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1. Introduction

A principal has to allocate a job to one of several ex-ante identical applicants. Each
applicant values the job and has private information (type) regarding his value to the
principal. The wage is exogenously fixed. The principal will eventually learn the type of
the applicant whom she hires, and she will be able to impose a penalty on this applicant
if she is disappointed (e.g., fire him or deny a promotion). This is an allocation problem,
in which the agents have private types; the type of the selected agent is verified ex-post;
and limited penalties are possible.

In order to provide incentives for the agents to reveal their value to the principal, there
should be a reward for revealing a low type. An optimal allocation rule maximizes the
probability of selecting high types subject to promising low types a sufficient probability
so that they do not want to lie.

If the penalty is a constant share of the agent’s surplus, the optimal rule is particularly
simple. When the number of agents is small, the optimal rule is an auction with two
thresholds, in which the agents bid their types. A bid above the high threshold makes
an agent into a “superstar,” while a bid below the low threshold puts the agent on
the waiting list. If there are superstars, the winner is selected among them at random.
Otherwise, the winner is the highest bid among those between the thresholds. If all
agents are on the waiting list, the winner is chosen randomly. The optimal rule bunches
the types at the top and at the bottom but preserves competition in the middle of the
support.

The distance between the thresholds decreases in the number of agents and vanishes
at a finite number. The optimal rule becomes a shortlisting procedure, in which the
agents report whether their types are above or below a bar and are shortlisted with
certainty if “above” and only with some chance if “below”. The winner is selected from
the shortlist at random.

For more general penalties, the optimal rule is modified by putting the agents with
the bids below the low threshold on the waiting list with different probabilities.

Methodologically, we study a mechanism design problem in which incentive compat-
ibility and generalized Matthews-Border feasibility constraints are expressed in interim
probabilities of selecting an agent. There are no transfers and the relevant incentive
compatibility constraints are global rather than local. Hence, the standard envelope
methods are not particularly useful. We solve the problem by splitting the feasibility
and incentive compatibilty constraints in two subsets and solving two auxiliary maxi-
mization problems subject to different subsets of the constraints. We expect that this
approach might prove useful for other mechanism design problems without transfers.

Ben-Porath, Dekel and Lipman (2014) (henceforth, BDL) study a similar model, with
a key difference in assumptions about the verification technology. In BDL the princi-
pal can pay a cost and acquire information about the agents’ types before making the
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allocative decision,1 while in our model the type is revealed ex-post after the alloca-
tion decision is final. The tradeoff in BDL is between the allocative efficiency and the
verification costs. In an optimal rule, report profiles are not verified iff all reports are
below a cutoff. The optimal allocation is inefficient for low type profiles and efficient
otherwise. By contrast, in our model the tradeoff is between the allocative efficiency
and the incentives for low types to reveal themselves. In an optimal rule, the allocation
is always inefficient and incentives for truthful reporting are provided by bunching at
the top and at the bottom of the type distribution. We discuss other related literature
in the conclusions.

2. Model

There is a principal who has to select one of n ≥ 2 agents. The principal’s payoff
from a match with agent i is xi ∈ X ≡ [a, b], a ≥ 0, where xi is private to agent i.
The values of xi’s are i.i.d. random draws, with continuously differentiable c.d.f. F on
X, whose density f is positive almost everywhere on X. We use x̄ to denote the type
profile (x1, x2, . . . , xn) and x−i to denote the type profile excluding the type of agent i.

Each agent i makes a statement yi ∈ X about his type xi, and the principal chooses
an agent according to a specified rule. If an agent i is not selected, his payoff is 0.
Otherwise, he obtains a payoff of v(xi) > 0. In addition, we assume that if the agent
is selected, the principal observes xi and can impose a penalty c(xi) ≥ 0 on the agent.2

Our primary interpretation of c is the upper bound on the expected penalty that can be
imposed on the agent after his type has been verified.3 Functions v and c are bounded
and almost everywhere continuous on [a, b]. Note that v − c can be non-monotonic.

Some of our assumptions are restrictive and should be relaxed in future work. The
assumption that a ≥ 0 implies that the principal would like to allocate the good regard-
less of the realized type profile. It is straightforward to relax, at the cost of elegance of
the optimal allocation rule. The other two important assumptions are independence of
the penalty from the report and that the verification technology can never misclassify a
truthful report as a lie. The results will be affected if alternative assumptions are made;
nevertheless, we hope that our approach can be used as a blueprint for analysis under
such alternative assumptions.

1For other literature in which evidence that can be presented before an allocation decision, see, e.g.,
Townsend (1979), Grossman and Hart (1980), Grossman (1981), Milgrom (1981), Gale and Hellwig
(1985), Green and Laffont (1986), Border and Sobel (1987), Postlewaite and Wettstein (1989), Mookher-
jee and Png (1989), Lipman and Seppi (1995), Seidmann and Winter (1997), Glazer and Rubinstein
(2004, 2006, 2012, 2013), Forges and Koessler (2005), Bull and Watson (2007), Severinov and Deneckere
(2006), Deneckere and Severinov (2008), Kartik, Ottaviani and Squintani (2007), Kartik (2009), Sher
(2011), Sher and Vohra (2011), Ben-Porath and Lipman (2012), Dziuda (2012), and Kartik and Tercieux
(2012).
2We could allow c to depend on the entire type profile, c(x1, x2, . . . , xn), where n is the number of
agents, without affecting any of the results. In that case, c(xi) should be thought of as the expected
value of c(x1, x2, . . . , xn) conditional on xi.
3The assumption that xi is verified with certainty can be relaxed; if α(xi) is the probability that xi is
verified and L(xi) is the limit on i’s liability, then set c(xi) = α(xi)L(xi).
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The principal has full commitment power and can choose any stochastic allocation
rule that determines a probability of selecting each agent conditional on the report
profile and the penalty conditional on the report profile and the type of the selected
agent after it is verified ex-post. An allocation rule (p, ξ) associates with every profile
of statements ȳ = (y1, . . . , yn) a probability distribution p(ȳ) over {1, 2, . . . , n} and a
family of functions ξi(xi, ȳ) ∈ [0, 1], i = 1, . . . , n, which determine the probability that
agent i is penalized if he is selected given his type and the report profile. The allocation
rule is common knowledge among the agents. The solution concept is Bayesian Nash.

By the revelation principle, it is sufficient to consider allocation rules in which truthful
reporting constitutes an equilibrium. Since type xi of the selected agent is verifiable, it
is optimal to penalize the selected agent whenever he lies, yi 6= xi, and not to penalize
him otherwise. Hence, we set ξi(xi, ȳ) = 0 if yi = xi and 1 otherwise and drop ξ in the
description of the allocation rules. Thus, the payoff of agent i whose type is xi and who
reports yi is equal to4

Vi(xi, yi) =

∫
x−i∈Xn−1

pi(yi, x−i)(v(xi)− 1yi 6=xic(xi))dF̄−i(x−i).

The principal wishes to maximize the expected payoff

(P0) max
p

∫
x̄∈Xn

n∑
i=1

xipi(x̄)dF̄ (x̄)

subject to the incentive compatibility constraint

(IC0) Vi(xi, xi) ≥ Vi(xi, yi) for all xi, yi ∈ X and all i = 1, . . . , n.

Denote by h(x) the share of the surplus retained by a selected agent after deduction
of the penalty, truncated at zero:

h(x) =
max{v(x)− c(x), 0}

v(x)
, x ∈ X.

Lemma 1. Allocation rule p satisfies incentive compatibility constraint (IC0) if and only
if for every i = 1, . . . , n there exists ri ∈ [0, 1] such that for all xi ∈ X

(1) rih(xi) ≤
∫
x−i∈Xn−1

pi(xi, x−i)dF̄−i(x−i) ≤ ri.

Proof. Each agent i’s best deviation is the one that maximizes the probability of i
being chosen, so (IC0) is equivalent to

v(xi)

∫
x−i

pi(xi, x−i)dF̄−i(x−i) ≥ (v(xi)− c(xi)) sup
yi∈X

∫
x−i

pi(yi, x−i)dF̄−i(x−i).

Since the left-hand side is nonnegative, this inequality holds if and only if

(2)

∫
x−i

pi(xi, x−i)dF̄−i(x−i) ≥ h(xi) sup
yi∈X

∫
x−i

pi(yi, x−i)dF̄−i(x−i).

4Denote by F̄ the joint c.d.f. of all n agents and by F̄−i the joint c.d.f. of all agents except i. For each
agent i, pi(yi, y−i) stands for the probability of choosing i as a function of the profile of reports.
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Thus, (2) implies (1) by setting ri = supyi∈X
∫
x−i

pi(yi, x−i)dF̄−i(x−i). Conversely, if (1)

holds with some ri ∈ [0, 1], then it also holds with r′i = supyi∈X
∫
x−i

pi(yi, x−i)dF̄−i(x−i)

≤ ri, which implies (2).

Problem in reduced form. We will approach problem (P0) by formulating and solving
its reduced form. Denote by gi(y) the probability that agent i is selected conditional on
reporting y,

gi(y) =

∫
x−i∈Xn−1

pi(y, x−i)dF̄−i(x−i), y ∈ X,

and define the reduced-form allocation g : X → [0, n], by

g(y) =
n∑
i=1

gi(y), y ∈ X.

We will now formulate the principal’s problem in terms of g:

(P) max
g

∫
x∈X

xg(x)dF (x)

subject to the incentive compatibility constraint

(IC) v(x)g(x) ≥ (v(x)− c(x)) sup
y∈X

g(y) for all x ∈ X,

the feasibility condition (due to
∑

i pi(ȳ) = 1 for all ȳ ∈ Xn)

(F0)

∫
X

g(x)dF (x) = 1,

and a generalization of Matthews-Border feasibility criterion (Matthews 1984, Border
1991, Mierendorff 2011, Hart and Reny 2013) that guarantees existence of an allocation
rule p that induces a given g (see Lemma 3 in the Appendix):

(F)

∫
{x:g(x)≥t}

g(x)dF (x) ≤ 1−
(
F ({x : g(x) < t})

)n
for all t ∈ [0, n].

Lemma 2.
(i) If p is a solution of the principal’s problem (P0), then the reduced form of p is a
solution of the reduced problem (P).

(ii) If g is a solution of the reduced problem (P), then it is the reduced form of some
solution of the principal’s problem (P0).

Proof of Lemma 2. Observe that for every p and its reduced form g, objective
functions in (P0) and (P) are identical. We now verify that every solution of (P0) is
admissible for (P), and for every solution of (P) there is an admissible solution for (P0).

Feasibility condition (F) is the criterion for existence of p that implements g. This
condition is due to the following lemma, which is a generalization of Matthews-Border
feasibility criterion (e.g., Border 1991, Proposition 3.1) to asymmetric mechanisms.

Let Qn be the set of functions q : Xn → [0, 1]n such that
∑
qi ≤ 1 and let λ be a

measure on X. We say that Q : X → [0, n] is a reduced form of q ∈ Qn if Q(z) =∑
i

∫
Xn−1 qi(z, x−i)dλ

n−1(x−i) for all z ∈ X.
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Lemma 3. Q : X → [0, n] is the reduced form of some q ∈ Qn if and only if

(3)

∫
{x:Q(x)≥z}

Q(x)dλ(x) ≤ 1−
(
λ({x : Q(x) < z})

)n
for all z ∈ [0, n].

Proof. Sufficiency is due to Proposition 3.1 in Border (1991) implying that if Q satisfies
(3), then there exists a symmetric q whose reduced form isQ. To prove necessity, consider
q ∈ Qn and let Q be its reduced form. For every t ∈ [0, n] denote Et = {x ∈ X : Q(x) ≥
t}. Then∫

y∈Et
Q(y)dλ(y) =

∫
y∈X

[
n∑
i=1

∫
x−i∈Xn−1

qi(y, x−i)dλ
n−1(x−i)

]
1{y∈Et}dλ(y)

=
n∑
i=1

[∫
(xi,x−i)∈Xn

qi(xi, x−i)1{xi∈Et}dλ
n(xi, x−i)

]

≤
n∑
i=1

[∫
(xi,x−i)∈Xn

qi(xi, x−i)1∪j{xj∈Et}dλ
n(xi, x−i)

]

=

∫
x∈Xn

(
n∑
i=1

qi(x)

)
1∪j{xj∈Et}dλ

n(x) ≤
∫
x∈Xn

1∪j{xj∈Et}dλ
n(x)

= 1−
∫
x∈Xn

1∩j{xj∈X\Et}dλ
n(x) = 1−

(
λ(X\Et)

)n
.

Feasibility condition (F0) is due to
∑

i pi(x) = 1:∫
y∈X

g(y)dF (y) =

∫
y∈X

[
n∑
i=1

∫
x−i∈Xn−1

pi(y, x−i)dF̄−i(x−i)

]
dF (y)(4)

=

∫
x∈Xn

(
n∑
i=1

pi(x)

)
dF̄ (x) = 1.

Let p be a solution of (P0). Then its reduced form satisfies feasibility conditions (F)
by Lemma 3 and (F0) by (4). Incentive constraint (IC) is satisfied as well, since (IC0)
applies separately for each i and thus, in general, is stronger than (IC).

Conversely, let g be a solution of (P). Since g satisfies (F) and (F0), by Proposition
3.1 in Border (1991) there exists a symmetric p whose reduced form is g. This p will
satisfy incentive constraint (IC0), since for symmetric mechanisms (IC) and (IC0) are
equivalent.

Problem (P) is interesting because of its constraints. First, incentive compatibility
constraints (IC) are global rather than local as is often the case in mechanism design,
especially in the environments with transfers. Second, feasibility constraint (F) is sub-
stantive and will bind at the optimum if and only if incentive compatibility constraint
(IC) slacks, which is not the case in the classical mechanism design for allocation prob-
lems.
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3. Optimal allocation rules in reduced form

We would like to maximize the value of g for high types and minimize it for low
types subject to feasibility and incentive compatibility constraints. The novelty of our
approach is that we fix a supremum value of g, denoted by r, and consider two auxiliary
problems whose solutions are the maximal and the minimal trajectories of g that satisfy
the constraints, respectively, and respect r = supy∈Xg(y). A candidate gr is constructed
by concatenating the two solutions. An optimal g is found by optimizing the principal’s
objective on the set of candidate solutions, parametrized by r.

We separate the global incentive compatibility constraint in (IC) into two simpler
constraints, one relevant for the minimal trajectory and another relevant for the maximal
trajectory of g. Let r = supy∈Xg(y). Then, (IC) can be expressed as (c.f. Lemma 1)

g(x) ≥ h(x)r, x ∈ X,(ICmin)

g(x) ≤ r, x ∈ X.(ICmax)

Note that feasibility constraint (F0),
∫
X
g(x)dF (x) = 1, implies that r ∈ [1, r̄],5 where

r̄ =

(∫ b

a

h(x)dF (x)

)−1

.

For each r ∈ [1, r̄], we find the maximal and the minimal trajectory of g that satisfies
feasibility and incentive compatibility constraints. The lowest trajectory minimizes the
value of g and, hence, the relevant part of the incentive compatibility constraints is given
by (ICmin). Let G(x) :=

∫ x
a
g(t)dF (t) and consider the problem

min
g

∫
X

G(x)dF (x) s.t. (ICmin) and(Pmin) ∫
{x:g(x)<t}

g(x)dF (x) ≥ (F ({x : g(x) < t}))n , t ∈ [0, n],(F′)

Constraint (F′) is equivalent to feasibility constraint (F), but is expressed in terms of
the complement sets. This will be convenient when we verify feasibility constraint after
concatenating the minimal and the maximal trajectories of g.

Similarly, for the maximal trajectory of g the relevant part of the incentive constraint

is (ICmax). Let Ḡ(x) :=
∫ b
x
g(t)dF (t) and consider the following problem

max
g

∫
X

Ḡ(x)dF (x) s.t. (ICmax) and (F).(Pmax)

Let g
r

and gr be solutions of problems (Pmin) and (Pmax), respectively. We construct

a candidate g∗r : X → [0, r̄] as the concatenation of g
r

and gr at some z ∈ X:

(5) g∗r(x) =

{
g
r
(x), x < z,

gr(x), x ≥ z,

5Indeed, if r < 1, then g < 1 and
∫
X
g(x)dF (x) < 1. If r > r̄, then

∫
X
g(x)dF (x) ≥

∫
X
rh(x)dF (x) > 1.
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n

b

r

n

b

nF
n−1

rh(x)

t1t0 x̄1

nF
n−1

x̄r

r

Fig. 1. Examples of solutions of Pmax (left) and Pmin (right).

For g∗r to be feasible, it must satisfy (F0) or, equivalently,

(6)

∫ z

a

g
r
(x)dF (x) +

∫ b

z

gr(x)dF (x) = 1.

A solution of (6) exists.6 We will show in the proof of Theorem 1 that the greatest
solution of (6) induces feasible and incentive compatible g∗r . Furthermore, g∗r is unique:
if there are multiple solutions z of (6) then the corresponding concatenated functions
either violate incentive compatibility or induce same g∗r .

Theorem 1. Reduced-form allocation rule g∗ is a solution of (P) if and only if g∗ = g∗r ,
where r solves

max
r∈[1,r̄]

∫ b

a

xg∗r(x)dF (x),

and z is the greatest solution of (6).

The solutions g
r

and gr of problems (Pmin) and (Pmax) are illustrated by Fig. 1.

The left diagram depicts gr.
7 The blue curve is nF n−1(x) and the red curve is r; the

black curve depicts gr(x). Starting from the right (x = b), the black line follows r
so long as constraint (F) slacks. Down from point x̄r constraint (F) is binding, and

6The value of
∫ z

a
g
r
(x)dF (x) +

∫ b

z
gr(x)dF (x) is continuous in z and by (F′) and (F),

∫ b

a
gr(x)dF (x) ≤

1 ≤
∫ b

a
g
r
(x)dF (x) for any r ∈ [1, r̄].

7Lemma 4 below characterizes gr.
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the highest trajectory of Ḡ(x) that satisfies this constraint is exactly 1 − F n(x). Since

Ḡ(x) =
∫ b
x
gr(t)dF (t), the solution gr(t) is equal to nF n−1(t) for t < x̄r.

The right diagram on Fig. 1 depicts an example of g
r
. The blue curve is nF n−1(x)

and the red curve is rh(x); the black curve depicts g
r
(x). Starting from the left (x = a),

the black line follows rh(x) up to the point x̄1 where blue area is equal to red area (so
the feasibility constraint starts binding), and then jumps to nF n−1(x). Then, the black
curve follows nF n−1(x) so long as it is above rh(x). After the crossing point, t1, the
incentive constraint is binding again, and the black curve again follows rh(x), etc.

Proof of Theorem 1. A necessary condition for G to be optimal is that it is maximal
w.r.t. first-order stochastic dominance order (FOSD) on the set of c.d.f.s that satisfy
(IC) and (F). We will prove that the set of FOSD maximal functions is {g∗r}r∈[1,r̄].
Optimization on the set of these functions yields the solutions of (P).

We start by showing that g∗r(x) = r for all x ≥ z. To prove this, we use of Lemma 4
stated in Section 5, which characterizes the solution (Pmax).

By definition, (F) is satisfied with equality by gr at x = x̄r. If (F′) is also satisfied
with equality by g

r
at x = x̄r, then (6) is satisfied with z = x̄r. Hence, the greatest

solution of (6) is weakly higher than x̄r. If, on the other hand, (F′) is satisfied with
strict inequality at x = x̄r, then the left hand side of (6) is less than one at z = x̄r, and
is increasing in z, and has a unique solution on (x̄r, b]. By Lemma 4, gr(x) = r for all
x ≥ x̄r and, hence, g∗r(x) = r for all x ≥ z at any z ≥ x̄r.

Furthermore, consider any solution z′ of (6) such that z′ < x̄r. Then, either (ICmin)
is violated at some x ≥ z′, in which case concatenation obtained at z′ is not incentive
compatible, or (F′) is satisfied with equality for all x > z′, so g

r
(x) = nF n−1(x) on

[z′, x̄r]. Also, by Lemma 4, gr(x) = nF n−1(x) on [z′, x̄r]. Hence, concatenation at any
z ∈ [z′, x̄r] produces the same g∗r and, furthermore, z = x̄r is the greatest solution of (6).
Hence, all incentive compatible concatenations are identical.

Next, we show that for every r ∈ [1, r̄], g∗r satisfies (IC), (F0), and (F). Note that g∗r
satisfies (F0) and (F) by construction. To prove that g∗r satisfies (IC), we need to verify
that g

r
(x) satisfies (ICmax) for x < z and gr(x) satisfies (ICmin) for x ≥ z. We have

shown above that gr(x) = r for all x ≥ z, which trivially satisfies (ICmin).
To verify (ICmax), observe that for x ≤ z it must be that g

r
(x) ≤ r, as otherwise z is

not a solution of (6). Assume by contradiction that g
r
(x′) > r for some x′ ≤ z. Since

rh(x′) < r, constraint (F′) must be binding at x′, implying g
r
(x′) = nF n−1(x′) ≥ r.

However, we have shown above that either z = x̄r or (F′) is not binding at z. We obtain
the contradiction in the former case since nF n−1(x′) < nF n−1(x̄r) < r, where the last
inequality is by construction of x̄r. In the latter case, g

r
(z) < r, implying that g

r
is

decreasing somewhere on [x′, z], which is impossible by (F′) since (F′) is satisfied with
equality at x′.

Finally, observe that c.d.f. G(x) =
∫ x
a
g(t)dF (t) is FOSD maximal subject to (IC) and

(F) if and only if there exists r ∈ [1, r̄] such that g = g∗r . Indeed, consider an arbitrary
g̃ that satisfies (IC), (F), and (F0), and let G̃ =

∫ x
a
g̃(t)dF (t). Let r = supX g̃(x). Then

g̃ satisfies (ICmin) and (ICmax) with this r. Consider now G∗r(x) =
∫ x
a
g∗
r
(t)dF (t), where
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g∗r is a concatenation of g
r

and gr at the largest point z such that (6) holds. Since∫ x
a
g
r
(t)dF (t) describes the lowest trajectory G(x) that satisfies (ICmax) and (F), we

have for all x ≤ z

G∗r(x) =

∫ x

a

g
r
(t)dF (t) ≤

∫ x

a

g̃(t)dF (t) = G̃(x).

Also, since
∫ b
x
gr(t)dF (t) describes the highest trajectory Ḡ(x) that satisfies (ICmin) and

(F), and ḡr(x) = r for all x > z, we have

1−G∗r(x) =

∫ b

x

gr(t)dF (t) ≥
∫ b

x

g̃(t)dF (t) = 1− G̃(x).

Hence, G∗r FOSD G̃.

4. Upper bound

There are two qualitatively distinct cases: when feasibility constraint (F) is binding
at the optimum and when it is not. Recall that (F) is necessary and, together with
(F0), sufficient for existence of allocation rule p that a given induces reduced-form g.
This constraint becomes weaker as n increases and, eventually, permits all nondegenerate
distributions as n→∞. On the other hand, incentive compatibility constraint (IC) does
not depend on n. So when n is large enough, the shape of the solution is determined
entirely by (IC) and is independent of n.

Let z∗ be the unique8 solution of

(7) r∗
(∫ z∗

a

xh(x)dF (x) +

∫ b

z∗
xdF (x)

)
= z∗,

where r∗ is the normalizing constant:

(8) r∗ =

(∫ z∗

a

h(x)dF (x) +

∫ b

z∗
dF (x)

)−1

.

Theorem 2. For every number of agents, in any allocation rule the principal’s payoff
is at most z∗. Moreover, if a solution of (P) achieves the payoff of z∗, then its reduced
form must be (almost everywhere) equal to

(9) g∗(x) =

{
r∗h(x), x ≤ z∗,

r∗, x ≥ z∗.

We obtain (7)-(9) by solving (P) subject to (IC) and (F0), while ignoring constraint
(F). It is evident that the relaxed problem does not depend on n. Since the principal’s
objective is linear, any solution is almost everywhere boundary. We will focus on the
solution that is boundary everywhere. This solution is a cutoff rule that maximizes
the probability of selecting agents with types above z∗ subject to the constraint that
the types below z∗ are selected with high enough probability to provide incentives for

8To show uniqueness of z∗, rewrite (7) and (8) as
∫ z∗

a
(z∗−x)h(x)dF (x) =

∫ b

z∗(x−z∗)dF (x) and observe
that the left-hand side is strictly increasing, while the right-hand side is strictly decreasing in z∗.
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truthful reporting, g(x) ≥ h(x) sup g. So, the solution is given by (9), where r∗ = sup g∗

is a constant determined by (F0):∫ z∗

a

r∗h(x)dF (x) +

∫ b

z∗
r∗dF (x) = 1,

that yields (8).
The incentive constraint thus pins down the distribution of selected types, G∗(x) =∫ x

a
g∗(s)dF (s) and determines the best attainable expected payoff

∫ b
a
xdG∗(x) absent

feasibility constraint (F). Equation (7) is equivalent to equation z∗ =
∫ b
a
xdG∗(x).

Heuristically, if the expected value x∗ =
∫ b
a
xdG∗(x) of the chosen agent is above the

cutoff z∗, the principal can increase the cutoff, thus increasing the relative probability of
selecting an average type and improving her payoff. If, on the other hand, x∗ < z∗, the
principal can decrease the cutoff and thus decrease the relative probability of selecting
an average type x∗, improving her payoff. Hence, at the optimum we have x∗ = z∗.

Proof of Theorem 2. To derive the upper bound on the principal’s payoff we solve
(P) subject to (IC) and (F0), while ignoring constraint (F).

Solving the programs corresponding to (Pmin) and (Pmax) with the relaxed set of
constraints that ignores (F) gives

g
r
(x) = rh(x) and gr(x) = r, x ∈ X.

By the argument in the proof of Theorem 1, each concatenation of g
r

and gr at z,

g∗z =

{
rh(x), x ≤ z,

r, x > z,

with r satisfying
∫ z
a
rh(x)dF (x) +

∫ b
z
rdF (x) = 1 is FOSD maximal. Solving for r yields

(10) r =

(∫ z

a

h(x)dF (x) +

∫ b

z

dF (x)

)−1

= (H(z) + 1− F (z))−1 ,

where we denote

H(x) =

∫ x

a

h(t)dF (t).

Substituting g∗z and (10) into the principal’s objective function yields

max
z∈X

1

H(z) + 1− F (z)

(∫ z

a

xh(x)dF (x) +

∫ b

z

xdF (x)

)
The first-order condition is equivalent to

z(h(z)−1)f(z)(H(z) + 1−F (z))− (h(z)−1)f(z)

(∫ z

a

xh(x)dF (x) +

∫ b

z

xdF (x)

)
= 0.

By assumption, f(x) > 0 and h(x) < 1, hence the above is equivalent to

(11)

∫ z

a

xh(x)dF (x) +

∫ b

z

xdF (x) = z(H(z) + 1− F (z)).
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Observe that (10) and (11) are identical to (7) and (8) with z∗ = z and r∗ = r, and thus
g∗z is precisely (9). First-order condition (11) is also sufficient by the argument provided
in Footnote 8.

Attainment of the upper bound. Let Et = {x : r∗h(x) ≤ t} ∩ [a, z∗]. Denote by n̄
the smallest number that satisfies

(12)

∫
Et

r∗h(x)dF (x) ≥
(
F (Et)

)n̄
for all t ∈ [0, r∗].

This is a condition on primitives: F and h determine z∗ and r∗ and, consequently, n̄. It
means that feasibility constraint (F) is not binding for every type x for which incentive
constraint (IC) holds as equality, g∗(x) = r∗h(x) < r∗.

Corollary 1. There exists an allocation rule that attains the payoff of z∗ if and only if
n ≥ n̄.

Proof of Corollary 1. By Theorem 2, z∗ can be achieved if and only if g∗ given by
(9) is feasible. Thus we need to verify that g∗ satisfies (F) if and only if (12) holds.

Denote Et = {x ∈ X : g∗(x) ≤ t}. Since the image of g∗ is {r∗h(x) : x ∈ [0, z∗]}∪{r∗},
we have Et = {x : r∗h(x) ≤ t} when t ∈ {r∗h(x) : x ∈ [0, z∗]} and Et = X when t = r∗.
So, for g = g∗, (F) is equivalent to:

(13)

∫
x∈Et

r∗h(x)dF (x) ≥
(
F (Et)

)n̄
for all t ∈ {r∗h(x) : x ∈ [0, z∗]},

and

(14)

∫
x∈X

g∗(x)dF (x) ≥ 1.

Observe that (13) is equivalent to (12), while (14) is redundant by (F0).
Condition (12) is not particularly elegant. Instead, one can use the following sufficient

condition, which is simple and independent of F and z∗. Let ñ the smallest number such
that9

(15)
c(x)

v(x)
≤ 1− 1

ñ
for all x ∈ X.

Corollary 2. There exists an allocation rule that attains the payoff of z∗ if n ≥ ñ.

Proof of Corollary 2. We need to verify (12) under the assumption that n ≥ ñ,
which is equivalent to

(16) h(x) ≥ 1

n
, x ∈ X.

Let Et = {x ∈ X : r∗h(x) ≤ t}. Note that (12) is equivalent to∫
At

r∗h(x)dF (x) ≥
(
F (At)

)n̄
for all t ≤ r∗ max

x∈[a,z∗]
h(x).

9Note that ñ exists if and only if supx∈X c(x)/v(x) < 1.
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z Denote Ft = F (Et) and Ht =
∫
x∈Et h(x)dF (x), and denote H∗ = H([a, z∗]) and

F ∗ = F ([a, z∗]). In these notations we have r∗ = (H∗ + 1 − F ∗)−1, and the above
inequality is equivalent to

Ht ≥ (H∗ + 1− F ∗)F n
t ,

or

Ht(1− F n
t ) ≥

(
1− Ft + (H∗ −Ht)− (F ∗ − Ft)

)
F n
t .

Since (H∗ − Ht) − (F ∗ − Ft) ≤ 0 by h(x) ≤ 1 and since Ht ≥ 1
n
Ft by (16), the above

inequality holds if
1

n
Ft(1− F n

t ) ≥ (1− Ft)F n
t .

This is true, since

1− F n
t

F n−1
t (1− Ft)

=
F−n − 1

F−1 − 1
= 1 + F−1 + F−2 + . . .+ F−(n−1) ≥ n.

Note that in some cases n̄ and ñ need not be very large. For example, ñ ≤ 2 if
c(x) ≤ 1

2
v(x) for all x, i.e., agents can be penalized by at most half of their gross payoff.

Remark 1. Theorem 2 implies that the optimal rule with n̄ agents is weakly superior to
any rule with n > n̄ agents. That is, the value of competition is limited and expanding
the pool of agents beyond n̄ confers no benefit to the principal.

Implementation of the upper bound. Consider the following shortlisting procedure.
Let each agent i = 1, . . . , n be short-listed with some probability q(yi) given report yi.
The rule chooses an agent from the shortlist with equal probability. If the shortlist is
empty, then the choice is made at random, uniformly among all n agents.

Corollary 3. Let n ≥ n̄. Then the shortlisting procedure with

(17) q(x) =

{
Kh(x)−1
K−1

, x < z∗,

1, x ≥ z∗.

attains the upper bound z∗, where K is the unique solution of

(18)
(K − 1)n−1

Kn
=

(r∗ − 1)n−1

(r∗)n
, K > r∗.

Proof of Corollary 3. Consider q defined by (17). Let Q =
∫
X
q(x)dF (x) be the

ex-ante probability to be short-listed, and let A and B be the expected probabilities
to be chosen conditional on being shortlisted and conditional on not being short-listed,
respectively:

A =
n∑
k=1

1

k

(
n− 1

k − 1

)
Qk−1(1−Q)n−k and B =

1

n
(1−Q)n−1.
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Then an agent’s probability to be chosen conditional on reporting x is equal to gi(x) =
q(x)A+ (1− q(x))B. Set K = A/B and evaluate

g(x) ≡
∑
i

gi(x) = n (q(x)A+ (1− q(x))B) =

{
nAh(x), x < z∗,

nA, x ≥ z∗.

By Proposition 2, the shortlisting procedure achieves z∗ if g(x) = g∗(x) for all x, where
g∗ is given by (9). This holds if nA = r∗. Thus we need to verify that condition (18)
implies A = r∗/n. We have

Q =

∫
X

q(x)dF (x) =
K

K − 1

(∫ z∗

a

h(x)dF (x) +

∫ b

z∗
dF (x)

)
− 1

K − 1
(19)

=
K

K − 1

1

r∗
− 1

K − 1
=

K − r∗

r∗(K − 1)
, thus 1−Q =

K(r∗ − 1)

r∗(K − 1)
,

where we used (8). Also,

A =
n∑
k=1

1

k

(n− 1)!

(k − 1)!(n− k)!
Qk−1(1−Q)n−k =

1

nQ

n∑
k=1

n!

k!(n− k)!
Qk(1−Q)n−k

=
1

nQ
(1− (1−Q)n) .

Substituting (19) into the above yields

A =
r∗(K − 1)

n(K − r∗)

(
1−

(
K

r∗

)n(
r∗ − 1

K − 1

)n)
.

By (18),

A =
r∗(K − 1)

n(K − r∗)

(
1− r∗ − 1

K − 1

)
=
r∗(K − 1)

n(K − r∗)
K − r∗

K − 1
=
r∗

n
.

5. Small number of agents

If the number of agents is small, n < n̄, then feasibility constraint (F) is binding at
the optimum. The upper bound cannot be attained, and Theorem 2 is not applicable.
To find an optimal allocation rule as described by Theorem 1, we solve problems (Pmin)
and (Pmax) subject to both incentive compatibility and feasibility constraints.

The solution of (Pmax) is easy.

Lemma 4. For every r ∈ [1, r̄], the solution of (Pmax) is equal to

gr(x) =

{
nF n−1(x), x ∈ [a, x̄r),

r, x ∈ [x̄r, b],

where x̄r < b is implicitly defined by

(20)

∫ b

x̄r

rdF (x) = 1− F n(x̄r).
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Proof of Lemma 4. As r ≤ r̄ < nF n−1(b) = n, there exists x̄r such that feasibility
constraint (F) does not bind while incentive constraint (ICmax) binds for x ≥ x̄r, and the
opposite is true for x < x̄r. Consequently, gr(x) = r for x ≥ x̄r, while gr(x) = nF n−1(x)
for x < x̄r. The value of x̄r is the unique solution of (20), which is the equation that
guarantees that feasibility constraint binds at all x ≤ x̄r and slacks at all x > x̄r.

The solution of (Pmin) is more complex, as it involves function h(x) in the constraints.
To obtain tractable results, we make an assumption of “single-crossing” of incentive
compatibility and feasibility conditions. Specifically, for every r there exists a threshold
xr such that for function g(x) = rh(x) feasibility constraint (F′) is satisfied on interval
[a, z] for any z below the threshold and is violated for any z above the threshold.

Assumption 1 (Single-crossing property). For every r ∈ [1, r̄] there exists xr ∈ X
such that

(21)

∫ x

a

rh(t)dF (t) ≥ F n(x) if and only if x ≤ xr,

and

(22)

∫
Et

rh(x)dF (x) ≥ F n(Et) for all t ∈ [0, n],

where Et = {x : rh(x) ≤ t} ∩ [a, xr].

The proposition below provides a sufficient condition for single crossing property to
hold.

Lemma 5. Assumption 1 holds if h(F−1(t)) is weakly concave.

Proof of Lemma 5. By concavity of h(F−1(t)), for every n ≥ 2, h(F−1(t))− ntn−1 is
concave (and strictly concave for n > 2). Hence, by monotonicity of F , for all r ≥ 0

rh(x)− nF n−1(x) is quasiconcave.

Denote by x̃ the greatest solution of rh(x̃) = nF n−1(x̃). Since rh(0) ≥ nF n−1(0) = 0
and rh(1) ≤ nF n−1(1) = n by h(1) ≤ 1 and r ≤ n, such a solution always exists, and
moreover, rh(t)− nF n−1(t) is nonnegative on [a, x̃] and negative on (x̃, b]. As a result,∫ x

a

(rh(t)− nF n−1(t))dF (t)

is positive and increasing for x < x̃ and strictly decreasing for x > x̃. Consequently,
there exists an xr that satisfies10 (21).

Next, we show that (22) holds. If h is weakly increasing, then (22) is implied by (21).
In the case of nonmonotonic h, the same argument applies after a measure-preserving
monotonization of h, a “reordering” types in X in the ascending order in the image of

10Note for n = 2, rh(x)−2F (x) is weakly quasiconcave. So it is possible that there is an interval [x′, x′′]
of solutions of (24), but in that case rh(x) = 2F (x) for all x ∈ [x′, x′′], and hence every xr ∈ [x′, x′′]
defines the same function in (24).
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h. Formally, a measure-preserving monotonization of h is a weakly increasing function
h̃ : X → [0, n] such that for every t ∈ [0, 1]∫

{x:h(x)≥t}
h(x)dF (x) =

∫
{x:h̃(x)≥t}

h̃(x)dF (x).

Since h◦F−1 is concave by assumption, the monotonization procedure is straightforward.
Fix r and define t̄ = F (xr). Let s̄ = maxt∈[0,t̄] rh(F−1(t)). For every s ∈ [0, s̄] define
Es = {t ∈ [0, t̄] : h(F−1(t)) ≥ s}. Observe that supEs− inf Es is strictly decreasing and
concave, due to concavity of h◦F−1. Let φ(t) be the inverse of t̄−supEs+inf Es. Thus,

φ(t) is strictly increasing and concave, and hence rh̃(x) − nF n−1(x) is quasiconcave,

where h̃ is implicitly defined by φ(t) = h̃(F (t)), t ∈ [0, t̄].

Examples that satisfy Assumption 1 by verification of the condition in Lemma 5:

(a) Let the penalty be proportional to the value, c(x) = αv(x), 0 < α < 1. Then h
is constant,

h(x) = 1− α, x ∈ X.
(b) Suppose that the principal and the chosen agent share a unit surplus: the prin-

cipal’s payoff is x and the agent’s payoff is v(x) = 1 − x. Let the penalty be
constant, c(x) = c̄ < 1 and let X = [a, b] ⊆ [0, 1− c̄] (so that v(x) ≥ c(x) for all
x ∈ X). Then

h(x) = 1− c̄

1− x
, x ∈ X,

and h(F−1(t)) is concave, provided f(x)(1− x)2 is weakly decreasing or, equiva-

lently, f ′(x) < 2f(x)
1−x if f is differentiable.

(c) Suppose that the principal is benevolent and wishes to maximize the agents’
surplus, that is, v(x) = x. Let the penalty be constant, c(x) = c̄ < 1, and let
X = [a, b] ⊆ [c̄, 1] (so that v(x) ≥ c(x) for all x ∈ X). Then

h(x) = 1− c̄

x
, x ∈ X,

and h(F−1(t)) is concave, provided f(x)x2 is weakly increasing or, equivalently,

f ′(x) ≥ −2f(x)
x

if f is differentiable.

Lemma 6. Let Assumption 1 hold. Then for every r ∈ [1, r̄] the solution of problem
(Pmin) is equal to

(23) g
r
(x) =

{
rh(x), x ∈ [a, xr],

nF n−1(x), x ∈ (xr, b],

where xr > a is implicitly defined by

(24)

∫ xr

a

rh(x)dF (x) = F n(xr).
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Proof of Lemma 6. By Assumption 1 we have (ICmin) binding on [a, xr] and (F′)
binding on (xr, b], where xr defined by (23) is the threshold in (21). Consequently,
g
r
(x) = rh(x) on [a, xr], while g

r
(x) = nF n−1(x) on (xr, b].

Under Assumption 1, the solutions of (Pmax) and (Pmin) are given by Lemmata 4 and
6 whose concatenations are easily obtained using (F0). This permits a clean characteri-
zation of the optimal rule.

Theorem 3. Suppose that Assumption 1 holds and let n < n̄. Then g∗ is a solution of
(P) if and only if

(25) g∗(x) =


rh(x), x ≤ xr,

nF n−1(x), xr < x ≤ x̄r,

r, x > x̄r,

where x̄r and xr are defined by (20) and (24), respectively, and r ∈ [1, r̄] is the solution
of

(26)

∫ xr

a

(xr − x)h(x)dF (x) =

∫ b

x̄r

(x− x̄r)dF (x).

Equation (26) is the first-order condition w.r.t. r on the principal’s expected payoff.
The left-hand side is the marginal payoff loss due to assigning higher probability mass
on types below xr, while the right-hand side is the marginal payoff gain due to assign-
ing higher probability mass on types above xr. The reduced form allocation for types
between xr and xr is determined by the highest ordered statistic, independent of r, and
thus the expected payoff from these types is marginally constant w.r.t. r.

Proof of Theorem 3. By Theorem 1, the solution g∗ is chosen among concatenations
of g

r
and gr. By Lemmata 4 and 6, g∗ is given by (25) for some r if xr < xr and by (9)

if xr ≥ xr. The latter case is ruled out by the assumption that n < n̄: (12) is violated
and the feasibility constraint must be binding for a positive measure of types. Hence,
g∗ is as in (25), and r is chosen to maximize the payoff of the principal:∫ xr

a

xrh(x)dF (x) +

∫ xr

xr

xnF n−1(x)dF (x) +

∫ b

xr

xrdF (x).

Taking the derivative w.r.t. r yields the first-order condition that is precisely (26). Since
xr is strictly increasing and xr is strictly decreasing in r, the solution of (26) is unique.

Implementation of the optimal rule. Solution g∗ can be implemented by a restricted-
bid auction augmented by a shortlisting procedure. The principal asks each agent to
report yi ∈ [xr, xr]. Then, the agents are divided into three groups: regular candidates
who report yi strictly between xr and x̄r, “superstars” who report yi = x̄r, which is
interpreted as “my type is equal to or above xr”, and the “waiting list” candidates who
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report yi = xr, which is interpreted as “my type is equal to or below xr”. The prin-
cipal chooses a superstar at random. If there are no superstars, the principal chooses
a regular candidate with the highest report. If there are neither superstars nor regu-
lar candidates, the waiting-list candidates report their types to the principal, who then
applies the shortlisting procedure q to all waiting-list candidates, where

(27) q(x) =
Kh(x)− 1

K − 1
, x ∈ [a, xr],

and K is the unique solution of

(28)
(K − 1)n−1

Kn
=

(
F (xr)

H(xr)
− 1
)n−1

(
F (xr)

H(xr)

)n , K >
F (xr)

H(xr)
.

After selection has been made, the principal penalizes the selected agent unless he has
sent a truthful message (in particular, for x > xr, message y = xr is considered truthful).

Corollary 4. Let n < n̄ and suppose that Assumption 1 holds. Then the restricted bid
auction with shortlisting procedure q is optimal.

The proof essentially repeats that of Corollary 3 and thus is omitted.

The interval [xr, x̄r] where agents’ types are fully separated shrinks as n increases and
disappears as n approaches n̄.

Corollary 5. Suppose that Assumption 1 holds. Then, at the solution of (P), difference
x̄r − xr is decreasing in n; moreover, xr → z∗ and x̄r → z∗ as n→ n̄.

The proof is straightforward by definition of xr and xr, and (26).

Example (Proportional penalty). Consider the example with the penalty propor-
tional to the value, c(x) = αv(x). In this case, the shortlisting procedure in the optimal
rule becomes degenerate (see (27)), and the optimal rule reduces to the simple restricted
bid auction that allows the agents to report yi ∈ [xr, x̄r] and then selects an agent with
the highest report, splitting ties randomly, and penalizes the selected agent unless he
makes the report closest to the truth.

Corollary 6. If n < n̄ and c(x)
v(x)

is constant, then the simple restricted bid auction is

optimal.

If n ≥ n, the optimal rule becomes a two bid auction with limited participation: it
dismisses a fixed number of agents, asks the remaining agents to report whether their
type is above or below a threshold, and chooses at random any agent whose reported
type is above the threshold if there is at least one such report, and any agent at random
otherwise.
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Fig. 2. Plot of z∗ as a function of λ ∈ [0, 1] with c = 1/3.

6. Example

In this section we find the optimal reduced-form allocation rule g∗ for an environment
with constant penalty c(x) = c ∈ (0, 1/2). We assume that the agent’s payoff is equal to

vλ(x) = (1− λ)x+ λ(1− x), λ ∈ [0, 1].

Hence, for λ = 1/2, the agent’s payoff v(x) = 1/2 is type independent; for λ = 1 the
parties are splitting the unit surplus, v(x) = 1 − x; for λ = 0, the parties’ payoffs
are aligned, v(x) = x (c.f. examples (a), (b), and (c) after Assumption 1). We set
X = [c, 1 − c], so hλ(x) = 1 − c

vλ(x)
≥ 0 for all x ∈ X, and assume that F is uniform,

F (x) = x−c
1−2c

. Note that Assumption 1 is satisfied for any λ ∈ [0, 1] and any c ∈ (0, 1/2).
By (7) and (8), and Theorem 2, the upper bound satisfies

z∗ − 1

2
=

c

1− 2c
(z∗ − c)2 if λ = 1

2
, and

z∗ − 1

2
=

c

1− 2c

(
z∗I(z∗)− z∗ − c− λI(z∗)

1− 2λ

)
if λ 6= 1

2
,

where I(z∗) =
∫ z∗
c

1
vλ(x)

dx = ln vλ(z∗)−ln vλ(c)
1−2λ

.

There is no closed-form solution for λ 6= 1
2
. The black curve on Fig. 2 shows the

numeric solution for the upper bound on the principal’s expected payoff as λ varies from
0 to 1 and c = 1/3. For comparison to the complete information case, the blue and
brown curves show the expected values of the highest ordered statistics for n = 2 and
n = 3, respectively.

Observe that

z∗ =

(∫ z∗

c

hλ(x)
dx

1− 2c
+

∫ 1−c

z∗

dx

1− 2c

)−1

=

(
1− c

1− 2c
I(z∗)

)−1

.
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Fig. 3. Plots of g∗i (x) for λ ∈ {0, 1
2 , 1} with n = 2 and c = 1/3.

If the upper bound z∗ is achievable, the optimal rule

(29) g∗(x) =

{
r∗
(

1− c
(1−λ)x+λ(1−x)

)
, x ≤ z∗,

r∗, x ≥ z∗

is numerically computable for each c ∈ (0, 1/2) and each λ ∈ [0, 1]. Fig. 3 shows the
ex-ante probability g∗i (x) = 1

n
g∗(x) that an agent is selected conditional on her type x,

for c = 1/3 and n = 2 and three values of λ that correspond to examples (a), (b), and
(c) after Assumption 1.

We now determine the value of n required to achieve z∗. Sufficient condition (15)
reduces to

n ≥ ñ = max

{
λ

λ− c
,

1− λ
1− λ− c

}
.

Necessary and sufficient condition (12) reduces to

1− r∗
(

1− z∗ − c
1− 2c

)
=

(
z∗ − c
1− 2c

)n̄
,

from which n̄ can be computed numerically. For c = 1/3, the value of ñ is given by
the blue curve on Fig. 4 (left) and the value of n̄ is given by the black curve on Fig. 4
(right).

Note that n̄ is substantially lower than ñ for all λ, so condition (12) is tighter than
condition (15). This is especially important for λ < c and λ > 1 − c where ñ = ∞, so
condition (15) is uninformative.

We thus established that the upper bound z∗ can be attained by optimal allocation
rule (29) for all λ ∈ [0, 1] if n ≥ 3 and for λ ≥ λ̄ ≈ 0.807 if n = 2. It remains to solve
the problem for n = 2 and λ < λ̄. By Proposition 3, we need to find xr from (20) and
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Fig. 4. Plots of ñ and n̄ as functions of λ ∈ [0, 1] with c = 1/3.
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Fig. 5. Optimal rule when the upper bound is not achieved.

xr from (24), and satisfy (26). The solution of (20) is straightforward,

(30) xr = c+ (1− 2c)(r − 1).

Equation (24) can be simplified as

(31) r

(
1− I(xr)

xr − c

)
=
xr − c
1− 2c

,

Finally, equation (26) reduces to

(32)
(xr − c)2

2(1− 2c)
− c

2(1− 2c)

(
xrI(xr)−

xr − c− λI(xr)

1− 2λ

)
=

(1− c− xr)2

2(1− 2c)
.

Solving the system of equations (30), (31), and (32) for (r, xr, xr) numerically yields all
the components of the optimal allocation rule (25).

Fig. 5 (left) depicts xr, and xr at optimal r for c = 1/3. The competitive range [xr, xr]
of the optimal allocation is greater when the principal’s and agents’ preferences are more
aligned (small λ), but shrinks as the principal’s bias grows (λ increases) and eventually
vanishes at λ = λ̄.

Fig. 5 (right) shows that the optimal expected payoff of the principal (blue curve)
decreases as the principal’s and agents’ preferences become less aligned (λ increases),
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though slower than the upper bound z∗ (black curve) does. Note that for λ > λ̄ the
upper bound is achieved, so the two curves coincide.

7. Related literature

In our model, the utility is not transferable. Optimal mechanism design with transfers
that can depend on ex-post information has been studied in, e.g., Mezzetti (2004),
DeMarzo, Kremer and Skrzypacz (2005), Eraslan and Yimaz (2007), Dang, Gorton and
Holmström (2013), Deb and Mishra (2013), and Ekmekci, Kos and Vohra (2013). This
literature is surveyed in Skrzypacz (2013).

In our model, there are restricted ex-post transfers (penalties). Burguet, Ganuza and
Hauk (2012) and Decarolis (2014) study contract design with limited liability where,
similarly to our model, agents with low values are given rents to stop them bidding too
aggressively to win the contract.11 Bar and Gordon (forthcoming) study an allocation
problem with ex-post verifiable types and non-negative transfers, in which the allocation
might be inefficient due to incentives to save on the subsidies paid to the agents. By
contrast, in our model the principal does not collect the penalties imposed on the agents.

There is a literature on mechanism design with partial transfers in which the agents’
information is non-verifiable. In Chakravarty and Kaplan (2013) and Condorelli (2012b),
a benevolent principal would like to allocate an object to the agent with the highest val-
uation, and the agents signal their private types by exerting socially wasteful effort.
Condorelli (2012b) studies a general model with heterogeneous objects and agents and
characterizes optimal allocation rules where a socially wasteful cost is a part of mecha-
nism design. Chakravarty and Kaplan (2013) restrict attention to homogeneous objects
and agents, and consider environments in which socially wasteful cost has two com-
ponents: an exogenously given type and a component controlled by the principal. In
particular, they demonstrate conditions under which, surprisingly, the uniform lottery
is optimal.12 Che, Gale and Kim (2013) consider a problem of efficient allocation of a
resource to budget constrained agents and show that a random allocation with resale can
outperform competitive market allocation. In an allocation problem in which the private
and the social values of the agents’ are private information, Condorelli (2012a) charac-
terizes conditions under which optimal mechanism is stochastic and does not employ
payments.

Appendix

11Similar forces are at play in Mookherjee and Png (1989) who solve for the optimal punishment schedule
for crimes when punishments are bounded.
12See also McAfee and McMillan (1992), Hartline and Roughgarden (2008), Yoon (2011) for environ-
ments without transfers and money burning. In addition, money burning is studied in Ambrus and
Egorov (2012) in the context of a delegation model.
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