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Abstract

I analyze a communication game in which an uninformed decision maker chooses an action

based on the advice of an informed but possibly biased expert. The quality of each alternative

is described by a set of arguments, and each argument favors one of two alternatives. Each

argument is veri�able, but the number of arguments is not. The expert selects a subset of

arguments to reveal to the decision maker.

In all equilibria the biased expert exaggerates his reports in favor of his preference, yet

he does not suppress all of the unfavorable information. All equilibria with continuous belief

function are outcome equivalent and most informative, and a unique equilibrium survives

when a small cost of concealing information is added. In every continuous equilibrium, if the

expert reports many arguments, the decision maker can infer the expert�s bias, and she bases

her choice solely on the number of arguments that favor the expert; otherwise the expert�s

report is ignored. If the decision maker expects the expert to be honest, the biased expert

in�ates his reports more.

If experts di¤er in the number of arguments they observe, a high-quality expert is better

informed, but the decision maker may be able to infer more information from the low-quality

expert�s reports.



1 Introduction

Consider an investor who consults a �nancial adviser to help her choose between two in-

vestment options. The quality of each investment depends on many characteristics: average

predicted returns, risk, correlation between the returns and the investor�s income, liquidity,

etc. The investor does not know the values of these characteristics, but more importantly, she

does not even know what the characteristics are and how many are relevant. For example,

she may not know whether a given investment is risky, but she also may not realize that some

investments o¤er tax breaks or di¤er in liquidity. The �nancial adviser can credibly reveal

any characteristics of the investments. However, since the investor does not know how many

characteristics there are, the �nancial adviser can conceal some of them.1 Additionally, the

interests of the investor may not coincide with the interests of the �nancial adviser. The �-

nancial adviser may be honest, or he may have an agenda. For example, the �nancial adviser

may always recommend an investment fund that pays him a commission for each persuaded

investor.

Many situations exhibit similar features. A patient does not know what factors she should

consider when choosing a treatment, and she relies on the information provided by her doctor,

but the doctor may bene�t �nancially if the patient chooses a particular option. An author

of an academic article will not fabricate results, but he can present them selectively. A

journalist may omit unfavorable information about his favorite candidate in an election. A

lobbyist may hide an unfavorable analysis.

In this paper I formalize these situations in a communication game, focusing on two pri-

mary questions. First, I am interested in how much information is transmitted and whether

there is room for persuasion when lying is not allowed and information manipulation takes

place through selective disclosure. Second, I am interested in the details of communication.

Anecdotal evidence suggests that even a biased expert reveals some information that is unfa-

vorable to him. Even if the �nancial adviser wants the investor to choose a particular option,

he is likely to mention some positive characteristics of the alternative option as well. Many

commercials use two-sided messages; for example, an ad for dBase IV software attempted to

persuade the consumers of the software�s superiority by disclosing that it was more costly

and poorer at handling errors than the competing products.2 I am interested in whether

these observations can be explained in a simple, game-theoretical framework.

1First, it may be illegal to misrepresent the facts. Second, the investor may be able to verify the aspects
revealed by the adviser. On the Internet, almost any information is available to the decision maker, and the
role of the expert is to identify the information that is relevant. For example, an investor may not think
about looking at tax breaks, but once informed about their existence, she can easily verify whether a given
investment o¤ers a tax break.

2See Pechmann (1992). Other examples include Continental Airlines admitting a variety of problems such
as canceled �ights and lost luggage when trying to persuade the clients about its new commitment to quality
(Crowley and Hoyer, 1994).
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The existing literature is not well suited to analyze these questions. Information is usually

modeled as a single variable, which can either be credibly disclosed3 or is non-veri�able.4 My

motivating examples �t neither of these scenarios. Additionally, in order to understand

whether a rational model can explain the use of unfavorable information by a biased expert,

I need to model characteristics explicitly. And �nally, in contrast to a large body of the

literature, I want to analyze situations in which the preference of the expert is unknown to

the decision maker.5

The communication game in this paper has the following structure. There is one expert

and one decision maker. The decision maker chooses one of two alternatives�Right or Left.

The quality of the alternatives is described by a set of arguments, each of which favors one

alternative. The total number of arguments is a random variable and is known to the expert,

but is unknown to the decision maker. The expert can credibly reveal any subset of the

arguments; that is, he cannot misrepresent any argument, but he can hide some of them.

The expert can be either an honest type, who reveals all of the arguments, or a persuader,

who wants the decision maker to choose one particular alternative, independent of its quality.

The type of the expert is private information. The decision maker cares about the quality

of the alternatives, but she also has some prior preference bias. This bias is unknown to the

expert, which implies that he does not know what quality su¢ ces to make the decision maker

choose a particular alternative.

I characterize all equilibria in a version of the game in which the expert can be either

honest or biased in favor of Right, and show that there is a subset of equilibria for which the

belief function is continuous. Moreover, across all equilibria in this set, the belief function

is the same, which implies that all equilibria in this set are outcome equivalent. Apart from

the obvious attractiveness of the continuity property, continuous equilibria exhibit other

appealing properties. First, they are the most informative equilibria of the game. Second, in

the general version of the game with the two-sided bias, the unique equilibrium that survives

the introduction of a small cost of concealing information has continuous belief function. For

most of the analysis I focus on the properties of the continuous equilibria.

The model delivers three main �ndings. First, in every equilibrium, the persuader biases

his reports in favor of his preference, but he does not completely suppress all unfavorable

information. The reason for that is the following. The decision maker is aware that the

3See Grossman and Hart (1979) and Grossman (1981).
4See Crawford and Sobel (1982), Krishna and Morgan (2001), Levy and Razin (2006), Battaglini (2002),

and Chakraborty and Harbaugh (2005).
5The large body of the literature assumes that the preferences of the expert are common knowledge; see,

for example, Crawford and Sobel (1982), Krishna and Morgan (2001), and Battaglini (2002). Sobel (1985),
Benabou and Laroque (1992), Morris (2001), and Morgan and Stocken (2003) assume uncertainty about the
expert�s preference, but allow the bias to be only one-sided. Dimitrakas and Sara�dis (2003), and Li (2005)
allow for two-sided bias in cheap-talk games. Only Wolinsky (2003) allows for two-sided bias in a game with
partially veri�able signals.
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persuader may conceal arguments; therefore, she tries to infer the preference of the expert.

Since the honest expert reveals all of the arguments and he is very unlikely to have only

arguments that favor one alternative, the persuader needs to reveal unfavorable information

to convince the decision maker that he is honest.

Second, in a situation in which the expert can either be honest or be a persuader toward

Right, the decision maker bases her decision solely on the number of arguments that favor

Right, unless she observes a very balanced report. It is in the interest of both types of experts

(honest and persuader) to reveal all arguments that favor Right, which is why the decision

maker observes all arguments of this type. It is surprising, however, that she ignores the

arguments that favor Left. Although these arguments carry some information about the

quality of the alternatives, they do not carry any information about how many arguments of

this sort have been concealed, and therefore they do not help the decision maker with her

decision.

When the expert can be biased in favor of any alternative, the decision maker does not

know whether the expert wants to conceal arguments that favor Right or those that favor

Left. This may suggest that little information is revealed in the equilibrium. However, if the

expert uses many arguments, in the equilibrium the decision maker is able to infer the bias of

the persuader; only the honest expert and the persuader toward Right report many arguments

that favor Right. Hence, the decision maker understands that there are no arguments that

favor Right other than the ones that the expert discloses. On the other hand, when the expert

reveals few arguments, the decision maker cannot infer the direction of the potential bias.

She does not know whether she faces a persuader toward Right, in which case he is likely to

have concealed many arguments that favor Left, or she faces the persuader toward Left, in

which case he is likely to have concealed many arguments that favor Right. As a result, when

she observes few arguments, the decision maker ignores them completely.

The ability of the decision maker to extract information depends crucially on her un-

certainty about the choice problem. If the decision maker is familiar with the problem, she

has a more precise estimate of how many arguments she should consider. For example, an

experienced investor knows more about the complexity of investing than an inexperienced

one. I show that the decision maker�s utility increases with her familiarity with the problem.

The model easily extends to situations in which the expert receives only a fraction of

the relevant arguments. Allowing the experts to di¤er in how many arguments they observe

leads to surprising results. There is a trade-o¤ between consulting a high-quality expert

and a low-quality expert; in some cases, the decision maker may prefer to consult a low-

quality expert. A high-quality expert receives a large fraction of the relevant arguments

and a low-quality expert receives a small fraction of the relevant arguments. The information

contained in the arguments of a high-quality expert is a precise measure of the state of nature.

However, the decision maker knows more about how many arguments a low-quality expert
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is likely to observe; therefore, she can more easily extract the information from him. After

observing a report, the decision maker can estimate more precisely how many arguments

remain concealed. If the expert is likely to be honest, the �rst e¤ect is more important.

When the expert is likely to be a persuader, the decision maker may be willing to sacri�ce

some of the precision of the information for a better ability to extract it.

This paper makes three main contributions. First, it complements the existing litera-

ture. The papers that are closest to mine are Milgrom and Roberts (1986) and Shin (1994).

Milgrom and Roberts (1986) propose a model in which each alternative is characterized by

an unknown number of attributes, but they focus on the scope of information transmission

when there are two experts with exactly opposing preferences. Competition between experts

leads to full information revelation, and the lack of uncertainty about the experts�prefer-

ences makes it irrelevant how many unfavorable attributes they disclose. Shin (1994) analyzes

a game in which experts manipulate information through selective disclosure, but he puts

less structure on the signals that can be revealed. Also, in Shin (1994), the expert�s bias

is common knowledge; in my paper, it is not. Second, my paper provides insights into the

structure of communication. It formalizes the casual observation that even a biased expert

is likely to use arguments that oppose his interests. And third, the model presented here is

a good starting point to analyze communication in more elaborate settings. The argument

structure of information may be useful when analyzing two-sided communication in debates

or bargaining situations.

The paper is organized as follows. In Section 2, I describe the game. In Section 3, I

analyze a version of the model in which the expert is either honest or a persuader. In Section

4, I extend the analysis to the case in which the expert can be of three types. In Section

5, I provide some comparative statics results and extensions of the model. In Section 6,

I highlight the similarities and di¤erences between my model and the existing literature.

Section 7 concludes.

2 The Model

The environment
There are two alternatives: Right and Left. The quality of each alternative is described

by a set of N random variables, each of which can take value Left or Right. Each random

variable is called an argument. An argument that takes value Left favors alternative Left, and

an argument that takes value Right favors alternative Right. The interpretation of arguments

follows the interpretation of alternatives. If alternative Left is "investing in option Left" and

alternative Right is "investing in option Right," then arguments are the relevant aspects

of those investments. For example, an argument that "option Left had historically higher

returns than option Right" favors option Left.
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The number of argumentsN is a random variable itself. Let R be the number of arguments

that favor Right and L be the number of arguments that favor Left; hence L+ R = N . For

tractability, I assume that N; L and R are continuous variables, and N 2 [0; 1] :6 , That
implies that N; L and R are fractions, but I will continue to say number when referring to

them in order to remind the reader of their interpretation.

Arguments are distinct but equally important. This means that only the number of

arguments that favor each alternative matters, not their identity. For example, the situation

in which investment Right o¤ers a tax break but is illiquid is equivalent to the situation in

which investment Right is liquid but o¤ers no tax breaks. As a result, we can represent the

state space in a simple form: S = f(L;R) 2 [0; 1]� [0; 1] : R+ L � 1g :7

The quality of an alternative is equal to the fraction of arguments that favor it, qR = R
R+L

and qL = L
R+L .

8 The state of nature is distributed according to the probability density

function f (L;R) which is continuous with full support. It satis�es the following regularity

condition:

dE
h

R
R+L jR;L � L̂

i
dR

> 0 for all R and L̂; (1)

dE
h

L
R+L jL;R � R̂

i
dL

> 0 for all L and R̂:

Condition 1 says that observing an additional argument that favors one alternative increases

the estimate of the quality of this alternative, all else equal.

The expert
The expert observes the state of nature (L;R) ; and sends a report (�; �) ; where � is the

number of arguments that favor Left that the expert reveals, and � is the number of arguments

that favor Right that the expert reveals. Let � = f(�; �) : �+ � � 1; � � 0; � � 0g denote
the set of all reports. A report (�; �) 2 � is feasible in the state (L;R) if � � L and � �
R. Let V (L;R) = f(�; �) 2 [0; 1]� [0; 1] : � � L; � � Rg be the set of all such reports. The
structure of reporting implies the following. First, the expert must be truthful. Whenever

he discloses an argument that favors Right, he cannot claim that it favors Left. Second, he

cannot create arguments. The expert cannot credibly convey to the decision maker that he

6The maximum number of arguments is normalized to one, but this normalization is without loss of
generality. All results would still hold for N 2 [0;1] if the same regularity conditions as imposed in the model
hold.

7Glazer and Rubinstein (2001) show that if the decision maker commits to conditioning her actions on the
identities of the arguments, then even if the arguments are ex ante identical, she can extract more information
from the expert. In my model such a commitment is infeasible since the decision maker does not know ex ante
the identities of the arguments. She cannot commit to choosing Right if she receives argument A and Left if
she receives argument B, because she does not distinguish between arguments A and B; ex ante.

8This implies that quality is a relative measure, but it is straightforward to extend my model to a setting
in which qR and qL are independent.
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has disclosed all of the arguments.

There are three types of experts. The expert may be biased toward Right, Pr, biased

toward Left, Pl; or an honest expert, H. An honest expert non-strategically reveals all of the

arguments in each state of nature.9 Biased experts are caller persuaders. A persuader toward

Right, wants the decision maker to choose Right independent of the state of nature; that is,

he maximizes Pr fRight is choseng. The probability that the expert is of type i 2 fPl; Pr;Hg
is �i:

The reporting strategy of an expert of type i is a function �i : (L;R)! V (L;R) : A report

is full if �i (L;R) = (L;R) :

The decision maker
The decision maker does not know the realization of (L;R) ; but she holds a correct

probabilistic belief. She chooses one of the alternatives, and her utility function is:

U (Right jL;R) =
R

R+ L
� �i; (2)

U (Left jL;R) =
L

R+ L
+ �i � 1;

where �i 2 [0; 1] is a preference parameter. This implies that decision maker is risk neutral,
and she chooses alternative Right if and only if E

h
R

R+L j�; �
i
� �i. She cares only about

the quality of each alternative; the total number of arguments does not enter into her utility

function because it does not carry any relevant information. Keeping the quality constant,

choosing alternative Right when the total number of arguments is high does not result in a

di¤erent utility level than when the total number of arguments is low.

The parameter �i describes an ex ante preference of the decision maker. For example,

the decision maker may have some intrinsic preference for Honda over Toyota when buying a

car, an investor may prefer stocks of environmentally friendly companies, a voter may prefer

a Republican candidate because of family tradition, other things equal. In other words, �i
is the smallest quality of alternative Right that will make the decision maker choose Right.

�i =
1
2 means that ex ante the decision maker is indi¤erent between the alternatives.

The decision maker knows her �i; but the expert does not. This assumption makes the

model more interesting since it implies that the expert does not know exactly when the

decision maker prefers Right. Let h (�i) be the probability density function of �i with the

corresponding distribution function H (�i) : h (�i) is continuous and has full support over

[0; 1].

The decision maker observes a report (�; �) ; forms a belief about the state of nature, and

then chooses the alternative that maximizes her utility. Let � (�; �) be the equilibrium belief

9Later, I show that many of the results are robust to variations in this assumption and would hold if the
honest expert were strategic and maximized the utility of the decision maker.
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of the decision maker about qR if she observes a report (�; �) : The decision maker does not

know the type of the expert.

The game
The triangle in Figure 1 represents the state space S and the report space �: If the state

of nature is (L0; R0), then V (L0; �0) is the set of all feasible reports. Z (L0; R0) is the set of

all states of nature that allow the expert to send a report (L0; R0) :

Figure 1: The state space. Each point in the triangle represents a state of nature. The ray
from the origin represents the states in which qR = �i:

The line �i represents the states of nature that generate the same quality of alternative

Right, qR = �i. The decision maker of type �i prefers to choose alternative Right if the state

of nature lies above the �i line and alternative Left otherwise.

First, nature determines the type of the expert i 2 fPl; Pr;Hg and the set of arguments
(L;R). Then, the expert observes his type and the state of nature (L;R) ; and sends a report

(�; �) to the decision maker. After observing the report, the decision maker chooses one of

the alternatives.

I look for a perfect Bayesian equilibrium of this game. A perfect Bayesian equilibrium in

this game is a reporting strategy for each type of the expert that maximizes his utility given

the strategy of the decision maker, the belief function � (�; �) = E
h

R
R+L j�; �

i
; and the choice

strategy of the decision maker d (�; �) 2 fLeft ;Rightg that maximizes her utility given her
beliefs:

3 One-sided bias

In this section, I consider a situation in which the decision maker knows the direction of the

potential bias of the expert. Let � be the probability that the expert is biased toward Right,

i.e. of type Pr; and 1� � be the probability that the expert is honest, i.e. of type H:
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Often, the decision maker knows which alternative the expert favors. A sales representa-

tive may honestly advise the customer about the quality of his product, but certainly he is

not interested in increasing the sales of the competing products. A lawmaker may propose a

particular policy because it is bene�cial to his constituency, but if it is not, clearly he prefers

the policy to be adopted rather than rejected. The �nancial adviser may be honest, but if he

is known to receive a higher commission from a speci�c investment fund for each persuaded

investor, then the investor will be suspicious whenever the adviser recommends this fund. I

analyze the case with three types of the expert in Section 4.

3.1 The properties of the equilibria

There is multiplicity of equilibria in this model, which is a typical feature of communication

games. Based on the continuity of the equilibrium belief function, � (�; �) ; all equilibria can

be divided into two groups. Proposition 1 describes common properties of all equilibria, and

provides the details of the set of continuous equilibria.

Let the ambiguity area be the set of all reports that are used by the persuader in an

equilibrium, f(�; �) : �Pr (L;R) = (�; �) for some (L;R) 2 Sg. Hence, the ambiguity area

includes all reports that do not allow the decision maker to identify the type of the expert.

Proposition 1

a) There are in�nitely many equilibria in this game and all share the following features.

In each equilibrium the ambiguity area is a strict subset of �: The persuader biases

his reports toward Right, but he does not typically suppress all arguments that favor

Left. Upon observing the report from the ambiguity area, the decision maker�s belief is

a function of the revealed number of arguments that favor Right only. The belief � (�; �)

is weakly increasing in �:

b) The equilibria do not depend on the distribution of the decision maker�s preference �i:

c) There is a unique equilibrium belief function � (�; �) that is continuous in reports (�; �) :

All equilibria characterized by this function are outcome equivalent. In any such equi-

librium � (�; �) is strictly increasing in �; and for each R; there exists �R > 0; de�ned

by

��R0 �
R0

R0 + �R0
= Pr (Hj� � �R0 ; � = R0)E [qRjL � �R0 ; R = R0] (3)

+Pr (Prj� � �R0 ; � = R0)E [qRjR = R0]

and
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i. Pr reveals all arguments that favor Right, � = R;

ii. Pr reveals a subset of arguments that favor Left; for L � �R; he sends a report

� = zR (L) � �R; and for L > �R; he sends a report � = sR (L) � �R; where sR
and zR solve

R

R+ �R
=

R

R+ �
Pr (L = �jR) + R

R+ z�1R (�)
Pr
�
L = z�1R (�) jR

�
(4)

+
R

R+ s�1R (�)
Pr
�
L = s�1R (�) jR

�
;

with zR (0) = 0 and sR (1�R) = 0:

Proof The proof of this proposition and the detailed description of the discontinuous equi-
libria are in the Appendix.

Proposition 1 says that all equilibria have the following two properties. First, the strategy

of the persuader includes revealing arguments unfavorable to him, a property predicted by

casual observations. In terms of the motivating example, a �nancial adviser who is biased

toward investment option Right, while saying that this investment option has high returns

and is relatively less risky, will mention its low liquidity. Second, when the expert does not

reveal himself to be honest, the decision maker forms her beliefs using only the number of

arguments that favor Right that have been revealed to her. This is an interesting �nding,

given that the arguments that favor Left carry some information about each alternative.

However, because the persuader does not necessarily reveal all arguments that favor Left, the

decision maker does not know how many arguments of this type are concealed from her, and

therefore � does not help her in the decision making.

The equilibria do not depend on the distribution of the decision maker�s preference type

as long as this distribution is continuous with full support. The reason for that is simple:

the persuader in favor of Right wants to generate as high belief about the quality of Right as

possible, independent of the details of the distribution of �i.

Proposition 1 says that there is a unique equilibrium belief function that is continuous

in reports. Figure 2 represents all continuous equilibria. The triangle represents all states of

nature, S; and all reports, �; at the same time. The white area, which I call the revealing area,

represents reports that are used in equilibrium only by H. The shaded region is the ambiguity

area which includes all reports used by the persuader. The boundary of the ambiguity area

is determined by �R de�ned by equation 3.

In equilibrium, the persuader reveals all of the arguments that favor Right and some

arguments that favor Left. If the state of nature lies in the area of ambiguity, that is, if the

quality of Right is high enough, the persuader reports according to zR (L). For example, if

the state of nature is (L1; R0) ; the persuader sends (zR0 (L1) � L1; R0) : If the state of nature

9



Figure 2: The details of the continuous equilibria. The shaded region represents the ambiguity
area.

lies in the revealing area, the persuader reveals only a subset of the arguments that favor Left

in such a way that his report lies in the ambiguity area. For example, if the state of nature

is (L2; R0) the persuader reveals (sR0 (L2) < �R0 ; R0) :

The highest number of arguments that favor Left that the persuader reveals for any R

is �R: After observing a report from the revealing area, the decision maker knows that the

expert has revealed all arguments, and she believes � (�; �) = �
�+� : After observing a report

from the ambiguity area, she forms her belief based only on � : � (�; �) = �
�+��

:

The complete proof of Proposition 1 is in the Appendix, but I provide below the intuition

for the shape of this equilibrium. First, in any equilibrium, for each R; there must exist some

�R such that the decision maker holds the same belief for any report of a form (� � �R; R) :10

The reason for that is the following. Assume that for some � = R0 the belief is strictly

decreasing in �; like in the �rst triangle in Figure 3.11 In such a case Pr never sends any

reports of a form (� 2 (0; ") ; R0) (any reports that lie on the arrow); he prefers to send (0; R0)
instead. Therefore, the belief that the decision maker forms when she sees (0; R0) must be

smaller than 1. When the decision maker sees a report (";R0) ; she knows that it was sent

by the honest expert, and she believes � (";R0) = R0
R0+"

: But as "! 0; we have � (";R0)! 1;

and that contradicts the �nding that � (";R0) < 1: Alternatively, the belief may be strictly

increasing in �; as shown in the triangle on the right. Then the persuader, when sending

reports of a form (� 2 [0; "); R0) (from the arrow), sends the highest � possible. In particular,
10The argument presented here holds for any equilibrium of the game.
11Although the argument presented here assumes a certain degree of continuity of beliefs, the formal proof

presented in the Appendix does not.
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he may send (";R0) only in the states of nature that lie on the thick dashed line: when (L;R)

are such that R
R+L �

R0
R0+"

: That implies that � (";R0) � R0
R0+"

: But then, for " small enough,

the belief must be arbitrarily close to 1, and that contradicts the assumption that the belief

is strictly increasing in �; since the belief can never be greater than 1:

Figure 3: The shape of the equilibrium.

For each R; �R is unique, and the reason for that is the following. I have just established

that the belief for any report of the form (� � �R0 ; R0) is the same, and that implies that it
is equal to the belief the decision maker would hold if she knew that the report is of the form

(� � �R0 ; R0) ; without knowing the exact �: Such a belief is

E [qRj� � �R0 ; � = R0] = Pr (Hj� � �R0 ; � = R0)E [qRjL � �R0 ; R = R0]

+Pr (Prj� � �R0 ; � = R0)E [qRjR = R0] :

In equilibrium, this belief must be equal to R0
R0+�R0

: To see that, consider �0R0 < �R0 ; like in the

right triangle in Figure 3. For such �0R0 we have
R0

R0+�
0
R0

> E
h

R
R+L j� � �

0
R0 ; R0

i
: But then

in equilibrium only H sends a report
�
�0R0 + ";R0

�
; therefore, �

�
�0R0 + ";R0

�
= R0

R0+�
0
R0
+"
>

E
h

R
R+L j� � �

0
R0 ; R0

i
for " small enough. Hence, the persuader should always try to send�

�0R0 + ";R0
�
instead of any report from the ambiguity area, but this way it is impossible

to generate a belief E
h

R
R+L j� � �

0
R0 ; R0

i
< R0

R0+�
0
R0

within the ambiguity area. Analogously,

if �0R0 > �R0 then
R0

R0+�
0
R0

< E
h

R
R+L j� � �

0
R0 ; R0

i
; but given that the persuader always

reveals all arguments that favor Right, it is impossible to generate �
�
�0R0 ; R0

�
> R0

R0+�
0
R0

:

That proves that �R0 must solve equation (3), and I show in the Appendix that the solution
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of this equation is unique.

To support a constant belief for all reports of the form (� � ��; �) ; the persuader must
use a particular strategy when concealing information. For the belief to be constant for a

given � and �s in the ambiguity area, it must be the case that the lower the quality of Right

is, the more extreme the report of Pr is. Such a strategy solves equation (4). Since Pr is

indi¤erent between all reports (� � �R; R) ; there are many strategies sR (L) and zR (L) that
solve (4); sone such strategy is depicted in Figure 4.

Figure 4: The strategy of the persuader. The arrows connect a state of nature with an
equilibrium report.

The details of the strategy of the persuader shed some light on why the decision maker

ignores the arguments that favor Left when the report lies in the ambiguity area. On the one

hand, a smaller number of arguments that favor Left implies a higher quality of alternative

Right if the expert happens to report fully. On the other hand, a smaller number of arguments

that favor Left implies that more arguments of this type are concealed from the decision maker

if the expert is not reporting fully. These two e¤ects cancel each other out, and the decision

maker holds the same belief independent of �:

Figure 5 represents the equilibrium behavior of the decision maker in any continuous

equilibrium. The line �i represents states in which R
R+L = �i: The decision maker prefers

alternative Right in the states that lie above this line and prefers alternative Left otherwise.

Ri is the number of arguments that favor Right for which ��Ri = �i: This means that if the

decision maker observes Ri; she is indi¤erent between the alternatives. Seeing a report from

the ambiguity area, the decision maker chooses Right if R � Ri; and she chooses Left if

R < Ri. If she observes a report from the revealing area, she chooses Right if the report lies

above the �i line.

In Figure 5 the shaded areas represent the states in which the decision maker chooses Left :

12



Figure 5: The behavior of the decision maker. The triangles represent the choice of the
decision maker given the state of nature and given that the expert happens to be an honest
type or a persuader, respectively.

When the number of arguments that favor Right is low enough, the decision maker chooses

Left even if she receives an extreme report. The states in which Right is optimal but Left is

chosen are represented by the striped area, which I call a skeptic mistake. The decision maker

is skeptical about the quality of Right if the expert claims that it is high, but provides few

arguments to support his claim. It is interesting that in the states of nature from the striped

area every player of the game prefers the decision maker to choose alternative Right, but she

nevertheless chooses Left in equilibrium. The dotted area represents successful persuasion;

that is, the states in which Left is actually better but the decision maker nonetheless is

persuaded to choose Right.12

Among all equilibria the set of equilibria with the continuous belief function stands out.

First, all continuous equilibria are outcome equivalent, that is, they are characterized by the

same belief function and by the same choice of the decision maker in each state of nature;

they di¤er only in the details of the strategy of the expert. The same is not true about the set

of discontinuous equilibria. Second, the proof of Proposition 1 reveals that all discontinuous

equilibria require the persuader to play a rather elaborate strategy, even in the states of

nature in which he is indi¤erent between doing that and revealing all of the arguments. This

feature of the discontinuous equilibria is not very attractive; it seems natural to expect that

an indi¤erent persuader would reveal all of the arguments. We can expect that revealing all

of the arguments is easier or cheaper, for example, it may require a smaller mental e¤ort

than constructing an elaborate strategy, or there may be a �xed legal or reputation cost of

12Persuasion in my model happens despite full rationality of the decision maker. For examples of behavioral
persuasion see Mullainathan and Shleifer (2005) and Murphy and Shleifer (2004).
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concealing information, or the expert may experience guilt if he conceals information (see for

example Gneezy 2005).

Proposition 2 says that if we perturb the game by adding a small �xed cost � > 0 of sending

a report that is not full, measured in terms of utility, then there is a unique equilibrium in

the perturbed game, which converges to a continuous equilibrium in the original game.13 ;14

Let � be the original game, and � (�) the perturbed game.15

Proposition 2 The perturbed game � (�) has a unique equilibrium which as � ! 0; converges

to a continuous equilibrium with the properties described in Proposition 1, and with zR (L) =

L:

Proof In the Appendix.
In the rest of the paper I focus on the continuous equilibria. First, the only equilibrium

that survives the introduction of a small cost of concealing information is continuous. Second,

since in every discontinuous equilibrium we can �nd two reports arbitrarily close to each

other that generate very di¤erent beliefs, it seems that such an equilibrium requires a lot of

rationality on the part of the decision maker who has to observe and interpret the reports

perfectly. Based on previous research one can expect that any noise in sending or interpreting

the arguments should exclude the discontinuous equilibria.16 Finally, focusing only on the

continuous equilibria does not result in large loss of generality since all discontinuous equilibria

display many qualitative features of the continuous equilibria, as seen in Proposition 1. In

all equilibria the persuader biases his reports, but does not suppress all of the unfavorable

arguments, and if the report favors Right, the belief is a function of the arguments that favor

Right only.

Proposition 3 establishes another attractive feature of the continuous equilibria.

Proposition 3 All continuous equilibria are equally informative, and they are the most infor-
mative equilibria of the unperturbed game (measured by the decision maker�s ex-ante utility).

Proof In the Appendix.
13One may argue that the cost should depend on the number of arguments that are being concealed. The

perturbed game with variable cost is more complicated to analyze, as any equilibrium in the pertubed game
depends critically on the shape of the cost function. I conjecture, however, that if the variable cost is concave,
there is a unique equilibrium in the perturbed game, and it converges to the same equilibrium. The same is
not true, however, for convex cost.
14Kartik (2005) introduces an increasing cost of lying in a Crawford and Sobel (1982) type game and shows

that only the most informative equilibrium can be a limit of monotone equilibria as the cost goes to zero.
Kartik, Ottaviani and Squintani (2006) show that an increasing cost of lying when the state space is unbounded
leads to a fully revealing equilibrium.
15Many economists have proposed re�nements that restrict the set of equilibria in communication games

(Farrell 1993, Sobel 1985, Rabin 1990, Matthews, Okuno-Fujiwara and Postlewaite 1991, Blume 1994).
16See, for example, Carlsson and van Damme (1993) and Battaglini (2002).
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All continuous equilibria are equally informative because they are outcome equivalent.

One can understand the intuition for the latter result by investigating the main di¤erence

between every discontinuous and every continuous equilibrium. Figure 6 shows an example

of a discontinuous equilibrium. All other equilibria di¤er mainly in the number, size and

location of the shaded trapezoids.17 All reports lying in each shaded trapezoid induce the

same belief. In all equilibria of this game, the belief given a report from the ambiguity area

depends only on the number of revealed arguments that favor Right. Figure 6 shows that ���
is not strictly increasing in � in a discontinuous equilibrium. In the continuous equilibrium

each � carries di¤erent information, while in any discontinuous equilibrium some �s carry the

same information; therefore, less information is revealed.

Figure 6: An example of a discontinuous equilibrium. Each shaded trapezoid consists of
reports that induce the same belief. The curve represents the continuous equilibrium.

3.2 Benevolent expert

So far, I have assumed that the honest expert reveals all of the arguments. Alternatively,

the honest expert may want to maximize the utility of the decision maker, i.e. he may be

benevolent. One can see easily, however, that any continuous equilibrium of the original game

is still an equilibrium of a game with a benevolent type of the expert, and the benevolent

expert behaves like an honest expert. To see this, note that if the state of nature lies in

the revealing area, the benevolent expert cannot do better than to report fully, because in

17Focus on one trapezoid from Figure 6. In an equilibrium it may be that also some reports from the
rectangle that completes this trapezoid can generate the same belief as the one generated by the reports from
the trapezoid.
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this way he induces the correct belief. If the state of nature lies in the ambiguity area, the

benevolent expert would like to induce a higher belief than the one induced in equilibrium,

but there is no feasible report that can achieve that; therefore, again, full reporting is optimal.

The proposition below states an even stronger result; it says that the continuous equi-

librium is also the unique equilibrium in the perturbed game with the strategic, benevolent

expert.

Proposition 4 Let the expert be either a persuader or a benevolent expert who maximizes
the utility of the decision maker. Consider a perturbed game �0 (�; �; B), where � is a �xed

cost of concealing information and � is a fraction of honest experts. There exists a unique

equilibrium in the perturbed game, and it converges to a continuous equilibrium of the original

game with zR (L) = L.

Proof In the Appendix.

4 Two-sided bias

In this section, I consider a situation in which the expert can be biased toward either alter-

native. The expert can be Pr; Pl or H with probabilities �r; �l and �H ; respectively.

Sometimes the decision maker is not only uncertain whether the expert is honest, but she

also does not know the potential bias of the persuader. A �nancial adviser may give honest

advice, or he may have interest in promoting a particular investment fund, but the decision

maker may not know which investment fund o¤ers the adviser the highest commission. A

scientist publishing a comparison of the performance of two drugs may be honest or biased,

and the reader may not know which pharmaceutical company funded the research.

As we have seen in the previous section, when the expert is either honest or biased toward

Right, the decision maker knows that all arguments that favor Right are revealed, and she

uses those arguments to form her beliefs. Unless the expert reveals himself to be honest, she

disregards the arguments that favor Left completely. When the expert can be biased in either

direction, the decision maker cannot use the same logic; therefore, we can expect that much

less information is revealed. This is only partially true, however. Proposition 5 describes the

equilibrium that survives the introduction of a small cost of concealing arguments. In this

equilibrium, the persuader toward Right and the persuader toward Left separate themselves

if they happen to receive many arguments that favor their alternatives. In these states,

the decision maker can use the same skeptical approach as in the one-sided case to infer

information.
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Proposition 5 There exists a unique continuous equilibrium in the perturbed game � (�) :

As � ! 0; it converges to the continuous equilibrium of the original game, characterized by

the parameters �R; �L and by the functions �R; �L; sR (L) ; sL (R) ; such that

i. for all (L;R) such that R � �R; Pr reveals all arguments that favor Right, and reveals a

subset of arguments that favor Left: � = sR (L) if L � �R and � = L if L < �R; which
solve

R

R+ �R
=

R

R+ �
Pr (L = �jR) + R

R+ s�1R (�)
Pr
�
L = s�1R (�) jR

�
; (5)

ii. for all (L;R) such that L � �L; Pl reveals all arguments that favor Left, and reveals a

subset of arguments that favor Right: � = sL (R) if R � �L and � = R if R < �L;

which solve

L

�L + L
=

L

�+ L
Pr (R = �jL) + L

s�1L (�) + L
Pr
�
R = s�1L (�) jL

�
; (6)

iii. there exists a double ambiguity area such that when R < �R; Pr sends reports from this

area only; and when L < �L; Pl sends reports from this area only: The belief is constant

for all reports in the double ambiguity area,

iv. �R and �L solve the following equations

��R0 � R0
R0 + �R0

= Pr (Hj� = R0; � � �R0)E [qRjR = R0; L � �R0 ] (7)

+Pr (Prj� = R0; � � �R0)E [qRjR = R0] ;

��L0 �
�L0

�L0 + L0
= Pr

�
Hj� = L0; � � �L0

�
E
�
qRjL = L0; R � �L0

�
(8)

+Pr
�
Prj� = L0; � � �L0

�
E [qRjL = L0] :

Proof in the Appendix.
Figure 7 represents the equilibrium for symmetric f (L;R) and for �l = �r: In this equi-

librium �R = �L and �
�
�L; �R

�
= 1

2 : The light shaded areas represent the ambiguity area for Pr
(along the vertical axis) and Pl (along the horizontal axis). The ambiguity area for Pr con-

tains all reports used by Pr and H only, while the ambiguity area for Pl contains all reports

used by Pl and H only. The dark square represents the set of reports that in equilibrium are

used by all three types of the expert, the double ambiguity area.

As before, each type of persuader biases his reports; therefore, reports that consist of many

relatively balanced arguments are sent only by the honest expert. Because each persuader

biases the report toward his preferred alternative, in the equilibrium only H and Pr reveal
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Figure 7: Two-sided bias.

many arguments that favor Right, and only H and Pl reveal many arguments that favor Left.

Hence, reports that consist of many arguments reveal the potential bias of the expert. After

observing many arguments that favor Right (reports from Pr ambiguity area), the decision

maker knows that she does not face Pl; and hence, she knows that all arguments that favor

Right have been revealed to her. Similarly, when she observes many arguments that favor

Left (reports from Pl ambiguity area), she knows she does not face Pr; and therefore, she

knows that all arguments that favor Left have been revealed to her.

Another interesting feature of this equilibrium is that the decision maker ignores reports

that contain few arguments only. After receiving any report from the double ambiguity area,

the decision maker cannot infer the potential direction of the expert�s bias. Unable to use

skepticism to form beliefs, she ignores such reports altogether. Therefore, for small R and L

the equilibrium resembles a pure babbling equilibrium.

5 Comparative statics and extensions

In this section, I analyze how the parameters of the model, such as the probabilities of

di¤erent types of the experts and the prior distribution of arguments, a¤ect the equilibrium.

How much information is transmitted should also depend on the quality of the expert�s

information, which so far has been assumed perfect. In the last part of this section, I extend

my model to allow the expert to have imperfect knowledge about the true state of nature.
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5.1 Varying the probability of facing the persuader

This section analyzes how changes in the probability of facing the persuader a¤ect the agents�

utilities and, more generally, the whole equilibrium. First, I look at what happens when the

fraction of honest experts becomes negligible and what happens when the expert is honest

with probability almost 1: Second, I analyze how the probability of facing a particular type of

the persuader impacts the bias of his reports and the probability of persuading the decision

maker.

Since there are three types of the expert, it is necessary to specify how the remaining

probabilities change when the probability of facing the expert of type i changes. In the

proposition below, I vary the probability of Pr and keep the conditional probability of facing

the honest type given that the expert is not Pr constant. In such a case the shape of the

ambiguity area for Pl remains the same.

Proposition 6 In every continuous equilibrium, for Pr; lim�H!1 �R = 0; lim�H!0 �R =
��R; and for Pl; lim�H!1 �L = 0 and lim�H!0 �L = ��L; where ��R and ��L are such that
R

R+��R
= E [qRjR] and ��L

��L+L
= E [qRjL] : Keeping �H

1��r constant, as the probability of facing

Pr decreases,

i. the reports of the persuader Pr become more extreme,

ii. the utility of Pr increases,

iii. the utility of Pl decreases, and

iv. the expected utility of the decision maker increases.

Proof In the Appendix.
First, Proposition 6 states that as the probability of facing the honest expert increases,

the ambiguity areas for both persuaders disappear, and the equilibrium converges to a fully

informative equilibrium. On the other hand, as the probability of facing the honest expert

goes down, �R converges to some ��R < 1�R and �L converges to ��L < 1�L: That means that
the ambiguity areas are always strict subset of �; and that the equilibrium never becomes a

pure babbling equilibrium. The assumption that arguments are veri�able prevents equilibria

from becoming completely uninformative in the L dimension. In the equilibrium, the decision

maker learns how many arguments favor Right and nothing about how many arguments favor

Left.

Figure 8 shows how the equilibrium changes as �r decreases: �1 and �0 > �1 are two

di¤erent probabilities of facing Pr. The thick curves represent the initial equilibrium in

which �r = �0 = �l: Since the conditional probability of facing H is kept constant, the shape

of the ambiguity area for Pl remains unchanged as �r changes. As �r ! 0; the ambiguity
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area for Pr becomes smaller, as represented by the thinner curve. The double ambiguity area

for �r = �0 is the shaded region.

When �r decreases, the reports of Pr become more extreme. The reason for this is the

following. Sending a report that is not extreme works in two opposite directions. If the report

comes from H; a less extreme report implies a lower qR; hence it is less likely that the decision

maker chooses Right. On the other hand, if the report comes from Pr, a less extreme report

implies that Pr has concealed fewer arguments that favor Left, and therefore, the more likely

it is that the decision maker chooses Right. As �r decreases, the �rst e¤ect dominates, and

Pr has a higher incentive to bias his reports. In terms of my motivating example, this result

says that the �nancial advisor biased toward an investment option that is not very popular

among other advisers will not use very many arguments that oppose this option.

Figure 8: The e¤ect of decreasing �R; keeping
�H
1��R constant.

From Figure 8 one can see that when the decision maker faces Pr; she chooses Right

more often when � is low (always for �1; and whenever R � R�0i for �0). Therefore, the

utility of the persuader toward Right increases. If the expert happens to be Pl; the decision

maker chooses Right more often, which decreases the utility of the persuader toward Left.

However, the utility of the decision maker increases, because she is more likely to face the

honest expert.

Proposition 6 implies that a �nancial adviser biased toward a stock which is unpopular

among other advisers is better at persuading the investor, while a �nancial adviser biased

towards a popular stock is unlikely to be successful.
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5.2 Varying the familiarity of the problem

Recall that f (L;R) is the prior probability density function of the arguments, from which

one can derive the prior density function of the total number of signals g (N) : The prior dis-

tribution of N re�ects the decision maker�s knowledge about the choice problem. It describes

how the total number of arguments varies from situation to situation for the same decision

problem. For example, in each election campaign di¤erent number of issues is important,

which is the model can be represented by a relatively spread prior over N: Other choice prob-

lems are likely to be characterized by roughly the same number of arguments every time the

decision maker faces them, for example, choosing an investment option or buying a car, and

that is equivalent to a distribution of N concentrated around the mean. Alternatively, the

prior distribution of N may describe the decision maker�s knowledge about the problem. An

investor with a very spread distribution of N knows little about the nature of the problem,

while an experienced or educated investor is likely to have a very concentrated distribution

of N:

In this section, I analyze how the prior distribution of arguments a¤ects the utility of the

decision maker, in cases in which the potential bias of the persuader is known, that is, when

the expert can be either Pr or H. To isolate the e¤ect of changing the distribution of N;

keeping the distribution of the quality, qR; unchanged, I reformulate the problem in terms of

(qR; N) �
�

R
R+L ; L+R

�
; and assume that qR is uniformly distributed and independent of

N , which implies that the joint density of quality and N is equal to the density of N :

g (qR; N ; z) = g (N ; z) :

Let g (N ; z) be symmetric around 1
2 ; and z be a parameter that measures stochastic dom-

inance: if z1 > z2 then g (N ; z1) second-order stochastically dominates g (N ; z2), and as

z !1 ; g (�) becomes degenerate at N = 1
2 :

Proposition 7 For every preference type of the decision maker �i; and every � > 0, if

z1 > z2 then the decision maker�s utility is higher for g (N ; z1) than for g (N ; z2) : As z !1;
there is full revelation of information.

Proof in the Appendix.
Proposition 7 says that the lower the uncertainty about N is, the better-o¤ the decision

maker is. When the decision maker knows more about the arguments available to the expert,

she can more easily extract his information: when she receives a report, she can estimate

rather precisely how many arguments have been concealed from her. The decision maker is

better o¤ in situations that are standard or familiar to her. When faced with an unfamiliar

choice, or a choice that is familiar but very di¤erent every time it presents itself, the decision

maker chooses the suboptimal alternative more often, even when faced with an honest expert.
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5.3 Extension: sampling of the arguments

So far I have assumed that experts know all relevant arguments; however, in reality experts

may receive only a subset of them. How many arguments they know may depend on how

well they have researched the topic, or how well they can remember the information they

have been exposed to. In this section, I show that allowing the expert to have only a sample

of the relevant arguments does not a¤ect the nature of the equilibrium. Later, I analyze how

the quality of the expert�his ability to sample arguments�a¤ects the utility of the decision

maker.

Given the state of nature (L;R) ; the expert samples (l; r) : l � L and r � R; according
to probability density function s (l; rjL;R). Therefore, the prior density of (l; r) is s (l; r) =
s (l; rjL;R) f (L;R) : Given that the expert knows only a subset of the relevant arguments, the
information contained in his arguments is imprecise, which implies that E

h
R

R+L j
r
r+l

i
6= r

r+l :

Let ! (l; r) = E
h

R
R+L jl; r

i
2 [0; 1] : The only condition that is required on sampling is that

dE[!(l;r)jr;l�l̂]
dr > 0 for all r and l̂ and dE[!(l;r)jl;l�r̂]

dl̂
< 0 for all l and r̂; that is, receiving

an additional argument that favors some alternative increases the expected quality of this

alternative. This is an equivalent of the regularity condition 1.

Proposition 8 states that the qualitative features of the continuous equilibria still hold.

Proposition 8 There exists a unique continuous equilibrium in the perturbed game � (�).

As � ! 0; it converges to the continuous equilibrium which has the same qualitative features

as the continuous equilibria in the original game. It is characterized by the parameters �r; �l

and by the functions �r; �l; sr (l) ; sl (r) ; with equation (5) replaced by (and analogously for

equation 6)

! (�r; r) = ! (�; r) Pr (l = �jr) + !
�
s�1r (�) ; r

�
Pr
�
l = s�1r (�) jr

�
;

and equation (7) replaced by (and analogously for equation 8)

! (�r0 ; r0) = Pr (Bj� = r0; � � �r0)E
�

R

R+ L
jr = r0; l � �r0

�
+Pr (Prj� = r0; � � �r0)E

�
R

R+ L
jr = r0

�
:

Proof Proof of this proposition is similar to the proof of Proposition 5. The crucial modi�-
cations are described in the Appendix.
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5.3.1 Varying the quality of the expert

The experts may di¤er in how well they gather information. A high-quality expert may know

more arguments, either because he is better at searching, or because he remembers more of

them. In this section, I analyze how the quality of the expert a¤ects the utility of the decision

maker in the case when the expert can be either Pr or H:

To capture the fact that even a low-quality expert is likely to have some information, I

assume that N 2 [N; 1] :18 N may represent the number of core arguments that are always

present, or the number of arguments that are customary for an expert to know. For example,

a �nancial adviser may not have detailed information about each particular company, but

he is likely to know the general state of the economy and how it a¤ects the prospects of a

particular stock.

Let n � l + r be the total number of arguments received by the expert and qr � r
r+l be

the fraction of arguments that favor Right in his sample. Since I am interested in ordering

experts according to how many arguments they are likely to sample, it is useful to reformulate

the model in terms of (qr; n) instead of (l; r) : From the prior distribution of (l; r) ; s (l; r) ;

we can derive the distribution of (qr; n) : g (qr; n;�) = s ((1� qr)n; qrn;�)n: The parameter
� measures the quality of the expert; � = 1 means that the expert is of highest quality and

he always receives n = N:

Recall that ! (l; r) = E
h

R
R+L jl; r

i
represents the expected quality of Right if the expert

receives (l; r) ; and note that it can be rewritten in terms of qR and qr : ! (qr;�; �) =

E [qRjqr; �; �] : If the expert always samples arguments in the correct proportion, then his
arguments re�ect the state of nature precisely, and ! (qr;�; �) = qr: If he samples arguments

in a symmetric and unbiased way, then !
�
1
2 ;�; �

�
= 1

2 and qr�! (qr;�; �) = ! (1� qr;�; �)�
(1� qr) > 0 for qr < 1

2 ; that is, the expected quality given qr is observed is less extreme than

qr; because extreme draws are likely to come from combination of arguments that imply a

less extreme quality.

I make the following simplifying assumptions about the sampling procedure. I assume

that sampling is such that g (qr; n;�) = g (n;�) ; that is, the sampled quality is independent

of the number of arguments sampled, is distributed uniformly, and

! (qr;�; �) =
1

2
+

�
qr �

1

2

�
(1� (1� �)�) ;

where � 2 [0; 1] : The higher � means that the expert has less precise information, which
implies that the expected quality of Right does not vary much with the information of the

expert. � measures how the quality of the expert a¤ects the precision of his information:

18Assuming that N > 0 does not change anything qualitatively in the previous sections; N was set to 0 only
for the purpose of the exposition.
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high � means that decreasing the quality of the expert results in high loss of precision. In

reality, the information precision loss of sampling depends on how the sampling is conducted.

If the expert stops searching for information after he gathers a predetermined number of

arguments, then his information is likely to be imprecise (high �). If he is exposed to all of

the relevant arguments but remembers only a subset, then he may remember them in the

proportion that resembles the true proportion (low �).

Additionally, let g (n;�) = g(n)
G(�) ; where g (�) is the probability density function of N: I

assume that g (�) is such that G(n)
ng(n) is increasing.

19 This means that the expert of quality �

receives only n 2 [N;�] :
The proposition below states that consulting the expert with the highest quality is not

always optimal.

Proposition 9 For an unbiased decision maker, �i = 1
2 ; and every � and for every pair

of experts with qualities �1 and �2 < �1, there exists �̂ (�) such that for all � < �̂ (�) the

decision maker prefers to consult the low-quality expert. �̂ (�) is increasing in �:

Proof in the Appendix.
The decision maker cares about the precision of the expert�s information, but also about

how well she can extract this information from him. If the expert is a persuader, then even

if his information is perfect, the decision maker will form a noisy estimate of the true state

of nature given the expert�s report. But this estimate is more precise the lower the quality

of the expert. The decision maker knows more about the number of arguments that such an

expert is likely to receive; therefore, after observing his report, she knows more about how

many arguments have been concealed from her.

If the expert is honest, he reveals all of his information, which implies that the decision

maker is better o¤ if the precision of the expert�s information is high. If the expert is likely

to be the persuader, in equilibrium much of his information is concealed from the decision

maker. Therefore, the decision maker is willing to choose a low-quality expert in order to

increase her ability to extract information.

A good example of such a trade-o¤ is the market for news. Some newspapers have many

reporters and gather an enormous amount of arguments, which allows them to manipulate

the news by selective disclosure. Newspapers that have limited resources and specialize in

providing the most important news only may have lower abilities to manipulate the news, as

the readers know more about how many arguments they should expect.20

19 G(n)
ng(n)

is increasing for a majority of standard g (�) functions, when g0 < 0: This assumption allows me to
prove the proposition below in a simple way, but is by no means a necessary condition for the proposition to
hold. Essential for this exercise is that the distribution of n changes with � is such a way that given any r;
there is less uncertainty about the total number of arguments that the expert has.
20Of course, some newspapers may gather all information, but reveal only a small subset due to limited

space, in which case di¤erent results follow.
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6 Comparison with the existing literature

The existing models on strategic information transmission di¤er mainly in two respects. First,

information is usually described as a single variable, and the models di¤er in whether they

assume that this variable can be credibly disclosed. Second, the preference of the expert can

be private information or common knowledge.

Grossman and Hart (1979) and Grossman (1981) assume that information is veri�able

and that the decision maker knows the preference of the expert. In these models there is

full disclosure, since the decision maker can interpret the lack of information as information

unfavorable to the expert, which in turn forces the expert to reveal all favorable information.

In their seminal paper, Crawford and Sobel (1982) assume that information is non-

veri�able; the signals sent by the expert are cheap. In their model a purely uninformative

equilibrium always exists, and all equilibria have partitional structure. Krishna and Morgan

(2001) extend this model to a game with two experts who have opposing preferences.

In my model, the arguments are veri�able but their number is not, and this assumption

has interesting implications. First, the pure babbling equilibrium cannot exist, as information

becomes closer to veri�able in states characterized by many arguments. Second, if the decision

maker knows the bias of the expert, the players behave as if the number of arguments that

favor the preferred alternative were veri�able. The behavior along the other dimension has

features of the babbling equilibrium: the decision maker makes the decision independent of

how many arguments in this dimension the expert reveals.

The papers that, similar to my paper, model information as a collection of veri�able

signals are Milgrom (1981), Milgrom and Roberts (1986), and Shin (1994). As in my model,

experts manipulate information through selective disclosure. Milgrom (1981) analyzes a

model in which a salesman can credibly disclose attributes of a product, but the number

of attributes is common knowledge; this generates full information disclosure. Milgrom and

Roberts (1986) propose a model in which each alternative is characterized by an unknown

number of attributes, but they focus on the scope of information transmission when there are

two experts with opposing preferences. Competition among experts leads to full information

disclosure. Shin (1994) assumes that experts may have veri�able but imperfect signals about

the state of nature, but the decision maker does not know how precise the experts�information

is. Unlike me, he assumes that the preference of the expert is common knowledge and focuses

on the equilibrium in which experts reveal all information favorable to them and suppress

entirely the unfavorable information. Additionally, Shin (1994) allows for signals that convey

any information about the state of nature, while the argument structure of my model restricts

the signal space considerably.

Sobel (1985), Benabou and Laroque (1992), Morris (2001) and Morgan and Stocken (2003)

extend cheap talk models to allow for uncertainty about the preference of the expert. These
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models assume that the expert can be either honest (strategic or not) or biased toward a

particular alternative. Sobel (1985) and Benabou and Laroque (1992) analyze a dynamic

game in which the truthfulness of the expert�s recommendation is revealed after each period

(with or without noise), and they establish that even the biased expert can reveal information

truthfully in the initial rounds of the game. Morris (2001) assumes that the expert cares about

his reputation, in which case even an honest expert has an incentive to distort information.

In contrast, my model is static, and the expert does not have direct reputation concerns;

nevertheless, I obtain a result that the biased expert chooses to mimic the honest expert.

Morgan and Stocken (2003) extend Crawford and Sobel (1982), assuming that the expert may

be biased or benevolent. Dimitrakas and Sara�dis (2003) allow for additional uncertainty in

the strength of this bias, and Li (2005) assumes that the expert can be biased either upwards

or downwards, and the direction of the bias is private knowledge.

The only paper that I am aware of that analyzes a two-directional bias in a communication

game with partially veri�able information is Wolinsky (2003). He assumes that the expert

may prefer to either maximize or minimize the magnitude of the decision maker�s action. In

his model, the state of nature is a unidimensional variable and the expert can certify that the

state of nature lies above some threshold. In terms of my paper this assumption amounts to

the expert being able to certify that the quality of one alternative, for example alternative

Right, is higher than some threshold. In contrast, in the model of this paper a signal of this

form is not available. It is an equilibrium result that in some states of nature each type of the

persuader can credibly convey information that his preferred alternative has quality above a

certain threshold. Wolinsky (2003) proposes an extension of his model to the case in which

information is two-dimensional (like arguments in my model), but does not analyze such a

game with uncertainty about the types of the expert.

Allowing for the uncertainty about the direction of the expert�s bias in this paper leads

to interesting �ndings. First, there are states in which experts with opposite biases separate

themselves, and then the model becomes equivalent to the model with one-directional bias.21

Second, in states in which the experts pool, no information is being revealed.

Despite the fact that information in this model is two-dimensional (dimension R and

dimension L), the model di¤ers signi�cantly from multidimensional cheap talk literature

(Battaglini 2002, Levy and Razin 2004, Chakraborty and Harbaugh 2004). First, these mod-

els assume that information is not veri�able in each dimension, while my model allows certain

degree of veri�ability. Second, the preference of the expert is common knowledge. Levy and

Razin (2004) and Battaglini (2002) assume that the action space is also multidimensional;

therefore, there is always a dimension in which the preferences of the expert and the decision

maker agree. In my model, the action space is unidimensional. Chakraborty and Harbaugh

21 In Wolinsky (2003) the persuaders do not always separate themselves.
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(2004) allow for the decision to be unidimensional, but in a situation in which the expert and

the decision maker agree on the ranking of the alternatives.

This paper shows that introducing a small cost on concealing information selects a max-

imally informative equilibrium. Kartik (2005) uses a similar tool in a cheap talk game.

He introduces an increasing cost of misrepresenting information, and shows that a set of

monotone equilibria converges to the most informative equilibrium of Crawford and Sobel

1982�s model.

From a modelling perspective, the model in this paper is related to Glazer and Rubin-

stein (2001) and Glazer and Rubinstein (2004). They model information as a collection of

arguments, each of which can be either credibly disclosed or can be veri�ed by the decision

maker. They focus on information transmission when there are exogenous constraints on how

much information can be revealed.

7 Conclusion

The main �nding of this paper is that even a biased expert uses two-sided reports that

include arguments which oppose his interests. There is an extensive research on using two-

sided arguments in marketing literature which usually �nds that two-sided messages are

more e¤ective and increase the perceived truthfulness of the expert.22 In my model, the

persuader uses two-sided messages to gain credibility, but in equilibrium one-sided and two-

sided messages induce the same belief. This is, however, only because the theoretical model

assumes away some realistic interactions. For example, if we allow for a small fraction of naive

decision makers who take the reports at their face value, in equilibrium the belief function

would be such that a rational decision maker would be persuaded more often by two-sided

reports and those reports would be deemed more credible.

At this point, I should mention some limitations of my model. First, the model assumes

that the decision maker is uninformed, but clearly, it would be interesting to analyze the case

where the decision maker has some prior information. Experiments on mass communication

indicate that two-sided arguments are more e¤ective when the audience is initially opposed

to the expert�s position, while one-sided arguments are more successful with listeners who are

already disposed toward the expert�s position.23 Moreover, if the audience is later provided

with arguments favoring the other position, those who were previously exposed to two-sided

argumentation are less likely swayed away from this position than those initially exposed to

one-sided argumentation.24 These issues could be analyzed within my model if we endow the

decision maker of the model presented in Section 5.3 with a small subset of arguments. Based

22See, for example, Smith and Hunt (1978) and Anderson and Golden (1984).
23See Hovland, Lumsdaine and She¢ eld (1949).
24See Lumsdaine and Janis (1953).
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on the analysis presented in this paper, I conjecture that such an extension would produce

results that are consistent with these studies. Decision makers with information favoring one

alternative should weight the arguments that reinforce their knowledge more than before,

because they should expect the expert to have few opposing arguments. Those who have

some opposing arguments should expect the honest expert to reveal such arguments, and

if that is not the case, they should believe that the expert is likely to be a persuader. A

counterpropaganda should be less e¤ective if the expert �rst establishes himself to be honest

by using two-sided messages.

Another limitation of my model is that it does not explain the trend toward polarization

that seems to have been occurring recently. Many media outlets and politicians rely more on

one-sided messages. This may be a result of competition or information overload�issues that

are not addressed in this paper.

The model presented in this paper is a good starting point to analyze communication in

more elaborate settings. Because of the argument structure, it is easy to de�ne the di¤erences

in information that di¤erent players have, which makes this model especially well-suited to

analyze two-sided communication. Moreover, since disclosing arguments requires time, the

model has some natural timing structure build in, which means that it can be easily applied

to debates and communication in bargaining.

A Appendix

Proof of Proposition 1
Every equilibrium takes the following form. For each �; there exist �� > 0, such that for all (�; �) : � � ��

we have � (�; �) � ���: �
�
� is weakly increasing in �: If for all � 2 (�1; �2) ��� is constant, then ��2 is such that

�2
�2+��2

= ���; and for all other � 2 (�1; �2) we have �
�+��

� ���; and � (� > ��2 ; �) =
�

�+�
: The proof proceeds

with the following steps.

Step 1 � (0; �) < 1 for all � < 1:

The existence of H experts makes � (�; �) < 1 for all � > 0: Assume there exists � such that � (0; �) = 1:

Then for all (L > 0; R) 2 Z (0; �) Pr can induce belief 1 by sending (0; �) ; on sending some other report

� (0; �0) such that � (0; �0) = 1: But then a rational decision maker would form a belief � (0; �) < 1 or a belief

� (0; �0) < 1; which is a contradiction.

Step 2 For all � there exist �� such that � (�; �) = � (0; �) for all � � ��:

Assume that for all " > 0 we can �nd �0 < " such that � (�0; �) < � (0; �) : Then by Step 1 we have

� (�0; �) < � (0; �) < 1: Given that, Pr would never send (�0; �) ; and therefore, � (�; �0) = �
�0+�

; which goes

to 1 as �0 ! 0; which is a contradiction.

Assume then that for all " > 0 we can �nd �0 such that � (�0; �) > � (0; �) : Then Pr may send (0; �) only

if (L;R) = (0; R � �) since he would rather send (�0; �) whenever he can. Therefore, � (0; �) = 1; but that
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contradicts Step 1.

De�ne ��� � � (0; �) :

Step 3 ��� is weakly increasing in �.

Assume that there exist �2 > �1 such that �
�
�2
< ���1 : Take " < min f��1 ; ��2g : Then Pr never sends any

messages of a form (� � "; �2), and this implies that for all those messages the belief is � (�; �2) =
�2

�2+�
which

is not constant in �: That contradicts Step 2.

Step 4 �� must be such that �
�+��

� ���

Assume �
�+��

> ���: Then for all " > 0, we can �nd �0 2 (��; �� + ") such that � (�0; �) 6= ���: Assume

�rst that � (�0; �) < ���: Then only H sends (�0; �) ; and therefore, � (�0; �) = �
�+�0

> ���; a contradiction.

Assume then that for all " > 0, we can �nd �0 2 (��; �� + ") such that � (�0; �) > ���: But then (�0; �) is more

attractive to Pr than any report of a form (� � ��; �) : Therefore, Pr will send (��; �) only if (L;R) is such

that R
R+L

� �
�+��

> ���; which contradicts � (��; �) = ���:

Step 5 Let �̂ = max
�
� : ��� = �̂

	
: Then ��̂ is such that �̂

�̂+��̂
= �̂:

By Step 4 we have �̂
�̂+��̂

� �̂: Assume then �̂
�̂+��̂

< �̂: To generate a belief �̂ for a report (��̂; �̂) it must

be that there exist (L1; R1) 2 Z (��̂; �̂) such that R1
R1+L1

� �̂ and �Pr (L1; R1) = (��̂; �̂) : But that implies

that R1 > �̂; and by de�nition of �̂ we know ��R1 > �̂; therefore, Pr would rather send (0; R1) than (��̂; �̂) : A

contradiction.

Step 6 Step 4 and Step 5 imply that for all �s such that ��� = �̂ it must be that �� � ��̂:

Step 7 Take all � such that ��� = �̂: Then for all � � ��̂ it is � (�; �) � ���:

Assume that there exists a report (�0; �0) depicted in �gure below, such that � (�0; �0) > �̂:

This means that Pr would never send reports of a form (�; �̂) : � 2 (�0; ��̂) (thick line in the �gure below),

but then it is impossible that these reports generate belief �̂; which contradicts Step 5.

Step 8 Let �̂ = max
�
� : ��� = �̂

	
: Then ��̂ is such that �̂

�̂+��̂
= �̂: Then ��̂ < 1� �̂:

Assume ��̂ = 1� �̂: Then � (��̂; �̂) = �̂ = �̂
�̂+��̂

; but it is impossible to generate such a belief for all (�; �̂) :

The steps above allow us to conclude that all equilibria look like in �gure below, and di¤er only in the

number, size and location of the shaded trapezoids. Each shaded trapezoid represents all reports that generate

the same belief. Additionally, all reports lying in the rectangle that completes a trapezoid generate either the

same belief as the trapezoid, or are sent only by H:
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Take one trapezoid, for example the one associated with � 2 (�1; �2) : Then for almost all reports lying

outside of the rectangle that completes this trapezoid (dashed rectangle) the belief is � (�; �) = �
�+�

:To be

precise, I have not excluded the possibility that there exists some (�0; �0) from outside of this rectangle that

generates a belief equal to is ��3: For that to be possible it must be that ��3 > ��2 (unlike in the �gure above)

and ��3 > �0: But then Pr would send this report in states with a very low quality of qR; and therefore in

generic situations it is impossible to induce belief ��3:

For a prior density function f (L;R) that satis�es the regularity condition 1 the equilibrium belief function

is discontinuous unless it is strictly increasing in �: To see that, note �rst that continuity requires that

�� =
1����
���

�; therefore �� is unique: That, together with continuity also implies that there is no � > �� such

that �(�; �) � ���; which implies that only H sends reports of a form (� > ��; �):

Second, continuity implies that ��� is strictly increasing in � : To see that assume �
�
� � �̂ is constant over

� 2 (�1; �2) and strictly increasing for � 2 (�1 � �; �1) and � 2 (�2; �2 + �) for some �: Then for all " < � we

have

���2+" = Pr (Hj� = �2 + "; � � ��2+")E [qRjR = �2 + "; L � ��2+"]

+Pr (Prj� = �2 + "; � � ��2+")E [qRjR = �2 + "] ;

���1�" = Pr (Hj� = �1 � "; � � ��1�")E [qRjR = �1 � "; L � ��1�"] +

Pr (Prj� = �1 � "; � � ��1�")E [qRjR = �1 � "] :

The regularity condition 1 implies that we can �nd some � > 0 such that the right-hand side (RHS) of

the �rst equation is bigger than the RHS of the second one by more than � for each " < �: That implies

���2 > ���1 .

When ��� is strictly increasing, the strategy of Pr is to send � = R: He is indi¤erent between sending any

number of arguments that support Left, as long as � � ��. In equilibrium, however, his strategy must support

the constant belief; therefore it must satisfy equation 4 for each R: There are many solutions to this equation,

however, for each eligible zR (L) there exists a unique solution for sR (L) :

It remains to show that for each R; ��R described by equation 3, exists and is unique. Equation 3 can be
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rewritten as follows:

��R =
�
R 1�R
0

R
R+L

f (LjR) dL+ (1� �)
R 1���R

��
R

R

0
R

R+L
f (LjR) dL

� + (1� �)F
�
1���

R
��
R
RjR

� (9)

The left hand side goes from R to 1: For the right hand side we have RHS (��R = R) = ��R > R and

RHS (��R = 1) = ��R < 1; where ��R =
R 1�R
0

R
R+L

f (LjR) dL; therefore the solution exists.
The left-hand side (LHS ) is strictly increasing. If we di¤erentiate RHS with respect to �; we get

dRHS

d�
=

(1� �) f
�
1��
�
RjR

�
�
� + (1� �)F

�
1��
�
RjR

��2 �1(�)2 r �
�
 
� (� � ��R) + (1� �)

 
�F

�
1� �

�
RjR

�
�
Z 1��

�
R

0

R

R+ L
f (LjR) dL

!!
:

For � = R we have dRHS
d�

> 0 and for � = 1 � R we have dRHS
d�

< 0; and when we evaluate dRHS
d�

at ��R
satisfying equation 9 then

dRHS

dx
(� = ��) =

(1� �) f (xjr)
(� + (1� �)F (xjr)) (�

� � ��) = 0:

That implies that the solution is unique.

Proof of Proposition 2
Proof of this proposition is a particular case of the proof of Proposition 5 when �l = 0; therefore, I provide

only the latter. Proposition 5 is the equivalent of 2 when there are three types of persuaders.

Proof of Proposition 5
Since H is nonstrategic, I will refer to Pl and Pr only throughout the entire proof; that is, when I say

(�; �) is sent only by Pi ; I mean Pi and H: In the game with � cost the utility of Pr when the state is (L;R)
and he sends a message (�; �) is

uR (�; �j (L;R)) =
(

H (� (�; �)) if (�; �) = (L;R)

H (� (�; �))� � if (�; �) 6= (L;R)
:

First, I prove the following Lemmas.

Lemma 1 There cannot exist an in�nite sequence of reports (�n; �n) such that (�n; �n) 2 Z
�
�n�1; �n�1

�
and � (�n; �n) 6=

�n
�n+�n

:

Proof We have Z (�n; �n) � Z
�
�n�1; �n�1

�
; therefore, for some n; Z (�n; �n) is so small that the di¤erence

between bmax = max(�;�)2Z(�n;�n)
�

�+�
and bmin = min(�;�)2Z(�n;�n)

�
�+�

is smaller than the cost of concealing

arguments �; therefore, all experts report fully, which implies that � (�n; �n) =
�n

�n+�n
:

Lemma 2 i) If (�; �) is sent by Pl only when he reports fully, then � (�; �) � �
�+�

,

ii) If (�; �) is sent by Pr only when he reports fully, then � (�; �) � �
�+�

.
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Proof I prove only part (i) : Proof of part (ii) is analogous to the proof of part (i) :
Assume (�0; �0) is never sent by Pl when (L;R) 6= (�0; �0) and � (�0; �0) >

�0
�0+�0

; like shown in the Figure

below.

Then there exists (�1; �1) 2 Z (�0; �0) such that
�1

�1+�1
� � (�0; �0) >

�0
�0+�0

and �Pr (�1; �1) = (�0; �0) ; but

for that to be optimal for Pr it must be that � (�1; �1) < � (�0; �0) �
�1

�1+�1
(Pr must prefer to send (�0; �0)

to (�1; �1)): But then there exists (�2; �2) 2 Z (�1; �1) such that
�2

�2+�2
� � (�1; �1) and �i (�2; �2) = (�1; �1) :

Clearly i = Pl; since Pr would rather send (�0; �0) : For Pl to be optimal to send (�1; �1) it must be that

� (�1; �1) < � (�2; �2) : Then
�2

�2+�2
< � (�2; �2) and only Pr can send (�2; �2) while concealing arguments, but

then set (�0; �0) � (�2; �2) and start the proof from this point. But if we continue like that, we end up with a

sequence of (�n; �n) such that (�n; �n) 2 Z
�
�n�1; �n�1

�
and � (�n; �n) 6=

�n
�n+�n

; which by Lemma 1 cannot

be the case.

It is worthwhile to understand why the opposite argument does not work. If �Pl (L;R) = (�0; �0) only

if (L;R) = (�0; �0) and � (�0; �0) <
�0

�0+�0
; then there must exist (�1; �1) 2 Z (�0; �0) such that

�1
�1+�1

�

� (�0; �0) and �Pr (�1; �1) = (�0; �0) : But it may still be the case that �1 (�1; �1) =
�1

�1+�1
and Pr may prefer

to send (�0; �0) instead of (�1; �1) ; �Pr (�1; �1) = (�0; �0); therefore, we do not need an in�nite sequence of

arguments such that � (�n; �n) 6=
�n

�n+�n
:

Corollary 1 If �Pl (L;R) = (�0; �0) only if (L;R) = (�0; �0) and �Pr (L;R) = (�0; �0) only if
R

R+L
�

�0
�0+�0

; then � (�0; �0) =
�0

�0+�0
:

I use the above Lemmas to prove Proposition 5.

Step 1 i) If � (�0; �) = �
�+�0

; then � (�; �) � �
�+�

for all � � �0:

ii) If � (�; �0) =
�0

�0+�
; then � (�; �) � �

�+�
for all � � �0:

Again, I prove only part (i); proof for part (ii) is analogous. I prove this by contradiction. Assume that

there exists �1 > �0 and � (�1; �) < �
�+�1

: Lemma 2 implies that only Pr may send (�1; �) when concealing

information: But Pr would be better o¤ sending (�0; �) instead of (�1; �) when concealing information, because

by doing that he would induce the belief � (�0; �) = �
�+�0

> �
�+�1

> � (�1; �) : Therefore, �Pr (L;R) = (�1; �)

only if (L;R) = (�1; �) ; hence by Lemma 2 we have � (�1; �0) �
�0

�0+�1
; a contradiction.
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Step 2 i) For all � < 1 we have � (0; �) < 1:

ii) For all � < 1 we have � (0; �) > 0:

If � < 1 � � (1� �0; �0) ; then this proof is identical to the proof for Step 1 in the proof of Proposition 1

and an analogous proof holds for (ii).

Step 3 i) For all �; there exists "0 > 0 such that � ("; �) = � (0; �) for all " � "0:

ii) For all �; there exists "0 > 0 such that � (�; ") = � (�; 0) for all " � "0

Assume that there exists �0 such that for all "�0we can always �nd " < "�0 such that � ("; �0) <

� (0; �0) < 1: Clearly, Pr prefers to send � (0; �0) instead of ("; �0) whenever he conceals information; there-

fore, �Pr (L;R) = ("; �0) only if (L;R) = ("; �0) : But then for " small enough, only Pl may send ("; �0) when

concealing information, and then by Lemma 2 we have � ("; �0) �
�0
�0+"

; which converges to 1 as " ! 0: But

that contradicts � ("; �0) < � (0; �0) < 1:

Assume then that for all "�0we can always �nd " < "�0 such that � ("; �0) > � (0; �0) : But as � (0; �0) < 1

we know from Lemma 2 that �Pl (L;R) = (0; �0) only if (L;R) = (0; �0) : Moreover, � ("; �0) > � (0; �0)

implies that Pr sends (0; �0) only for (0; � � �0) : But then by Corollary 1 we have � (0; �0) = 1; which is a

contradiction.

De�ne ��� � � (0; �) and ��� � � (�; 0). Let �� be the highest � such that ��� � � (�; �) for all � � ��; and

�� be the highest � such that �
�
� � � (�; �) for all � � ��: Clearly, �� < 1� � and �� < 1� �:

Step 4 ��� � �
�+��

and ��� �
��

��+�
:

Assume ��� <
�

�+��
; and this is represented by the straight line called �̂�� in the �gure below. By Lemma

2 Pr must sometimes send (� � ��; �) while concealing information.

Take (�� + "; �) : If � (�� + "; �) � �
�+��+"

for all " small enough, then � (�� + "; �) > ��� and therefore,

Pr; when concealing information, prefers to send (�� + "; �) instead of (� � ��; �) whenever he can, which

contradicts the �nding that Pr must sometimes send (� � ��; �) while concealing information.

Step 5 For each � for all � > �� it is that � (�; �) < ��� and for each � for all � > �� it is that � (�; �) > ���:

If there exists (�0; �) such that � (�0; �) > ���; then Pl never sends (�0; �) when concealing information;

he would rather send (0; �) instead. Assume therefore that there exists (�0; �) such that � (�0; �) = ���: Then
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� (�� + "; �) < ��� for " small enough, but that means that Pl would never send (�0; �) when lying. By Lemma

2 therefore � (�0; �) � �
�+�0

; but that and Step 4 lead to a contradiction.

By now we have established that Pr always sends reports of the form (� � ��; �) if he conceals some

arguments (see Step 1 and Lemma 2), and Pl sends reports of the form (�; � � ��) if he conceals some

arguments: The remaining reports are sent only when reporting is full; therefore, Lemma 2 implies that

� (�; �) = �
�+�

for those reports.

Therefore, we know that there are thresholds �� and �� such that for all � > �� only Pr sends reports of a

form (� � ��; �) when concealing arguments and for � � �� only Pl sends reports of a form (�; � � ��) when

concealing information. Step 6 says that then ��� =
�

�+��
; and ��� =

��
��+�

:

Step 6 If � > ��; then ��� =
�

�+��
; and if � > ��; then ��� =

��
��+�

:

By step 5 ��� � �
�+��

and ��� �
��

��+�
: But if only Pr sends (��; �) when concealing information then by

Lemma 2 it must be � (��; �) � �
�+��

; which is a contradiction.

Step 7 By Step 5 we can conclude that there exist �� > 0 and �� > 0 such that ��� = ��� � �� for all � � ��

and for all � � ��: We can have three situations, �� > ��
��+��

; �� < ��
��+��

or �� = ��
��+��

:

Let me consider �� < ��
��+��

:

Step 8 If �� < ��

��+�̂
then for all (�; �) such that they lie in the shaded area in the �gure below, and only

for those reports, we have � (�; �) = ��:

To see this notice that by step 5 � (�; �) = �� for all (�; �) : � � �� and � � ��: Take report (�1; �1) :
�1

�1+�1
> �� in the �gure above, and assume � (�1; �1) < ��; then only Pl may send (�1; �1) when concealing

information, but then by Lemma 2 we have � (�1; �1) �
�1

�1+�1
> ��; a contradiction.

Step 9 ��� is weakly increasing in � and �
�
� is weakly decreasing in �:

Assume there exist �2 > �1 such that �
�
�2

< ���1 : Then only Pl could send (0; �2) when concealing

information, as Pr would prefer to send (0; �1) : But then Lemma 2 implies that � (0; �2) � 1; which we have

established cannot be. The proof that ��� is weakly decreasing in � is analogous.

Step 10 For � > ��; ��� is strictly increasing and for � > ��; ��� is strictly decreasing.

By Step 9 we know that if �2 > �1 > �� and �
�
�1
= ���2 then we have �

�
� = ���1 for all � 2 [�1; �2] : Assume

that �1 and �2 are the inf and the sup of � such that �
�
� = ���1 : Because �2 > �1 > �� only Pr send reports

with � 2 (�1; �2) when concealing arguments and for all (�; �) such that � 2 (�1; �2) and � 2 [0; ��] the belief
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is constant. That means that the strategy of Pr must be such that for any such report the decision maker

must attach the same belief. Moreover, if the state of nature is (L;R) such that R 2 (�1; �2) and L � �R;

then Pr reports fully, as in this way he generates the highest possible belief and does not have to incur cost

�: Therefore, we have

���2 � Pr (Hj� = �2; � � ��2)E [qRjR = �2; L � ��2 ] + Pr (Prj� = �2; � � ��2)E [qRjR = �2] ;

���1 � Pr (Hj� = �1; � � ��1)E [qRjR = �1; L � ��1 ] + Pr (Prj� = �1; � � ��1)E [qRjR = �1] ;

and the regularity condition 1 requires that the RHS of the �rst inequality is bigger than the RHS of the

second one, which implies ���2 > ���1 .

Step 11 ���R+" ! ��

If not, then by the steps before we have ���R+" > ��: We also have � �R+" ! � �R: The only di¤erence in the

behavior of Pr when R = �R + " and when R = �R is that in the latter case Pr does not have to send � = �R

when L > � �R; but that only increases the belief induced for
�
� � � �R; �R

�
: The only di¤erence in terms of the

behavior of Pl is that Pl never sends � = �R + " unless he reports fully, while he may send � = �R; but that

can happen only for (L;R) : R
R+L

� �R
�R+� �R

; which additionally increases the belief induced for
�
� � � �R; �R

�
:

Therefore, the only possibility is ���R+" ! ��:

Now, we can summarize the shape of any equilibrium. If �� < ��

��+�̂
then the equilibrium looks like in the

�gure below.

In what follows below I use �R instead of �� and �L instead of �� to re�ect the fact that the belief is constant

when the number of arguments received by the expert is below some threshold. The grey area represents all

reports that generate the same belief ��: The solid curves represent the areas in which only Pr and H or only

Pl and H send reports. Therefore, in any equilibrium Pr sends �Pr (L;R) = (L;R) if L � �R as in this way

he generates the highest possible belief and does not have to incur cost �: Pr reports fully also for (L;R) such

that L � �R+ (�) ; where  (�) is de�ned as ��R� � = R
R+L+ 

; because of the cost of concealing information.

For R � �R; Pr sends �Pr (L;R) = (� � �R; R) when L > �R +  (�) : The strategy for R < �R is similar with

a di¤erence that when Pr conceals information he does not have to reveal all arguments that favor Right.

The behavior of Pl is analogous.

We need to establish the existence and the uniqueness of the equilibrium with the properties derived

above. That is, we have to show that it is possible to construct the strategies of Pl and Pr so that the beliefs
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satisfy the properties derived above, and we need to show that these strategies are unique.

First, I show that it is possible to generate a �at belief ��R for each R > �R (and analogously, ��L for L >
�L). Take some R > �R: Experts H and Pl send reports of a form (� � �R; R) only when they report fully, and

Pr sends such reports when he reports fully, but also when the true set of arguments is (� > �R +  (�) ; R) :

Therefore, �R must solve the following equation:

��R =
R

R+ �R
=
p
�R �R

0
R

R+L
f (LjR) dL+

R 1�R
�R+ 

R
R+L

g (LjR) dL
�
+ (1� p)

R �R
0

R
R+L

f (LjR) dL
p (1� F (�R +  jR) + F (�RjR)) + (1� p)F (�RjR)

; (10)

where p is the probability that the expert is Pr (p = �r
1� �l

if Pl never sends messages of a sort (� � �R; R)

and p = �r otherwise) and f (LjR) is the conditional distribution of L given R; derived from f (L;R).

The RHS is de�ned for �R 2 [0; 1�R�  ]; therefore, the LHS of this equation is continuous, strictly

decreasing and LHS 2
h

R
1� ; 1

i
: The RHS is continuous and

RHS (0) =

�R 1�R
 

R
R+L

f (LjR) dL
�

1� F ( jR) = E

�
R

R+ L
jL �  ;R

�
< 1

RHS (1�R�  ) =

R 1�R� 
0

R
R+L

g (LjR) dL
F (1�R�  jR) = E

�
R

R+ L
jL � 1�R�  ;R

�
>

R

1�  

Therefore, the solution exists.

Taking the derivative of the RHS with respect to �R and evaluating it at �R that solves equation (10),

we get
dRHS

d��R
=sign pf (�R +  jR) � > 0:

Therefore, the solution to equation (10) is unique.

The easiest way to establish that d��R
dR

> 0 for R > �R is to reformulate the problem in terms of (qR; R)

instead of (L;R) ; where qR = R
L+R

. Let g (qR; R) be the implied density function of (qR; R). Then equation

(10) takes the following form:

��R =
p
�R ��R��

R
qRg (qRjR) dqR +

R 1
��
R
qRg (qRjR) dqR

�
+ (1� p)

R 1
��
R
qRg (qRjR) dqR

p (1�G (��RjR) +G (��R � �jR)) + (1� p) (1�G (��RjR))
;

and can be rewritten as

Y � ��R (p (1�G (��RjR) +G (��R � �jR)) + (1� p) (1�G (��RjR)))

�p
 Z ��R��

R

qRg (qRjR) dqR +
Z 1

��
R

qRg (qRjR) dqR

!
� (1� p)

Z 1

��
R

qRg (qRjR) dqR;

By the implicit function theorem d��R
dR

= �
dY
dR
dY
d��

R

; and we have

dY

d��R
� (1�G (��RjR)) + p (�g (��R � �jR) +G (��R � �jR)) > 0;

dY

dR
� p�GR (�

�
R � �jR)� p

Z ��R

��
R
��
GR (qRjR) dqR + p

Z 1

R

GR (qRjR) dqR + (1� p)

Z 1

��
R

GR (qRjR) dqR;

The regularity condition 1 implies dE[qRjR;qR�q̂R]
dR

� 0 for all R and �qR; but which in turn implies that
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R 1
�qR
GR (qRjR) dqR � 0 for all q̂R: But this implies that for small � we have dY

dR
< 0: Therefore, dY

dR
< 0 which

implies d��R
dR

> 0: As � ! 0 equation (10) converges to equation (7).

To generate a constant belief over � 2 (0; �R) Pl must use a strategy, such that for L 2 (�R +  ; 1�R) ;

the higher L he receives, the lower � he sends. Let sR (L) = � be this strategy for � = 0; then it must satisfy

R

R+ �R
=

R

R+ �
Pr (L = �jR) + R

R+ s�1R (�)
Pr
�
L = s�1R (�) jR

�
for all � 2 [0; �R] ;

which can be rewritten as

R

R+ �R
=
f (�jR) R

R+�
� �f

�
s�1R (�) jR

� �
s�1R (�)

�0 R

R+s�1
R

(�)

f (�jR)� �f
�
s�1R (�) jR

� �
s�1R (�)

�0 ; (11)

with the initial condition s�1R (0) = 1�R: The above equation is an ordinary di¤erential equation and satis�es
the conditions for the existence and the uniqueness of the solution. Note also that s�1R (�R) = �R; as we can

rewrite equation (11) in the following way�
R

R+ �R
� R

R+ �

�
f (�jR) = �f

�
s�1R (�) jR

� �
s�1R (�)

�0� R

R+ �R
� R

R+ s�1R (�)

�
:

For any � < �R we have the LHS di¤erent from zero, therefore we need
�
s�1R (�)

�0 6= 0 and s�1R (�) 6= �R:

Therefore, for �R we must have s�1R (�R) = �R:

Now, I need to show that �R and �L are also unique. I show that for the limit case � = 0; the proof for

small positive � is identical, only the formulas are more elaborate. Let all reports (�; �) that generate �� and

either � � �R or � � �L be called the double ambiguity area (DAA).

First, by Step 11 ��; �R and �L must be such that ���R+" ! �� and ���L+" ! ��, which means that they must

satisfy equation (10) for � = 0:

�� =

�r
1� �l

R 1� �R

0

�R
�R+L

f
�
Lj �R

�
dL+ (1� �r� �l)

1� �l

R � �R
0

�R
�R+L

f
�
Lj �R

�
dL

�r
1� �l

+ (1� �r� �l)
1� �l

F
�
� �Rj �R

� ; (12)

�� =

�l
1� �r

R 1��L
0

R
R+�L

f
�
Rj�L

�
dR+ (1� �l� �r)

1� �r

R ��L
0

R
R+�L

f
�
Rj�L

�
dR

�l
1� �r

+ (1� �l� �r)
1� �r

F
�
��Lj�L

� : (13)

Note that equation (12) and equation (13) imply that �� 2 [0; 1].
For all reports in DAA to generate the same belief ��; this belief must satisfy

�� = P (PrjDAA)E
�

R

R+ L
jDAA;Pr

�
+

+P (PljDAA)E
�

R

R+ L
jDAA;Pl

�
+ P (HjDAA)E

�
R

R+ L
jDAA;H

�
:

Recall Figure A; the equation above can be rewritten as follows (where �H = (1� �l � �r) and f is used
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instead of f(L;K) to shorten the formula):

�� =
�r
R �R

0

R 1�R
0

R
R+L

fdLdR

�r
R �R

0

R 1�R
0

fdLdR+ �l
R �L
0

R 1�L
0

fdLdR+ �H

�R �R
��

1���
�L

R 1���
�� R

0 fdLdR+
R ��
1���

�L

0

R �L
0
fdLdR

�(14)

+
�l
R �L
0

R 1�L
0

R
R+L

fdLdR

�r
R �R

0

R 1�R
0

fdLdR+ �l
R �L
0

R 1�L
0

fdLdR+ �H

�R �R
��

1���
�L

R 1���
�� R

0 fdLdR+
R ��
1���

�L

0

R �L
0
fdLdR

�

+

�H

�R �R
��

1���
�L

R 1���
�� R

0
R

R+L
fdLdR+

R ��
1���

�L

0

R �L
0

R
R+L

fdLdR

�
�r
R �R

0

R 1�R
0

fdLdR+ �l
R �L
0

R 1�L
0

fdLdR+ �H

�R �R
��

1���
�L

R 1���
�� R

0 fdLdR+
R ��
1���

�L

0

R �L
0
fdLdR

�

The LHS is continuous, strictly increasing, and LHS 2 [0; 1] : The RHS is continuous and for �� ! 0

equation (12) implies that �R ! 0 and �L ! 1; therefore the RHS !
R 1
0

R 1�L
0

R
R+L

fdLdRR 1
0

R 1�L
0 fdLdR

> 0: Similarly, as

�� ! 1 then �R ! 1 and �L ! 0 therefore RHS !
R 1
0

R 1�R
0

R
R+L

fdLdRR 1
0

R 1�R
0 fdLdR

< 1: Therefore, the solution exists. To

see that the solution is unique, we can take the derivative of the RHS with respect to �� and evaluate it at

the point at which �� = RHS(��): We have

dRHS

d�
=
@RHS

@�
+
@RHS

@ �R

d �R

d�
+
@RHS

@ �L

d�L

d�

and using equation (12) and equation (13) we can show

@RHS

@�
(� = ��) = 0

@RHS

@ �R
(� = ��) = 0

@RHS

@ �L
(� = ��) = 0

Therefore, every time �� = RHS(��); the derivative dRHS
d�

= 0; therefore, there is at most one solution.

Proof of Proposition 3
The proof compares any discontinuous equilibrium with the continuous one. All variables that represent

the continuous equilibrium have superscript c; �c�; �
�c
� : First, note that by the construction of the continuous

equilibrium we have

�E [qRjR] + (1� �)P (qR > �i)E [qRjqR > �i; R]

� + (1� �)P (qR > �i)

(
> �i if �i < ��cR
< �i if �i > ��cR

(15)

Take � such that ��� < ��c� : Therefore, for this � only the decision maker with �i 2
�
���; �

�c
�

�
is a¤ected25 ,

and she chooses Left under the discrete equilibrium, and she chooses Right in the continuous equilibrium when

she faces Pr; and she chooses optimally otherwise.

25 In fact if other �i�s are a¤ected that works to a clear disadvantage of the discrete equilibrium; therefore I
omit those cases.
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The change in the utility given that r happens is

Udiscrete � Ucont = EU (LeftjR)� �EU (RightjR)� (1� �)E [max fU (LeftjR) ; U (RightjR)g] <

= E [�i � qRjR]� �E [qR � �ijR]

� (1� �)P (qR < �ijR)E [�i � qRjqR < �i; R]

� (1� �)P (qR > �ijR)E [qR � �ijqR > �i; R]

= 2� (�i � E [qRjR]) + 2 (1� �)P (qR > �i) (�i � E [qRjqR > �i; R])| {z }
<0 using (15)

< 0

Take � such that ��� > ��c� : Therefore, for R = � the decision maker with �i 2
�
��c� ; �

�
�

�
is a¤ected. In

the continuous equilibrium she chooses Left. In the discrete equilibrium she chooses Right if she faces the

persuader (as the persuader can generate at least belief ���), and she chooses at best optimally if she faces

H26 :The change in the utility given that R = � is

Udiscrete � Ucont = (1� �)E [max fU (LeftjR) ; U (RightjR)g] + �U (RightjR)� U (LeftjR) =

= (1� �)P (qR < �ijR) (�i � E [qRjqR < �i; R]) +

+ (1� �)P (qR > �ijR) (E [qRjqR > �i; R]� �i) +

+�E [qR � �ijR]� E [�i � qRjR]

= 2� (E [qRjR]� �i) + 2 (1� �)P (qR > �ijR) (E [qRjqR > �i; R]� �i) < 0

In a highly irregular equilibrium also some �i > ��� can be a¤ected, but in such a way that the formula

above is still negative.

Proof of Proposition 4
This proof requires only slight modi�cations to the proof of Proposition 5. Lemma 1 does not rely on H

being nonstrategic. Below, I prove Lemma 2 for H being a strategic, benevolent expert. All of the steps of

the proof of Proposition 5 then follow.

Lemma 3 i) If (�; �) is sent by Pl only when he reports fully, then � (�; �) � �
�+�

,

ii) If (�; �) is sent by Pr only when he reports fully, then � (�; �) � �
�+�

.

I prove only part (i) : Proof of part (ii) is analogous to the proof of part (i) :

Assume (�0; �0) is never sent by Pl when (L;R) 6= (�0; �0) and � (�0; �0) >
�0

�0+�0
; as shown in the Figure

below.

26 If the equilibrium has a more complicated form then the decision maker may not be able to choose
optimally when she faces H, but that would only decrease the informativeness of a discrete equilibrium.
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Then there exists (�1; �1) 2 Z (�0; �0) such that
�1

�1+�1
� � (�0; �0) >

�0
�0+�0

and �i (�1; �1) = (�0; �0) for

i 2 (Pr; H) : There are three cases: 1. � (�1; �1) =
�1

�1+�1
; 2. � (�1; �1) >

�1
�1+�1

; 3. � (�1; �1) <
�1

�1+�1
: If

Case 1, � (�1; �1) =
�1

�1+�1
, then only Pr could use a strategy �Pr (�1; �1) = (�0; �0) ; but only if � (�0; �0) >

� (�1; �1) =
�1

�1+�1
; which is not the case: If Case 2, � (�1; �1) >

�1
�1+�1

; then Pl never sends (�1; �1) while

concealing information, and then call (�0; �0) = (�1; �1) and start the analysis from the beginning, which would

require an in�nite sequence of reports violating Lemma 1. Therefore, it must be that Case 3, � (�1; �1) <
�1

�1+�1
;

and moreover � (�1; �1) < � (�0; �0), otherwise neither H nor Pl would send (�1; �1) : But then there exists

(�2; �2) 2 Z (�1; �1) such that
�2

�2+�2
� � (�1; �1) and �i (�2; �2) = (�1; �1) : But then i 2 (H;Pl) ; as Pr would

prefer to send (�0; �0) : Therefore, again, we have three cases. Case 1,
�2

�2+�2
= � (�2; �2) ; is impossible: If

Case 2, � (�2; �2) >
�2

�2+�2
; then it must be that � (�2; �2) > � (�1; �1) ; otherwise neither H nor Pl would send

�i (�2; �2) = (�1; �1) : But then set (�0; �0) = (�2; �2) and start the analysis from the beginning, which would

again violate Lemma 1. Therefore, Case 3, � (�2; �2) <
�2

�2+�2
; must be the case. If we continue this reasoning

we will end up with an in�nite sequence of reports such that (�n; �n) 2 Z
�
�n�1; �n�1

�
and � (�n; �n) <

�n
�n+�n

;

but that violates Lemma 1.

Proof of Proposition 6
Equation (7) takes the following form

��R �
�r
1��l

R 1�R
0

R
R+L

f (LjR) dL+ �H
1��l

R �R
0

R
R+L

f (LjR) dL
�r
1��l

+ �H
1��l

F (�RjR)
(16)

Equation (16) does not depend on �l; therefore we can take the limit of equation (16) keeping �r constant,

and we get lim�H!1 �
�
R = E

h
R

R+L
jR
i
; and lim�H!0 �

�
R ! 1. The de�nition of ��R � R

R+�R
implies that

lim�H!0 �R = 0; that is, the reports of the persuader become more extreme, and that lim�H!1 �R = ��R =

1�E[qRjR]
E[qRjR]

R < 1�R: The analogous holds for Pl:

The utility of each persuader depends on what belief he can induce given the number of arguments that

favor his alternative. That depends on the shape of the ambiguity area for this persuader and on the belief

induced in the double ambiguity area. First, since �H
1��r is kept constant, the shape of the ambiguity area for
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Pl remains unchanged, which can be seen if we expand equation (8):

��L �
�l

1��r

R 1�L
0

R
R+L

f (RjL) dR+ �H
1��r

R �L
0

R
R+L

f (RjL) dR
�l

1��r +
�H
1��r F (�LjL)

:

Keeping �H
1��r constant implies that �H increases as �r decreases, therefore equation (16) implies that the

ambiguity area of Pr shrinks. That means that lim�r!0 �R ! 0; which means that the reports of the persuader

toward Right become more extreme. It remains to show what happens to the double ambiguity area. The

proof of proposition 2 shows that the shape of the ambiguity area is determined by ��; therefore we have to

show that �� increases as �r goes down.

�� is determined by equation 14. If we take the derivative of the RHS of this equation with respect to

�r and evaluate at �� we get

dRHS

d�r
=

1
(1��r)2

R �R

0

R 1�R
0

�
R

R+L
� ��

�
fdLdR+ �H

1��r

�R 1���
��

�R

0

�
R

R+L
� ��

�
fdL

��
d �R
d�r

�
�r

1��r

R �R

0

R 1�R
0

fdLdR+ �l
1��r

R �L
0

R 1�L
0

fdLdR+ �H
1��r

�R �R
��

1���
�L

R 1���
�� R

0 fdLdR+
R ��
1���

�L

0

R �L
0
fdLdR

� < 0:

Recall that �� is the point of intersection of the LHS (�) and the RHS (�) of equation 14 for the initial �r,

like in the picture below.

The fact that dRHS
d�r

< 0 implies that as �r decreases the function RHS (�) shifts up, which implies that the

new ��new > ��:

Now we can conclude that Pr is better o¤, and Pl is worse o¤ when �r goes down. As �r decreases, ��

and ��R for each R increases, and for each R the persuader toward Right can induce a higher belief, or in other

words, he can persuade more decision makers. Since the ambiguity area for Pl has the same shape, for big L;

Pl can induce the same belief. However, the belief attached to the double ambiguity area is higher, and also

it is achieved for lower �Lnew < �L which means that for L < �L; Pl induces a higher belief, which means less

decision makers choose Left.

Showing that the utility of the decision maker increases requires some tedious algebra, which I omit here,

but the result is straightforward, since it is more likely that the decision maker faces the honest expert.
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Proof of Proposition 7
Given the assumptions on g (qR; N ; z) ; we can derive the conditional distribution ofN given R : g (N jR; z) =

g(N ;z)
N

: Therefore, Ri; the threshold R for which the decision maker with parameter �i is indi¤erent between

alternatives, is de�ned by

�i =

�
R 1
Ri

Ri
N

1
N
g (N ; z) dN + (1� �)

R 1
Ri
�i

Ri
N

1
N
g (N ; z) dN

�
R 1
Ri

1
N
g (N ; z) dN + (1� �)

R 1
Ri
�i

1
N
g (N ; z) dN

>

R 1
Ri

Ri
N

1
N
g (N ; z) dNR 1

Ri

1
N
g (N ; z) dN

:

But the last expression can be rewritten asR 1
Ri

Ri
N

1
N
g (N ; z) dNR 1

Ri

1
N
g (N ; z) dN

=
R̂E

�
1
N2 jN > Ri; z

�
E
�
1
N
jN > Ri; z

� >
Ri
�N
) 2Ri < �i:

The utility of the decision maker with the preference parameter �i is

U =

Z Ri

0

Z 1

0

(1 + �i � qR) g (N ; z) dNdqR

+�

Z 1

Ri

Z Ri
qR

0

(1 + �i � qR) g (N ; z) dNdqR + �

Z 1

Ri

Z 1

Ri
qR

(1� �i + qR) g (N ; z) dNdqR

+(1� �)

Z �i

R̂

Z 1

0

(1 + �i � qR) g (N ; z) dNdqR + (1� �)

Z 1

�i

Z Ri
qR

0

(1 + �i � qR) g (N ; z) dNdqR

+(1� �)

Z 1

�i

Z 1

Ri
qR

(1� �i + qR) g (N ; z) dNdqR;

which can be rewritten as

U =

Z Ri

0

(1 + �i � qR) dNd� + �

Z 1

Ri

(1� �i + qR) dqR

+(1� �)

Z �i

R̂

(1 + �i � qR) dNdqR + (1� �)

Z 1

�i

(1� �i + qR) dNdqR

+�

Z 1

Ri

2 (�i � qR)G

�
Ri
qR
; z

�
dNdqR + (1� �)

Z 1

�i

2 (�i � qR)G

�
Ri
qR
; z

�
dqR

Ri is chosen to maximize �U ; therefore,

dU

dz
=
@U

@z
+
@U

@Ri

dRi
dz

=
@U

@z
:

We get
dU

dz
= �

Z 1

Ri

2 (�i � qR)Gz

�
Ri
qR
; z

�
dNdqR + (1� �)

Z 1

�i

2 (�i � qR)Gz

�
Ri
qR
; z

�
dqR:

The second expression is positive, as 2 (�i � qR) < 0 and Gz
�
Ri
qR
; z
�
< 0 for qR 2 (�i; 1) : The �rst expression

can be rewritten asZ 1

Ri

2 (�i � qR)Gz

�
Ri
qR
; z

�
dNdqR =

Z 2Ri

Ri

2 (�i � qR)Gz

�
Ri
qR
; z

�
dqR

+

Z �i

2Ri

2 (�i � qR)Gz

�
Ri
qR
; z

�
dqR

+

Z 1

�i

2 (�i � qR)Gz

�
Ri
qR
; z

�
dqR
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We have Gz
�
Ri
qR
; z
�
< 0 if and only if qR > 2Ri: Hence, the �rst and the last expressions are positive. Note

that Ri < Ri

1�Ri
�i

< 2Ri; therefore, we can rewrite

dU

dz
=

Z Ri

1�Ri
�i

Ri

2 (�i � qR)Gz

�
Ri
qR
; z

�
dqR +

Z 2Ri

Ri

1�Ri
�i

2 (�i � qR)Gz

�
Ri
qR
; z

�
dqR

+

Z �i

2Ri

2 (�i � qR)Gz

�
Ri
qR
; z

�
dqR +

Z 1

�i

2 (�i � qR)Gz

�
Ri
qR
; z

�
dqR:

By symmetry of F we have Z 2Ri

Ri

1�Ri
�i

Gz

�
Ri
qR
; z

�
dqR +

Z �i

2Ri

Gz

�
Ri
qR
; z

�
dqR = 0;

where Gz
�
Ri
qR
; z
�
> 0 in the �rst integral. Also (�i � qR) is greater for any qR from the �rst integral; therefore,

we get
R 2Ri

Ri

1�Ri
�i

Gz
�
Ri
qR
; z
�
dqR +

R 1
2
2Ri

Gz
�
Ri
qR
; z
�
dqR > 0: That completes the argument that dU

dz
> 0:

Full revelation of information in the case of lim z =1 is a standard result.

Proof of Proposition 8
As mentioned in the text, the proof of this proposition is very similar to the proof of Proposition 5. The

crucial di¤erence is that �
�+�

should be replaced by ! (�; �) : Here I will provide the proof of Step 2 which is

the only one that di¤ers signi�cantly. The entire proof available upon request.

Step 2 i) There exists �� 2 [0; 1) such that for all � < �� we have � (0; ��) � const and for all � 2 (��; 1) we

have � (0; �) < ! (0; �) :

ii) There exists �� 2 [0; 1) such that for all � < �̂ we have � (0; ��) � const and for all � 2
�
��; 1
�

we have � (0; �) < ! (0; �)

Assume that there exists �0 > �� such that � (0; �0) � ! (0; �0) : This means that for some � 2 (��; �0)

either � (0; �) < � (0; �0) or � (0; �) > � (0; �0) : If � (0; �) > � (0; �0) = ! (0; �0) > ! (0; �) then Pl never sends

(0; �) when lying and when the state of nature is high enough to generate such a high belief (he would rather

send (0; �0) and this is feasible). Therefore by Lemma 2 that cannot be the case. If � (0; �) < � (0; �0) and

� (0; �0) > � (0; �0) ; then there must exist (�1; �1) 2 z (0; �0) and ! (�1; �1) > � (0; �0) such that �Pr (�1; �1) =

(0; �0) : But then it must be that � (�1; �1) < ! (�1; �1) ; and since Pr does not send (�1; �1) when lying, that

contradicts Lemma 2.

If � (0; �) < � (0; �0) and � (0; �0) = � (0; �0) ; then by Step 1 and Lemma 2 we have that � (0; �0) > � (�; �0)

for all � 2 (0; 1� �0) ; therefore Pr sends (0; �0) when � (�; �0) for � large enough. But then again, to generate

� (0; �0) = � (0; �0) there must exist (�1; �1) 2 z (0; �0) and ! (�1; �1) > � (0; �0) such that �Pr (�1; �1) =

(0; �0) : But then it must be that � (�1; �1) < ! (�1; �1) and since Pr does not send (�1; �1) when lying, that

contradicts Lemma 2.

An analogous proof holds for (ii).
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Proof of Proposition 9
I present only the proof for the case in which the threshold R for which the decision maker is indi¤erent

between the alternatives, R̂; is smaller than N . The proof is analogous for the other case. R̂ is de�ned by the

following equation.

0 = �

Z �

N

 
1� 2 R̂

n

!
1

n

g (n)

G (�)
dn+ (1� �)

Z 2R̂

N

 
1� 2 R̂

n

!
(1� (1� �)�)

1

n

g (n)

G (�)
dn (17)

The expected utility of the decision maker is

U = � (1� (1� �)�)

Z �

N

 Z 1

R̂
n

�
qr �

1

2

�
dqr �

Z R̂
n

0

�
qr �

1

2

�
dqr

!
g (n)

G (�)
dn

+(1� �) (1� (1� �)�)

Z 2R̂

N

 Z 1

R̂
n

�
qr �

1

2

�
dqr �

Z R̂
n

0

�
qr �

1

2

�
dqr

!
g (n)

G (�)
dn

+(1� �) (1� (1� �)�)

Z �

2R̂

Z 1

1
2

�
qr �

1

2

�
dqr

g (n)

G (�)
dn

� (1� �) (1� (1� �)�)

Z �

2R̂

Z 1
2

0

�
qr �

1

2

�
dqr

g (n)

G (�)
dn;

which can be rewritten as

U = � (1� (1� �)�)

Z �

N

R̂

n

 
1� R̂

n

!
g (n)

G (�)
dn

+(1� �) (1� (1� �)�)

Z 2R̂

N

R̂

n

 
1� R̂

n

!
g (n)

G (�)
dn

+(1� �) (1� (1� �)�)
1

4

Z �

2R̂

g (n)

G (�)
dn;

therefore,

dU

d�

1

(1� (1� �)�)
= �

U

(1� (1� �)�)2

� g (�) R̂

(G (�))2

 
�

Z �

N

 
1� 2R̂

n

!
g (n)

n

G (n)

ng (n)
dn+ (1� �)

Z 2R̂

N

 
1� 2 R̂

n

!
g (n)

n

G (n)

ng (n)
dn

!
;

where I used integration by parts to simplify the last part. Denote the �rst expression I and the second T; as

the �rst shows the utility gain due to higher information precision and the second shows the loss due to lower

transparency. I > 0 and T > 0, because T is similar to equation 17, but the expression inside the integral is

multiplied by G(n)
ng(n)

: As G(n)
ng(n)

is increasing the parts that are positive have higher weight than in equation 17.

We have
dT

d�
= � (1� �)

T

(1� (1� �)�)
< 0

as dR̂
d�
= 0; and we have

dI

d�
=

U

(1� (1� �)�)
> 0

Additionally, if � = 0 then I = 0 and dU
d�

< 0: Therefore, there exists �̂ (�) such that for all � < �̂ (�) ; the

decision maker chooses a low-quality expert.
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We want to show now that
d� (�)

d�
= �

d
d�

�
dU
d�

�
d
d�

�
dU
d�

� > 0;
therefore, we need to show d

d�

�
dU
d�

�
> 0: We have

dI

d�
=

�

(1� (1� �)�)

dU

d�
< 0

dT

d�

�
G (�)

(1� (1� �)�) g (�)

�
= R̂

Z �

2R̂

1

n

 
1� 2R̂

n

!
g (n)

G (�)

G (n)

ng (n)
dn

+
dR̂

d�
�

Z �

N

1

n

 
1� 4R̂

n

!
g (n)

G (�)

G (n)

ng (n)
dn+

+
dR̂

d�
(1� �)

Z 2R̂

N

1

n

 
1� 4 R̂

n

!
g (n)

G (�)

G (n)

ng (n)
dn

dR̂

d�
=

R �
2R̂

�
1� 2 R̂

n

�
1
n
g(n)
G(�)

dn

�
R �
N
2 1
n2

g(n)
G(�)

dn+ (1� �)
R 2R̂
N
2 1
n2

g(n)
G(�)

dn

dT

d�

�
G (�)

(1� (1� �)�) g (�)

�
> R̂

Z �

2R̂

1

n

 
1� 2R̂

n

!
g (n)

G (�)

G (n)

ng (n)
dn

�dR̂
d�

�

Z �

N

2R̂

n2
g (n)

G (�)

G (n)

ng (n)
dn

�dR̂
d�

(1� �)

Z 2R̂

N

2R̂

n2
g (n)

G (�)

G (n)

ng (n)
dn

dT

d�

�
G (�)

(1� (1� �)�) g (�)

�
G2 (�)

2R̂
>

 Z �

2R̂

 
1� 2R̂

n

!
g (n)

n

G (n)

ng (n)
dn

!�Z �

N

g (n)

n2
dn

�

�
 Z �
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!
g (n)

n
dn

!�Z �

N

g (n)

n2
G (n)

ng (n)
dn

�

+

 Z �

2R̂

 
1� 2R̂

n

!
g (n)

n

G (n)

ng (n)
dn

!Z 2R̂

N

g (n)
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dn

�
 Z �
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1� 2 R̂

n

!
g (n)

n
dn

!Z 2R̂

N

g (n)

n2
G (n)

ng (n)
dn;

and the RHS is positive. To see that the RHS is positive note that if we set � = 2R̂ in the limits of integration

then the RHS is zero. Set b � � as the upper limit of integration and take the derivative with respect to that.

For the last two terms we get

d�1

db
=

 
1� 2R̂

b

!
g (b)

b

Z 2R̂

N

g (n)

n2

�
G (b)

bg (b)
� G (n)

ng (n)

�
dn > 0;
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and for the �rst two,

d�1

db
=

g (b)

b

 
1� 2R̂

b

!�Z b

N

g (n)

n2

�
G (b)

bg (b)
� G (n)

ng (n)

�
dn

�

�g (b)
b2

Z b

2R̂

g (n)

n

 
1� 2R̂

n

!�
G (b)

bg (b)
� G (n)

ng (n)

�
dn

>
g (b)

b

�Z b

2R̂

�
1

n
� 1

b

�
R̂g (n)

�
G (b)

bg (b)
� G (n)

ng (n)

�
dn

�
> 0:

That completes the proof.
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