

The previous simple equivalence shows that limt y
t uniquely pins down limt x

t.
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