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Abstract

The inertia found in econometric estimates of interest rate
rules is a continuing puzzle. Many reasons for it have been of-
fered, though unsatisfactorily, and the issue remains open. In the
empirical literature on interest rate rules, inertia in setting in-
terest rates is typically modeled by specifying a Taylor rule with
lagged policy rate on the right hand side. We argue that inertia
in the policy rule may simply reflect the inertia in the economy
itself. Since optimal rules typically inherit the inertia present in
the model of the economy, empirical rules may simply reflect this.
Our hypothesis receives some support from US data. . Hence, we
agree with Rudebusch (2002) that monetary inertia is, at least
partly, an illusion, but for different reasons.
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1 Introduction

There is a conventional view that central banks adjust interest rates
gradually in response to macroeconomic developments. The empirical
evidence on the behaviour of central banks in the last two decades has
been summarized as an inertial Taylor (1993) rule, where the nominal
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interest rate adjusts only partially to inflation and the output gap, as
there is an interest rate smoothing component.1. A typical formula-
tion has the policy rate responding to its own lagged value as well as a
measure of the output gap and the inflation rate, such as the following:

it = ρit−1 + (1− ρ) (µππt + µyyt)

Here it is some sort of nominal interest rate that is used as a policy
instrument, πt is a measure of the inflation rate, and yt represents a
measure of the output gap. The coefficient ρ (∈ [0, 1]) is taken to rep-
resent the degree of inertia or interest-rate-smoothing. (The coefficients
µπ and µy are the usual long-run responses of the policy rate to inflation
and the output gap.)
Numerous explanations for smoothing have been offered, but they all

seem in some sense unsatisfactory. The main reason for the unsatisfac-
toriness is that Central Banks say they do not do it.
A list of popular explanations for the apparent gradualism includes

the following:

• Financial stability.2 It is argued that by adjusting interest rates
in small steps spread out over time, less pressure is put on the
balance sheets of financial institutions which might otherwise be
caught out by large unexpected changes.

• Financial markets may react adversely to frequent changes in the
direction of movement of short-term interest rates (Goodfriend
1991). Frequent reversals may give the impression that the Cen-
tral Bank is incompetent.

• Uncertainty about the structure of the macroeconomic model or
about the values of its the parameters

• Measurement errors in relevant data.3

• The linkage between future monetary policy and aggregate demand
can be exploited by central banks in order to stabilize the economy

1See for instance Clarida, Galì and Gertler (2000), who enphasize the empirical
importance of including a lagged interest rate in a monetary policy rule for the United
States. For a similar result for other industrial countries see Clarida, Galì and Gertler
(1998).

2Reviews of this literature are provided by Cukierman (1992), Goodhart (1996),
Walsh (2003), Sack and Wieland (2000).

3The importance of such uncertainties for gradualism is examined by Sack
(1998,2000), Startz (2003), Orphanides (2003), Rudebusch (2001), Wieland (1998),
among others.
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optimally. When the current state of the economy is affected by
expectations of future inflation (and other variables) it may be
optimal to adjust the interest rate with some inertia.4

• It may be desirable to choose a central banker with an explicit
interest rate smoothing objective, in a regime in which policy is
delegated to a central banker who pursues policy in a discretionary
(i.e., non-precommitted) manner.5

While many scholars accept that the apparent inertia is real, Rude-
busch (2002) argues that it is an illusion. Since the coefficient of the
lagged policy rate in empirical analyses frequently turns out to be large
and highly significant, interest rates should be highly predictable.6 How-
ever, on the basis of data on yield curves, he argues that they are not. He
suggests that empirical Taylor rules may be misspecified and that what
looks like inertia may actually be caused by serially correlated shocks.7

English, Nelson and Sack (2003) show that it is possible to test directly
the null hypothesis of serial correlated errors against the alternative of
partial adjustment; but they are unable to reject the presence of either
of them. Söderlind, Söderström and Vredin (2002) take up the question
of predictability, and find further evidence against the inertial Taylor
rule. They argue that a high coefficient of the partial adjustment com-
ponent is a necessary but not sufficient condition for having a highly
predictable interest rate. Predictability depends also on the other vari-
ables, namely the output gap and inflation. They find that, while it
is relatively easy to predict these, it is very difficult to predict interest
rates. They conjecture that this might result from the omission of an
unpredictable variable from the Taylor rule.
In this paper we try to reconcile monetary policy inertia with the

low predictability of short-term interest rates by proposing a different
inertial Taylor rule than the one usually considered in the literature.
We argue that the apparent inertia might arise from the the central
bank’s pursuing an optimal rule (or something of a similar character —

4See Woodford (1999).
5See Woodford (2003a). The previous two arguments for the optimality of mone-

tary inertia considered in the text do not presume a central bank’s loss function trad-
ing off objectives related to macroeconomic stability with an interest rate smoothing
objective (usually interpreted as a financial stability motive).

6In the empirical literature the estimated coefficient for the lagged policy rate is
ranging from .7 to .9. See Rudebusch (2002) for a review of the estimates found in
the literature.

7See also Lansing (2002) for a theorical support of the ‘illusion of monetary inertia’
hypothesis, based on real-time estimation of trend output.
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an ‘optimal-ish’ rule) for interest rates, which therefore inherits the iner-
tia in the economy itself. If the evolution of the output gap and inflation
depend on their own lagged values, the optimal rule for the interest rate
will typically do so too. We will argue that, for given coefficient of par-
tial adjustment, our alternative specification implies lower predictability
of the interest rate than that implied by the standard specification of
the inertial Taylor rule. In our empirical analysis we find support for
the alternative specification against the standard specification. More-
over, in the alternative specification, the estimated coefficient of partial
adjustment is below 0.5, which is lower than is usually found in the
literature.
The structure of the paper is as follows. In section 2 we consider

a simple empirical macro-economic model, along the lines of Svensson
(1997), and derive the optimal interest rate rule for the central bank.
We show that under certain conditions, this may be a simple rule that
looks rather like an inertial Taylor rule. Section 3 discusses our empirical
findings based on this alternative inertial Taylor rule. Section 4 makes
some concluding observations and address future research.

2 A simple framework

2.1 The model
Here we use a simple framework for examining the optimal interest rate
rule for a central bank, which is an extended version of the model used
by Svensson (1997).8 He argues that, even if there is no explicit role for
private agents’ expectations, the model has many similarities with more
elaborate models used by central banks.9

Consider the following model10

πt+1 = α1yt + (1− α2) πt + α2πt−1 + t+1, (1)

and
8In the litereature, Svensson’s (1997) model has been extended in several direc-

tions: for examining nominal income targeting (Ball 1999); for studying the im-
plications of monetary policy for the yield curve (Ellingsen and Söderström 2001;
Eijffinger, Schaling and Verhagen 2000); for examining model uncertainty, interest
rate smoothing and interest rate stabilization - i.e. for studying the optimality of a
more gradual adjustment of the monetary instrument (Svensson 1999). Moreover,
Rudebusch and Svensson (1999) provide empirical estimates for a model similar to
Svensson (1997) and use a calibrated version of the model in order to evaluate a large
number of interest rate rules.

9See for instance the discussions in Rudebusch and Svensson (1999) and Rude-
busch (2001).
10We have used the same notation as in Svensson (1997).
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yt+1 = β01yt − β2 (it −Etπt+1) + β3yt−1 + ηt+1, (2)

where πt is the inflation rate, yt is the output gap, it is the nominal repo
rate, i.e. the monetary instrument of the central bank, and t, ηt are
i.i.d. shocks.11 All the variables are considered as deviations from their
long-run average levels, which are normalized to zero for simplicity.
After substituting Etπt+1 with the expectation of expression (1), ex-

pression (2) becomes:

yt+1 = β1yt − β2it + β3yt−1 + β4πt + β5πt−1 + ηt+1, (3)

with

β1≡β01 + β2α1; (4)

β4≡β2 (1− α2) ;

β5≡β2α2.

The coefficients in (1) and (3) are all assumed to be positive, with 0 <
α2 < 1. Equations (1) and (3) coincide with those considered in Svensson
(1997) (equations 6.4 and 6.5 in his text) when α2 = β3 = 0.12 The
restriction that the sum of the lag coefficients of inflation in (1) equals 1
is consistent with the empirical evidence.13 An important feature of this
model is the presence of lags in the transmission of monetary policy. In
particular, the repo rate affects output with a one-period lag (where one
period corresponds to one year), while affects inflation with a two-period
lag. This feature is broadly consistent with the "stylized facts" of the
impact of monetary policy on output and inflation.
Finally, suppose that monetary policy is conducted by a central bank

with the following period loss function

L (πt, yt) =
1

2

£
π2t + λy2t

¤
, (5)

11See Svensson (1997) for the details on the model and in particular for the impli-
cations of substituting the long-term nominal rate with the repo rate.
12Contrary to Svensson we have assumed that the coefficient of one-period lagged

inflation in (1) is less than 1, instead of equal to 1. McCallum (1997) has shown that
when the coefficient is equal to 1 we may have problems of instability of nominal
income rules that would not arise if expectations of current or future inflation were
included in the model considered. See also Rudebusch (2002) and Jensen (2002)
for further analyses of the performance of nominal income rules for monetary policy
when a forward-looking price-setting behaviour is explicitly included in the analytical
framework.
13See for instance Rudebusch and Svensson (1999) for a test of this restriction in

a model similar to the one considered here.
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where λ > 0 is the relative weight on output stabilization. The intertem-
poral loss function is

Et

∞X
τ=t

δτ−tL (πτ , yτ) . (6)

The central bank minimizes the above intertemporal loss function by
choosing a sequence of current and future repo rates {iτ}∞τ=t.

2.2 Optimal interest rate rule

In solving the optimization problem we use a convenient simplification.
In the expression (3) of output the choice of iτ affects yt+1, but yt, yt−1, πt
and πt−1 are all predetermined. Thus we can write

yt+1 = ∆t + ηt+1, (7)

with

∆t ≡ β1yt − β2it + β3yt−1 + β4πt + β5πt−1. (8)

As observed above, the repo rate affects affects inflation with a two-
period lag. This can be seen by rewriting the expression (1) for inflation
in the following way

πt+2 = α1∆t + (1− α2)πt+1 + α2πt + α1ηt+1 + t+2, (9)

where we have considered inflation at time t+2 and inserted expression
(7). We can treat ∆t as the control variable. Using dynamic program-
ming, we can derive the optimal rule as the solution to the following
problem

V (Etπt+1, πt) = min
∆t

Et

½
1

2

£
π2t+1 + λy2t+1

¤
+ δV (Et+1πt+2, πt+1)

¾
,

(10)
subject to (7) and (9). The value function V (Etπt+1, πt)will be quadratic
and in the present case, where constant terms are absent, it can be ex-
pressed without loss of generality as

V (Etπt+1, πt) =
1

2
γ1π

2
t+1 + γ2πt+1πt +

1

2
γ3π

2
t + k, (11)

where the coeffcients γ1, γ2 and γ3 need to be determined. The remain-
ing constant k is a function of the variances of the shocks.
Here we have two state variables and one control variable. In gen-

eral, the optimization problem cannot be solved analytically by means
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of dynamic programming if there is more than one state variable. In the
simpler case with only one state variable, considered by Svensson, it is
possible to get an analytical solution for the optimization problem.
Nevertheless, we can make a qualitative assessment of the form of the

optimal rule. Svensson has shown that in the simpler case considered by
him the optimal rule takes the form of the Taylor (1993) rule

it = φ1πt + φ2yt,
with φ1 > 1 and φ2 > 0. What emerges in the present case?
The first order condition with respect to ∆t is given by

Etyt+1 = −
α1δ

λ
(γ1Etπt+2 + γ2Etπt+1) , (12)

where we have used (11).
The optimal interest rate can be derived by substituting (1) in (12)

and using (3) to yield

it=α2

∙
(1 + C)πt−1 +

β3
α2β2

yt−1

¸
+ (13)

(1− α2)

∙
(1 +A)πt +

µ
β1

(1− α2)β2
+B

¶
yt

¸
,

with

A≡ δα1
(γ1 + γ2) (1− α2) + γ1α

2
2

(1− α2)β2 (λ+ δα21γ1)
; (14)

B≡ δα21
γ1 (1− α2) + γ2

(1− α2)β2 (λ+ δα21γ1)
;

C≡ δα1
γ1 (1− α2) + γ2
β2 (λ+ δα21γ1)

.

In general, in a problem of this type, the optimal feedback rule can be
represented as a linear function of the state variables, here Etπt+1, and
πt. So we could represent the rule for∆t as∆t = f1Etπt+1+f2πt. Since
Etπt+1 can be represented as a function of current values and the first
lag of the output gap and inflation, when we solve for the interest rate,
the policy rule also emerges as a linear function of the same variables.
It would be useful to be able to sign the parameters in the feedback rule
(14). Since the value function is a positive definite quadratic form, it
must be the case that γ1 > 0, γ3 > 0, and γ1γ3 − γ22 > 0, but it is not
possible to sign γ2. If the coefficients on the right hand side variables
in (13) are all positive, and if the ratios of coefficients on the current
variables ( and ) are the same as the ratios of coefficients on lagged
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variables ( and ), then the policy rule may have the form of a moving
average of a simple Taylor rule. That is, (13) can be written as

it=α2 [µ3πt−1 + µ4yt−1] + (15)

(1− α2) [µ1πt + µ2yt] ,

with µ1 = (1 +A) , µ2 =
³

β1
(1−α2)β2

+B
´
, µ3 = (1 + C) , and µ4 =

β3
α2β2

.

If the pattern of coefficient were such that µ1/µ2 = µ3/µ4 then the
actual rule could be thought of as a moving average of a simple rule
it = µ1πt + µ2yt.

2.3 Simple rules
During the past decade, the research on monetary policy design has fo-
cused on simple rules - among which Taylor’s (1993) rule is a prominent
example - as opposed to more complicated or fully optimal rules.14 As
argued by Woodford (2003b, p. 507), a rationale for this choice can be
found in the greater transparency provided by simple rules, which may
increase central bankers’ accountability in terms of their commitment to
the given policy rule.15 Typically this literature has focused on simple
rules based on two or three parameters (and variables) which are opti-
mized for the given preferences and the given form of the rule assumed.
For example Rudebusch and Svensson (1999) estimate a model similar
to that presented here, with more lagged variables and an interest rate
smoothing argument added in the loss function. They derive numeri-
cally the optimal policy rule, which looks more complicated than ours.
Moreover they use the model to evaluate a large number of simple rules
for setting the interest rate.
Two main findings of this literature are that simple rules perform

nearly as well as fully optimal rules and that simple rules are more
robust than more complicated rules to model misspecification.
In this vein, we can simplify the optimal rule in a way that approx-

imates the behaviour of the optimal rule. In particular it is straight-
forward to see that the optimal rule (13) could be approximated by a
simple rule of the following form

it = ρit−1 + (1− ρ) it, (16)

with
14For a review of this literature see for example Williams (2003).
15See Svensson (2003) for a discussion of the problems associated to using judge-

ments in monetary policy based on simple instrument rules or targeting rules.
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it = µππt + µyyt, (17)

and 0 < ρ < 1.
In the empirical literature the standard inertial Taylor rule takes

instead the following form

it = ρit−1 + (1− ρ) it, (18)

with it equal to (17) or to a forward-looking version of (17) with future
expected inflation. The term it is usually interpreted as an operating
target for the policy rate.
The crucial difference of (16) with respect to (18) is that the inertial

component is proportional to the lagged operating target, instead of the
lagged interest rate. Hence, our alternative specification of the inertial
policy rule implies that the central bank gradually adjusts the operating
target for the policy rate.16

In our framework, substituting the lagged operating target with the
lagged interest rate in the simple rule could improve the approximation
of the optimal rule only if we had the lagged interest rate in the optimal
rule. This only happens if we have an interest rate smoothing objective
in the central bank loss function.
By using a model with forward-looking private sector, Woodford

(2003a) has shown that it may be optimal to delegate monetary pol-
icy to a central bank that has an objective function with an interest rate
smoothing motive. This is an interesting result. However, while there
exist examples in the real world of institutional arrangements that pe-
nalize central banks for not achieving given inflation targets, there is less
evidence of central banks being penalized for interest rate changes. The
reference to a financial stability objective is very general and it is con-
sistent also with an interest rate targeting objective without necessarily
implying an interest rate smoothing objective.17 Thus, to presume, as
Woodford and others do, that central banks have preferences of this kind,
which are unlike those specified in social loss functions, requires an ex-
plicit reference to an interest smoothing objective in the Law concerning
central banks.
Sack (2000, pp. 230-231) provides a further argument against an

explicit interest rate smoothing objective:

“To describe this behaviour, which has been referred to as
gradualism, many empirical studies of monetary policy incorpo-

16See Woodford (2003b, p. 96) for a discussion of interest rate rules with partial
adjustment on lagged operating target.
17See for example Goodfriend (1987).
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rate an explicit interest-rate smoothing incentive in the objective
function of the Fed. However, introducing this argument has
little justification beyond matching the data. Furthermore, the
above statistics provide evidence of gradualism only if the Fed
would otherwise choose a random-walk policy in the absence of
an interest-rate smoothing objective. Therefore, while establish-
ing that the funds rate is not a random walk, these statistics
do not necessarily provide evidence of gradualism in monetary
policy”.

Thus we can argue that it would be perfectly plausible to test empiri-
cally for alternative specifications of simple rules which do not necessarily
include the lagged interest rate, but provide as well some degree of iner-
tia reflecting the dynamic structure of the economy (and eventually the
uncertainty surrounding that structure).

3 Empirical evidence

3.1 Estimation of inflation and output equations
In order to gain some insights into the parameters of the inflation and
output equations used in the previous theoretical analysis we have first
estimated the following empirical model based on Rudebusch and Svens-
son (1999):

πt = κπ1πt−1 + κπ2yt−1 + κπ3πt−2 + ωt, (19)

and

yt = κy1yt−1 + κy2yt−2 + κy3

³eit−1 − eπt−1´+ ψt, (20)

where the variables were de-meaned prior to estimation. The data used
here are ex post revised quarterly data. Inflation is defined using the
GPD-chain weighted price index (Pt), with πt = 400 · (lnPt − lnPt−1).
The output gap is defined as the percentage difference betweeen actual
real GDP (Qt) and potential output (Q∗) estimated by the Congressional
Budget Office. The interest rate it is the quarterly average of the Fed
Funds rate.18 The data are illustrated in Figures ??, 2, and 3. In the
text we do not discuss the stationarity or otherwise of the data. A note
at the end of the appendix summarises some simple checks.

18While real GDP and the GPD-chain weighted price index were taken from FRED
of the Federal Reserve of San Louis, the (effective) Fed Funds rate was taken from
Datastream.
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Figure 1: United States, Federal Funds Rate

In table 1 we report Ordinary Least Squares estimates of the above
two equations over the period 1961 Q1 - 2004 Q2, with robust stan-
dard errors for the inflation equation. Following Rudebusch and Svens-
son the equations were estimated individually. In the output equationeit = (1/4)P3

j=0 it−j and eπt = (1/4)P3
j=0 πt−j. The inflation equation is

somewhat simpler compared to that estimated by Rudebusch and Svens-
son. According to the Wald test the null hypothesis that κπ3 = (1−κπ1)
has a p-value of .15, therefore we have imposed this restriction in the
estimation.

Table 1 Inflation and Output Equations with ex post revised data
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Figure 2: Output Gap

Inflation Output
κπ1 0.72

(7.80)
κy1 1.19

(16.52)

κπ2 0.09
(3.35)

κy2 −0.27
(−3.72)

κy3 −0.06
(−2.12)

R
2

0.81 R
2

0.91
SE 1.08 SE 0.77

Notes: Ordinary Least Squares estimates. T statistics in paretheses. R
2

and standard errors (SE) of residuals also reported. For the inflation equation
T-statistics are based on heteroskedasticity- and serial correlation-corrected
standard errors (Newey and West, 1987). Variables are de-meaned before
estimation. Sample period 1961Q1 — 2004Q4.

The estimates in Table 1 have rather poor statistical properties.
There is ample evidence of mis-specification and structrual instability
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Figure 3: United States, Inflation Rate

over the sample period. The errors suffer from serial correlation. We
offer these estimates as very crude indication of the orders of magnitude
of the parameters in the Svensson model. They can be inserted into
the optimzation exercise set out above to produce optimal policy rules
for interest rates. The figures may give some indication as to whether
the parameter restrictions above are satisfied and the optimal rule can
be regarded as a first-order moving average of a simple Taylor rule.

3.2 Optimal Rules from the EstimatedMacroModel

In the model above, equations (1) and (2), we insert parameter values
as follows:

πt+1 = 0.09yt + 0.72πt + 0.28πt−1

13



yt+1 = 1.19yt − 0.06 (it − Etπt+1)− 0.27yt−1
When the welfare function weight λ = 1 is chosen (i.e., output and
inflation deviations are equally weighted) in equation (5), we get the
following results. The optimal rule for the effective control variable ∆t

can be expressed as a feedback on the state variables πt and Etπt+1 (both
of these are pre-determined variables):

∆t = −0.698Et(πt+1)− 0.2011πt

Thus policy can be expressed as an inflation forecast rule, as Svensson
showed. This can be unscrambled to give a rule for the interest rate in
terms of the current and past output gap and inflation:

it = (20.9)yt + (12.4)πt + (−4.5)yt−1 + (−3.0)πt−1
The dynamics of expected inflation that result from applying this policy
would be:

Et(πt+2) = 0.66Etπt+1 + 0.26πt

Thus the policy rule stabilises inflation. The rule itself involves a very
strong response to current inflation and the output gap, which is then
reversed next period. This suggests a volatile path of interest rates:
the opposite of smoothing! This is something of a puzzle. However,
the policy has the property that the coefficients on output and infla-
tion approximately satisfy the condition µ1/µ2 = µ3/µ4 in (15) since
(20.9/12.4) ≈ (4.5/3.0). Hence the policy rule could be a moving aver-
age of a simple Taylor rule.
If an alternative welfare weight λ equal to 0.1 is chosen, then the

results are
∆t = −2.11Et(πt+1)− 0.6401πt

it = (23.1)yt + (36.7)πt + (−4.5)yt−1 + (−9.5)πt−1

Et(πt+2) = 0.53Etπt+1 + 0.22πt

Once again the rule approximates a moving average since (23.1/36.7)
≈ (4.5/9.5). However, in this case, with a lower welfare weight on output
deviations, the response to the current state is even more aggressive, and
there is a bigger reversal in the following period. Once again these policy
rules are not romotely like estimated Taylor rules.
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3.3 Estimates of Alternative Policy Rules
We now turn to estimating alternative forms of policy rule, the standard
inertial Taylor rule

it = ρit−1 + (1− ρ) it + ξt, (21)

and the alternative inertial Taylor rule

it = ρit−1 + (1− ρ) it + ξt, (22)

with

it = µ+ µπeπt + µyyt, (23)

and 0 < ρ < 1. ξt is an i.i.d. error term. Following Taylor (1993) and
Rudebusch (2002) the policy rate is assumed to react to the average
inflation rate over four quarters, eπt.
We allow for serial correlation in the errors in these two equations.

As Rudebusch (2002) argues, a partial adjustment model and a model
with serially correlated shocks can be nearly observationally equivalent.
However English, Nelson and Sack (2003) find that both play an impor-
tant role in describing the behaviour of the federal funds rate when they
allow for both of these hypotheses in the estimation of the policy rule.
The omission of a persistent, serially correlated variable that influences
monetary policy could yield the spurious appearance of partial adjust-
ment in the estimated rule. We assume that the shock ξt follows an
AR(1) process:

ξt = θξt−1 + εt. (24)

The combination of rule (21) with (24) yields the following expression
for the first difference of the interest rate:

∆it = (1− ρ)∆it − (1− ρ)(1− θ)(it−1 − it−1) + ρθ∆it−1 + εt. (25)

This expression corresponds to that used by English, Nelson and Sack
(2003). The combination of rule (22) with (24) yields the following
expression for the first difference of the interest rate:

∆it = (1− ρ)∆it − (1− θ)(it−1 − it−1) + ρθ∆it−1 + εt. (26)

Nonlinear Least Squares estimates of (25) and (26) are reported in tables
2 and 3, for the period 1987 Q4 - 2004 Q2, and for two subsamples of it.
The point estimates of ρ and θ are both highly significant for all rules,
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suggesting that both partial adjustment and serially correlated errors
are present. The coefficients on the output gap and inflation are largely
consistent with other estimates from the literature, with a significant
coefficient on the output gap and a coefficient on inflation greater than
one. Moreover, both rules appear to fit the data relatively well.
Interestingly, the degree of inertia implied by the alternative inertial

Taylor rule is systematically lower than that implied by the standard
specification, with an estimated coefficient of partial adjustment ρ for
the whole sample of .60 against one of .77. Meanwhile, the coefficient θ
is systematically higher in the case of the alternative specification than
in the standard specification. However, we have not tested whether
these differences are significant statistically.
Thus, as in English, Nelson and Sack (2003), the empirical evidence

suggests that specifications (25) and (26) of the policy rules perform no
worse than the more usual specifications (21) and (22). The alternative
specification suggests less monetary inertia but much greater importance
of serially correlated errors than does the standard specification.

Table 2 Standard inertial Taylor Rule with ex post revised data

1987Q4-1993Q4 1987Q4-2001Q2 1987Q4-2004Q2
µ0 0.15

(0.12)
1.10
(0.94)

1.28
(0.89)

µπ 2.31
(7.12)

1.85
(4.31)

1.66
(2.41)

µy 0.92
(5.61)

0.77
(3.94)

0.94
(3.49)

ρ 0.51
(7.58)

0.61
(7.34)

0.72
(6.49)

θ 0.34
(2.09)

0.80
(5.52)

0.77
(5.41)

R
2
0.99 .097 0.98

SE 0.26 0.31 0.33

Note: Nonlinear least squares estimates. T-statistics in parentheses
based on standard errors corrected for heteroskedasticity and serial cor-
relation (Newey and West, 1987). R

2
and standard errors (SE) of

residuals are reported for the level of the funds rate.

Table 3 Alternative Inertial Taylor Rule with ex post revised data
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1987Q4-1993Q4 1987Q4-2001Q2 1987Q4-2004Q2
µ0 0.41

(0.41)
1.70
(1.07)

−4.08
(−0.17)

µπ 2.15
(9.69)

1.40
(5.04)

1.10
(3.50)

µy 0.78
(5.66)

0.65
(4.56)

0.67
(4.56)

ρ 0.48
(6.62)

0.59
(6.49)

0.60
(8.64)

θ 0.70
(6.18)

0.94
(17.29)

0.99
(26.68)

R
2
0.99 .096 0.98

SE 0.28 0.35 0.36

Note: Nonlinear least squares estimates. T-statistics in parentheses
based on standard errors corrected for heteroskedasticity and serial cor-
relation (Newey and West, 1987). R

2
and standard errors (SE) of

residuals are reported for the level of the funds rate.

3.4 More general models
The two models — the standard rule and our revised rule — have been
presented as two alternatives. However, they can both be represented
as special cases of more general relations. The least restrictive is an
unrestricted linear model involving lags of the change and level of the
interest rate, and current and lagged values of the changes in the output
gap and inflation and their lagged levels:

∆it= c0 + c1∆it−1 + c2it−1 + c3∆eπt + c4∆yt + c5∆eπt−1 + (27)

c6∆yt−1 + c7eπt−1 + c8yt−1 + ut

A set of restrictions that brings this closer to the Taylor rules above is to
assume that the output gap and inflation rate enter through some sort
of target interest rate it, which is a a linear combination of the output
gap and the inflation rate. The necessary restrictions are :

c3/c4 = c5/c6 = c7/c8.

When these hold, the change in the policy rate can be written as

∆it = c01∆it−1 + c02(it−1 − it−1) + c03∆it + c04∆it−1 + ut (28)

with
it = µ0 + µπeπt + µyyt

This might be termed a semi-restricted model.
To get another step closer to the models estimated above, we can

impose the restriction that there is a common factor in the lag poly-
nomials for it and it so that the model can be represented as having a
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first-order autoregressive error term. This might be termed the hybrid
model, as it takes the form of a linear combination of the two models
set out above. The restriction that is imposed on the semi-restricted
model above is that

c03
1− c03

=
c02

1− c03 − c01 − c04
− c04

c01 + c04

and when this restriction is valid we can reduce the four parameters c01,
c02, c

0
3, and c04 to three, ρ, φ, and θ, which satisfy

(1− ρ− φ) = c03, (1− φ)(1− θ) = c02, θφ = c01, andθρ = c04

In terms of the levels of the interest rate the hybrid model gives:

it = (1− ρ− φ)it + ρit−1 + φit−1 + ξt (29)

it = µ0 + µπeπt + µyyt

ξt = θξt−1 + εt

As an expression for the change in the policy rate, the hybrid model
gives:

∆it = (1−ρ−φ)∆it+(1−φ)(1−θ)(it−1− it−1)+θφ∆it−1+θρ∆it−1+εt

The models set out above are special cases of this hybrid model. If we
assume ρ = 0, we get the "standard" type of inertial Taylor Rule. If
instead we assume φ = 0, we get the moving average form of Taylor rule,
in which there is no real, only apparent inertia. If we assume θ = 0, we
are assuming that the error term is not serially correlated.
Estimated over the sample period 1987Q4 to 2004Q2, the unre-

stricted, semi-restricted, and hybrid models show that the hybrid model
is an acceptable simplification of the unrestricted model. The relevant
summary statistics are reported in Table 4

Table 4 Summary Statistics: Unrestricted, Semi-Restricted, and Hybrid
Models

Unrestricted Semi-Restricted Hybrid
R2 0.62 0.61 0.61

R
2

0.57 0.57 0.58
SE of Regression 0.31 0.31 0.310
Sum of squared residuals 5.65 5.86 5.86
Log Likelihood -12.195 -13.42 -13.43
Akaike 0.63 0.61 0.58
Schwartz 0.93 0.84 0.78
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Note: Sample period 1987Q4—2004Q2. R2 measured for ∆it.

However, when further restrictions are imposed on the hybrid model,
they prove to be rejected by the data. Both the ‘Normal Taylor’ and
the ‘Alternative’ models are rejected against the alternative hypothesis
of the hybrid model. Consequently, for this sample period, neither
model suffices. There appear to be elements of both in the data. The
most that can be claimed is that, while structural inertia (represented
by our alternative model) plays some role in explaining interest rate
movements, there still appears to be an element of the ‘inexplicable’
inertia remaining.

Table 5 Estimates of Various Models

Hybrid Model
Normal Taylor

(ρ = 0)
Alternative
(φ = 0)

ρ 0.28 (0.10) 0 0.60 (0.10)
φ 0.48 (0.11) 0.71 (0.11) 0
µy 0.92 (0.21) 0.93 (0.38) 0.67 (0.11)
µπ 1.15 (0.42) 1.65 (0.63) 1.10 (0.26)
θ 0.93 (0.06) 0.76 (0.14) 0.98 (0.03)
const 0.07 (0.10) 0.083 (0.09) -0.04 (0.11)
R2 0.61 0.56 0.47

R
2

0.58 0.53 0.44
SE 0.310 0.325 0.36
Sum Squared Residuals 5.86 6.56 7.93
Log likelihood -13.43 -17.23 -23.59
Akaike info criterion 0.58 0.66 0.85
Schwarz criterion 0.78 0.83 1.02
Notes: Sample Period 1987Q4—2004Q2
While neither model is acceptable for the period 1987Q4—2004Q2, it

is possible to find shorter sample periods for which one or other of them
is acceptable, as Table 6 shows. This table shows the p-values for the
likelihood ratio test of the null hypothesis that the model is either the
standard or the alternative inertial Taylor rule against the alternative
hypothesis that the hybrid is the true model. Our alternative model
is acceptable providing the sample starts in 1983Q4 and ends before
1999Q4. But if the sample begins in 1987Q4 the model is rejected. The
standard inertial Taylor model by contrast is only accepted if the sample
beings in 1987Q4 and ends by 1999Q4. All this points to considerable
structural instability in these models, reflecting changing responses of
interest rates to output gaps and inflation.

Table 6 Partial Adjustment and Correlated Shock Rules: p-values
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Sample Standard Alternative Model
83Q4-93Q4 0.00 0.89

-96Q4 0.00 0.14
-99Q4 0.00 0.07
-04Q2 0.00 0.00

87Q4-93Q4 0.53 0.04
-96Q4 0.14 0.00
-99Q4 0.44 0.00
-04Q2 0.01 0.00

Note: The entries in the table are p-values of the Likelihood-Ratio Test.
The null hypothesis is partial adjustment for the standard inertial Taylor
Rule (columns headed ‘Standard’) or for the alternative inertial rule (columns
headed ‘Alt’), with and without serially correlated shocks.

The actual values of the interest rate and the fitted values for the
hybrid model are displayed in Figure 4.

3.5 Forward-looking Policy Rules
In the literature there exists empirical evidence supporting the impor-
tance of forward-looking policy rules versus backward—looking ones - see
for instance Orphanides (2001) and Clarida, Galì and Gertler (2000).
Thus it might be useful to compare our estimated backward-looking
policy rules with the estimates obtained from the standard specification
of monetary inertia with expectations of future inflation in the implicit
notional target. In Table 7 are reported Generalized Method of Moments
(GMM) estimates of rule (21) with (24) and for the case when

it = µ+ µπEt−1eπt+4 +Et−1µyyt. (30)

The instruments chosen were four lags each of inflation, the funds rate
and the output gap. As it is possible to see from Table 7, the goodness-
of-fit is not improved compared to the case of backward-looking policy
rules. Moreover, unlike in the case of backward-looking policy rules, the
estimates of the output coefficient are not always statistically significant.

Table 7 Forward-looking Inertial Rule with ex-post Revised Data
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Figure 4: Hybrid Model, estimated on sample 1987Q4 2004Q2

1987Q4-1993Q4 1987Q4-2001Q2 1987Q4-2003Q2
µ0 −3.35

(−1.28)
0.64
(0.50)

−0.87
(−0.55)

µπ 2.57
(3.51)

2.16
(4.16)

2.58
(3.83)

µy −0.30
(−0.59)

0.62
(3.73)

0.74
(4.20)

ρ 0.79
(11.69)

0.66
(5.32)

0.68
(6.51)

θ 0.07
(0.37)

0.62
(3.71)

0.67
(5.08)

R
2
0.94 .095 0.97

SE 0.60 0.37 0.38

Note: Generalised Method of Moments Estimates. Instruments are four
lags of each of inflation, the funds rate, output gap. T-statistics shown in
parentheses are based on standard errors corrected for heteroskedasticity and
serial correlation (Newey and West, 1987). R

2
and standard errors (SE) of

residuals reported for the level of the funds rate. The earlier end date for
the sample is required for the forward-looking specification.
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3.6 Evidence from yield curves
Rudebusch argues that the partial adjustment of monetary policy by a
central bank implies that the short-term interest rate should be highly
predictable. However, term structure evidence based on futures con-
tracts suggests that there is little if any information usually available
in financial markets for predicting the Fed funds rate 3-6 months ahead
and no information for predicting it 6-9 months ahead. On the contrary
within a 3-month horizon the 3-month eurodollar forecasts relatively well
the future change of the Fed funds rate (with an R2 of 0.57 percent).
Söderlind, Södeström and Vredin (2003) show that the degree of pred-

icatibility of the short-term interest rate depends crucially also on the
degree of predictability of inflation and output and not only on the de-
gree of monetary inertia. They show that, while it is relatively easy to
predict the variables that enter the Taylor rule, it is very difficult to
predict interest rates. They argue that this outcome might be related
to an omitted variable problem in the Taylor rule, with the potentially
omitted variable being not easily predictable.
In order to examine empirically the issue of predictability we con-

sider our estimated equations for output, inflation and run recursive
simulations for the Fed funds rate by using the different estimated pol-
icy rules for the 1987-2004 period. After having obtained one quarter,
two quarters and three quarters ahead predictions of the Fed funds rate
we estimate for the 1990 Q1 - 2004 Q2 period the following regressions:

it+1 − it=ψ0 + ψ1(Etit+1 − it) + ξt+1, (31)

it+2 − it+1=ψ0 + ψ1(Etit+2 −Etit+1) + ξt+2,
it+3 − it+2=ψ0 + ψ1(Etit+3 −Etit+2) + ξt+3.

The use of parameters estimated on the full sample should not mat-
ter if parameters are stable. There should not be any problem with this
exercise, as recursive estimations starting from 1990 Q1 support para-
meters stability for the different policy rules considered. Equations (31)
are the analogue of the equations considered by Rudebusch based on
the forecasts implied by futures contracts.19 In Table 8 are reported the
estimated parameters and the corrected R2 statistic for the two spec-
ifications. As it is possible to see our simple framework is capable of
replicating quite closely the pattern found by Rudebusch.20

19Equations (15), (16) and (17) in Rudebusch (2002), pages 1172-1173.
20Also Favero (2002) has shown that the predictive regressions based on model

projections and Fed Funds rate futures give very similar results. But he examines
only the standard specification of the inertial forward-looking Taylor rule.
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Table 8 Predictability of the Federal Funds Rate
ψ0 ψ1 R

2
SE

Standard Specification
One quarter ahead −0.02

−0.36
0.80
5.49

0.37 0.36

Two quarters ahead −0.05
−0.55

0.56
3.03

0.14 0.43

Three quarters ahead −0.07
−0.63

0.46
2.31

0.08 0.44

Alternative Specification
One quarter ahead −0.02

−0.37
0.83
4.44

0.30 0.38

Two quarters ahead −0.04
−0.44

0.67
2.64

0.11 0.43

Three quarters ahead −0.05
−0.50

0.63
2.36

0.09 0.44

Notes: OLS estimates. T-statistics shown below parameter estimates are
based on Newey and West (1987) heteroskedasticity- and serial-correlation-

corrected standard errors. R
2
and standard errors of the residuals are reported

for the first difference of the Federal Funds rate. Sample period for estimation
1990Q1—2004Q2.
Thus we can conclude that the issue of predictability of the short-

term interest rate might be misleading. There seems to be nothing wrong
with postulating a partial adjustment component in empirical Taylor
rules, at least from the point of view of predictability. Clearly, so far
in our analysis it remains still open the issue of which type of partial
adjustment is the one actually followed by the Fed. In this perspective
it is important to stress that, even if the illusion of monetary inertia
hypothesis might not seem to be supported by the predictability argu-
ment, Rudebusch’s hypothesis might still be supported by the emerging
of evidence in favor of our alternative specification of monetary iner-
tia. In fact, contrary to the standard specification, our specification of
monetary inertia reflects more the dynamic structure of the economy, as
it is inconsistent with an interest-rate smoothing objective in the cen-
tral bank’s loss function. Indeed, the partial adjustment component in
the alternative specification could be termed “structural inertia”, as op-
posed to “monetary inertia” for the partial adjustment component in the
standard specification of the inertial Taylor rule. On the contrary the
presence of serially correlated errors in the policy rule (for both specifi-
cations) should more reflect the presence of serially correlated variables
(different from inflation and output gap) usually omitted in the litera-
ture on interest rate rules. As shown for instance by Driffill et al. (2006),
likely candidates for these omitted variables are indicators of financial
stress related to a financial stability motive.
In order to find more indirect evidence on the two specifications of the
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partial adjustment component we consider the Expectations hypothesis
of the term structure of interest rates. This theory posits that the long
rate it,T is related to the current short rate and future expected short
rates as follows:

it,T =
1

T − t

TX
j=1

Etit+j−1,t+j + Ωt, (32)

where Ωt is a term premium often assumed constant or stationary. Let’s
compare the 3-month eurodollar rate taken at the beginnig of the quar-
ter, i3Mt , with the forecasted quarterly average Fed funds rate, Et−1it,
derived from the previous simulation excercise for the two specifications
considered. This implies estimating the following equation

i3Mt = τ 0 + τ 1Et−1it + ξt, (33)

by assuming a constant term premium with Ωt = Ω = τ 0.
The Expectations hypothesis implies that the spread between cur-

rent long and short rates should predict future changes in the short rate.
Unfortunately, researchers have generally found absence of predictive in-
formation. This result has been widely interpreted as a rejection of the
expectations hypothesis. An exception in the literature on the forecast-
ing ability of yield spreads is represented by the overnight spread. As re-
ported for instance in Rudebusch (1995), spreads between the overnight
Fed’s funds rate and one-month or three-month rates predict relatively
well changes from the current daily overnight rate to the average daily
rate over a one- or three-month horizon. Moreover, Mankiw and Miron
(1986), focusing on the three-month and six-month yield spreads, have
argued that the negligible predictive power of the term structure for fu-
ture short rates is more an implication of the Fed’s stabilization of short
rates rather than a failure of the Expectations hypothesis. Rudebusch
(1995) has provided a more rigorous empirical generalization of the link
between Fed’s behavior and the preditive content of the term structure,
with the maintained hypothesis of rational expectations. All the above
discussion implies that the 3-month eurodollar rate and the expected
Fed funds rate should support the Expectations hypothesis.
Finally, Favero (2002) has argued that the rejection of the expecta-

tions model found in the literature is based on the estimation of single-
equation models and on the assumption that realized returns are a valid
proxy for expected returns. By taking into account short-term interest
rates simulated forward from a small empirical macro model, similar to
the one used in here, he provides evidence on the US term structure that
does not lead to a rejection of the expectations model.
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In Table 9 we have reported OLS estimates for this direct test of the
Expectations hypothesis for the period 1990 Q1 -2004 Q2. If the theory
formalized by (32) is correct we should have τ 1 = 1. As it is possible to
see from the Wald test reported in Table 9, the Expectations-hypothesis
restriction is not rejected for both specifications of the inertial Taylor
rule. In Table 9, the reported t-student have been corrected with Newey-
West method as estimated errors exihibit serial correlation.
Unfortunately, the above testing procedure is based on a misspeci-

fied regression equation as there exists sound evidence that term premia
are time-varying. For instance, studies of long- and short-term Trea-
sury securities have shown that excess resturns in Treasury markets are
significantly time-varying and predictable and correlated with the busi-
ness cycle (see for instance Cocharane and Piazzesi 2002). While excess
returns on federal funds futures have been found relatively well pre-
dicted by both macroeconomic indicators (like employment growth) and
financial business-cycle indicators, and present a strong countercyclical
pattern (see Piazzesi and Swanson 2004). Indeed the omission of a per-
sistent, serially correlated variable that influences the term premium
could affect the estimation of τ 1 in equation (33). In order to check for
this problem we can use the same strategy used for the inertial Taylor
rule in presence of serially correlated shocks faced by the central bank.
Thus assuming that the shock ξt follows an AR(1) process

ξt = θξt−1 + εt, (34)

now we estimate by means of NLS the following equation:21

∆i3Mt = τ 0 + τ 1∆Et−1it − (1− θ) (i3Mt − τ 1Et−1it) + εt. (35)

In table 9 we have reported the NLS estimates for this new direct
test of the Expectations hypothesis for the period 1990 Q1 -2004 Q2. As
the Wald test in Table 9 shows, the expectations-hypothesis restriction
is rejected only for the standard inertial specification of the Taylor rule.
This finding suggests that rule (26) is more likely to be the rule actually
implemented by the Fed.

Table 9 A Direct Test of the Expectations Hypothesis

21The starting values for NLS were derived by means of Two-Stage Least Squares
(TSLS).
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Standard rule Alternative rule

Baseline
Equation

Serially
Correlated
Shocks

Baseline
Equation

Serially
Correlated
Shocks

τ 0 0.09
0.56

0.05
0.55

0.05
0.33

0.08
0.76

τ 1 1.03
32.74

0.68
7.61

1.04
32.99

1.02
24.78

θ 0.94
18.95

0.51
4.01

τ1 = 1
(p-val)

0.28 0.00 0.19 0.69

R
2

0.97 0.97 0.97 0.97
SE 0.33 0.32 0.36 0.32
Notes: OLS estimates for the baseline equaiton, non-linear least squares for
the equations serially correlated errors. T-statistics beneath estimated para-
meters based on Newey-West (1987) heteroskedasticity- and serial-correlation-

corrected standard errors. R
2
and standard errors (SE) of residuals are re-

ported for the level of the Federal Funds Rate; p-values of the F-statistic for
the Wald test of the hypothesis τ 1 = 1 are reported. Sample period for
estimations is 1990Q1 — 2004Q2.

3.7 Real time data
We re-estimate specifications (25) and (26) using real-time data, instead
of ex post revised data.22 Real-time data on the output gap is shown
in Figure 5. The two gap series differ in that the turning points in the
real-time data occur later than they do in ex post revised data. There
may be measurement errors in the estimates in Tables 2 and 3 if they are
based on data that were not available to the Federal Reserve at the time
of its policy decisions.23 The real-time measures of the output gap and
inflation used are based on the given quarter’s releases of data for the

22For easing the comparison with the findings of English, Nelson and Sack (2003),
we have used the same real-time data considered in their work. We thank Brian Sack
for having kindly provided us the data. We have also used the real-time data used in
Orphanides (2001), but we have got similar results. The estimations based on this
last data set are not reported, but are available upon request. We thank Athanasios
Orphanides for having kindly provided us the data.
23See Orphanides (2001) for an analysis of the informational problems related with

the estimation of simple monetary policy rules. In particular he shows that estimates

derived from ex post revised data differ remarkably from estimates derived from real-

time data.
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Figure 5: Measures of the output gap, on ex post revised and real time
data

previous quarter.24 In re-estimating specification (26) we have assumed
that the lagged operating target it−1 related to rule (22) is based on
real-time data available at time t− 1 and is not revised at time t.25

Table 10 reports Nonlinear Least Squares estimates of specifications
(25) and (26) for the period from 1987 Q4 to 2001 Q2. The results
confirm the presence of both partial adjustment and serially correlated

24The real-time data set is made available by the Federal Reserve Bank of Philadel-
phia.
25It could be argued that it would be more plausible to assume that the central

bank revises also the lagged operating target by considering the real time values
of past data available at time t. Nevertheless, for inflation our assumption can be
viewed as a good approximation, as inflation is revised relatively less heavily than
output. Thus the assumption adopted is satisfactory given our purpose to show that,
opposite to the standard specification, with our alternative specification of the Fed’s
policy rule the inflation coefficient becomes significant.
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errors in the estimated interest rate rules. However, like the findings of
Orphanides (2001), in the case of rule (25) the coefficient of inflation
falls below one and is not statistically different from zero.26 This is
unfortunate! As Henderson and McKibbin (1993) and Clarida, Galì
and Gertler (2000) show, a coefficient on inflation greater than one is
required for stability in macroeconomic models with policy rules of this
type.27 However, in rule (26) the coefficient of inflation is statistically
different from zero. This suggests that, on the basis of real-time data,
rule (25) is misspecified, while the correct specification is more likely to
be rule (26). There is still the problem that the coefficient of inflation
in rule (26) is greater than one only for the subsample 1987 Q4 - 1993
Q4, where it equals 1.04. The fact that it is not greater than one for the
period 1987 Q4 - 2001 Q2 could be due to the Federal Reserve reacting
to more timely information than the lagged GDP deflator. Forecasts
from surveys or alternative indicators of inflation might be included in
the information set available for the policy maker. The null hypothesis
that the coefficient of inflation in rule (26) is equal to 1.04 also for period
1987 Q4 - 2001 Q2 is not rejected using a Wald test.

Table 10 Inertial Taylor Rules with Real Time Data
Standard specification Alternative specification
87Q4—93Q4 87Q4—01Q2 87Q4—93Q4 87Q4—01Q2

µ0 3.61
1.98

3.66
4.57

2.05
2.21

2.81
1.65

µπ 0.47
0.73

0.47
1.36

1.04
4.17

0.71
3.92

µy 0.95
3.50

0.64
1.90

0.69
6.39

0.54
5.43

ρ 0.67
3.95

0.65
2.71

0.43
2.99

0.37
3.62

θ 0.26
1.63

0.73
2.17

0.65
3.80

0.94
10.15

R
2
0.98 0.96 0.97 0.95

SE 0.37 0.34 0.41 0.38

26In the working paper version of their analysis, of 2002, also English, Nelson and
Sack report a not significant coefficient for inflation in the standard inertial Taylor
rule in the estimates based on real-time data (see table 3 in their text).
27The principle that interest rate rules should respond more than one for one

to changes in inflation is called “Taylor principle”: see for instance Walsh (2003).
However, Bullard and Mitra (2002) and Woodford (2003b) have shown that in general
the necessary and sufficient condition required for stability may have a more complex
form than that expressed by the Taylor principle. In particular it is possible to
show that µπ > 1 is only a necessary condition for the determinacy of the rational
expectations equilibrium, and even values of 0 < µπ < 1 can be consistent with
stability. However, as argued by Woodford (2003b, p. 254) the Taylor principle
continues to be a crucial condition for determinacy if it is reformulated as: “[...] At
least in the long run, nominal interest rates should rise by more than the increase in
the inflation rate”.
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Notes: Non-linear least squares estimates. T-statistics beneath estimated pa-
rameters based on Newey-West (1987) heteroskedasticity- and serial-correlation-

corrected standard errors. R
2
and standard errors (SE) of residuals are re-

ported for the level of the Federal Funds Rate. The data set used here is the
same as that used by English et al (2003).

4 Conclusions

In this paper we have attempted to add to the many already-existing
explanations for inertia in empirical Taylor rules. Our proposal is that
the optimal interest rate rule for stabilising inflation and the output gap
will typically inherit the inertia in the economic system itself. If the
evolution of the output gap and inflation depends on their own lagged
values, then the rule for the control variable, the interest rate, will typ-
ically do the same. When estimated empirically, a rule in which the
interest rate depends on current and lagged values of the state variables
— the output gap, inflation, and so on — may look rather like one in which
the interest rate depends on its own lagged values. The picture is likely
to be further confused by omitted autocorrelated variables which engen-
der a serially correlated error term in the estimated equation. We have
derived a rule from a simple macroeconomic model. The optimal interest
rate rule implied by crude estimates of this model looks something like a
modified form of Taylor rule with inertia. When we estimate alternative
forms of interest rules directly, our alternative formulation is not wholly
inconsistent with the data. While it does not completely supplant the
standard Taylor rule, neither does the standard rule explain the data
satisfactorily. A hybrid model containing elements of both appears to
perform rather better than either alone.
Rudebusch and others have pointed to the inconsistency between

the apparent forecastability of interest rates implied by the inertia in
estimated Taylor rules, and the lack of forecastability implied by yield
curves. The future interest rates implicit in yield curves for Trasury
Bills are not good forecats of future interest rates. However, it turns
out that, with the modified form of inertial Taylor rule, allowing for the
need to forecast the output gap and inflation that enter the rule, there
does not appear to be significant inconsistency between the implications
of the yield curve data and the direct estimates of the Taylor rule.
The results obtained here are suggestive rather than conclusive. This

line of enquiry needs to be developed in a number of ways. The macroeo-
conomic model we used contains no forward looking behaviour or other
nods in the directions of microeconomic foundations, and the empirical
estimates of it a crude in the extreme. We need to use a more con-
ceptually coherent model and to obtain better quality estimates of it.
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We need to examine the implied forecastability of interest rates from
alternative pieces of data more carefully.
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APPENDIX

The equation for inflation can be written as

πt+2 = α1∆t + (1− α2)πt+1 + α2πt + α1ηt+1 + t+2, (36)

and this can be converted to a system of first order difference equations
so that it can be written as a standard dynamic programming problem.
The choice of ∆t is made at time t knowing πt, Et(πt+1), yt and so on.
So we write the equation as

Et+1(πt+2) = α1∆t + (1− α2)Et(πt+1) + α2πt + α1ηt+1 + (1− α2) t+1

and we supplement the system with

πt+1 = Et(πt+1) + t+1

then we have a first order system in the two variables Et(πt+1) and πt.
It can be written as

zt+1 = Azt +But + νt+1

where we have defined zt ≡
∙
Et(πt+1)

πt

¸
, ut ≡ [∆t] and νt+1 ≡

∙
α1ηt+1 + (1− α2) t+1

t+1

¸
and the parameter vectors and matrices are A =

∙
1− α2 α2
1 0

¸
, B =∙

α1
0

¸
.

The period loss function is

Lt = (1/2)(π
2
t + λy2t )

and we try to minimize Et

¡P∞
s=t δ

s−tLs

¢
by choosing a sequence of

∆t,∆t+1,∆t+2, .... So we can write the period loss function (for pe-
riod t+1) as

Lt+1 = (1/2)
¡
(Et(πt+1) + t+1)

2 + λ(∆t + ηt+1)
2
¢

In terms of expected values as of date t, we have

Et(Lt+1) = (1/2)
©
z0tRzt + u0tλut + (σ

2 + λσ2η)
ª

Now the problem can be written in a standard form. We choose ∆t so
that

Vt(Et(πt+1, πt) = min
∆t

Et

©
z0tRzt + u0tλut + (σ

2 + λσ2η) + δVt+1(Et+1(πt+2), πt+1)
ª
,
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subject to the equation of motion of the system given above. The cost-
to-go function Vt(Et(πt+1, πt) has the form

Vt(Et(πt+1, πt) = z0tvtzt + kt

where kt is a constant (whose value depends on the variance terms). So
we can write the problem as

z0tvtzt+kt = min
ut

Et

©
z0tRzt + u0tλut + (σ

2 + λσ2η) + δ(z0t+1vt+1zt+1 + kt+1)
ª
,

This is the standard textbook formulation of the dynamic programming
problem. The first order condition gives

Et [λut + δBvt+1zt+1] = 0

or
λut + δB0vt+1(Azt +But) = 0

hence the feedback rule

ut = −(λ+ δB0vt+1B)
−1δB0vt+1Azt

which is conventionally written as

ut = Ftzt

with
Ft ≡ −(λ+ δB0vt+1B)

−1δB0vt+1A

Putting the feedback rule back into the expression for the cost-to-go
function above gives

vt = R+ F 0
tλFt + δ(A+BFt)

0vt+1(A+BFt)

In the infinite horizon case, assuming the system can be controlled and
we have convergence, vt = vt+1 = v, and

v = R+A0[δv − δvB(λ+B0δvB)−1B0δv]A

and
F ≡ −(λ+ δB0vB)−1δB0vA

What does all this imply for the interest rate rule? We have from
the above that

∆t = f1Et(πt+1) + f2πt

where F = [f1 f2 ]. Since the control variable ∆t is defined as

∆t ≡ β1yt − β2it + β3yt−1 + β4πt + β5πt−1

32



and since
Et(πt+1) = α1yt + (1− α2)πt + α2πt−1

the rule for the interest rate becomes

it =
β1 − f1α1

β2
yt +

β4 − f1(1− α2)− f2
β2

πt +
β3
β2

yt−1 +
f1α2 + β5

β2
πt−1

Are Interest Rates, the Output Gap, and Inflation Station-
ary?
Some readers may be curious as to whether the variables we have

used a stationary or have unit roots. In some sense, if the US Federal
Reserve is pursuing an effective policy to keep inflation low and output
close to capacity, all three variables are highly likely to be stationary.
In most of the empirical analysis in the paper it is assumed that the
variables are stationary. However, in some of the estimated equations
the dependent variables have been expressed in first differences, such
as the change in the interest rate; and the independent variables have
been expressed in changes and in linear combinations of lagged levels,
which are stationary even if some of the individual component variables
are not, providing the US Federal Reserve is following something like a
Taylor Rule in the long run.
For the output gap, for the sample 1960Q4 — 2004Q2, we obtain an

augmented Dickey-Fuller (ADF) test statistic of -3.55, with a p-value of
0.0076 for the null hypothesis of a unit root. On this test, a unit root is
rejected. For the Federal Funds rate, over a sample 1961Q1 — 2004Q2,
the ADF test statistic is -2.41, with a p-value of 0.14. Here a unit root
cannot be ruled out. For inflation, over the sample 1961Q3 to 2004Q2,
the ADF test statistic is -2.23, with a p-value of .20. Again, a unit root
cannot be rejected. The non-rejection of a unit root in inflation and
nominal interest rates is not unexpected. Both have been persistent,
and there was a marked rise in both until the late seventies and early
eighties, since when both have drifted back down to low single figures
(at an annual percentage rate). The non-rejection may just reflect the
meeting of stationary but persistent series with a test of known low
power.
If a unit root in these were accepted, then it would be legitimate to

estimate a long run Taylor rule from a regression of the interest rate on
inflation and the output gap. Doing that for the sample 1987Q4—2004Q2
yields
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Figure 6: Residuals in estimated long run Taylor rule

it=0.58
1.36

+ 0.83
9.68

yt + 2.14
11.93

πt

R2= .75,DW = 0.21,

(T-statistics beneath estimated parameters.) The parameters are not
massively dissimilar from the ‘Taylor’ values of 0.5 and 1.5. Instead
we have 0.83 amd 2.14, implying a stronger long-run response. The
errors from this equation are shown in figure 6. They do not look
particularly stationary. The persistent fall from around 1995 to 2004
may reflect the under-measurement of the output gap as the economy
grew more strongly than expected without inflation taking off, and the
Fed’s allowing interest rates to remain low.
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