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1 Introduction

New Keynesian business cycle models have become the dominant framework for studying the

design and conduct of monetary policy. The models formalize the rigidities and market

imperfections that govern their behavior and are micro-founded, permitting welfare analysis

and making policy experiments conducted within them immune to Lucas’s (1976) critique.

Prominent examples in the New Keynesian tradition include Rotemberg and Woodford (1997),

Clarida, Galí, and Gertler (1999), McCallum and Nelson (1999), Walsh (2003), and Woodford

(2003). One of the most important components in these models is the New Keynesian Phillips

curve, the equation linking inflation to marginal costs that provides a stabilization role for

monetary policy. The micro-structure that is most widely used to derive the New Keynesian

Phillips curve is the Calvo model1 (Calvo, 1983) and the defining feature of this model is

that only a fixed (Calvo-) share of firms have the opportunity to optimize their price each

period. This Calvo-share parameter governs the frequency with which firms change prices

and determines the average duration between price changes.

Despite its popularity, the New Keynesian Phillips curve has attracted considerable criti-

cism. Some criticisms are empirical; Estrella and Fuhrer (2002) argue that the New Keynesian

Phillips curve provides a poor description of inflation dynamics because it asserts a correlation

structure among inflation, the change in inflation, and marginal costs that prevents it from

replicating the hump-shaped responses that are widely recognized to characterize inflation’s

behavior following shocks.2 Similarly, Rudd and Whelan (2006) argue that the New Keyne-

sian Phillips curve is incapable of describing inflation dynamics and suggest that there is little

evidence of the type of forward-looking behavior required by the model. Other criticisms

focus on whether estimates of the New Keynesian Phillips curve are economically plausible.

In this vein, a prominent criticism is that Calvo-shares estimated from the New Keynesian

Phillips curve imply a level of price rigidity that is inconsistent with micro-data on the fre-

quency of price adjustment. For example, Sbordone (2002) estimates the Calvo-share to be

around 0.8 for the United States, which implies that only 20 percent of firms change their

prices each quarter and that firms change prices once every 15 months on average. But after

examining Bureau of Labor Statistics data on price changes — the very price data that go into

1Roberts (1995) shows that Rotemberg’s (1982) quadratic price adjustment costs model and Taylor’s (1980)
overlapping nominal wage contracts model give rise to closely related specifications, so the issues discussed in
this paper apply equally to these models.

2 In fact, the Estrella and Fuhrer (2002) criticisms apply to an entire class of rational expectations models,
not just to the New Keynesian Phillips curve.
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the consumer price index and the personal consumption expenditures price index — Bils and

Klenow (2004) report that the average duration between price changes is just 4.3 months for

the (weighted) median good in their sample. This disparity between estimates of the Calvo-

share and micro-evidence on the frequency of price adjustment is worrisome, particularly since

models built around the New Keynesian Phillips curve are routinely used to address issues

as important as how to design a welfare-maximizing monetary policy (Erceg, Henderson, and

Levin, 2000).

However, the parallels between the average duration between price changes implied by the

Calvo-share and the average duration between price changes that would be estimated using

a micro-dataset are less than exact. The Calvo-share describes the proportion of firms that

make an optimal price change, whereas micro-data reveal whether a price has changed, but do

not inform on whether the price change was optimal; some price changes may be suboptimal

and it may be optimal not to change prices on some occasions. In addition, the Calvo model

assumes that firms change prices once per period at most, something that is unlikely to hold

true in practice, and it ignores the possibility that there may be heterogeneity in the frequency

of price adjustment across firms. Each of these factors confound efforts to compare micro-data

on the average duration between price changes to those implied by the Calvo-share.

Of course, these complicating factors are not a defense of the Calvo model, nor are they an

argument for shielding New Keynesian business cycle models from the scrutiny of micro-data.

However, they do mean that care needs to be taken when comparing macro-models to micro-

data, and they call for a model of price setting that does not require a price change and an

optimal price change to be the same thing. With regard to the latter, Galí and Gertler (1999)

develop a model of price setting that builds on what they describe to be “rule-of-thumb” price

setters. The essential feature of their model is that in each period a share of firms have the

opportunity to change their prices, but they do not necessarily make an optimal price change.

Instead, among those firms that change prices a fraction makes an optimal price change, while

the remainder employ a rule-of-thumb pricing strategy.

Why is the Galí-Gertler price-setting environment attractive? Where traditional models of

price adjustment have emphasized physical costs to changing prices, such as menu costs, as the

source of price rigidity (Mankiw, 1985), recent literature has emphasized the costs that firms

face when gathering (Mankiw and Reis, 2002) and processing (Sims, 2002) the information

they require in order to set prices optimally. In fact, evidence suggests that costs to gathering

and processing information may be much more important for price setting than traditional
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menu cost factors (Zbaraki, Ritson, Levy, Dutta, and Bergin, 2004).

What is attractive about the Galí-Gertler model, then, is that it provides an environment

in which both costs can play a role. Menu costs — which are incurred whether or not a price

change is optimal — are associated with the share of firms that can change prices. When these

menu costs are large, a smaller share of firms will change their prices. Similarly, costs to

gathering and processing information are associated with the share of price-changers that use

rule-of-thumb pricing. When the costs to gathering and/or processing information are high, a

larger share of price-changing firms will resort to a rule-of-thumb pricing strategy. Clearly, the

Galí-Gertler model has a structure that allows it to be compared more readily to micro-data

than the Calvo model. Moreover, since the rule-of-thumb is one in which firms index their

prices to last period’s inflation, the model contains a mechanism to generate intrinsic inflation

persistence.

In this paper, we show how micro-data on durations between price changes can be used

to construct an estimate of the discrete-time frequency of price adjustment that allows for

heterogeneity and for multiple price changes per period. Applying this estimator to the Bils-

Klenow data-set we estimate a discrete-time frequency of price adjustment equal to about

0.50 for quarterly data, a value considerably lower than estimates of the Calvo-share obtained

from the New Keynesian Phillips curve. Next, we derive the Phillips curve associated with

the Galí-Gertler model and highlight its connections to the New Keynesian Phillips curve,

the full-indexation Phillips curve developed by Christiano, Eichenbaum, and Evans (2005),

and the partial-indexation Phillips curve developed by Smets and Wouters (2003). We prove

that these alternatives are all special cases of the Galí-Gertler Phillips curve, and argue that

the Galí-Gertler model’s micro-structure makes it superior to these alternatives as a conse-

quence. Subsequently, we develop several New Keynesian business cycle models, considering

specifications that interact the Galí-Gertler, the Calvo, and the full-indexation models of price

setting with internal and external habit formation on the part of households. These models

are deliberately kept small, focusing attention on price setting.

We estimate the models using full information maximum likelihood and Bayesian meth-

ods, and employ Bayesian predictive densities and posterior model probabilities for comparison

purposes. The results are striking. First, whereas our estimate of the Calvo-share implies a

mean duration between price changes that is clearly inconsistent with Bureau of Labor Statis-

tics price data, the Galí-Gertler model does much better. In fact, our results place the share

of firms that change prices each quarter at just over 60 percent, broadly in line with the Bils
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and Klenow findings, and a considerable improvement on the Calvo model. Second, although

we find that roughly 60 percent of firms change their prices each quarter, we also find that

the majority of these firms use rule-of-thumb pricing, supporting the view that information

gathering/processing costs are more important for price-setting than traditional menu costs.

Third, constructing predictive densities and using Bayesian model averaging, we quantify the

economy’s response to technology shocks, monetary policy shocks, and consumption prefer-

ence shocks, revealing the counterfactual behavior of the Calvo model, establishing that the

Galí-Gertler model generates hump-shaped impulse responses, and illustrating the behavioral

similarities between internal and external habit formation.

We begin by describing the New Keynesian Phillips curve and illustrating the empirical

disparity between the Calvo-share and the frequency of price adjustment implied by micro-

data, emphasizing the study by Bils and Klenow in section 2. Section 3 outlines the economic

environment that underlies the Galí-Gertler model, derives the associated Phillips curve, and

compares it to the Calvo model, the full-indexation model, and the partial-indexation model.

Section 3 also proves that the partial-indexation model and the Galí-Gertler model are isomor-

phic. Section 4 places the Galí-Gertler Phillips curve in a small-scale New Keynesian business

cycle model suitable for estimation. Section 5 describes the data and discusses the estimation

strategy. Section 6 presents and interprets the parameter estimates and the posterior model

probabilities associated with each specification. Section 7 constructs predictive densities and

uses Bayesian model averaging to summarize how consumption, inflation, and interest rates

respond to shocks. Section 8 concludes.

2 The New Keynesian Phillips curve and price rigidity

As noted in the introduction, the centerpiece to much business cycle and policy analysis is the

New Keynesian Phillips curve

π̂t = βEtπ̂t+1 +
(1− ξ) (1− βξ)

ξ
m̂ct, (1)

where π̂t and m̂ct represent the percentage point deviation of inflation, πt, and the percent

deviation of real marginal costs, mct, around their zero-inflation nonstochastic steady state

values, respectively. The economic environment that gives rise to this Phillips curve is one

in which firms are monopolistically competitive, renting capital and labor and setting their

prices to maximize profits subject to a constant elasticity of substitution demand curve, a

Cobb-Douglas production technology, and a price rigidity, á la Calvo (1983). In equation (1),
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β ∈ (0, 1) is the subjective discount factor and ξ ∈ (0, 1) is the Calvo-share, the share of firms

that cannot optimize their prices each period.

With regard to suitable values for ξ, a touchstone in the literature is Blinder (1994), who

surveyed firms on the frequency of their price changes. Based on Blinder’s (1994) survey,

Rotemberg and Woodford (1997) set ξ = 0.66, which implies an average duration between

price changes of 9 months. But many calibration studies have assumed that prices change

somewhat less frequently than this. For example, Erceg, Henderson, and Levin (2000) and

Liu and Phaneuf (2005) each set ξ = 0.75, implying an average duration between price changes

of 12 months.

Among studies that estimate ξ, a popular approach is to apply a GMM estimator to the

moment condition3

Et

[(
π̂t − βπ̂t+1 −

(1− ξ) (1− βξ)

ξ
m̂ct

)
zt

]
= 0, (2)

where zt is a vector containing econometric instruments. This is the approach taken by Galí

and Gertler (1999), Galí, Gertler, and López-Salido (2001), Eichenbaum and Fisher (2004),

Jung and Yun (2005), and Ravenna and Walsh (2006). An alternative method is to iterate

forward over equation (1) and combine the result with an evolution process for real marginal

costs to produce an estimable expression relating inflation to real marginal costs (Sbordone,

2002). A range of estimates of ξ for the U.S. are displayed in Table 1.4

Table 1: Estimates of the New Keynesian Phillips Curve

Study Sample ξ

Galí & Gertler (1999) 1960:1 — 1997:4 0.829− 0.884
Galí, Gertler & López-Salido (2001) 1970:1 — 1998:4 0.845− 0.867

Sbordone (2002) 1960:2 — 1997:1 0.792
Eichenbaum and Fisher (2004) 1959:1 — 2001:4 0.87− 0.91

Jung and Yun (2005) 1967:1 — 2004:4 0.910
Ravenna & Walsh (2006) 1960:1 — 2001:1 0.758− 0.911

The estimates of ξ shown in Table 1 vary from a low of 0.758 to a high of 0.911. While

ξ = 0.758 is broadly on par with the value used in calibration studies, a value such as ξ = 0.911

3An alternative moment condition that is often used is equation (2) multiplied through by ξ. Some of the
estimates shown in Table 1 come from this alternative moment condition.

4All of the estimates reported in Table 1 have been made consistent with a Cobb-Douglas production
technology and rental markets for capital and labor, facilitating comparison across studies by making the
estimates invariant to particular assumptions about the steady state markup and labor’s share of income.
However, the values shown may differ from those reported in the original papers as a consequence. With
respect to Sbordone’s estimates, the best-fitting specification in Sbordone (2002, Table 2) has a coefficient on
real marginal costs equaling 1

18.3
. Using Sbordone’s assumption about the discount factor and assuming a

rental market for capital, the implied value for ξ is 0.792.
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is much larger than either the values used in calibration exercises or the value implied by

Blinder’s (1994) study. The average value for ξ in Table 1 is in the order of 0.85, suggesting

that firms only change prices once every 20 months. The estimates in Table 1 highlight what

has become an important criticism of the New Keynesian Phillips curve, which is that estimates

of ξ are too large, implying mean durations between price changes that are inconsistent with

micro-evidence on the frequency of price adjustment. For instance, in what is probably the

most comprehensive study of micro-data to date,5 Bils and Klenow (2004) analyze Bureau of

Labor Statistics (BLS) data on goods prices and find that the (weighted) average duration

between price changes is 6.6 months and that the average duration between price changes is

only 4.3 months for the (weighted) median good, durations that are somewhat lower than

those implied by the estimates of ξ in Table 1.

However, as stressed in the introduction, caution must be exercised when translating es-

timates of the Calvo-share into implied average durations between price changes. After all,

the Calvo model makes no distinction between price changes and optimal price changes and

may understate the share of firms that change their prices, overstating the average duration

between price changes as a consequence. Moreover, the discrete-time Calvo model, the model

that gives rise to equation (1), assumes that firms make at most one price change each period,

potentially understating the number of price changes that occur and overstating the average

duration between price changes. Finally, a direct comparison between average durations be-

tween price changes calculated using macro-models and micro-data may be misleading if there

is heterogeneity in the frequency of price adjustment across firms. The first of these issues

can only be addressed using a model that distinguishes between price changes and optimal

price changes. The remainder of this section spells out how the remaining two issues might

be addressed.

2.1 The frequency of price adjustment and implied durations

The Calvo model assumes that it is a draw from a Bernoulli distribution that determines

whether or not a firm can change its prices, where the Bernoulli distribution is given by

p (x|ξ) = (1− ξ)x ξ(1−x), (3)

5Of course, there are other notable studies that look at micro-data on the frequency of price adjustment,
including Cecchetti, (1986), Carlton (1986), and Kashyap (1995). We focus on the Bils and Klenow (2004)
study because of its comprehensive nature. The study by Carlton (1986) looks at producer prices rather than
consumer prices.
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with ξ ∈ (0, 1). A firm that draws x = 0 cannot change its price, while a firm that draws x = 1

can. Equation (3) can be thought of as the discrete-time arrival process for the Calvo-signal,

the signal that firms receive indicating whether they can change their price or not. According

to the Bernoulli distribution, the discrete-time frequency of a price changing during the period,

which is equivalent to the share of firms that can optimize their prices, is p (x = 1|ξ) = 1− ξ.

However, if firms that can change prices actually make decisions continuously, then they may

make multiple price changes during any discrete time period. In a continuous-time setting,

the arrival process for the Calvo-signal more naturally follows a Poisson distribution,

p (x|µ) =
(1− µ)x e−(1−µ)

x!
, (4)

with µ ∈ (0, 1), where x ∈ {1, 2, 3, ...} indicates the number of times a given firm can change

prices.

Proposition 1: If the arrival process is Poisson, but it is modeled as Bernoulli, and if the

Calvo-share satisfies ξ ∈
(
e−1, 1

)
, then (i) the continuous-time frequency of price adjustment,

1− µ, and the Calvo-share are related according to 1− µ = − ln (ξ), and (ii) the average and

median durations between price changes are overstated.

Proof: From the Bernoulli distribution, the probability that a firm’s price will change

during a period is 1 − ξ. From the Poisson distribution, the probability that a firm’s price

will change one or more times during a period is 1− e−(1−µ). It follows that

1− µ = − ln (ξ) , (5)

where µ ∈ (0, 1) requires ξ ∈
(
e−1, 1

)
. Now, for the Bernoulli arrival process the average, dB,

and median, dB, durations between price changes are given by

dB =
∞∑

i=1

i (1− ξ) ξ(i−1) =
1

1− ξ
, (6)

dB = max

{
ln

(
1
2

)

ln (ξ)
, 1

}
, (7)

whereas for the Poisson arrival process the average, dP , and median, dP , durations between

price changes are given by

dP =

∫ ∞

0
h (1− µ) e−(1−µ)hdh =

1

1− µ
, (8)

dP = −
ln

(
1
2

)

1− µ
. (9)
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Substituting equation (5) into equation (7) establishes that dB ≥ dP . Finally, equation (5)

can be written as µ = 1 + ln (ξ), which, by inspection, implies that µ ≤ ξ for all ξ ∈
(
e−1, 1

)
.

Therefore, dB ≥ dP , which completes the proof. �

Proposition 1 has two main implications. First, it establishes that the standard mapping

from the Calvo-share to the average duration between price changes will generally overstate

the average duration between price changes because it does not allow for the possibility that

firms may make multiple price changes during a period. However, if one is prepared to model

the arrival process for the Calvo-signal with a Poisson distribution, then Proposition 1 shows

how to translate the Calvo-share into a continuous-time frequency of price adjustment, from

which the implied average duration between price changes can be more accurately calculated.

Second, it shows that a more robust comparison between micro-data and the Calvo-share

is afforded by using median durations between price changes rather than average durations

between price changes.

2.2 Heterogeneity and implied durations

Now consider the possibility that there is heterogeneity in the frequency of price adjustment

across firms.6 To allow for such heterogeneity, assume that the continuous-time frequency

of price adjustment, 1− µ, is distributed across firms according to a Beta density, a density

known for its flexibility and generality. With the Beta density given by

p [(1− µ) |a, b] =
Γ (a+ b)

Γ (a) Γ (b)
(1− µ)(a−1) µ(b−1) (10)

we have

Proposition 2: For the class of Beta densities that satisfies a > 1 and b > 0, the implied

average duration between price changes evaluated at the average continuous-time frequency

of price adjustment understates the average duration between price changes.

Proof: The average of the Beta density equals a
a+b , which implies that the average duration

between price changes evaluated at the average continuous-time frequency of price adjustment

equals a+b
a
.

6We consider firms that produce a single good. As a consequence, heterogeneity in the frequency of price
adjustment across firms is equivalent to heterogeneity in the frequency of price adjustment across goods.
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Next, the average duration between price changes, d, is given by

d =

∫ 1

0

1

1− µ

Γ (a+ b)

Γ (a) Γ (b)
(1− µ)(a−1) µ(b−1)dµ

=
Γ(a+ b)

Γ (a) Γ (b)

∫ 1

0
(1− µ)(a−2) µ(b−1)dµ

=
Γ(a+ b)

Γ (a)

Γ (a− 1)

Γ (a− 1 + b)

∫ 1

0

Γ (a− 1 + b)

Γ (a− 1) Γ (b)
(1− µ)(a−2) µ(b−1)dµ

=
Γ(a− 1)

Γ (a)

Γ (a+ b)

Γ (a− 1 + b)

=
a− 1 + b

a− 1
.

Clearly, b
a−1 ≥

b
a
for all a > 1, b > 0, which completes the proof. �

Proposition 2 shows that ignoring heterogeneity in the continuous-time frequency of price

adjustment across firms causes the average duration between price changes to be understated.

However, to the extent that a Beta distribution can usefully approximate how the continuous-

time frequency of price adjustment is distributed across firms, and to the extent that the arrival

process for the Calvo-signal is better described by a Poisson distribution than a Bernoulli

distribution, Propositions 1 and 2 enable one to estimate the discrete-time frequency of price

adjustment, 1− ξ, from micro-data on durations between price changes.

Bils and Klenow (2004) report the durations between price changes, along with their

weights, for 350 goods in the consumers’ price index. The (weighted) average of these dura-

tions is just under 6.6 months and the (weighted) standard deviation of these durations is just

over 7.1 months. From the Beta distribution, these two moments are given by

d =
a− 1 + b

a− 1
, (11)

var (d) =
(a+ b− 1)

(a− 1)

[
(a+ b− 2)

(a− 2)
−
(a+ b− 1)

(a− 1)

]
. (12)

Using equations (11) and (12), a = 2.724 and b = 9.601 match the average duration and

the standard deviation of durations in the Bils-Klenow data-set. From these estimates of a

and b, the average continuous-time frequency of price adjustment is 0.221, at a monthly rate.

Employing the transformation provided by Proposition 1, the continuous-time frequency of

price adjustment translates into a discrete-time frequency of price adjustment of 0.198, again

at a monthly rate. How does this estimate compare to the Bils and Klenow direct estimate

of the frequency of price adjustment? In the Bils-Klenow data-set, the (weighted) median

frequency of price adjustment is 0.209 and the (weighted) average frequency of price adjustment
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is 0.226.7 Thus, the Beta-distribution-based estimate is consistent with the direct estimates

available from the Bils-Klenow data-set, which suggests that the approach is also likely to be

useful in contexts where only durations between price changes are available.

Now, if the monthly discrete-time frequency of price adjustment is 0.198 (0.226), then the

quarterly discrete-time frequency of price adjustment is approximately 0.485 (0.536), which

suggests that a value for ξ of around 0.5 is appropriate for quarterly data. Clearly, the

estimates in Table 1 place ξ much higher than 0.5, and it is on the basis of this that we

conclude that even after correcting for heterogeneity, and after allowing for the possibility

that firms may make multiple price changes per period, the New Keynesian Phillips curve

remains at odds with micro-data on the frequency of price adjustment.

3 The Galí-Gertler model

We now turn to a model that distinguishes between price changes and optimal price changes,

the Galí and Gertler (1999) model. The economy is populated by a continuum of monopolisti-

cally competitive firms, normalized to the unit interval, each of which produces a differentiated

product according to the Cobb-Douglas production technology: yt (i) = [eutlt (i)]
κ kt (i)

1−κ,

κ ∈ (0, 1), where eut is an aggregate labor-augmenting technology shock. Indexing firms by

i, the output of the i’th firm and their labor and capital inputs are denoted yt (i), lt (i), and

kt (i), respectively. It is assumed that the capital stock is owned by households and rented to

firms in a perfectly competitive market, evolving over time according to Kt = (1−δ)Kt−1+It,

where It denotes aggregate investment and δ ∈ (0, 1) is the depreciation rate. The final

good, Yt, is bought and sold in a perfectly competitive market and produced from the out-

puts of the individual firms according to the constant-returns-to-scale production technology

Yt =
[∫ 1
0 yt (i)

ǫ−1
ǫ di

] ǫ
ǫ−1
, ǫ ∈ (1,∞). As is well-known, the demand schedule for the i’th firm’s

good, yt (i), takes the form yt (i) = Yt
(
Pt(i)
Pt

)−ǫ
, where Pt (i) is the price charged by the i’th

firm and Pt is the aggregate price level.

Each period, a fixed proportion of firms, 1 − θ, θ ∈ [0, 1), are able to change prices.

However, not all firms that change prices do so optimally. Within the share of firms that can

change prices, a fixed proportion, 1 − ω, ω ∈ [0, 1), change their prices optimally, while the

remaining proportion, ω, set their prices according to a simple rule of thumb. Unlike the Calvo

7To construct this estimate we have excluded six goods whose frequency of price adjustment did not satisfy
ξ ∈

(
e−1, 1

)
. Five of these six goods fall into the food and energy category and would be excluded from core

inflation; the sixth is airline fares. For these six goods, their frequency of price adjustment cannot be mapped
into a continuous-time probability of changing prices.
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model, where firms either set their price optimally or keep their price unchanged, here firms

either set their prices optimally, change their prices using a rule of thumb, or keep their prices

unchanged. Each period a measure equaling θ of firms do not change their prices, a measure

equaling ω (1− θ) of firms change their prices by rule of thumb, and a measure equaling

(1− ω) (1− θ) of firms set their prices to maximize profits, with firms falling randomly into

one of these three categories, independently of their history of price changes.

The model has two key parameters, and each can be associated with a distinct cost imping-

ing on a firm’s pricing decision. The first set of costs, menu costs, are borne by firms when

they changes prices, regardless of whether the price change is optimal or not; these costs are

associated with θ. The second set of costs are those connected to the information gathering

(Mankiw and Reis, 2002) and information processing (Sims, 2002) needed to determine the

optimal price; these costs are associated with ω. Importantly, while obstensibly playing a

role similar to ξ, θ represents a cost to changing prices, not a cost to making an optimal price

change.

Unlike Galí and Gertler (1999), who assume a rule-of-thumb in which prices are set ac-

cording to

Pt (i) = (1 + πt−1)Pt−1, (13)

we introduce indexation and assume instead that the rule-of-thumb is

Pt (i) = (1 + πt−1)Pt−1 (i) , (14)

a rule-of-thumb in which firms index their own prices to last period’s aggregate inflation rate.8

With this indexation-based rule-of-thumb, aggregate prices equal

Pt ≡

[∫ 1

0
Pt (i)

1−ǫ di

] 1

1−ǫ

=
[
(1− θ) (1− ω)P ∗t

1−ǫ + (1− θ)ω (1 + πt−1)
1−ǫ

P
1−ǫ

t−1 + θP
1−ǫ

t−1

] 1

1−ǫ
, (15)

where P ∗t is the price chosen by the optimizing firms. Log-linearizing equation (15) about

a zero-inflation nonstochastic steady state, and restricting θ and ω to satisfy ω + θ > 0, it

follows that the quasi-difference in aggregate inflation is related to the optimal relative price

according to

π̂t =
ω (1− θ)

θ + ω (1− θ)
π̂t−1 +

(1− ω) (1− θ)

θ + ω (1− θ)
p̂∗t . (16)

8Eichenbaum and Fisher (2004) also analyze a version of the Galí-Gertler model in which firms index their
own price changes to lagged inflation. Despite this similarity, their specification differs from ours with respect
to the optimization problem solved by the price-setting firms, and gives rise to a quite different Phillips curve.
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Now, in period t+1 a firm that cannot optimize its price between period t and period t+1

will expect to charge the price9

Pt+1 (i) = Pt (i)

[
ω (1− θ)

θ + ω (1− θ)
(1 + πt) +

θ

θ + ω (1− θ)

]

≡ Pt (i)St+1,

from which it follows that the price the firm will expect to change in period t+ j is

Pt+j (i) = Pt (i)
∏j

k=1
St+k. (17)

Therefore, with µ ≡ θ + ω (1− θ), representing the share of firms that cannot optimize

their prices, those firms that can optimize will set Pt (i) to maximize

̥t (i) = Et

∞∑

j=0

(βµ)j Yt+j



(

Pt (i)
∏j
k=1 St+k

Pt+j

)1−ǫ

−mct+j(i)

(
Pt (i)

∏j
k=1 St+k

Pt+j

)−ǫ

 . (18)

The resulting first-order condition can be written as

Et

∞∑

j=0

(βµ)j yt+j (i)




p∗t (i)
(∏j

k=1 St+k
)

∏j
k=1 (1 + πt+k)

−
ǫ

(ǫ− 1)
mct+j(i)


 = 0. (19)

Log-linearizing equation (19) and assuming symmetry yields

p̂∗t = βµEtp̂
∗
t+1 + βµ

(
Etπ̂t+1 −

ω (1− θ)

µ
π̂t

)
+ (1− βµ) m̂ct. (20)

Combining equations (16) and (20), the resulting Phillips curve is

π̂t =
ω (1− θ)

θ + ω(1− θ) (1 + β)
π̂t−1 +

β [θ + ω (1− θ)]

θ + ω(1− θ) (1 + β)
Etπ̂t+1

+
(1− ω) (1− θ) (1− βµ)

θ + ω(1− θ) (1 + β)
m̂ct. (21)

When ω = 0 (and θ �= 0), i.e., when no firms index, the backward dynamics are zeroed

out and equation (21) collapses to the New Keynesian Phillips curve, equation (1), but with θ

representing ξ. Similarly, when θ = 0 (and ω �= 0), i.e., when all firms change prices, equation

(21) simplifies to

πt =
1

1 + β
πt−1 +

β

1 + β
Etπt+1 +

(1− ω) (1− βω)

(1 + β)ω
m̂ct, (22)

9This implementation of the Galí and Gertler (1999) model differs slightly, but importantly, from the original.
We assume that the optimizing firms take into account that there is a non-zero probability that they will
be indexing in subsequent periods in which they cannot not reoptimize; Galí and Gertler (1999) assume that
optimizing firms behave like Calvo-pricing firms, assigning zero probability to indexation occuring in subsequent
periods.
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which is the Christiano, Eichenbaum, and Evans (2005) full-indexation model, but with ω

playing the role of ξ. Clearly, the Galí-Gertler Phillips curve encompasses the Calvo Phillips

curve and the full-indexation Phillips curve, but how does it relate to the partial-indexation

Phillips curve employed by Smets and Wouters (2003)?

3.1 The partial-indexation model

Like the Galí-Gertler model, the partial-indexation model is related to the Calvo model, with

a modification to the behavior of the firms that cannot optimize their prices. Where the

Calvo model assumes that the share of non-optimizing firms keep their prices unchanged, the

partial-indexation model assumes that they index their price changes as a proportion of last

period’s inflation rate. In this respect, the partial-indexation model can be viewed as a model

in which it is costless to change prices, but costly to optimize the price change. But, although

the partial-indexation model addresses the concerns in Estrella and Fuhrer (2002), because it

assumes that all prices change every period, either optimally or through indexation, it is even

more at odds with micro-data, and less economically plausible, than the Calvo model.

With η ∈ [0, 1] representing the indexation parameter, a firm that is unable to optimize

its price between periods t and t + j will sell its good in period t + j at the price Pt+j (i) =

Pt (i)
∏j
k=1 (1 + ηπt+k−1). Aside from the special situation where η = 0, in which case the

Calvo model is restored, the inflation indexation augments the Calvo model by allowing lagged

inflation to affect firms’ pricing decisions.

Let St+j ≡
∏j
k=1 (1 + ηπt+k−1), then the profit function for the optimizing firms becomes

̥t (i) = Et

∞∑

j=0

(βξ)j Yt+j

[(
St+jPt (i)

Pt+j

)1−ǫ
−mct+j (i)

(
St+jPt (i)

Pt+j

)−ǫ]
, (23)

for which the log-linear first-order condition for the optimal relative price is

p̂∗t = (1− βξ)Et

∞∑

j=0

(βξ)j
[
m̂ct+j +

j∑

k=1

(π̂t+k − ηπ̂t+k−1)

]
. (24)

Now, log-linearizing the Dixit-Stiglitz aggregator gives

π̂t = ηπ̂t−1 +
1− ξ

ξ
p̂∗t , (25)

and combining equations (24) and (25) we arrive at

π̂t =
η

1 + ηβ
π̂t−1 +

β

1 + ηβ
Etπ̂t+1 +

(1− βξ) (1− ξ)

(1 + ηβ) ξ
m̂ct, (26)
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in accordance with Smets and Wouters (2003). Notice that when η = 0, equation (26)

collapses to equation (1) and that when η = 1, it is equivalent to the full-indexation Phillips

curve, equation (22).

3.2 Model equivalence

Because the economic environments in which they are derived are similar, it is natural to

ask whether there might be mathematical connections between the Galí-Gertler model and

the partial-indexation model. For example, we showed earlier that by setting θ = 0, the

Galí-Gertler model is equivalent to the full-indexation model, which is a special case of the

partial-indexation model in which η = 1, but with ω in the Galí-Gertler model playing the

role of ξ.

Proposition 3: To a first-order log-linear approximation about a nonstochastic steady

state with zero inflation, the partial-indexation Phillips curve and the Galí-Gertler Phillips

curve are isomorphic.

Proof: Define η ≡ ω(1−θ)
θ+ω(1−θ) and ξ ≡ µ = θ+ω (1− θ), then the partial-indexation Phillips

curve can be written as

π̂t =

ω(1−θ)
θ+ω(1−θ)

1 + β
(

ω(1−θ)
θ+ω(1−θ)

) π̂t−1 +
β

1 + β
(

ω(1−θ)
θ+ω(1−θ)

)Etπ̂t+1

+
(1− ω) (1− θ) (1− βµ)[

1 + β
(

ω(1−θ)
θ+ω(1−θ)

)]
[θ + ω (1− θ)]

m̂ct. (27)

After some simple cancellations equation (27) becomes

π̂t =
ω (1− θ)

θ + ω (1− θ) (1 + β)
π̂t−1 +

β

θ + ω (1− θ) (1 + β)
Etπ̂t+1

+
(1− ω) (1− θ) (1− βµ)

θ + ω (1− θ) (1 + β)
m̂ct,

which has the same structure as the Galí-Gertler Phillips curve. Now, by inspection, for all

ω ∈ [0, 1) and θ ∈ [0, 1) that satisfy ω+ θ > 0, then η ∈ [0, 1] and ξ ∈ (0, 1), which establishes

that the Galí-Gertler Phillips curve is a special case of the partial-indexation Phillips curve.

Conversely, define θ ≡ ξ (1− η) and ω ≡ ξη
1−ξ(1−η) , which imply µ = ξ, then the Galí-Gertler

Phillips curve can be written as

π̂t =
ξη

ξ (1− η) + ξη (1 + β)
π̂t−1 +

β [ξ (1− η) + ξη]

ξ (1− η) + ξη (1 + β)
Etπ̂t+1

+
(1− ξ) (1− βξ)

ξ (1− η) + ξη (1 + β)
m̂ct,
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which in turn simplifies to

π̂t =
η

1 + ηβ
π̂t−1 +

β

1 + ηβ
Etπ̂t+1 +

(1− ξ) (1− βξ)

(1 + ηβ) ξ
m̂ct. (28)

Equation (28) has the same structure as the partial-indexation Phillips curve. With respect

to the parameter spaces, again by inspection, for all η ∈ [0, 1] and ξ ∈ (0, 1) then ω ∈ [0, 1) and

θ ∈ [0, 1) and θ + ω > 0, which establishes that the partial-indexation Phillips curve model is

a special case of the Galí-Gertler Phillips curve. Since each specification is a special case of

the other they must be isomorphic. �

Proposition 3 establishes that the Galí-Gertler Phillips curve and the partial-indexation

Phillips curve are mathematically equivalent, and this equivalence also has a strong intu-

ition. The parameter η in the partial-indexation model has as its counterpart the convolution
ω(1−θ)
θ+ω(1−θ) in the Galí-Gertler model. To appreciate why these two parameters play the same

role, observe that the numerator of ω(1−θ)
θ+ω(1−θ) is the share of firms that index to lagged infla-

tion and the denominator is the share of firms that are either indexing to lagged inflation or

indexing to a zero inflation rate. In terms of the contribution to inflation being made by

the non-optimizing firms, the convolution ω(1−θ)
θ+ω(1−θ) can be thought of as the weight on lagged

inflation in a weighted average of lagged inflation and zero inflation, which is naturally equiv-

alent to the weight on lagged inflation in a model with partial-indexation. Similarly, it should

be clear that the term (1−ω)(1−θ)
θ+ω(1−θ) in equation (16) plays the same role as

(1−ξ)
ξ

in equation (25)

and that these two expressions are equal when ξ = θ + ω (1− θ), which is intuitive because ξ

is the share of firms that do not optimize in the partial-indexation model and θ+ ω (1− θ) is

the share of firms that do not optimize in the Galí-Gertler model.

4 A New Keynesian business cycle model

The previous section showed that the Galí-Gertler Phillips curve can readily be compared to

micro-estimates of the frequency of price adjustment and, further, that it encompasses the

Calvo model, the full-indexation model, and the partial-indexation model. The latter result

suggests that the Galí-Gertler Phillips curve has important advantages over these alternative

specifications for macroeconometric analysis; the former result raises the question of whether

the Galí-Gertler Phillips curve is in line with micro-evidence on the frequency of price ad-

justment? To investigate this question, in this section we develop a general equilibrium New

Keynesian business cycle model suitable for estimation.
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The model consists of three types of agent: households, firms, and a central bank. Firm

behavior is described by the Galí-Gertler model, above. In the remainder of the section we

outline the decision problems and the behavior of households and the central bank.

4.1 Households

Households choose consumption, ct, investment, It their supply of labor, lt, and their holdings

of nominal money balances, mt, and bonds, bt, to maximize

Et

∞∑

j=0

βj


egt (ct+j −Ht+j)

1−σ

1− σ
+

(
mt+j

Pt+j

)1−α

1− α
−

l1+χt+j

1 + χ


 , (29)

where {σ,α, χ} ∈ (0,∞), and gt, gt ∼ iid
[
0, σ2g

]
, is an aggregate consumption-preference

shock, subject to the budget constraint

ct +
mt

Pt
+

bt
Pt
+ It = wtlt + rtKt +

(1 +Rt−1)

Pt
bt−1 +

mt−1

Pt
+
Πt
Pt

(30)

and the capital accumulation equation

Kt+1 = (1− δ)Kt + It, (31)

where Rt denotes the nominal interest rate, wt denotes the consumption real wage, rt de-

notes the real rental payment on capital, Πt denotes the lump-sum profits households earn

from dividend payments from firms and the seigniorage revenues households receive from the

government, and Kt =
∫ 1
0 kt (i)di. Equation (29) allows for habit formation, positing that

what matters for households is their consumption in relation to a habit stock, Ht. This habit

stock is assumed to evolve according to

Ht = γcDt−1C
1−D
t−1 , (32)

where γ ∈ [0, 1), D ∈ {0, 1}, and Ct represents aggregate, as opposed to household-level,

consumption. The parameter D distinguishes between internal and external habits; when D

= 1 the habit formation is internal and when D = 0 the habit formation is external (Abel,

1990). Since household consumption must always remain above the habit stock (ct−Ht) > 0,

additive habits are closely related to the notion that there is a subsistence level below which

a household’s consumption cannot fall. Carroll, Overland, and Weil (2000) and Boldrin,

Christiano, and Fisher (2001) have shown that habit formation is important for explaining

savings behavior and asset returns over the business cycle, respectively.
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The first-order conditions for the Lagrangian, Λ, associated with the household’s problem,

include

∂Λ

∂ct
: egt (ct −Ht)

−σ − βγDEt
[
egt+1 (ct+1 −Ht+1)

−σ
]
− λt = 0, (33)

∂Λ

∂lt
: λtwt − lχt = 0, (34)

∂Λ

∂bt
: β (1 +Rt)Et

[(
Pt

Pt+1

)
λt+1

]
− λt = 0, (35)

∂Λ

∂Kt+1
: βEt [(rt+1 + 1− δ)λt+1]− λt = 0. (36)

Equation (33) simply defines λt, the shadow price of capital, to equal the marginal utility of

consumption. Equation (34) implies that households supply labor up to the point where the

marginal rate of substitution between consumption and leisure equals the consumption real

wage, wt. Equation (35) shows that the bond market clears at an aggregate stock of zero

when the expected change in the shadow price of capital equals the ex ante real interest rate.

Lastly, equations (36) and (35) imply that in equilibrium households are indifferent between

owning bonds and capital.

Combining equations (33) and (35), the log-linear consumption Euler equation is

Et∆ĉt+1 =
γ

(1 + γ2βD)
Et [∆ĉt + βD∆ĉt+2]

+
(1− γ) (1− γβD)

σ (1 + γ2βD)
(Rt − Etπt+1 − ρ)−

(1− γ)

σ (1 + γ2βD)
gt. (37)

Note that the habit formation breaks the equality between the elasticity of intertemporal

substitution and the (inverse) coefficient of relative risk aversion and that, with internal habits,

expected consumption for two periods ahead affects current consumption.

4.2 Real marginal costs

As noted in Sections 2 and 3, theory establishes that the Phillips curve depends on real mar-

ginal costs. Appendix A shows that real marginal costs, that is the real resources firms must

spend to produce an additional unit of aggregate output, are, to a log-linear approximation,

given by

m̂ct = ŵt + l̂t − ŷt. (38)

Equation (38), which says that real marginal costs are proportional to labor’s share of income,

explains the use of labor’s share as a measure of real marginal costs when Phillips curves are

estimated using single-equation GMM. However, the goal here is to estimate the Galí-Gertler
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Phillips curve as part of a complete system, in order to study general equilibrium outcomes

following shocks. To this end, we exploit labor market clearing to obtain a relationship

between real marginal costs and the consumption gap.

Because the labor market clears when the consumption real wage equals the marginal rate

of substitution between consumption and leisure, and habit formation affects the marginal rate

at which households are prepared to substitute between consumption and leisure, it should

come as no surprise that habit formation affects the dynamics of real wages and real marginal

costs. In fact, Appendix A shows that the log-linear relationship between real marginal costs

and consumption is given by

m̂ct =

[
χ+

σ
(
1 + γ2βD

)

(1− γ) (1− γβD)

]
ĉt −

σγ

(1− γ) (1− γβD)
(ĉt−1 + βDEtĉt+1)

− (1 + χ)ut −
1

(1− γβD)
gt. (39)

The marginal utility of consumption is higher when consumption was high last period,

which, for a given real wage, induces households to increase their labor supply in order to

boost consumption and raise utility. At the macro-level, the labor supply increase lowers the

market-clearing real wage and real marginal costs; hence the negative coefficient on lagged

consumption in equation (39). More generally, real marginal costs rise when the consumption

gap increases, but fall in response to either a positive technology shock or a positive con-

sumption preference shock. It is not difficult to see why a positive technology shock lowers

real marginal costs; positive technology shocks make it possible to produce more from given

inputs. The negative coefficient on the consumption preference shock arises because a positive

consumption preference shock raises the marginal utility of consumption, which, for a given

real wage, induces households to substitute from leisure into consumption, and, in aggregate,

the increased labor supply lowers the real wage and real marginal costs. The intuition for the

positive coefficient on consumption is analogous to that for the consumption preference shock.

4.3 Central bank

The final actor in the model is the central bank. We do not develop a micro-founded model

of central bank behavior. Instead, we posit a descriptive model that appears to characterize

policy outcomes well over the business cycle. We assume that Rt is set according to

Rt = (1− φ3) [ρ+ (1− φ1)π + φ1Etπt+1 + φ2ĉt] + φ3Rt−1 + ǫt, (40)
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which is a standard forward-looking Taylor-type rule, essentially the same as the specification

studied by Clarida, Galí, and Gertler (1998, 2000). Equation (40) postulates that the central

bank responds with inertia to future expected inflation and, through consumption, to the state

of the business cycle. Expected future inflation rather than current or lagged inflation enters

the rule to capture the fact that central banks consider the future evolution of the economy

when conducting monetary policy.

5 Model estimation

The models that we seek to estimate are summarized by equations (17), (20), (39), (37), and

(40), and each has a rational expectations solution of the form

zt = h+Hzt−1 +Gvt, (41)

where zt =
[

πt ĉt Rt
]′
and vt =

[
ut gt εt

]′
and h, H, and G are each functions of

Γ, which denotes the vector of parameters to be estimated. By construction the eigenvalues

of H are bounded by one in modulus.

The models are estimated using two likelihood-based estimators: maximum likelihood and

Bayesian estimation. The maximum likelihood estimates reveal the model parameterizations

that are most likely to have generated the data, but the axiom of correct specification that

underlies maximum likelihood makes model comparison conceptually troublesome. By way

of contrast, through the construction of posterior model probabilities and Bayesian posterior

odds, the Bayesian approach readily accommodates model uncertainty and offers a coher-

ent framework for comparing the different models; where possible, we present both sets of

estimates, but rely on the Bayesian approach for model comparison.

5.1 Maximum likelihood estimation

Because the rational expectations equilibrium for each model takes the form of equation (41),

the assumption that vt ∼ niid [0,Ω] implies that the concentrated log-likelihood function for

the model is

logLc
(
Γ; {z1t}

T
2 |z11

)
∝ (T − 1) ln

[∣∣∣(G1)
−1

∣∣∣
]
−
(T − 1)

2
ln

(∣∣∣Ω̂
∣∣∣
)

, (42)

where

Ω̂=
T∑

t=2

[
G
−1 (z1t − h1 −H11z1t−1)

] [
G
−1 (z1t − h1 −H11z1t−1)

]′

T − 1
.
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The parameters, Γ, are obtained by maximizing equation (42), with their standard errors

determined from the inverted-Hessian evaluated at the optimum. The maximum likelihood

estimates were obtained using a two-step approach. In the first step the genetic algorithm

described in Duffy and McNelis (2001) was used. Briefly, this genetic algorithm is a stochastic

search method that facilitates searching for a maximum over a wide parameter space. To

implement the algorithm a population of 1000 initial candidate solutions was used, where the

candidate solutions were drawn from a multivariate uniform distribution whose bounds were

chosen to ensure that the model had a unique stable equilibrium within the search area. The

genetic algorithm was allowed to run for a maximum of 300 generations or until each of the

candidate solutions was identical to 5 decimal places, producing a set of first-step parameter

estimates.10 In the second step, the parameter values that emerged from the genetic algorithm

were used to initialize the BFGS optimization algorithm, which was iterated to convergence.

The estimates that we report, and their standard errors, reflect the maximum obtained by

the BFGS algorithm. This two-step approach allows us to search widely over the likelihood

function, helping ensure that a global maximum rather than a local maximum is located.

5.2 Bayesian estimation

Let M denote the model space and mj ∈M, j ∈ {1, 2, ...,M}, reference an arbitrary model.

With the parameters of modelmj represented by Γmj
, p

(
Γmj

|mj

)
, is the prior density for Γmj

,

p
(
{z1t}

T
2 |Γmj

,mj

)
is the conditional data density, and p

(
Γmj

| {z1t}
T
2 ,mj

)
is the posterior

density of the parameter density conditional on the data and the model. As always with

Bayesian estimation, interest centers on the posterior density, which from Bayes theorem, is

given by

p
(
Γmj

| {z1t}
T
2 ,mj

)
=

p
(
{z1t}

T
2 |Γmj

,mj

)
p
(
Γmj

|mj

)

p
(
{z1t}

T
2

) . (43)

To draw from the posterior density, we use the random walk chain Metropolios-Hastings

algorithm. Ten over dispersed chains of length 60, 000 were constructed from which the first

10, 000 “burn-in” draws were discarded, leaving a total of 500, 000 usable draws. Convergence

10Advantages to using a genetic algorithm are that it does not require taking numerical derivatives and,
by sampling over the entire admissible parameter space, that it helps to ensure that a global maximum of
the likelihood function is obtained. Other than the fact that “mutation” was not applied in the creation
of “children,” the genetic algorithm employed in this paper follows precisely that described in Appendix A
of Duffy and McNelis (2001), to which interested readers are referred. Mutation was not applied since the
solution obtained from the genetic algorithm was not the final estimate, but rather only the source of starting
values for a quasi-Newton hill climber.
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of the chains was determined using Gelman’s (1995) diagnostic and Geweke’s (1992) diagnostic.

For model comparison, we use Geweke’s (1999) modification of the Gelfand and Dey (1994)

method to calculate the marginal data density, or marginal likelihood,

p
(
{zt}

T
2 |mj

)
=

∫

Γmj

p
(
{zt}

T
2 |Γmj

,mj

)
p
(
Γmj

|mj

)
dΓmj

, (44)

which is the probability of observing the data given model mj . As equation (44) shows,

the marginal likelihood is evaluated by averaging the conditional data density with respect

to the prior density. After evaluating the marginal likelihood for each model, the posterior

probability associated with model mk ∈M can be calculated according to

p
(
mk| {zt}

T
2

)
=

p
(
{zt}

T
2 |mk

)
p (mk)

∑M
j=1 p

(
{zt}

T
2 |mj

)
p (mj)

, (45)

where p (mj) is the prior probability associated with model mj , j ∈ {1, 2, ...,M}.11

5.3 Data

To estimate the models, we use U.S. data spanning the period 1982.Q1 — 2002.Q4, which ex-

cludes the period of non-borrowed reserves targeting that occurred in the early 1980s, but oth-

erwise reflects the time during which Volcker and Greenspan were Federal Reserve chairmen.

We use the quarterly average of the federal funds rate to measure Rt, use 100× ln
(
Ct/C

T
t

)
to

measure the consumption gap, where Ct is real consumption and CT
t is trend consumption,

12

and use 400× ln (Pt/Pt−1), where Pt is the PCE price index, to measure inflation.

5.4 Priors

Aside from the parameters describing the shock processes, the key model parameters are Γ =

{χ, ρ, γ, σ, θ, ω, π, φ1, φ2, φ3}. However, the data are sufficiently uninformative of the labor

supply elasticity, χ, that precise estimates could not be obtained using maximum likelihood.

As a consequence, and to enable comparison between the FIML and the Bayesian estimates,

we set χ equal to 0.80 during estimation, with this elasticity value based on Smets and Wouters

(2003). The priors for the remaining behavioral parameters are summarized in Table 2a.

11Schorfheide (2000) provides an interesting exposition of how Bayesian methods can be used to estimate
dynamic optimization-based macro-models, like those studied in this paper.

12Trend consumption was constructed using the Hodrick-Prescott filter with λ = 1600.
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Table 2a: Prior for Structural Parameters

Parameter Distribution Mean Standard Deviation

ρ Normal 2.50 0.50
γ Beta 0.75 0.10
σ Gamma 4.00 2.00
θ Beta 0.50 0.10
ω Beta 0.80 0.10
π Normal 3.00 0.50
φ1 Normal 1.50 0.20
φ2 Normal 1.00 0.20
φ3 Beta 0.75 0.10

Briefly, the priors for ρ and π have means equaling 2.50 and 3.00 percent, respectively,

at annual rates. The priors for γ and φ3 are each Beta distributions with means equaling

0.75, while that for the inflation indexation parameter, ω, also a Beta distribution, has mean

equaling 0.80. Building in information from Bils and Klenow (2004), we use a prior for θ

that has a Beta distribution with a mean of 0.50. The prior for the coefficient of relative

risk aversion, σ, has a Gamma distribution with a mean equaling 4.00 and, to reflect the wide

range of estimates in the literature, a relatively large standard deviation of 2.00. This prior

distribution broadly reflects the range parameter values available in the literature.

The prior for the shock process was implemented as follows. First, the solution to the

rational expectations model, equation (41), was written as

zt = h+Hzt−1 + εt, (46)

where εt = Gvt are reduced form shocks. The priors for the elements in Σ =E
[
εtε

′

t

]
are

summarized in Table 2b.

Table 2b: Prior for Reduced Form Shocks

Parameter Distribution Mean Standard Deviation

σ1 Inverted Gamma 1.00 0.20
σ2 Inverted Gamma 0.50 0.20
σ3 Inverted Gamma 0.70 0.20

cov(ε1ε2) Normal 0.00 0.20
cov(ε1ε3) Normal 0.00 0.20
cov(ε2ε3) Normal 0.00 0.20

With respect to the model space,M, we apply a discrete uniform prior to the model space,

thus p (mj) =
1
M
, j ∈ {1, ...,M}.
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6 Model estimates

We estimate six specifications, interacting three Phillips curve specifications with, as a ro-

bustness check, external and internal habit formation. We begin by estimating specifications

that employ the Galí-Gertler Phillips curve to examine whether it is consistent with micro-

evidence on the frequency of price adjustment. Then, to determine whether the Galí-Gertler

Phillips curve improves on the main alternatives,13 and to assess how the competing models

behave following shocks, we estimate specifications based on the Calvo Phillips curve and on

the full-indexation Phillips curve, and evaluate their posterior model probabilities.14

6.1 Estimates with the Galí-Gertler Phillips curve

Table 3 presents our estimates of the specifications that employ the Galí-Gertler Phillips curve;

Panels A and B report estimates for external habit formation and internal habit formation,

respectively. The table displays FIML estimates, with standard errors in parentheses,15 along

with the posterior mean, median, and mode, and a 90 percent probability interval centered

about the posterior median. Also shown are the maximized value of the (log-) likelihood

function (log-L) and the (log-) marginal likelihood (log-ML), followed by the posterior model

probability in parentheses. The FIML estimates are shown so that interested readers can

assess the role the prior has in shaping the Bayesian estimates.

Note that the estimates in Table 3 reveal that the posterior mean, median, and mode

are all very similar, indicating that the posterior distributions are all relatively symmetric.16

Note, also, that, with one exception, the FIML estimates are very similar to the Bayesian

estimates, indicating that the prior is not having a large influence on the Bayesian estimation.

The one exception is the coefficient of relative risk aversion, σ. The imprecision associated

with the FIML estimate indicates that the data contain relatively little information about σ,

and it is this that allows the prior to influence the Bayesian estimation. Finally, note that

13Note that because the Gali-Gertler Phillips curve encompasses the Calvo Phillips curve and the full-
indexation Phillips curve, it must have a higher maximized likelihood function than these specifications. How-
ever, due to the effect of the prior, the same logic does not apply to Bayesian estimation. With Bayesian
estimation, a model can have a higher maximized likelihood than another, but have a smaller marginal likeli-
hood and a smaller posterior model probability.

14For the Bayesian estimation of the models containing the Calvo Phillips curve, we set ω = 0, with the priors
for the remaining parameters given by Table 2. Similarly, to estimate the models containing the full-indexation
Phillips curve, we set θ = 0, with the remainder of the priors given by Table 2.

15These standard errors were calculated from the inverted Hessian matrix evaluated at the maximum of the
likelihood function.

16This feature of the posterior distributions has been verified by plotting the marginal densities for each
parameter. A figure showing these marginal densities is available upon request.
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the estimates for the model with internal habits (Panel B) are essentially the same as those

for the model with external habits (Panel A), thus the findings are robust to this modeling

choice.

Table 3: FIML and Bayesian Estimates of the Galí-Gertler Model

Panel A External Habit Formation

Parameter FIML Post. Mean Post. Median Post. Mode 90% Interval

ρ 2.517
(0.726)

2.576 2.577 2.576 [2.182, 2.967]

γ 0.821
(0.084)

0.821 0.821 0.823 [0.768, 0.873]

σ 5.665
(5.533)

3.957 3.916 3.808 [2.462, 5.584]

θ 0.303
(0.072)

0.361 0.360 0.361 [0.301, 0.420]

ω 0.966
(0.017)

0.951 0.951 0.951 [0.937, 0.965]

π 3.339
(1.381)

3.245 3.243 3.253 [2.902, 3.595]

φ1 1.634
(1.120)

1.563 1.561 1.561 [1.377, 1.753]

φ2 1.282
(1.174)

1.001 1.001 1.001 [0.793, 1.209]

φ3 0.867
(0.039)

0.849 0.849 0.849 [0.822, 0.875]

log-L −262.321 —

log-ML — −287.196 (0.509)

Panel B Internal Habit Formation

Parameter FIML Post. Mean Post. Median Post. Mode 90% Interval

ρ 2.325
(0.918)

2.510 2.511 2.504 [2.094, 2.923]

γ 0.794
(0.070)

0.794 0.794 0.795 [0.744, 0.842]

σ 5.465
(5.530)

3.599 3.561 3.438 [2.121, 5.217]

θ 0.289
(0.075)

0.347 0.347 0.347 [0.288, 0.405]

ω 0.968
(0.017)

0.952 0.952 0.952 [0.938, 0.965]

π 3.335
(1.592)

3.248 3.246 3.256 [2.904, 3.600]

φ1 1.553
(1.185)

1.563 1.561 1.560 [1.377, 1.753]

φ2 1.081
(1.192)

0.986 0.986 0.985 [0.777, 1.194]

φ3 0.873
(0.042)

0.855 0.855 0.855 [0.828, 0.881]

log-L −263.093 —

log-ML — −287.998 (0.228)

Turning to the coefficient values themselves, given the similarity between the estimates in

Panels A and B, and the fact that the model with external habit formation has the greater

posterior model probability, we focus our discussion on Panel A. The FIML estimate of
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the rate of time preference, ρ, is 2.517, while the Bayesian estimates are centered on 2.576.

These values are consistent with estimates of the equilibrium real interest rate (Laubach and

Williams, 2003) and place the quarterly discount factor at 0.994, in line with values widely

used in calibration exercises, such as Rouwenhorst (1995).

Looking at the utility function parameters, the habit formation parameter, γ, is estimated

to be about 0.821, implying that habit formation is important and that there is considerable

inertia in consumption. Elsewhere, estimates of γ vary widely. Smets and Wouters (2003)

estimate γ = 0.54, Altig, Christiano, Eichenbaum, and Linde (2004) estimate γ = 0.65,

Giannoni and Woodford (2003) estimate γ = 1.00, while the results in Smets (2003) and Cho

and Moreno (2005) imply that γ equals 0.79 and 1.00, respectively. With internal habit

formation, Fuhrer (2000) estimates γ = 0.8, while Christiano, Eichenbaum, and Evans (2005)

estimate γ = 0.63. Calibration exercises, based on either internal or external habit formation,

often set γ to 0.80 (McCallum and Nelson, 1999). Turning to σ, estimates in the literature

are also wide-ranging. The FIML estimate is imprecise, but places σ at about 5.67, while the

Bayesian estimation returns a posterior mean for σ that is just under 4. Elsewhere, Fuhrer

(2000) obtains σ = 6.11 while Kim (2000) obtains σ = 14.22. Using Bayesian methods, Smets

and Wouters (2003) get σ = 1.39 for the posterior mean, while Levin, Onatski, Williams, and

Williams (2005) get σ = 2.19 for the posterior mean.17 At the other end of the spectrum,

Rotemberg and Woodford (1997) estimate σ = 0.16, Amato and Laubach (2003) estimate

σ = 0.26, and Giannoni and Woodford (2003) estimate σ = 0.75.

Regarding the policy-rule parameters, the FIML estimation places the implicit inflation

target at around 3.3 percent, while the Bayesian estimation has π approximately equal to 3.25

percent. These estimates of π are very similar to those obtained by Clarida, Galí, and Gertler

(2000), while being slightly higher than those obtained by Favero and Rovelli (2003), who

estimate π to be 2.63 percent. We estimate the coefficient on expected future inflation to be

about 1.6, the coefficient on the consumption gap to be about 1, and the coefficient on lagged

interest rates to be about 0.85. These coefficients are all consistent with other estimated

Taylor-type rules (see Clarida, Galí, and Gertler (2000) and Dennis (2006)), indicating an

activist, but inertial, approach to monetary policy.

17As noted also in the context of Table 3, the Bayesian estimates of σ obtained by Smets and Wouters (2003)
and Levin, Onatski, Williams, and Williams (2005) appear to be governed largely by their prior densities,
indicating that the data are relatively uninformative for this elasticity. Smets and Wouters (2003) use a
normal density, with a mean of 1 and a standard deviation of 0.375, for their prior and obtain a posterior mean
of 1.39. Similarly, Levin, Onatski, Williams, and Williams (2005) use a normal density, with a mean of 2 and
a standard deviation of 0.5, for their prior and obtain a posterior mean of 2.19.
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With respect to pricing behavior, the two key parameters are θ and ω. The FIML esti-

mate of θ is 0.303, while a two-standard-deviation confidence interval spans 0.159 to 0.447.

The Bayesian estimation has the distribution for θ centered on about 0.361, with a 90 percent

probability interval covering 0.301 to 0.420. These estimates place the discrete-time frequency

of price adjustment somewhere around 0.70 (FIML) and 0.64 (Bayesian), representing rela-

tively frequent price adjustment. Recall that the Bils-Klenow data-set, which shaped the

prior for θ, suggested a discrete-time frequency of price adjustment of about 0.5. Thus, one of

the main findings that emerges from the estimation of the Galí-Gertler Phillips curve is that

macro-data are consistent with frequent price adjustment. In fact, if any criticism is to be

leveled at the specification it is that the model implies that firms change prices too frequently,

not too infrequently.

Finally, because the estimates of θ reveal that firms do, in fact, change prices quite fre-

quently, they suggest that menu costs are not a huge impediment to a firm changing its price.

At the same time, the estimates of ω are large, and they imply that most firms that change

prices do so using a rule of thumb, a result that is consistent with the Zbaraki, Ritson, Levy,

Dutta, and Bergin (2004) conclusion that information gathering/processing costs are more

important for pricing behavior than menu costs.

6.2 Estimates with the Calvo Phillips curve

To estimate versions of the model with the Calvo Phillips curve, we set ω, the share of rule-

of-thumb pricing firms, to zero. With this restriction, θ is equivalent to ξ in the Calvo model

and it is labeled as such in Table 4 below. As earlier, we consider both internal and external

habit formation; however, due to weak identification of some parameters,18 we report only the

Bayesian estimates.

18This weak identification arises because the absence of rule-of-thumb pricing means that information in
lagged inflation is no longer available for econometric identification.
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Table 4: Bayesian Estimates of the Calvo Model

Panel A External Habit Formation

Parameter Post. Mean Post. Median Post. Mode 90% Interval

ρ 2.593 2.594 2.591 [2.228, 2.953]
γ 0.802 0.803 0.804 [0.745, 0.858]
σ 2.632 2.598 2.496 [1.581, 3.797]
ξ 0.942 0.942 0.942 [0.930, 0.953]
π 3.474 3.471 3.486 [3.200, 3.759]
φ1 1.580 1.579 1.577 [1.406, 1.758]
φ2 1.026 1.026 1.026 [0.822, 1.232]
φ3 0.826 0.826 0.827 [0.799, 0.852]

log-ML −338.516 (2.6e−23)

Panel B Internal Habit Formation

Parameter Post. Mean Post. Median Post. Mode 90% Interval

ρ 2.490 2.492 2.476 [2.088, 2.890]
γ 0.754 0.755 0.755 [0.702, 0.806]
σ 2.785 2.746 2.611 [1.611, 4.091]
ξ 0.944 0.944 0.944 [0.933, 0.955]
π 3.467 3.464 3.482 [3.196, 3.750]
φ1 1.579 1.577 1.576 [1.404, 1.759]
φ2 0.986 0.986 0.984 [0.779, 1.191]
φ3 0.829 0.830 0.831 [0.801, 0.857]

log-ML −340.598 (3.3e−24)

Looking at the estimates reported in Table 4, it is noteworthy that where these specifica-

tions have parameters in common with those estimated in Table 3, similar values are obtained,

attesting to their structural nature. However, although similar estimates of common para-

meters are obtained, important differences between these specifications and those estimated

earlier can be found in the (log-) marginal likelihoods and posterior model probabilities. Rel-

ative to the specifications estimated in Table 3, those in Table 4 have much lower marginal

likelihoods and, given the discrete uniform prior over the model space, much lower posterior

model probabilities. Essentially, having examined their fit to the data, we now attribute a

probability of almost zero to the possibility that the Calvo model generated the data.

So, how do the estimates of the New Keynesian Phillips curve relate to those of the Galí-

Gertler Phillips curve obtained earlier? Clearly, if ξ is interpreted naively as the share of

firms that do not change prices each period, then the conclusions from the two models are

very different. However, the Galí-Gertler model implies that the share of firms that do not

make an optimal price change each period is given not by θ, but by θ+ω (1− θ), and now the

two sets of estimates are easily reconciled. For example, using the posterior mean from Table

3 (Panel A), θ+ω (1− θ) equals 0.969, which is very similar to the posterior mean of ξ in Table
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4 (Panel A), which equals 0.942. Overall, then, these indicate that the Calvo-share may be a

relatively unbiased estimate of the share of firms that do not make an optimal price change,

but it is a highly biased estimate of the discrete-time frequency of price adjustment, and, as

a consequence, drastically overstates the implied average duration between price changes.

At the same time, the estimates of ξ shown in Table 4 are generally larger than those

reported in Table 1. One possible reason for these larger estimates of ξ is that the estimates

are shaped by the properties of a complete model, not just by the properties of the New Key-

nesian Phillips curve. Related to this, the likelihood-based estimators impose the discipline of

“relevance” to the choice of econometric instruments, preventing possibly irrelevent variables

from serving as instruments. A third possible reason for the larger estimates of ξ is that we

do not use labor’s share of income as our measure of real marginal costs. Instead, the measure

of real marginal costs is derived within our models based on labor market clearing, essentially

imposing equilibrium behavior on real wages, output, and hours worked.

6.3 Estimates with the full-indexation Phillips curve

The final two models that we estimate employ the full-indexation Phillips curve. As es-

tablished earlier, the full-indexation Phillips curve can be obtained as a special case of the

Galí-Gertler Phillips curve by setting θ equal to zero. With this restriction the parameter

ω is equivalent to ξ, and it is labeled this way in Table 5. As earlier, the parameters in

the policy rule and those that govern household behavior are essentially the same as those

shown in Tables 3 and 4; clearly these parameters are robust to changes in how firms’ pricing

behavior is modeled. In addition, the coefficient values shown in Panel B, which relate to the

model with internal habit formation, reinforce those shown in Panel A, which relate to the

model with external habit formation, from which it follows that the findings with respect to

pricing behavior are robust to how the habit formation is modeled.
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Table 5: FIML and Bayesian Estimates of the Full-Indexation Model

Panel A External Habit Formation

Parameter FIML Post. Mean Post. Median Post. Mode 90% Interval

ρ 2.643
(0.508)

2.651 2.653 2.651 [2.281, 3.017]

γ 0.817
(0.077)

0.835 0.835 0.837 [0.780, 0.888]

σ 7.583
(7.344)

4.281 4.231 4.098 [2.581, 6.157]

ξ 0.945
(0.021)

0.936 0.936 0.936 [0.918, 0.953]

π 2.855
(0.674)

2.973 2.974 2.974 [2.536, 3.411]

φ1 1.700
(0.620)

1.529 1.528 1.530 [1.321, 1.737]

φ2 1.211
(1.082)

1.016 1.016 1.016 [0.799, 1.234]

φ3 0.851
(0.035)

0.836 0.836 0.837 [0.806, 0.865]

log-L −267.611 —

log-ML — −288.430 (0.148)

Panel B Internal Habit Formation

Parameter FIML Post. Mean Post. Median Post. Mode 90% Interval

ρ 2.616
(0.522)

2.618 2.620 2.618 [2.242, 2.991]

γ 0.804
(0.072)

0.816 0.817 0.818 [0.765, 0.867]

σ 6.426
(7.330)

3.747 3.697 3.549 [2.108, 5.558]

ξ 0.948
(0.020)

0.941 0.941 0.940 [0.924, 0.957]

π 2.828
(0.688)

2.958 2.958 2.958 [2.520, 3.391]

φ1 1.696
(0.620)

1.532 1.532 1.532 [1.326, 1.738]

φ2 1.111
(1.065)

1.006 1.006 1.005 [0.790, 1.222]

φ3 0.852
(0.035)

0.840 0.841 0.841 [0.810, 0.870]

log-L −268.057 —

log-ML — −288.688 (0.114)

So what are the main results in Table 5? First, the estimates of ξ are very much in line

with those obtained for the specifications using the Calvo Phillips curve, so although inflation

is not endogenously persistent in the Calvo model, this does not seem to be distorting its

estimates of ξ. Second, the estimates of ξ place the share of firms that optimize their price

changes at just over 5 percent per quarter.

However, the similarities in the parameter estimates between Table 5 and Table 3 cloak im-

portant differences between the models. From an economic perspective, in the full-indexation

model, all firms change their prices every period, which, of course, is inconsistent with micro-
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data. By way of contrast, in the Galí-Gertler model some firms change their prices optimally,

some use a rule-of-thumb, and some keep their price unchanged. From a statistical perspec-

tive, the models employing the Galí-Gertler Phillips curve have higher maximized likelihoods,

higher marginal likelihoods, and higher posterior model probabilities than those containing

the full-indexation Phillips curve, signaling that the Galí-Gertler model receives greater sup-

port from the data. Importantly, among the six models we estimate, only in those models

employing the Galí-Gertler Phillips curve did the posterior model probabilities rise relative to

their prior model probabilities.

7 Pricing and New Keynesian business cycle dynamics

In this section we demonstrate that the differences between the three pricing models are not

just statistical, nor are they just theoretical, rather they are economically important. We study

how the models respond to shocks, considering consumption preference shocks, technology

shocks, and monetary policy shocks. Furthermore, we use the Bayesian estimates to construct

predictive densities for each model and for each shock, and, exploiting the posterior model

probabilities, we use Bayesian model averaging to examine the (weighted) average response

to each shock and to construct 90-percent probability intervals about these responses. The

results for one-standard-deviation shocks19 are shown in Figure 1, which plots the median of

the predictive densities for three of the six models, together with the results from the Bayesian

model averaging exercise. Although all six models are used for the Bayesian model averaging,

to avoid clutter, we report the individual responses for the three Phillips curves, but only for

the specifications with external habit formation.

To understand these shock responses it is useful to focus on the Bayesian model averaging

exercise. Panels A to C correspond to the consumption preference shock, Panels D to F

correspond to the technology shock, and Panels G to I correspond to the monetary policy

shock. Following a positive consumption preference shock, households take advantage of the

fact that higher utility can be achieved by consuming more now and increase their labor supply

in order to raise their income to facilitate greater consumption expenditures (Panel A). The

increase in labor supply is partly offset by a rise in labor demand, as firms increase production

to meet rising demand, but, on balance, the market-clearing real wage declines, lowering

real marginal costs and causing a small and gradual decline in aggregate inflation (Panel B).

19We measure one standard deviation using the mean of the posterior distributions for the shock standard
errors in each model.
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Figure 1: Predictive Densities Following One-Standard-Deviation Shocks
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Faced with stronger consumer demand, and only slightly lower inflation, the central bank

raises interest rates (Panel C).

Following a positive technology shock, the marginal product of labor increases pushing up

the demand for labor and raising the market-clearing real wage. Household income rises due

to the higher real wage, and from households increasing their hours worked, which pushes up

consumption (Panel D). At the same time, the increase in the marginal product of labor has

the effect of lowering real marginal costs, which puts downward pressure on inflation (Panel

E). In this case, the decline in inflation is substantial and the policy response is to lower

nominal, and hence also real, interest rates (Panel F). Finally, following a positive monetary

policy shock, real interest rates rise (Panel I), which induces households to defer consumption.

To offset the fall in consumption (Panel G), households increase their labor supply, which puts

downward pressure on real wages. Although firms respond to declining demand by reducing

their demand for labor, the market-clearing real wage falls, lowering real marginal costs and

inflation (Panel H).

Relative to the responses of the Galí-Gertler model, the poor performance of the Calvo

model is clear. Following a technology shock (Panel E) inflation falls, but then immediately

returns to baseline, without any effect on consumption or interest rates. More generally,

the Calvo model’s behavior following all three shocks differ importantly from the Galí-Gertler

model in that they are not “hump-shaped,” underscoring the Estrella and Fuhrer (2002) criti-

cism of the New Keynesian Phillips curve. With regard to the full-indexation model, although

its responses are hump-shaped, they are also generally much larger than those of either the

Galí-Gertler model or the Bayesian model average. These large responses are particularly

evident in how the model behaves following the technology shock (Panels D to F), but are also

evident in Panels B and H. The source of these large responses is the fact that many firms

index to lagged inflation and no firms keep their prices unchanged following shocks. Inflation’s

large responses give rise to large interest rate responses by the central bank, which, in turn,

generate relatively large consumption responses by households. It is clear from the posterior

model probabilities and the behavior of the Bayesian model average that the data provide

considerably less support for the behavior of the full-indexation model than they do for the

behavior of the Galí-Gertler model.
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8 Conclusion

The New Keynesian Phillips curve, generally derived from the Calvo model, has been widely

criticized for being economically implausible, for being inconsistent with micro-data on the

frequency of price adjustment, and for being unable to account for the persistence in inflation.

Popular alternatives to the Calvo model, such the full-indexation model and the partial-

indexation model are much better able to explain the persistence in inflation, but, because

they assume that all prices change every period, they too are economically implausible and

are unable to match micro-evidence on the frequency with which actual prices change. These

criticisms are important because New Keynesian business cycle models are increasingly used

to study issues such as how monetary policy should be conducted to maximize welfare, and

the nature of these policies hinge critically on precisely how and why prices are rigid. More

generally, they challenge whether the leading New Keynesian models of price adjustment

provide a useful and economically sensible description of inflation dynamics. Against this

background, the main contribution of this paper is to demonstrate that the Galí and Gertler

1999) pricing model can successfully address these criticisms.

We begin by presenting estimates of Calvo-share obtained when the New Keynesian Phillips

curve is estimated in isolation, outlining the implications of these estimates for the average

duration between price changes. Next, we emphasize that issues such as heterogeneity in the

frequency of price adjustment across firms, continuous-time price setting, as well as the con-

ceptual difference between a price change and an optimal price change mean that a meaningful

comparison of the average durations between price changes obtained from micro-data to those

implied by estimates of the Calvo-share is not straightforward. However, to the extent that

these issues can be addressed, they confirm that estimates of the Calvo-share are inconsistent

with Bureau of Labor Statistics price data, and to the extent that they cannot be addressed,

they call for a micro-founded model of price setting that can distinguish conceptually between

price changes and optimal price changes.

Next, we introduce the rule-of-thumb pricing model developed by Galí and Gertler (1999),

a model in which each period a share of firms get to change their prices and within this share a

proportion change their prices optimally while the remaining proportion change their prices by

a rule of thumb. We highlight that when it comes to reconciling macro- and micro-evidence

on the frequency of price adjustment, and to accounting for the persistence in inflation, the

Galí-Gertler pricing environment holds many attractions. First, the model is one in which not
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all prices change every period and in which when prices change they do not necessarily change

optimally. Second, the model’s share parameters can be interpreted easily in light of the costs

firms face when changing prices. Traditional menu cost factors, which affect all price changes

not just optimal price changes, are readily associated with the share of firms that change their

prices. Similarly, information gathering/processing costs are readily associated with the share

of price-changing firms that resort to rule-of-thumb price-setting. Third, because the rule of

thumb is one in which firms index their prices to lagged inflation, the model has a mechanism

for generating intrinsic inflation persistence.

After outlining the Galí-Gertler pricing model, we derive its Phillips curve and relate it

to other specifications in the literature. Specifically, we prove that the Galí-Gertler Phillips

curve encompasses the Calvo Phillips curve, the full-indexation Phillips curve, and the partial-

indexation Phillips curve, from which it follows that the Galí-Gertler Phillips curve can explain

inflation at least as well as these more widely used alternatives. This encompassing result,

together with the fact that the full- and the partial-indexation models counterfactually force

all firms to change their price every period, makes the Galí-Gertler Phillips curve particularly

attractive for empirical applications. Taking this as motivation, we build a small-scale New

Keynesian business cycle model and estimate versions of it on U.S. macroeconomic data.

The main empirical results are as follows. First, broadly in line with the Bils and Klenow

study of Bureau of Labor Statistics price data, which suggest a quarterly frequency of price

adjustment of about 0.5, our estimates of the Galí-Gertler model place the quarterly frequency

of price adjustment at just over 0.6. In this respect, the Galí-Gertler model is a considerable

improvement on the Calvo model, and to the extent that it is at odds with the Bils-Klenow

study it is because the model implies too little price rigidity rather than too much. Second,

with around 60 percent of firms changing their prices each quarter and with 95 percent of them

resorting to rule-of-thumb price-setting, our estimates are consistent with the view that menu

costs are a much less important factor for price setting than information gathering/processing

costs. These findings are robust to whether households have internal or external habit for-

mation and to whether the model is estimated using FIML or Bayesian methods.

Third, reflecting the model’s empirical advantages, the Bayesian estimation assigns much

higher posterior model probabilities to the models containing the Galí-Gertler Phillips curve,

particularly the specification with external habit formation, than it does to the models con-

taining either the Calvo Phillips curve or the full-indexation Phillips curve. Our finding that

a posterior model probability of almost zero is attributed to the Calvo Phillips curve is con-
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sistent with the fact that, unlike the Galí-Gertler model, the Calvo model cannot generate

hump-shaped responses to shocks.

Clearly the Galí and Gertler (1999) model offers important advantages over other popular

pricing models and deserves greater empirical attention as a consequence. At the same

time, the model’s micro-foundations could be made more rigorous in as much as its share

parameters are standing in for a more complicated optimization problem confronting firms, a

problem with a state-contingent aspect. Although it is well-known that state-contingent and

time-consistent pricing models behave similarly when inflation is low and stable, the obvious

next step would be to build the menu costs and the information gathering/processing costs

formally and directly into the firm’s pricing problem. We leave this interesting and important

exercise for future work.

A Appendix: Aggregate real marginal costs

Cost minimization implies that firms rent capital and labor such that

Wt

pt (i)
= mct (i)

κyt (i)

lt (i)
,

implying that a firms’ real marginal costs depend on the ratio of its production real wage to
its marginal productivity of labor, i.e.,
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where equation (A1) has been expressed in terms of the consumption real wage. Of course,
since all firms face the same rental prices for capital and labor and are subject to the same
aggregate technology shock, they employ capital and labor in the same ratio and share the
same real marginal costs.

Although all firms face the same real marginal cost, it is still convenient to define aggregate
real marginal costs through the aggregator

mct ≡

[∫ 1

0
mct (i)

1−ǫ di

] 1

1−ǫ

. (A2)

Combining equations A1 and A2 results in

mct =
wt

κy
1

ǫ

t



∫ 1

0

(
lt (i)

yt (i)
ǫ−1
ǫ

)1−ǫ

di




1

1−ǫ

(1 + m̂ct)mc =
(1 + ŵt)w

κ (1 + ŷt)
1

ǫ y
1

ǫ



∫ 1

0




(
1 + l̂t (i)

)
l (i)

(1 + ŷt (i))
ǫ−1
ǫ y (i)

ǫ−1
ǫ



1−ǫ

di




1

1−ǫ

.
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Focusing on a symmetric equilibrium,

m̂ct ≃ ŵt −
1

ǫ
ŷt +

∫ 1

0
l̂t (i) di+

1− ǫ

ǫ

∫ 1

0
ŷt (i) di

m̂ct ≃ ŵt + l̂t − ŷt, (A3)

which is equation (38) in the text. Equation (A3) establishes that to a first-order log-linear
approximation aggregate real marginal costs depend on the consumption real wage and the
aggregate marginal productivity of labor.

Turning to the firm-level production function,

yt ≡

[∫ 1

0
yt (i)

ǫ−1
ǫ di

] ǫ
ǫ−1

=

[∫ 1

0

(
[eutlt (i)]

κ kt (i)
1−κ

) ǫ−1
ǫ

di

] ǫ
ǫ−1

,

and log-linearizing

ŷt ≃ ut + l̂t + (1− κ)
(
k̂t − ût − l̂t

)
. (A4)

Similarly, the log-linearized resource constraint is

ŷt =
c

y
ĉt +

(
1−

c

y

)
ît. (A5)

To proceed further we make two simplifying assumptions. The first assumption is that

capital per effective worker is constant over time, which implies that
(
k̂t − ût − l̂t

)
= 0. The

second assumption is that investment is driven solely by an accelerator mechanism, i.e., that
ît = ŷt. Combining equation (A3) with (a log-linearized) equation (34) and exploiting these
two simplifying assumptions, the expression for real marginal costs becomes

m̂ct = χŷt − (1 + χ)ut − λ̂t. (A6)

Now log-linearizing equation (33) gives

λ̂t = −
σ

(
1 + γ2βD

)

(1− γ) (1− γβD)
ĉt +

σγ

(1− γ) (1− γβD)
(ĉt−1 + βDEtĉt+1) +

1

(1− γβD)
gt, (A7)

implying that real marginal costs equal

m̂ct =

[
χ+

σ
(
1 + γ2βD

)

(1− γ) (1− γβD)

]
ĉt −

σγ

(1− γ) (1− γβD)
(ĉt−1 + βDEtĉt+1)

− (1 + χ)ut −
1

(1− γβD)
gt, (A8)

which is equation (39) in the text.
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