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Abstract

We study the continuity of the correspondence of interim ε-rationalizable ac-

tions in incomplete information games. We introduce a topology on types, called

uniform-weak topology, under which two types of a player are close if they have

similar first-order beliefs, attach similar probabilities to other players having sim-

ilar first-order beliefs, and so on, where the degree of similarity is uniform over

the levels of the belief hierarchy. This notion of proximity of types is an extension

of the concept of common p-belief due to Monderer and Samet (1989). We show

that, given any finite game, every action that is interim rationalizable for a finite

type t remains interim ε-rationalizable for all types sufficiently close to t in the

uniform-weak topology. Conversely, given any finite type t there exist ε > 0 and

a finite game such that some interim rationalizable action for t fails to be interim

ε-rationalizable for every type that is not close to t in the uniform-weak topology.

Our results thus establish the equivalence between the uniform-weak topology

and the strategic topology of Dekel, Fudenberg, and Morris (2006) around finite

types.

1 Introduction

Incomplete information games are games in which some payoff-relevant states are not

common knowledge among the players. Harsanyi (1967-68) observes that the Bayesian

analysis of incomplete information games requires a model in which each player is

∗We thank Jeffrey Ely, Drew Fudenberg, George J. Mailath, Marcin Peski and Qingmin Liu for helpful

comments.
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equipped with an infinite hierarchy of beliefs: a belief about the payoff-relevant states,

a belief about his opponents’ beliefs about the payoff-relevant states, and so on. Fol-

lowing this observation, Harsanyi (1967-68) introduces type spaces as a parsimonious

model that encodes the belief hierarchies and is suitable for game theoretic analysis,

in that interim best-reply sets can be appropriately defined. Mertens and Zamir (1985)

provide a foundation for the use of type spaces showing that the space T of coherent

belief hierarchies is a universal type space. That is, T is a type space itself and, more-

over, every type space can be embedded in T via a belief-preserving morphism. Hence,

the universal type space T captures the richness of any abstract type space, and not

more.

The Mertens-Zamir universal type space comes with a natural topology: the product

topology.1 A distinctive feature of the product topology is that it is insensitive to the

tails of belief hierarchies: two types are close in the product topology if, and only if,

their kth-order beliefs are close for some large finite ká1. Strategic behavior, however,

can be very sensitive to high order beliefs. This is true even for interim rationalizability

(see Dekel, Fudenberg, and Morris (2007)), the most permissive solution concept consis-

tent with common knowledge of rationality. In effect, in Rubinstein (1989)’s electronic

mail game, an action – “attack” – is strictly rationalizable for a type t, but fails to be

rationalizable for all types in a sequence that converges to t in the product topology.

Hence, to the extent that strategic behavior is what one ultimately cares about, the

product topology yields an inadequate notion of proximity of types.

From this point of view, the appropriateness of a topology on types depends on what

is meant by strategic behavior. But given a solution concept, it is natural to consider

the coarsest topology under which the correspondence that maps types into solutions

is continuous in every game. For the solution concept of interim ε-rationalizability

this yields the strategic topology on types introduced by Dekel, Fudenberg, and Morris

(2006), hereafter DFM. The strategic topology, while being strong enough to render ε-
rationalizable behavior continuous, is remarkably weak: DFM show that finite types are

dense.

Given the importance of the strategic topology,2 and the fact that it is a topology

on types that is independent of the strategic situation (i.e., action sets and payoffs),

we find it conceptually important to give it a characterization in terms of properties of

the belief hierarchies, with no direct reference to such concepts as behavior strategies

1It is only when T is equipped with the measurable structure induced by the product topology that

T can be shown to be a universal type space. This is the sense in which the product topology is natural.
2One reason why the study of strategic convergence seems important is that it appears to be a useful

step for the examination of robustness questions in mechanism design.
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and best-replies, which are tied to fixed games. In this paper, we take a first step

towards such characterization and show that around finite types the strategic topology

coincides with the uniform-weak topology. The latter is the topology induced by the

metric d, defined as follows: for each order ká1, let dk be a metric that induces the

topology of weak convergence of k-order beliefs; metric d is defined as the supremum

of dk over all orders ká1.

The connection between uniform topologies on types and the strategic topology

was first suggested by Morris (2002), who studies a particular class of infinite-action

games, called higher-order expectation games (HOE), and shows that a certain topology

on types (different from ours) is equivalent to the weakest topology under which the

ε-rationalizability correspondence is continuous in every game of the HOE class. This

uniform topology is too strong for our purposes: there exists a sequence of types, (tn),
which fails to converge (in this uniform topology) to a type t, and yet in every finite

game, every rationalizable action for t remains ε-rationalizable for tn for all n large

enough. Hence, the strategic separation of types that are not close in this uniform

topology requires an infinite game.

The connection between uniform and strategic convergence of types also underlies

the main result in Monderer and Samet (1989). They show that a sufficient condition

for the correspondence of Bayesian-Nash ε-equilibrium to be continuous at a complete-

information type profile is that the sequence of approximating type profiles converges

to its complete information limit in the common p-belief sense. (That is, for every p > 0,

at every type profile sufficiently far in the tail of the sequence there is common p-belief

of the state that is common certainty in the limit.) Moreover, they show that this notion

of convergence of type profiles yields strategic continuity in every game. Kajii and

Morris (1997) prove the converse: If a sequence of type profiles fails to converge to a

complete information type in the common p-belief sense, then a finite game exists such

that for some ε > 0, some equilibrium of the complete information game will fail to be

an ε-equilibrium at every type profile in the tail of the sequence. It is interesting to note

that a sequence of types converges to a complete information type in the uniform-weak

topology if, and only if, it converges in the common p-belief sense. Hence, the topology

of uniform-weak convergence extends the notion of common p-belief convergence to

incomplete information limit types.

This paper is also closely related to contemporaneous work by Ely and Peski (2007).

Following their terminology, a type is called regular if for every finite game the ε-
rationalizability correspondence is continuous in the product topology. Ely and Peski

(2007) provide an insightful characterization of regular types in terms of properties of

the belief hierarchies and show that the set of regular types is generic (in a topological
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sense). They prove:

Theorem (Ely and Peski (2007)). A type t is regular if, and only if, for every p > 0 and

every closed (in the product topology), proper subset W of the universal type space, W
is not common p-belief at t. Furthermore, the set of regular types is residual, that is, it

contains a countable intersection of open and dense sets.

Thus, in a topological sense, around almost all types the strategic topology coincides

with the product topology. While topological genericity is interesting, we think it should

not be the end of the story. We find it conceptually important to characterize the

strategic topology around critical types, namely, those types which are not regular. In

fact, given Ely and Peski (2007)’s result, it appears to us that every type space ever

considered in applications consists entirely of critical types. We take a first step towards

such characterization by proving the equivalence between the strategic topology and

the uniform-weak topology around finite types. All finite types are critical, but not

conversely. 3

2 Preliminaries

Hereafter we fix a two-player set I and a finite space of basic uncertainty Θ. Given a

player i ∈ I, let −i denote the other player in I. Given a topological space X, write

∆(X) for the set of probability measures on the Borel subsets of X endowed with the

topology of weak convergence of probability measures. Unless explicitly noted, all prod-

uct spaces will be endowed with the product topology and subspaces with the relative

topology.

2.1 The Mertens-Zamir Universal Type Space

Let Y 0 = Θ and Y 1 = Y 0 ×∆
(
Y 0
)
. Then, for ká2, define recursively

Y k =
{(
θ,µ1, . . . , µk

)
∈ Y 0×∆

(
Y 0)×· · ·×∆(Y k−1) : margY `−2µ` = µ`−1 ∀` = 2, . . . , k

}
By the coherency conditions on marginal distributions from the definition of Y k, an

element of Y k is uniquely identified by its first and last coordinates. Thus, with slight

abuse of notation, given θ ∈ Θ and µk ∈ ∆
(
Y k−1

)
, we will sometimes write

(
θ,µk

)
∈ Y k.

3We conjecture our characterization is valid for arbitrary critical types, but do not have a proof yet.
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The Mertens-Zamir universal type space T is defined as

T =
{(
µ1, µ2, . . .

)
∈ ∆

(
Y 0)×∆(Y 1)× · · · : margYk−2µk = µk−1 ∀ká2

}
.

For each ká1, let πk : T → ∆
(
Y k−1

)
denote the natural projection. For every i ∈ I and

ká1, let Ti and Y ki denote copies of T and Y k, respectively, write πki : Ti → ∆
(
Y k−1
−i

)
for πk, and define T k

i = πki
(
Ti
)
. An element ti ∈ Ti is a type of player i, and πki (ti) is

its associated k-order belief.

Each type of i uniquely determines a belief over Θ × T−i. More precisely, for each

ti ∈ Ti there exists a unique probability measure µi(ti) ∈ ∆(Θ×T−i) whose marginal on

Y k−1
−i coincides with πki (t) for all ká1. Conversely, for every such probability measure

in ∆(Θ×T−i) there exists a unique type ti ∈ Ti such that the latter belief-preservation

property holds. Moreover, the map µi : Ti → ∆(Θ×T−i) is a homeomorphism.

A finite type space is a collection (Ti)i∈I , with Ti a finite subset of Ti for all i ∈ I,
such that the support of µi(ti) is contained in Θ × T−i for all ti ∈ Ti and i ∈ I. A type

ti ∈ Ti is called a finite type if ti ∈ Ti for some finite type space (Tj)j∈I .

2.2 Interim Correlated Rationalizability and the Topologies on Types

A finite game is a tuple
(
Ai, gi

)
i∈I with each Ai a finite set and gi : A×Θ → [−1,1],

where A = Xi∈IAi. For a mixed action profile α ∈ ∆(Ai)× ∆(A−i) write g(α,θ) for the

expectation of g under (α, θ).

Given a finite game G =
(
Ai, gi

)
i∈I and a type ti ∈ Ti, for each ká0 we denote by

Rki
(
ε, ti;G

)
the set of k-order ε-rationalizable actions of type ti. These sets are defined

recursively as follows (see Dekel, Fudenberg, and Morris (2007)):

R0
i
(
ε, ti;G

)
= Ai,

and for ká1, action ai ∈ Ai belongs to Rki
(
ε, ti;G

)
if there exists a measurable function

σ−i : Θ×T−i → ∆
(
A−i

)
such that:

(a) supp σ−i
(
θ, t−i

)
⊆ Rk−1

−i
(
ε, t−i;G

)
for µi(ti)-almost every

(
θ, t−i

)
, and

(b) for all a′i ∈ Ai,∫
Θ×T k−1

−i

[
gi
(
ai, σ−i(θ, t−i), θ

)
− gi

(
a′i, σ−i(θ, t−i), θ

)]
µi(ti)

(
dθ,dt−i

)
á −ε
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The set of ε-rationalizable actions of type ti is then defined as

Ri
(
ε, ti;G

)
=
⋂
ká1

Rki
(
ε, ti;G

)
Note that the set Rki (ε, ti;G) only depends on ti via the k-order beliefs πki (ti) of ti.
Thus, with slight abuse of notation and whenever convenient, given any tki ∈ T k

i we

will write Rki (ε, t
k
i ;G) to indicate the k-order ε-rationalizable strategies of any type of i

with associated k-order beliefs tki .

Definition 2.1. The strategic topology is the weakest topology on Ti such that, for every

finite game G, the correspondence (ε, ti), Ri(ε, ti;G) is continuous.

Dekel, Fudenberg, and Morris (2006) introduce a distance dSi on Ti that metrizes

the strategic topology.

Given a metric space (X, ρ), the Prohorov distance between any two µ,µ′ ∈ ∆(X) is

inf
{
δ > 0 : µ′(A)áµ

(
Aδ
)
− δ for every Borel A ⊆ X

}
,

where Aδ denotes the set of all x ∈ X such that infy∈A ρ(x,y) < δ.

Now let d0 be the discrete metric on Θ and write d1 for the Prohorov distance on

∆(Θ). Then, recursively for every ká2, let dk be the Prohorov distance on ∆
(
Y k−1

)
when Y k−1 is given the product metric induced by d0, d1, . . . , dk−1.

Definition 2.2. The uniform-weak topology on T is the topology induced by the metric

d(t, t′) = sup
ká1

dk
(
πk(t),πk(t′)

)
for all (t, t′) ∈ T .

Two types are close in the uniform-weak topology if and only if they have similar

first-order beliefs, attach similar probabilities to the other player having similar first-

order beliefs, and so on, where the degree of similarity is uniform over the levels of the

belief hierarchy.

Interestingly, if ti is a complete information type, that is, a type at which there is

common knowledge of some state θ, then for all δ > 0 and t′i ∈ Ti

d(t′i, ti) < δ ⇐⇒ θ is common (1− δ)-belief at t′i .

Hence, the uniform-weak topology is an extention of the notion of common p-belief

(Monderer and Samet (1989)) to perturbations of incomplete information environments.
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3 Equivalence Between the Strategic and the Uniform-weak Topolo-

gies on Types

Proposition 3.1. Around finite types, the uniform-weak topology is stronger than the

strategic topology. More precisely, for every player i ∈ I, finite type ti ∈ Ti and ε > 0

there exists δ > 0 such that for all t′i ∈ Ti,

di
(
ti, t′i

)
< δ =⇒ dSi

(
ti, t′i

)
< ε.

The proposition is a direct implication of the following:

Lemma 3.1. Let G =
(
Ai, gi

)
i∈I be a finite game and

(
Ti
)
i∈I a finite type space. For every

ε > 0 there exists δ > 0 such that for every ká1, i ∈ I and (ti, t′i) ∈ Ti ×Ti,

dki
(
πki
(
ti
)
, πki

(
t′i
))
< δ =⇒ Rki

(
0, ti;G

)
⊆ Rki

(
ε, t′i ;G

)
.

Proof. For each i ∈ I and ká1, let Tki ≡ πki
(
Ti
)
, ηki ≡ min

{
dki
(
tki , T

k
i \

{
tki
})
| tki ∈ Tki

}
and η ≡ mini∈I minká1 ηki . Since

(
Ti
)
i∈I is a finite type space, ηki > 0 for all i ∈ I and

ká1. Moreover, there exists k0á1 such that ηki = η
k0
i for all kák0, and hence we have

η > 0. Choose any 0 < δ < 1
2 min

{
η, ε|Θ|−1(|2Ai| + |2Aj |)−1

}
.

The proof proceeds by induction in k. Fix ti ∈ Ti and t′i ∈ Ti with d1
i
(
π1
i
(
ti
)
, π1

i
(
ti
))
<

δ. For each ai ∈ R1
i
(
0, ti;G

)
there exists a behavior strategy b1

i : Θ → ∆
(
Aj
)

such that∑
θ∈Θ

`1
i
(
θ;ai, a′i, b

1
i
)
π1
i
(
ti
)[
θ
]
á0,

where

`1
i
(
θ;ai, a′i, b

1
i
)
≡

∑
aj∈Aj

(
gi
(
ai, aj , θ

)
− gi

(
a′i, aj , θ

))
b1
i
(
θ
)[
aj
]
.

Then∑
θ∈Θ

`1
i
(
θ;ai, a′i, b

1
i
)
π1
i
(
t′i
)[
θ
]
á

∑
θ∈Θ

`1
i
(
θ;ai, a′i, b

1
i
) (
π1
i
(
t′i
)[
θ
]
−π1

i
(
ti
)[
θ
])

á −
∑
θ∈Θ

∣∣∣π1
i (t

′
i)(θ)−π1

i (ti)(θ)
∣∣∣ > −δ|Θ| > −ε ,

where the second follows from
∣∣gi∣∣à1 and the penultimate inequality follows from

d1
i
(
π1
i
(
ti
)
, π1

i
(
t′i
))
< δ. Hence ai ∈ R1

i (ε, t
′
i ;G), which proves our claim for k = 1.

7



Now let ká2 and assume the claim holds true for k − 1. Let ti ∈ Ti and t′i ∈ Ti
be a pair of types with dki

(
πki
(
ti
)
, πki

(
t′i
))
< δ. Fix an action ai ∈ Rki (0, ti;G) and let

bki : Θ× Tk−1
j → ∆(Aj) be a k-order behavior strategy for type ti such that:4

• for all
(
θ, tk−1

j
)
∈ Θ× Tk−1

j ,

bki
(
θ, tk−1

j
)
∈ ∆

(
Rk−1
j

(
0, tk−1

j
))
, (3.1)

• for all a′i ∈ Ai, ∑
(θ,tk−1

j )∈Θ×Tk−1
j

`ki
(
θ, tk−1

j ;ai, a′i, b
k
i
)
πki
(
ti
)[
θ, tk−1

j
]
á 0, (3.2)

where `ki
(
θ, tk−1

j ;ai, a′i, b
k
i
)

is the expected payoff loss (under bki ) of the deviation from

ai to a′i conditional on
(
θ, tk−1

j
)
. That is,

`ki
(
θ, tk−1

j ;ai, a′i, b
k
i
)
=

∑
aj∈Aj

(
gi
(
ai, aj , θ

)
− gi

(
a′i, aj , θ

))
bki
(
θ, tk−1

j
)[
aj
]
.

For each A′j ⊆ Aj , let

Tk−1
j (A′j) ≡

{
tk−1
j ∈ Tk−1

j : Rk−1
j

(
0, tk−1

j
)
= A′j

}
,

so that
{
Tk−1
j (A′j) : A′j ⊆ Aj , Tk−1

j (A′j) ≠∅
}

is a partition of Tk−1
j . For each C ⊆ T k−1

j

write Bk−1,δ
j

(
C
)

for the δ-open-ball around C in
(
T k−1
j , dk−1

j
)

(with the convention that

Bk−1,δ
j

(
∅
)
= ∅). Since δ < η/2, we have Bk−1,δ

j
(
Tk−1
j

(
A′j
))
∩ Bk−1,δ

j
(
Tk−1
j

(
A′′j
))
≠∅ for

every A′j , A
′′
j ⊆ Aj , A′j ≠ A′′j , such that Tk−1

j
(
A′j
)
≠∅ and Tk−1

j
(
A′′j
)
≠∅.

Consider the k-order behavior strategy b′ki : Θ × T k−1
j → ∆(Aj) for type t′i defined

as follows:

• If tk−1
j ∈ Bk−1,δ

j
(
Tk−1
j

(
A′j
))

for some A′j ⊆ Aj , then for each θ ∈ Θ set

b′i
k(θ, tk−1

j
)[
·
]
≡

∑
t̃k−1
j ∈Tk−1

j (A′j)

bki
(
θ, t̃k−1

j
)[
·
]
πki
(
ti
)(
t̃k−1
j

∣∣θ, Tk−1
j

(
A′j
))
,

where πki
(
ti
)(
·
∣∣θ, Tk−1

j
(
A′j
))

is the conditional probability of πki
(
ti
)

on the event{
θ
}
×
{
Tk−1
j

(
A′j
)}

.

4Since Θ × T k−1
j is a finite set, The requirement that (a) hold for all

(
θ, tk−1

j
)
∈ Θ × T k−1

j , rather than

only for
(
θ, tk−1

j
)
∈ Θ× T k−1

j ∈ supp πk
(
ti
)
, is without loss of generality.
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• If tk−1
j ∈ T k−1

j \
⋃{
Bk−1,δ
j

(
Tk−1
j

(
A′j
))

: A′j ⊆ Aj
}
, then for each θ ∈ Θ set

b′i
k(θ, tk−1

j
)

equal to an arbitrary measurable selection from the set-valued map

t̃k−1
j , ∆

(
Rk−1
j

(
ε, t̃k−1

j
))

, where the choice of the selection is immaterial for the

ensuing argument.5

Since the nonempty Bk−1,δ
j

(
Tk−1
j

(
A′j
))

’s are pairwise disjoint, b′i
k is well defined.

For all θ ∈ Θ and tk−1
j ∈ T k−1

j , we claim:

b′i
k(θ, tk−1

j
)
∈ ∆

(
Rk−1
j

(
ε, tk−1

j
))
.

For θ ∈ Θ and tk−1
j ∈ T k−1

j \
⋃{
Bk−1,δ
j

(
Tk−1
j

(
A′j
))

: A′j ⊆ Aj
}
, the claim follows from the

definition of b′i
k. Fix θ ∈ Θ, A′j ⊆ Aj (with Tk−1

j
(
A′j
)
≠∅) and tk−1

j ∈ Bk−1,δ
j

(
Tk−1
j

(
A′j
))

.

By construction,

supp b′i
k(θ, tk−1

j
)
⊆

⋃
t̃k−1
j ∈Tk−1

j

(
A′j
) supp bik

(
θ, t̃k−1

j
)
⊆ A′j .

Since tk−1
j ∈ Bk−1,δ

j
(
Tk−1
j

(
A′j
))

, we have dk−1
j
(
tk−1
j , t̃k−1

j
)
< δ for some t̃k−1

j ∈ Tk−1
j

(
A′j
)
.

Hence, by the induction hypothesis,

A′j = Rk−1
j

(
0, t̃k−1

j
)
⊆ Rk−1

j
(
ε, tk−1

j
)
,

and therefore,

supp b′i
k(θ, tk−1

j
)
⊆ Rk−1

j
(
ε, tk−1

j
)
,

which proves our claim.

It remains to show that action ai is ε-optimal (under b′ki ) for type t′i . Fix a′i ∈ Ai
and abbreviate `′ki

(
θ, tk−1

j
)
≡ `ki

(
θ, tk−1

j ;ai, a′i, b
′k
i
)
.

Since dki (π
k(ti), πk(t′i)) < δ and supp πk

(
ti
)
⊆ Tk−1

j , we have

πk
(
t′i
)[
Θ×

⋃
A′j⊆Aj

Bk−1,δ
j

(
Tk−1
j

(
A′j
))]

á1− δ > 1− ε/2,

and therefore,∫
Θ×T k−1

j

`′ki
(
θ, tk−1

j
)
πki
(
t′i
)[
dθ,dtk−1

j
]
á

á
∑

θ∈Θ, A′j⊆Aj

∫
Bk−1,δ
j (Tk−1

j (A′j))
`′ki
(
θ, tk−1

j
)
πki
(
t′i
)[{
θ
}
, dtk−1

j

]
− ε

2
.

5Since ∆
(
Rk−1
j
(
ε, ·
))

is upper hemi-continuous, the existence of a measurable selection follows from

the Kuratowski-Ryll-Nardzewski Theorem (see Aliprantis and Border (1999)).
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But since b′i
k(θ, ·) is constant on each Bk−1,δ

j
(
Tk−1
j

(
A′j
))

for every fixed θ ∈ Θ, we have

∫
Θ×T k−1

j

`′ki
(
θ, tk−1

j
)
πki
(
t′i
)[
dθ,dtk−1

j
]
á

á
∑

θ∈Θ, A′j⊆Aj
`
k
i
(
θ,A′j

)
πki
(
t′i
)[{
θ
}
× Bk−1,δ

j
(
Tk−1
j

(
A′j
))]

− ε
2
, (3.3)

where `
k
i
(
θ,A′j

)
≡ `′ki

(
θ, tk−1

j
)

for any, and hence all, tk−1
j ∈ Bk−1,δ

j
(
Tk−1
j

(
A′j
))

.

On the other hand, it follows from the definition of b′i
k, iterated expectations and

(3.2) that

∑
θ∈Θ, A′j⊆Aj

`
k
i
(
θ,A′j

)
πki
(
ti
)[{
θ
}
× Tk−1

j
(
A′j
)]
=

∑
(θ,tk−1

j )∈Θ×Tk−1
j

`ki
(
θ, tk−1

j ;ai, a′i, b
k
i
)
πki
(
ti
)[
θ, tk−1

j
]
á 0.

Therefore,

∑
θ∈Θ, A′j⊆Aj

`
k
i
(
θ,A′j

)
πki
(
t′i
)[{
θ
}
× Bk−1,δ

j
(
Tk−1
j

(
A′j
))]

á

á
∑

θ∈Θ, A′j⊆Aj
`
k
i
(
θ,A′j

) (
πki
(
t′i
)[{
θ
}
× Bk−1,δ

j
(
Tk−1
j

(
A′j
))]

−πki
(
ti
)[{
θ
}
× Tk−1

j
(
A′j
)])

> −
∣∣Θ∣∣∣∣2Aj∣∣δ > −ε/2, (3.4)

where the penultimate inequality follows from dki
(
πki
(
ti
)
, πki

(
t′i
))
< δ and

∣∣gi∣∣à1.

Combining (3.3) and (3.4) yields∫
Θ×T k−1

j

`′ki
(
θ, tk−1

j
)
πki
(
t′i
)[
dθ,dtk−1

j
]
á −ε,

and therefore ai ∈ Rki
(
ε, t′i ;G

)
, as required.

Proposition 3.2. Around finite types, the uniform-weak topology is weaker than the

strategic topology. More precisely, for every player i ∈ I, finite type ti ∈ Ti and δ > 0

there exists ε > 0 such that for all t′i ∈ Ti,

di
(
ti, t′i

)
> δ =⇒ dSi

(
ti, t′i

)
> ε.

The proposition is a direct implication of the following lemma, which relies on

Lemma A.1 from appendix A.
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Lemma 3.2. Let (Ti)i∈I be a finite type space. For every δ > 0 there exist ε > 0 and a

finite game G such that for every i ∈ I, ti ∈ Ti and t′i ∈ Ti,

di(ti, t′i) > δ =⇒ Ri
(
0, ti;G

)
È Ri

(
ε, t′i ;G

)
.

Proof. Fix δ > 0. For each i ∈ I, let µi : Ti → ∆
(
Θ × Tj

)
be the belief mapping. Define

ζ = δ|Θ|−1(|Ti|2 + |Tj|2)−1. By Lemma A.1, there exist ε > 0 and a game with finite

action sets Ai ⊇ Ti such that for every ti ∈ Ti:

(i) ti is a best-reply to belief µi(ti) (viewed as a probability over Θ×Aj);

(ii) for every belief µ′i ∈ ∆
(
Θ×Aj

)
, ti is an ε-best-reply to µ′i only if

∥∥µ′i−µi(ti)∥∥àζ,

where
∥∥ · ∥∥ denotes the maximum norm.

We now claim:

Claim. For every ká1, i ∈ I, and
(
ti, t′i

)
∈ Ti ×Ti with dk

(
πki
(
ti
)
, πki

(
t′i
))
> δ,

(a) ti ∈ Rki
(
0, ti;G

)
;

(b) ti ∉ Rki
(
ε, t′i ;G

)
.

We shall prove the claim by induction in k. Consider k = 1 and fix i ∈ I and ti ∈ Ti. Let

b1
i : Θ → ∆

(
A−i

)
and νi ∈ ∆

(
Θ×A−i

)
be defined as follows: for all θ ∈ Θ and a−i ∈ A−i,

b1
i (θ)[a−i] = π1

i (ti)
[
a−i

∣∣θ] and νi
[
θ,a−i

]
= b1

i
(
θ
)[
a−i

]
π1(ti)[θ].

Since π1
i
(
ti
)
= margΘ µi

(
ti
)
, it is clear that νi = µi

(
ti
)
. But then it follows from (i) that

ti ∈ R1
i
(
0, ti;G

)
, which proves part (a) of the claim for k = 1.

To prove part (b), fix an arbitrary t′i ∈ Ti and assume d1
(
(π1

i
(
ti
)
, π1

i
(
t′i
))
> δ. The

latter means π1
i (t

′
i)[Θ

′] < π1
i (ti)[Θ

′]− δ for some Θ′ ⊆ Θ, hence

π1
i (t

′
i)[θ] < π

1
i (ti)[θ]−

δ
|Θ| for some θ ∈ Θ. (3.5)

Now fix any b1
i : Θ → ∆

(
A−i

)
and define νi ∈ ∆

(
Θ×A−i

)
as follows:

νi
[
θ,a−i

]
= b1

i
(
θ
)[
a−i

]
π1(t′i)[θ] for all θ ∈ Θ and a−i ∈ A−i.

11



Pick θ ∈ Θ satisfying (3.5). Then, since margΘ νi = π1
i (t

′
i) and margΘ µi

(
ti
)
= π1

i
(
ti
)
,∑

a−i∈T−i
νi[θ,a−i]à

∑
a−i∈A−i

νi[θ,a−i] (since T−i ⊆ A−i)

<
∑

a−i∈A−i
µi(ti)[θ,a−i]−

δ
|Θ| (by (3.5))

=
∑

a−i∈T−i
µi(ti)[θ,a−i]−

δ
|Θ| (as µi(ti)

[
{θ} ×

(
A−i \ T−i

)]
= 0).

But then νi[θ,a−i] < µi(ti)[θ,a−i]− δ(|Θ||T−i|)−1 for some a−i ∈ T−i, hence

∥∥µi(ti) − νi ∥∥ > δ
|Θ||T−i|

> ζ

and, using (ii), also ti ∉ R1
i (ε, t

′
i ;G). This concludes the proof of the claim for k = 1.

Now let ká2 and suppose the claim holds true for k−1. Fix i ∈ I and ti ∈ Ti. Define

the conjecture σ−i : Θ×T−i → ∆
(
A−i

)
as follows: for all

(
θ, tk−1

−i
)
∈ Θ×T k−1

−i ,

bki
(
θ, tk−1

j
)[
aj
]
=
µi
(
ti
)[
{θ} ×

(
{aj} ∩

(
πk−1
j

)−1(tk−1
j

))]
µi
(
ti
)[
{θ} ×

(
πk−1
j

)−1(tk−1
j

)] for all aj ∈ Tj

if µi
(
ti
)[
{θ} ×

(
πk−1
j

)−1(tk−1
j

)]
> 0, and

bki
(
θ, tk−1

j
)[
aj
]
= 1

/∣∣∣Rk−1
j

(
0, tj ;G

)∣∣∣ for all aj ∈ Rk−1
j

(
0, tj ;G

)
otherwise. Note that bki

(
θ, tk−1

j
)[
aj
]
> 0 only if aj = t̂j for some t̂j ∈ Tj with

πk−1
(
t̂j
)
= πk−1

(
tj
)
. Therefore, by the induction hypothesis,

supp bki
(
θ, tk−1

j
)
⊆ Rk−1

j
(
0, tk−1

j ;G
)

for all
(
θ, tk−1

j
)
∈ Θ× Tk−1

j .

Next, define µ̂i ∈ ∆
(
Θ×Aj

)
as

µ̂i
[
θ,aj

]
= b1

i
(
θ
)[
aj
]
π1(ti)[θ] for all θ ∈ Θ and aj ∈ Aj .

Consider the behavior strategy bki : Θ× Tk−1
j → ∆

(
Aj
)

defined by:

bki
(
θ, tk−1

j
)[
aj
]
= µi

(
ti
)[
aj
∣∣θ, tk−1

j
]
,

for all
(
θ, tk−1

j
)
∈ Θ× Tk−1

j and aj ∈ Aj .
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Behavior strategy bki together with k-order beliefs πki
(
ti
)
∈ ∆

(
Θ × Tk−1

j
)

induce a

probability µ̂i ∈ ∆
(
Θ×Aj

)
via:

µ̂i
[
θ,aj

]
=

∑
tk−1
j ∈Tk−1

j

bki
(
θ, tk−1

j
)[
aj
]
πk
(
ti
)[
θ, tk−1

j
]
,

for all θ ∈ Θ and aj ∈ Aj . Since πk
(
ti
)
= margΘ×Tk−1

j
µi
(
ti
)
, we have

µ̂i
[
θ,aj

]
=

∑
tk−1
j ∈Tk−1

j

µi
(
ti
)[
aj
∣∣θ, tk−1

j
] (

margΘ×Tk−1
j
µi
(
ti
))[
θ, tk−1

j
]

= µi
(
ti
)[
θ,aj

]
,

By (i) we have ti ∈ Rki (0, ti;G), which proves part (a) of the claim.

Consider part (b). Fix i ∈ I and t′i ∈ Ti with dk
(
πki
(
ti
)
, πki

(
t′i
))
> δ. Let bki :

Θ×T k−1
j → ∆

(
Aj
)

be an arbitrary behavior strategy such that:

bki
(
θ, t̂k−1

j
)
∈ ∆

(
Rk−1
j

(
ε, t̂k−1

j ;G
))

(3.6)

for all
(
θ, t̂k−1

j
)
∈ Θ × T k−1

j . Note that, by the induction hypothesis, for every tj ∈ Tj
we can have bki

(
θ, t̂k−1

j
)
[tj] > 0 only if dk−1

(
t̂k−1
j , πk−1

j
(
tj
))
àδ.

Behavior strategy bki together with k-order beliefs πki
(
t′i
)

induce a probability µ′i ∈
∆
(
Θ×Aj

)
via:

µ′i
[
θ,aj

]
=
∫
T k−1
j

bki
(
θ, t̂k−1

j
)[
aj
]
πk
(
t′i
)[
θ,dt̂k−1

j
]
, (3.7)

for all θ ∈ Θ and aj ∈ Aj .

Since dk
(
πki
(
ti
)
, πki

(
t′i
))
> δ, there exists some

(
θ, tk−1

j
)
∈ Θ× Tk−1

j such that

πki
(
t′i
)[{
θ
}
× Bk−1,δ

j
(
tk−1
j
)]
< πki

(
ti
)[
θ, tk−1

j
]
− δ
|Θ||Tj|

. (3.8)

Let tj be an arbitrary type in Tj with πk−1
j

(
tj
)
= tk−1

j . By the induction hypothesis and

(3.6), for every t̂k−1
j ∈ T k−1

j we can have bki
(
θ, t̂k−1

j
)
[tj] > 0 only if t̂k−1

j ∈ Bk−1,δ
j

(
tk−1
j
)
.

Thus, by (3.7),

µ′i
[
θ, tj

]
=
∫
Bk−1,δ
j

(
tk−1
j

) bki (θ, t̂k−1
j

)[
tj
]
πk
(
t′i
)[
θ,dt̂k−1

j
]
,

hence ∑{
tj∈Tj : πk−1

j

(
tj
)
=tk−1

j

}µ′i[θ, tj] à πk
(
t′i
)[{
θ
}
× Bk−1,δ

j
(
tk−1
j
)]

< πki
(
ti
)[
θ, tk−1

j
]
− δ
|Θ||Tj|

,
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where the last inequality is just (3.8). But since

πki
(
ti
)[
θ, tk−1

j
]
=

∑{
tj∈Tj : πk−1

j

(
tj
)
=tk−1

j

}µi(ti)[θ, tj],
we have ∑

tj∈Tj

∣∣∣µ′i[θ, tj]− µi(ti)[θ, tj]∣∣∣ > δ
|Θ||Tj|

,

and therefore ∥∥µ′i − µi(ti)∥∥ > δ
|Θ||Tj|2

> ζ.

It follows from (ii) that ti ∉ Rki
(
ε, t′i ;G

)
. This concludes the proof of the claim.

A Appendix for Section 3

Lemma A.1. For each i ∈ I, let Ti be a finite set and µi : Ti → ∆
(
Θ × Tj

)
a function. For

every 0 < ζ < 1 there exist ε > 0 and a game with finite action sets Ai ⊇ Ti such that for

every ti ∈ Ti:

(i) ti is a best-reply to belief µi(ti) (viewed as a probability over Θ×Aj);

(ii) For every belief µ′i ∈ ∆
(
Θ×Aj

)
, ti is an ε-best-reply to µ′i only if

∥∥µ′i − µi(ti)∥∥àζ,

where
∥∥ · ∥∥ denotes the maximum norm.

Proof. Fix ζ ∈ (0,1). Let fi : Θ× Tj ×∆
(
Θ× Tj

)
-→ R denote the function defined by

fi
(
θ, tj ;µ′

)
= 2µ′(θ, tj)−

∑
(θ′,t′j)∈Θ×Tj

(
µ′(θ′, t′j)

)2,
for all (θ, tj , µ′) ∈ Θ × Tj × ∆

(
Θ × Tj

)
, and let Fi : ∆

(
Θ × Tj

)
× ∆

(
Θ × Tj

)
-→ R be the

function defined by

Fi
(
µ′′, µ′

)
=

∑
(θ,tj)∈Θ×Tj

fi(θ, tj ;µ′′) µ′(θ, tj),

for all (µ′′, µ′) ∈ ∆
(
Θ× Tj

)
×∆

(
Θ× Tj

)
.

Let η = 1
2 min

{
Fi
(
µ′, µ′

)
− Fi

(
µ′′, µ′

)
: (µ′′, µ′) ∈

(
∆
(
Θ × Tj

))2
,
∥∥µ′ − µ′′∥∥á ζ

2

}
.

We have η > 0, for Fi is continuous and µ′′ = µ′ is the unique maximizer of Fi(·, µ′) on

∆
(
Θ× Tj

)
for all µ′.

14



By the uniform continuity of Fi, there exists γ > 0 such that for all (µ′′, µ′) ∈(
∆
(
Θ× Tj

))2
, ∥∥µ′′ − µ′∥∥ < γ =⇒ Fi(µ′, µ′)− Fi(µ′′, µ′) < η.

The compact set ∆
(
Θ × Tj

)
can be covered by a finite union of open balls of radius

γ. Choose one point in which of these balls and let Ai ⊂ ∆
(
Θ × Tj

)
denote the finite

set of chosen points. Enlarge Ai, if necessary, to ensure Ai ⊇ Ti. (We identify each

ti ∈ Ti with µi(ti).) Thus, for every µ′ ∈ ∆(Θ × Aj) there exists ai ∈ Ai such that

Fi(µ′, µ′)− Fi(ai, µ′) < η.

Define the payoff function gi : Θ×Ai ×Aj -→ R,

gi
(
θ,ai, aj

)
=


fi
(
θ,aj ;ai

)
: ai ∈ Ai, aj ∈ Tj

− 4
ζ : ai ∈ Ti, aj ∈ Aj \ Tj

−1 : ai ∈ Ai \ Ti, aj ∈ Aj \ Tj .

We are now in a position to prove part (i) of the lemma. Suppose player i’s belief

over Θ × Aj is given by µi(ti), for some ti ∈ Ti. It follows directly from the definition

of gi and the fact that µi(ti)
[
Θ × Tj

]
= 1 that each action ai ∈ Ai yields player i an

expected payoff of Fi
(
ai, µi(ti)

)
. Since Fi

(
µi
(
ti
)
, µi(ti)

)
áFi

(
ai, µi(ti)

)
for all ai ∈ Ai,

we conclude that ti is a best-reply to µi(ti). This proves part (i).

Fix any 0 < ε < min{η(1 − ζ
2 ),

ζ
2 }. We shall prove part (ii) now. Fix ti ∈ Ti and

µ′ ∈ ∆(Θ×Aj) with
∥∥µ′−µi(ti)∥∥ > ζ. Suppose µ′

(
Θ×Tj

)
< 1− ζ

2 . (The complementary

case will be handled in the next paragraph.) Consider a deviation from ti to an arbitrary

action ai ∈ Ai \ Ti. Since Fi maps into [−1,1], the gain from this deviation is bounded

below by (
1− ζ

2

)(
− 2

)
+ ζ

2

(
− 1+ 4

ζ
)
= ζ

2
> ε,

and therefore ti is not an ε-best-reply to µ′, which concludes the proof of part (ii) in the

case µ′
(
Θ× Tj

)
< 1− ζ

2 .

Now suppose µ′
(
Θ×Tj

)
á1− ζ

2 . Since
∥∥µ′−µi(ti)∥∥ > ζ, there exists

(
θ, tj

)
∈ Θ×Tj

such that ∣∣∣µ′[θ, tj]− µi(ti)[θ, tj]∣∣∣ > ζ. (A.1)

Consider the conditional probability µ̄(·) ≡ µ′(·|Θ× Tj). We have

µ̄
[
θ, tj

]
á µ′

[
θ, tj

]
= µ̄

[
θ, tj

]
µ′
(
Θ× Tj

)
á µ̄

[
θ, tj

]
− ζ

2
, (A.2)

and therefore ∥∥∥µ′[θ, tj]− µ̄[θ, tj] ∥∥∥ < ζ
2
.
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Hence, by (A.2) and (A.1),∥∥∥ µ̄[θ, tj]− µi(ti)[θ, tj] ∥∥∥ á
∥∥∥µ′[θ, tj]− µi(ti)[θ, tj] ∥∥∥ − ∥∥∥µ′[θ, tj]− µ̄[θ, tj] ∥∥∥

>
ζ
2
,

which implies Fi(µ̄, µ̄)−Fi(ti, µ̄)á2η, by the definition of η. Now pick any ai ∈ Ai with∥∥µ̄ − ai∥∥ < γ, so that Fi(ai, µ̄)− Fi(µ̄, µ̄) > −η, and therefore,

Fi(ai, µ̄)− Fi(ti, µ̄) > η.

Hence, the payoff gain of the deviation from ti to ai is bounded below by

µ′
(
Θ× Tj

)
η á

(
1− ζ

2

)
η > ε,

and therefore ti is not an ε-best-reply to µ′, as required.
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