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Abstract

We study a continuous-time reputation game between a large player and a population

of small players in which the actions of the large player are imperfectly observable. We

explore two versions of the game. In the complete information game, in which it is common

knowledge that the large player is a strategic normal type, we show that intertemporal

incentives collapse: irrespective of players’ patience and signal informativeness, the set of

equilibrium payoffs of the large player coincides with the convex hull of the set of static Nash

equilibrium payoffs.

In the incomplete information game, the small players believe that the large player could

be a strategic normal type or a commitment type, who plays the same action at all times.

With this perturbation, nontrivial intertemporal incentives arise. In this two-type setting,

we characterize the set of sequential equilibrium payoffs of the large player using an ordinary

differential equation. Unlike in discrete time, in a large class of games in continuous time

the sequential equilibrium is unique and Markov in the small players’ belief for any prior.

1 Introduction.

In many economic environments a large player can benefit from committing to a course of actions

to influence the behavior of a population of small players. A firm may wish to commit to fight

potential entrants, to provide high quality to its customers, to honor implicit labor contracts,

and to generate good returns to investors. Governments can benefit from commitment to a

non-inflationary monetary policy, low capital taxation and efforts to fight corruption. Often

the actions of the large player are imperfectly observable. For example, the quality of a firm’s

products may be a noisy outcome of a firm’s hidden effort to maintain quality standards. The

actual inflation rate can be a noisy signal of money supply.

We study a repeated game between a large player and a population of small players to gain

insight behind the possibility of commitment in these situations. Our setting is a continuous-

time analogue of the repeated game of Fudenberg and Levine (1992), hereafter FL, in which the

public signals about the large player’s actions are distorted by Brownian motion. We assume
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that there is a continuum of small players and that only the distribution of small players’ actions

is publicly observed, but not the actions of any individual small player. Hence, as in FL, the

small players behave myopically in every equilibrium, acting to maximize their instantaneous

expected payoffs.

First we consider the complete information version of this dynamic game, in which it is com-

mon knowledge that the large player is a strategic normal type. We find that, due to monitoring

imperfection in a continuous-time setting with Brownian noise, the large player cannot achieve

higher payoffs than in static Nash equilibria. This result does not hold in the discrete-time

setting of FL. In a complete information discrete-time repeated game, payoffs above static Nash

equilibrium can be attained in simple equilibria with two regimes: a commitment regime, where

the large player’s continuation payoff is greater than the static Nash equilibrium payoffs, and a

punishment regime, where it is at least as low as a static Nash. In the commitment regime the

large player chooses an action that differs from his myopic best response, which influences the

actions of the small players in a positive way, for the fear of triggering the punishment regime

if the signal about his actions turns out sufficiently negative.

We show that in a continuous-time setting such commitment to an action that differs from the

large player’s static best response becomes completely impossible. One way to explain this result

is to borrow for intuition from Abreu, Milgrom, and Pearce (1991) who study discrete-time games

in the limit as actions become more frequent. Translated into our setting, that intuition tells

us that with frequent actions players see very little information per period and so the statistical

tests that trigger punishments to support commitment give false positives too often. This effect

is especially strong when information arrives continuously via a Brownian motion as shown

in Sannikov and Skrzypacz (2006a) for games with frequent actions.1 Directly in continuous

time, we prove that the large player’s payoff must depend continuously on information. Both

rewards and punishments must be used to create incentives: if only punishments are used but

not rewards, they would destroy too much value. However, in the best equilibrium the large

player’s incentives can be provided only via punishments. Therefore, that equilibrium cannot

be better than the Nash equilibrium of a stage game.

The possibility of commitment reappears if the small players are uncertain about the type

of the large player. Suppose that the the large player could be a commitment type who always

plays the same action or a normal type who acts strategically. Then it may be attractive for the

normal type to imitate the commitment type because the payoff of the normal type increases

when he is perceived to be a commitment type with greater probability. In equilibrium this

imitation is imperfect: if it were perfect, the public signal would not be informative about the

large player’s type, so imitation would have no value. The normal type obtains his maximal

payoff when the population is certain that he is a commitment type. In this extreme case the

population’s beliefs would never change and the the normal type would “get away” with any

action. This feature of the equilibrium is consistent with the fact that it is impossible to provide

incentives to the normal type of the large player when his payoff is maximized.

We characterize equilibrium payoffs of the large player for any discount rate r using an

ordinary differential equation. Unlike in discrete time, in many games of interest in continuous

1Also, see more recent and thorough studies of Fudenberg and Levine (2006) and Sannikov and Skrzypacz

(2006b) into the differences between Poisson and Brownian information.
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time sequential equilibrium for any prior is unique and Markov in the population’s belief about

the large player’s type. In a Markov perfect equilibrium (see Maskin and Tirole (2001)) the

population’s belief completely determines all players’ actions as well as the law, by which the

population updates its belief about the large player’s type from the public signals. The sequential

equilibrium is unique and Markov if, roughly speaking, the stage game in which the large player’s

payoff is adjusted by reputational weights always has a unique Bayesian Nash equilibrium. Many

games of interest satisfy these properties, creating a great potential for our results to be used in

applications.

The reasons behind the Markov property of continuous-time sequential equilibria are con-

nected with the reasons why non-trivial incentives cannot arise in a complete-information game.

When the Nash equilibrium of the stage game is unique, then the only equilibrium of the

complete-information repeated game is the repetition of Nash, which is, trivially, a Markov

equilibrium. In our setting, continuous time precludes non-trivial incentives through rewards

and punishments on top of the incentives naturally created through reputation.

In some continuous-time games, e.g. those that have more than one static Nash equilib-

rium, sequential equilibria are non-unique. For those games we characterize the upper and

lower boundaries of the set of equilibrium payoffs of the large player as solutions to differential

inclusions.

The incomplete information approach to reputations has its roots in the works of Kreps

and Wilson (1982) and Milgrom and Roberts (1982), in their study of Selten’s chain-store

paradox, and of Kreps, Milgrom, Roberts, and Wilson (1982), in their analysis of cooperation in

the finitely repeated Prisoner’s Dilemma. Uncertainty over types, particularly over types that

behave as automata committed to certain strategies, gives rise to phenomena that could not be

explained by the equilibria of the underlying complete information games: entry deterrence in

the Chain-store game and cooperation in (almost every period of) a finitely repeated Prisoner’s

Dilemma game.

Fudenberg and Levine (1992) study reputation effects in discounted discrete-time repeated

games with imperfect monitoring played by a long-run player and a sequence of short-lived

players. In their paper the short-run players also believe that, with positive probability, the

long-run player is a type committed to a certain strategy. However, unlike the current paper,

FL do not study the set of equilibrium payoffs for an arbitrary discount factor, but derive upper

and lower bounds on the set of Nash equilibrium payoffs of the long-run player as the discount

factor tends to one. When the set of commitment types is sufficiently rich and the monitoring

technology satisfies an identification condition, the upper and lower bounds coincide with the

long-run player’s Stackelberg payoff, that is, the payoff he obtains from credibly committing

to the strategy to which he would like to commit the most. A related paper, Faingold (2006),

shows that the Fudenberg-Levine payoff bounds hold for a class of continuous-time games that

includes the games we study in this paper. Faingold (2006) also shows that those bounds hold

in discrete-time games with frequent actions uniformly in the length of the time period between

actions.

We use methods related to those of Sannikov (2006a) and Sannikov (2006b) to derive the

connection between the large player’s incentives and the law of motion of the large player’s

continuation value, which forms a part of the recursive structure of our games. The other part

comes from the evolution of the population’s beliefs. The consistency and sequential rationality
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conditions for sequential equilibria of our games are formulated using these two variables. In

many games of interest the equilibrium is unique and Markov, so the large player’s continuation

value is uniquely determined by the population’s belief.

The paper is organized as follows. Section 2 presents our leading example. Section 3 in-

troduces the continuous-time model. Section 4 provides a recursive characterization of public

sequential equilibria. Section 5 examines the underlying complete information game. Section 6

provides the ODE characterization when equilibrium is unique. Section 7 extends the charac-

terization to games with multiple equilibria. Section 8 concludes.

2 An Example: The Game of Quality Standards.

In this section we present an example of a repeated game with reputation from the class that we

study in the paper. There is one large player, a service provider, and a unit mass of small players,

consumers. At each moment of time t ∈ [0,∞) the service provider chooses his investment in

quality at ∈ [0, 1] and each customer i chooses a service level bi
t ∈ [0, 3]. The service provider

does not observe each customer individually, but sees only the average level of service b̄t that

the customers choose. Consumers do not see at either. Instead, they publicly observe the actual

quality of the service dXt, which is a noisy public signal of at.

dXt = at(4 − b̄t) dt + (4 − b̄t) dZt,

where Z is a standard Brownian motion. The drift at(4− b̄t) is the expected quality flow at time

t, and 4− b̄t is the magnitude of the noise. The expected quality flow per customer deteriorates

with greater usage. The noise is also decreasing with usage: the more customers use the service

the better they learn its quality.

Consumer i pays the price equal to his service level bi
t. The payoff of consumer i is

r

∫ ∞

0
e−rt(bi

t dXt − bi
t dt),

where r > 0 is a discount rate. Customers act to maximize their static payoff because the service

provider only observes the aggregate usage.

The payoff of the service provider is

r

∫ ∞

0
e−rt(b̄t − at) dt.

In the static Nash equilibrium of this game the service provider makes investment 0 in the

quality of service, and the customers choose the service level of 0 too. As we show in Section

5, it turns out that in the repeated game without reputational effects, the only equilibrium

is the repetition of the static Nash equilibrium. Without reputation, intertemporal incentives

completely collapse and the large player’s equilibrium payoff is 0.

However, if the large player was able to commit to invest a∗ in quality and to credibly convey

this commitment to the consumers, he would be able to influence the customers’ decisions and

get a better payoff. Then each consumer’s choice bi maximizes bi(a∗(4−b̄)−1), and in equilibrium

all customers would choose the same level bi = max {0, 4 − 1/a∗}. The service provider would
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Figure 1: Equilibrium payoffs and actions in the game of quality standards.

earn max {0, 4 − 1/a∗} − a∗. At a∗ = 1 this function achieves it maximal value of 2, the large

player’s commitment payoff.

Following these observations, it is interesting to explore what happens in the game with

reputation. That is, assume that at time 0 the consumers believe that with probability p

the service provider is a commitment type, who always chooses investment a∗ = 1, and with

probability 1 − p he is a normal type, who chooses at to maximize his expected profit. What

happens in equilibrium?

The top panel of Figure 1 shows the unique equilibrium payoff of the normal type as a

function of the population’s belief p for different discount rates r. In equilibrium the customers

constantly update their belief φt, the probability assigned to the commitment type, using the

public signal Xt. The equilibrium is Markov in φt, which uniquely determines the equilibrium

actions of the normal type (bottom left panel) and the customers (bottom right panel).

Consistent with the asymptotic results in Faingold (2006), the computation shows that as

r → 0, the large player’s payoff converges to his commitment payoff of 2. We also see from

Figure 1 that the customer usage level b increases towards the commitment level of 3 as the

discount rate r decreases towards 0. While the normal type chooses action 0 for all levels of φt

when r = 2, as r is closer to 0, his action increases towards a∗ = 1. However, the imitation of

the commitment type by the normal type is never perfect, even for very low discount rates.
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In this example for all discount rates r the equilibrium action of the normal type is exactly 0

near φ = 0 and 1 and the population’s action is 0 near φ = 0 (not visible in Figure 1 for r = 0.1).

The normal type of the large player imitates the commitment type only for intermediate levels

of reputation.

3 The Game.

A large player participates in a dynamic game with a continuum of small players uniformly

distributed on I = [0, 1]. At each time t ∈ [0,∞), the large player chooses an action at ∈ A and

each small player i ∈ I chooses an action bi
t ∈ B based on their current information. Action

spaces A and B are compact, convex subsets of a Euclidean space. The small players’ moves

are anonymous: at each time t, the large player observes the aggregate distribution b̄t ∈ ∆(B)

of the small players’ actions, but does not observe the action of any individual small player.

There is imperfect monitoring: the large player’s moves are not observable to the small players.

Instead, the small players see a noisy public signal (Xt)t≥0 that depends on the actions of the

large player, the aggregate distribution of the small players’ actions and noise. Specifically,

dXt = µ(at, b̄t) dt + σ(b̄t) · dZt,

where (Zt) is a d-dimensional Brownian motion, and the drift and the volatility of the signal are

defined via continuously differentiable functions µ : A × B → R
d and σ : B → R

d×d, which are

linearly extended to A×∆(B) and ∆(B) respectively.2 For technical reasons, assume that there

is c > 0 such that |σ(b) · y| ≥ c|y|, ∀y ∈ R
d, ∀b ∈ B. Denote by (Ft)t≥0 the filtration generated

by (Xt).

Our assumption that only the drift of X depends on the large player’s action corresponds

to the constant support assumption in discrete time. By Girsanov’s Theorem the probability

measures over the paths of two diffusion processes with the same volatility but different bounded

drifts are equivalent, i.e., they have the same zero-probabilty events. Since the volatility of a

continuous-time diffusion process is observable, we do not allow σ(b̄) to depend on a.

Small players have identical preferences. The payoff of each small player depends only on

his own action, the aggregate distribution of all small players’ actions, and the sample path of

the signal (Xt). A small player’s payoff is

r

∫ ∞

0
e−rt

(
u(bi

t, b̄t) dt + v(bi
t, b̄t) · dXt

)

where u : B × B → R and v : B × B → R
d are continuously differentiable functions that

are extended linearly to B × ∆(B). Then the expected payoff flow of the small players h :

A × B × ∆(B) → R is given by

h(a, b, b̄) = u(b, b̄) + v(b, b̄) · µ(a, b̄).

The small players’ payoff functions are common knowledge.

2Functions µ and σ are extended to distributions over B by µ(a, b̄) =
R

B
µ(a, b) b̄(db) and σ(b̄)σ(b̄)⊤ =R

B
σ(b)σ(b)⊤ b̄(db).
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The small players are uncertain about the type θ of the large player. At time 0 they believe

that with probability p ∈ [0, 1] the large player is a commitment type (θ = c) and with probability

1−p he is a normal type (θ = n). The commitment type mechanically plays a fixed action a∗ ∈ A

at all times. The normal type plays strategically to maximize his expected payoff. The payoff

of the normal type of the large player is

r

∫ ∞

0
e−rt g(at, b̄t) dt ,

where the payoff flow is defined through a continuously differentiable function g : A × B → R

that is extended linearly to A × ∆(B).

In the dynamic game the small players update their beliefs about the type of the large player

by Bayes rule from their observations of X. Denote by φt the probability that the small players

assign to the large player being a commitment type at time t ≥ 0.

A pure public strategy of the normal type of large player is a progressively measurable (with

respect to (Ft)) process (at)t≥0 with values in A. Similarly, a pure public strategy of small player

i ∈ I is a progressively measurable process (bi
t)t≥0 with values in B. We assume that jointly the

strategies of the small players and the aggregate distribution satisfy appropriate measurability

properties.

Definition. A public sequential equilibrium consists of a public strategy (at)t≥0 of the

normal type of large player, public strategies (bi
t)t≥0 of small players i ∈ I, and a progressively

measurable belief process (φt)t≥0, such that at all times t and after all public histories:

1. the strategy of the normal type of large player maximizes his expected payoff

Et

[

r

∫ ∞

0
e−rt g(at, b̄t) dt | θ = n

]

2. the strategy of each small player maximizes his expected payoff

(1 − φt) Et

[

r

∫ ∞

0
e−rt h(at, b

i
t, b̄t) dt | θ = n

]

+ φt Et

[

r

∫ ∞

0
e−rt h(a∗, bi

t, b̄t) dt | θ = c

]

3. the common prior is φ0 = p and beliefs (φt)t>0 are determined by Bayes rule.

A strategy profile that satisfies conditions 1 and 2 is called sequentially rational. A belief

process (φt) that satisfies condition 3 is called consistent.

In the next section, Section 4, we explore these properties in detail and formalize them in

our setting. We use this formalization in Section 5 to explore the game with prior p = 0, and

in Section 6 to present a set of sufficient conditions under which the equilibrium for any prior

is unique and Markov in the population’s belief. For this case, we characterize the equilibrium

payoffs of the normal type as well as the equilibrium strategies via an ordinary differential

equation. In Section 7 we characterize equilibrium payoffs for the case when there may be

multiple equilibria for any prior.

Remark 1. Although the aggregate distribution of small players’ actions is publicly observ-

able, our requirement that public strategies depend only on the sample paths of X is without
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loss of generality. In fact, for a given strategy profile, the public histories along which there

are observations of b̄t that differ from those on-the-path-of-play correspond to deviations by a

positive measure of small players. Therefore our definition of public strategies does not alter the

set of public sequential equilibrium outcomes.

Remark 2. All our results hold for public sequential equilibria in mixed strategies. A

mixed public strategy of the large player is a random process (āt)t≥0 progressively measurable

with respect to Ft with values in ∆(A). The drift function µ should be extended linearly to

∆(A) × ∆(B) to allow for mixed strategies. Because there is a continuum of anonymous small

players, the assumption that each of them plays a pure strategy is without loss of generality.

Remark 3. For both pure and mixed equilibria, the restriction to public strategies is

without loss of generality in our games. For pure strategies, it is redundant to condition a

player’s current action on his private history, which is completely determined by the public

history. For mixed strategies, the restriction to public strategies is without loss of generality in

repeated games that have product structure, e.g. in our games.3 Informally, to form a belief

about his opponent’s private histories, in a game with product structure a player can ignore

his own past actions because they do not influence the signal about his opponent’s actions.

Formally, a mixed private strategy of the large player in our game is a random process (at) with

values in A that is progressively measurable with respect to a filtration {Gt}, which is generated

by the public signals X and the large player’s private randomization. For any private strategy of

the large player, an equivalent mixed public strategies is defined by letting āt be the conditional

distribution of at given Ft. Strategies at and āt induce the same probability distributions over

public signals and give the large player the same expected payoff (given Ft).

4 The Structure of Sequential Equilibria

This section provides a characterization of public sequential equilibria of our game, which is

summarized in Theorem 1. In equilibrium, the small players always choose a static best response

given their belief about the large player’s actions. The commitment type of the large player

always chooses action a∗, while the normal type chooses his actions strategically taking into

account his expected future payoff, which depends on the public signal X. The dynamic evolution

of the small players’ belief is also determined by X.

The equilibrium play has to satisfy two conditions: the beliefs must be consistent with

the players’ strategies, and the strategies must be sequentially rational given beliefs. For the

consistency of beliefs, Proposition 1 presents equation (1) that describes how the small players’

belief evolves with the public signal X. Sequential rationality of the normal type’s strategy is

verified by looking at the evolution of his continuation value Wt, the future expected payoff of

the normal type given the history of public signals X up until time t. Proposition 2 presents a

necessary and sufficient condition for the law of motion of a random process W, under which W

is the continuation value of the normal type. Proposition 3 presents a condition for sequential

rationality that is connected to the law of motion of W.

3In a game with product structure each public signal depends on the actions of only one large player.
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Subsequent sections of our paper use this equilibrium characterization. Section 5 uses The-

orem 1 to show that in the complete-information game, in which the population is certain that

the type of the large player is normal, the set of the large player’s public sequential equilibrium

payoffs coincides with the convex hull of static Nash equilibrium payoffs. Section 6 analyzes a

convenient class of games in which the public sequential equilibrium turn out to be unique and

Markov in the population’s belief. Section 7 characterizes the set of public sequential equilibrium

payoffs of the large player generally.

We start with Proposition 1, which explains how the small players use Bayes rule to update

their beliefs based on the observations of public signals.

Proposition 1 (Belief Consistency). Fix a public strategy profile (at, b̄t)t≥0 and a prior p ∈ [0, 1]

on the commitment type. Belief process (φt)t≥0 is consistent with (at, b̄t)t≥0 if, and only if, it

satisfies equation

dφt = γ(at, b̄t, φt) · dZφ
t (1)

with initial condition φ0 = p, where

γ(a, b̄, φ) = φ(1 − φ)σ(b̄)−1
(
µ(a∗, b̄) − µ(a, b̄)

)
, (2)

dZφ
t = σ(b̄t)

−1(dXt − µφt(at, b̄t) dt) , (3)

and µφ(a, b̄) = φµ(a∗, b̄) + (1 − φ)µ(a, b̄) . (4)

In the equations in Proposition 1, (at) is the strategy that the normal type is supposed to

follow. If the normal type deviates, his deviation affects only the drift of X, but not the other

terms in equation (1).

Proof. The strategies of the two types of large player induce two different probability measures

over the paths of the signal (Xt). From Girsanov’s Theorem we can find the ratio ξt between

the likelihood that a path (Xs : s ∈ [0, t]) arises for type c and the likelihood that it arises for

type n. This ratio is characterized by

dξt = − ξt ρt · dZn

s , ξ0 = 1 , (5)

where ρt = σ(b̄t)
−1

(
µ(a∗, b̄t) − µ(at, b̄t)

)
and (Zn

t ) is a Brownian motion under the probability

measure generated by type n’s strategy.

Suppose that belief process (φt) is consistent with (at, b̄t)t≥0. Then, by Bayes rule, the

posterior after observing a path (Xs : s ∈ [0, t]) is

φt =
pξt

pξt + (1 − p)
(6)

From Ito’s formula,

dφt =
p(1 − p)

(pξt + (1 − p))2
dξt −

2p2(1 − p)

(pξt + (1 − p))3
ξ2
t ρt · ρt

2
dt

= φt(1 − φt)ρt · dZn

t − φ2
t (1 − φt)(ρt · ρt) dt (7)

= φt(1 − φt)ρt · dZφ
t

9



Conversely, suppose that (φt) is a process that satisfies equation (1) with initial condition

φ0 = p. Define ξt using expression (6), i.e.,

ξt =
1 − p

p

φt

1 − φt
.

By another application of Ito’s formula, we conclude that (ξt) satisfies equation (5). This means

that ξt is the ratio between the likelihood that a path (Xs : s ∈ [0, t]) arises for type c and the

likelihood that it arises for type n. Hence, φt is determined by Bayes rule and the belief process

is consistent.

Coefficient γ in equation (1) is the volatility of beliefs: it reflects the speed with which the

small players learn about the type of the large player. The definition of γ is important for

the characterization of public sequential equilibria presented in Sections 6 and 7. The intuition

behind equation (1) is as follows. If the small players are convinced about the type of the large

player, then φt(1−φt) = 0, so they never change their beliefs. When φt ∈ (0, 1) then γ(at, b̄t, φt)

is larger, and learning is faster, when the noise σ(b̄t) is smaller or the drifts produced by the

two types differ more. From the small players’ perspective, (Zφ
t ) is a Brownian motion and

their belief (φt) is a martingale. From (7) we see that, conditional on the large player being the

normal type, the drift of φt is non-positive: either the small players eventually learn they are

facing the normal type, or the normal type eventually plays like the commitment type.

We now proceed to analyze the second important state descriptor of the interaction between

the large and the small players, the continuation value of the normal type. A player’s con-

tinuation value is his future expected payoff after a given public history for a given profile of

continuation strategies. We derive how the large player’s incentives arise from the law of motion

of his continuation value. We will find that the large player’s strategy is optimal if, and only if,

a certain incentive compatibility condition holds at all times t > 0.

For a given strategy profile S = (at, b̄t)t≥0, the continuation value Wt(S) of the normal type

of the large player is his expected payoff at time t when he plans to follow strategy (as) from

time t onwards, i.e.

Wt(S) = Et

[

r

∫ ∞

t

e−r(s−t)g(as, b̄s) ds | θ = n

]

(8)

Proposition 2 presents the law of motion of Wt.

Proposition 2 (Continuation Values). A bounded process (Wt)t≥0 is the continuation value

of the normal type under the public-strategy profile S = (at, b̄t)t≥0 if, and only if, for some

d-dimensional process βt in L∗, we have

dWt = r(Wt − g(at, b̄t)) dt + rβt · (dXt − µ(at, b̄t) dt). (9)

Representation (9) describes how Wt(S), defined above, evolves with the public history. It

is valid independently of the large player’s actions until time t, which caused a given history

{Xs, s ∈ [0, t]} to realize. This fact is important in the proof of Proposition 3, which deals with

incentives.

10



Proof. First, note that Wt(S) is a bounded process by (8), and let us show that Wt = Wt(S)

satisfies (9) for some d-dimensional process βt in L∗. Denote by Vt(S) the average discounted

payoff of the normal type conditional on the public information at time t, i.e.,

Vt(S) = Et

[

r

∫ ∞

0
e−rsg(as, b̄s) ds | θ = n

]

= r

∫ t

0
e−rsg(as, b̄s) ds + Wt(S) (10)

Then Vt is a martingale when the large player is of normal type. By the Martingale Represen-

tation Theorem, there exists a d-dimensional process βt in L∗ such that

dVt(S) = re−rtβt · σ(b̄t)dZ
n

t (11)

where dZn

t = σ(b̄t)
−1(dXt − µ(at, b̄t) dt) is a Brownian motion from the point of view of the

normal type of the large player.

Differentiating (10) with respect to time yields

dVt(S) = re−rtg(at, b̄t) dt − re−rtWt(S) dt + e−rtdWt(S) (12)

Combining equations (11) and (12) yields (9).

Conversely, let us show if Wt is a bounded process that satisfies (9) then Wt = Wt(S). When

the large player is normal, the process

Vt = r

∫ t

0
e−rsg(as, b̄s) ds + e−rtWt

is a martingale under the strategies S = (at, b̄t) because dVt = re−rtβt · σ(b̄t)dZ
n

t by (9). More-

over, martingales Vt and Vt(S) converge because both e−rtWt and e−rtWt(S) converge to 0.

Therefore,

Vt = Et[V∞] = Et[V∞(S)] = Vt(S) ⇒ Wt = Wt(S)

for all t, as required.

Next, we derive conditions for sequential rationality. The condition for the small players is

straightforward: they maximize their static payoff because a deviation of an individual small

player does not affect future equilibrium play. The situation of the normal type of large player

is more complicated: he acts optimally if he maximizes the sum of the current payoff flow and

the expected change in his continuation value.

Proposition 3 (Sequential Rationality). A public strategy profile (at, b̄t)t≥0 is sequentially ra-

tional with respect to a belief process (φt) if, and only if, for all times t ≥ 0 and after all public

histories:

at ∈ arg max
a′∈A

g(a′, b̄t) + βt · µ(a′, b̄t) (13)

b ∈ arg max
b′∈B

u(b′, b̄t) + v(b′, b̄t) · µφt(at, b̄t), ∀b ∈ supp b̄t (14)

11



Proof. Consider a strategy profile (at, b̄t) and an alternative strategy (ãt) of the normal type.

Denote by Wt the continuation payoff of the normal type when he follows strategy (at) after time

t, while the population follows (b̄t). If the normal type of large player plays strategy (ãt) up to

time t and then switches back to (at), his expected payoff conditional on the public information

at time t is given by

Ṽt = r

∫ t

0
e−rsg(ãs, b̄s) ds + e−rtWt

By Proposition 2 and the expression above,

dṼt = re−rt
(
g(ãt, b̄t) − Wt

)
dt + e−rtdWt

= re−rt
(
(g(ãt, b̄t) − g(at, b̄t)) dt + βt · (dXt − µ(at, b̄t) dt)

)

where the R
d-valued process (βt) is given by (9).

Hence the profile (ãt, b̄t) yields the normal type expected payoff

W̃0 = E[Ṽ∞] = E

[

Ṽ0 +

∫ ∞

0
dṼt

]

= W0 + E

[

r

∫ ∞

0
e−rt

(
g(ãt, b̄t) − g(at, b̄t) + βt · (µ(ãt, b̄t) − µ(at, b̄t)

)
dt

]

where the expectations are taken under the probability measure induced by (ãt, b̄t), and so (Xt)

has drift µ(ãt, b̄t).

Suppose that strategy profile (at, b̄t) and belief process (φt) satisfy the incentive constraints

(13) and (14). Then, for every (ãt), one has W0 ≥ W̃0, and the normal type is sequentially

rational at time 0. By a similar argument, the normal type is sequentially rational at all times

t, after all public histories. Also, note that small players are maximizing their instantaneous

expected payoffs. Since the small players’ actions are anonymous, no unilateral deviation by a

small player can affect the future course of play. Therefore each small player is also sequentially

rational.

Conversely, suppose that incentive constraint (13) fails. Choose a strategy (ãt) such that

ãt attains the maximum in (13) for all t ≥ 0. Then W̃0 > W0 and the large player is not

sequentially rational. Likewise, if condition (14) fails, then a positive measure of small players

is not maximizing their instantaneous expected payoffs. Since the small player’s actions are

anonymous, their strategies would not be sequentially rational.

We can now summarize our characterization of sequential equilibria.

Theorem 1 (Sequential Equilibrium). A profile (at, b̄t, φt) is a public sequential equilibrium

with continuation values (Wt) for the normal type if, and only if,

1. (Wt) is a bounded process that satisfies

dWt = r(Wt − g(at, b̄t)) dt + rβt · (dXt − µ(at, b̄t) dt) (15)

for some process β ∈ L∗,

12



2. belief process (φt) follows

dφt = γ(at, b̄t, φt) σ(b̄t)
−1(dXt − µφt(at, b̄t) dt) , and (16)

3. strategies (at, b̄t) satisfy the incentive constraints

at ∈ arg maxa′∈A g(a′, b̄t) + βtµ(a′, b̄t) and

b ∈ arg maxb′∈B u(b′, b̄t) + v(b′, b̄t) · µφt(at, b̄t) , ∀ b ∈ support b̄t .
(17)

for the process β given by (15).

Theorem 1 provides a characterization of public sequential equilibria which can be used to

derive many of its properties. In Section 5 we apply Theorem 1 to the game with prior p = 0,

the complete information game. In Sections 6 and 7 we characterize the entire correspondence

E : [0, 1] ⇉ R that maps a prior probability p ∈ [0, 1] on the commitment type into the set of

public sequential equilibrium payoffs of the normal type in the game with prior p. Theorem

1 implies that E is the largest bounded correspondence such that a controlled process (W,φ),

defined by (15) and (16), can be kept in Graph(E) by controls (at, b̄t) and (βt) that satisfy (17).4

4.1 Gradual revelation of the large player’s type.

To finish this section, we apply Theorem 1 to show that Condition 1 below is necessary and

sufficient for the reputation of the normal type to decay to 0 with probability 1 in any public

sequential equilibrium (Proposition 4). Condition 1 states that in any Nash equilibrium of the

static game with just the normal type, the large player cannot appear committed to action a∗.5

Naturally, this condition plays an important role in Sections 6 and 7, where we characterize

sequential equilibria with reputation.

Condition 1. For any Nash equilibrium (aN , b̄N ) of the static game with prior p = 0,

µ(aN , b̄N ) 6= µ(a∗, b̄N ).

In discrete time, Cripps, Mailath, and Samuelson (2004) prove that the reputation of the

normal type converges to 0 in any sequential equilibrium under conditions that are stronger

than Condition 1. Among other things, they also require that the small players’ best reply to

the commitment action be strict. In discrete time, an analogue of Condition 1 alone would not

be sufficient.6

4This means that there is no other bounded correspondence with this property whose graph contains the graph

of E as a proper subset.
5Note that the action of the large player affects the small players’ payoffs only through the drift of X.
6 If the small players have two or more best reponses to the commitment action of the large player, then the

discrete-time game with reputation may have an equilibrium in which the small players never learn the large

player’s type (even if an analogue of Condition 1 holds). For example, the normal type could have incentives to

always take the commitment action if the public history determines his continuation payoff appropriately through

the best response to the commitment action taken by the population. However, by an argument analogous to the

proof of Theorem 2, the large player’s incentives would collapse in such an equilibrium in continuous time.
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Proposition 4. If Condition 1 fails, then for any p ∈ [0, 1] the stage game has a Bayesian

Nash equilibrium (BNE) in which the normal and the commitment types look the same to the

population. The repetition of this BNE is a public sequential equilibrium of the repeated game

with prior p, in which the population’s belief stays constant.

If Condition 1 holds, then in any public sequential equilibrium φt → 0 as t → ∞ almost

surely under the normal type.

Proposition 4 also implies that players never reach an absorbing state in any public sequential

equilibrium if and only if Condition 1 holds. Players reach an absorbing state at time t if

their actions as well as the population’s beliefs remain fixed after that time. We know that in

continuous-time games between two large players, equilibrium play sometimes necessarily reaches

an absorbing state, as shown in Sannikov (2006b). This possibility requires special treatment in

the characterization of equilibria in games between two large players.

Proof. If Condition 1 fails, then there is a static Nash equilibrium (aN , b̄N ) of the complete-

information game with µ(aN , b̄N ) = µ(a∗, b̄N ). It is easy to see that (aN , b̄N ) is also a BNE of

the stage game with any prior p. The repetition of this BNE is a public sequential equilibrim

of the repeated game, in which the beliefs φt ∈ p remain constant. With these beliefs (16) and

(17) hold, and Wt = g(aN , b̄N ) for all t.

Conversely, if Condition 1 holds there is no BNE (a, b̄) of the static game with prior p > 0

in which µ(a, b̄) = µ(a∗, b̄). Otherwise, (a, b̄) would be a Nash equilibrium of the static game

with prior p = 0, since the small players’ payoffs depend on the actions of the large player only

through the drift, a contradiction to Condition 1.

We present the rest of the proof in Appendix A, where we show that for some constants

C > 0 and M > 0, in any sequential equilibrium at all times t either

(a) the absolute value of the volatility of φt is at least Cφt(1 − φt) or

(b) the absolute value of the volatility of Wt is at least M.

To see this intuitively, note that if the volatility of φt at time t is 0, i.e. γ(at, b̄t, φt) = 0, then

(at, b̄t) is not a BNE of the stage game by Condition 1. Then the incentive constraints (17)

imply that βt 6= 0. In Appendix A we rely on the fact that Wt is a bounded process to show that

under conditions (a) and (b), φt eventually decays to 0 when the large player is normal.

5 Equilibrium Degeneracy under Complete Information

In this section we examine the structure of the set of equilibrium payoffs of the large player in

the complete information game (p = 0), that is, in the game in which it is common knowledge

that the large player is the normal type.

Theorem 2. Suppose the population of small players is convinced that the large player is the

normal type, that is, p = 0. Then in any public sequential equilibrium the large player cannot

achieve a payoff outside the convex hull of his stage-game Nash equilibrium payoff set, i.e.

E(0) = co

{

g(a, b̄) :
a ∈ arg maxa′∈A g(a′, b̄)

b ∈ arg maxb′∈B u(b′, b̄) + v(b′, b̄) · µ(a, b̄), ∀b ∈ support b̄

}
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Proof. Let v̄ be the highest pure-strategy Nash equilibrium payoff of the large player in the

static game. We show that it is impossible to achieve a payoff higher than v̄ in any public

equilibrium. (A proof for the lowest Nash equilibrium payoff is similar). Suppose there was

a public equilibrium in which the large player’s continuation value W0 was greater than v̄. By

Proposition 3, for some progressively measurable process (βt), the large player’s continuation

value must follow the SDE

dWt = r(Wt − g(at, b̄t)) dt + rβt · (dXt − µ(at, b̄t) dt),

where at maximizes g(a′, b̄t) + βtµ(a′, b̄t). Denote D̄ = W0 − v̄. Let us show that as long as

Wt ≥ v̄ + D̄/2, either the drift of Wt is greater than rD̄/4 or the volatility of Wt is uniformly

bounded away from 0. If g(at, b̄t) < v̄ + D̄/4 then the drift of Wt is greater than rD̄/4. If

g(at, b̄t) ≥ v̄ + D̄/4, then Lemma 1, whose proof is in the Appendix, applies.

Lemma 1. For any ε > 0 there exists δ > 0 (independent of t or the sample path) such that

|βt| ≥ δ whenever g(at, b̄t) ≥ v̄ + ε.

Therefore, Wt becomes arbitrarily large with positive probability, a contradiction. This

completes the proof of Theorem 2.

The intuition behind this result is as follows. In order to give incentives to the large player

to take an action that results in a payoff better than static Nash, his continuation value must

respond to the public signal Xt. When his continuation value reaches its upper bound, such

incentives cannot be provided. In effect, if at the upper bound the large player’s continuation

value were sensitive to the public signal process (Xt), then with positive probability the continu-

ation value would escape above this upper bound, which is not possible. Therefore, at the upper

bound, continuation values cannot depend on the public signal and so, in the best equilibrium,

the normal type must be playing a myopic best response.

While Theorem 2 does not hold in discrete time,7 it is definitely not just a result of continuous-

time technicalities. The large player’s incentives to depart from a static best response become

fragile when he is flexible to respond to public information quickly. The foundations of this result

are similar to the deterioration of incentives due to the flexibility to respond to new information

quickly in Abreu, Milgrom, and Pearce (1991) in a prisoners’ dilemma with Poisson signals and,

especially, in Sannikov and Skrzypacz (2006a) in a Cournot duopoly with Brownian signals.

Borrowing intuition from the latter paper, suppose that the large player must hold his

action fixed for an interval of time of length ∆ > 0. Suppose that the large player’s equilibrium

incentives to take the Stackelberg action are created through a statistical test that triggers an

equilibrium punishment if the signal is sufficiently bad. A profitable deviation has a gain on

the order of ∆, the length of a time period. Therefore, such a deviation is prevented only if it

increases the probability of triggering punishment by at least O(∆). Sannikov and Skrzypacz

(2006a) show that with Brownian signals, the log likelihood ratio for a test against any particular

deviation is normally distributed. A deviation shifts the mean of this distribution by O(
√

∆).

Then, a successful test against a deviation would generate a false positive with probability of

O(
√

∆). This probability, which reflects the value destroyed in each period through punishments,

7Fudenberg and Levine (1994) show that equilibria with payoffs above static Nash often exist in discrete time,

but they are always bounded from efficiency.
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Figure 2: A statistical test to prevent a given deviation.

is disproportionately large for small ∆ compared to the value created during a period of length

∆. This intuition implies that in equilibrium the large player cannot sustain payoffs above

static Nash as ∆ → 0. Figure 2 illustrates the densities of the log likelihood ratio under the

’recommended’ action of the large player and a deviation, and the areas responsible for the large

player’s incentives and for false positives.

Apart from this statistical intuition, the analysis of the game in Sannikov and Skrzypacz

(2006a), as well as in Abreu, Milgrom, and Pearce (1991), differ from ours. Those papers look

at the game between two large players, either focusing on symmetric equilibria or assuming

a failure of pairwise identifiability to derive their results. 8 In contrast, our result is proved

directly in continuous time and for games from a different class, with small players but without

any failure of identifiability.

Motivated by our result, Fudenberg and Levine (2006) recently did a very careful study,

taking the period between actions ∆ to 0 in the game between a large and a population of small

players. They illustrate a number of differences between Poisson and Brownian signals, allowing

the large player’s action to affect not only the mean but also the variance of the Brownian signal.

6 Reputation Effects when the Equilibrium is Unique.

In many games of interest, including the game of quality standards of Section 2, for any prior

p ∈ (0, 1) the public sequential equilibrium is unique and Markov in the population’s belief. That

is, the current belief φt uniquely determines the players’ actions at and b̄t, and, consequently,

the law by which the population’s belief evolves

dφt = γ(at, b̄t, φt) dZφ
t = −|γ(at, b̄t, φt)|2

1 − φt
dt + γ(at, b̄t, φt) dZn

t . (18)

where dZn

t = σ(b̄t)
−1(Xt−µ(at, b̄t)) is a Brownian motion under the strategy of the normal type.

The continuation value of the normal type is also determined uniquely by the population’s belief

through a function U : [0, 1] → R, which is illustrated in Figure 3 for our example of the

quality commitment game. In this section we present a sufficient condition to guarantee these

8The assumption of pairwise identifiability, introduced to repeated games by Fudenberg, Levine, and Maskin

(1994), states that deviations by different players can be statistically distinguished by looking at public signals.
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Figure 3: The large player’s payoff in a Markov perfect equilibrium.

uniqueness and Markov properties, and characterize these equilibria by an ordinary differential

equation.

To see the connection between beliefs, actions and the large player’s continuation value in a

Markov perfect equilibrium, note that by Ito’s lemma the continuation value Wt = U(φt) of the

normal type follows

dU(φt) = |γ(at, b̄t, φt)|2
(

U ′′(φt)

2
− U ′(φt)

1 − φt

)

dt + U ′(φt)γ(at, b̄t, φt) dZn

t . (19)

At the same time, Proposition 2 gives the law of motion of Wt = U(φt)

dWt = r(Wt − g(at, b̄t)) dt + rβtσ(b̄t) dZn

t . (20)

Matching drifts, we obtain a differential equation for the function U

U ′′(φ) =
2U ′(φ)

1 − φ
+

2r(U(φ) − g(a, b̄))

|γ(a, b̄, φ)|2 , (21)

where (a, b̄) are the actions, yet to be determined, which correspond to the belief φ. We call

equation (21) the optimality equation.

Matching volatilities, we find that rβtσ(b̄t) = U ′(φt)γ(at, b̄t, φt). This condition determines

βt, which enters the player’ incentive constraints from Proposition 3, which define the actions

that correspond to belief φt.

Define the correspondence Ψ(φ, z) for φ ∈ [0, 1] and z ∈ R by

Ψ(φ, z) =

{

(a, b̄) :
a ∈ arg maxa′∈A rg(a′, b̄) + z(µ(a∗, b̄) − µ(a, b̄))σ(b̄)−2µ(a′, b̄)

b ∈ arg maxb′∈B u(b′, b̄) + v(b′, b̄) · µφ(a, b̄), ∀b ∈ support b̄

}

Assuming that Ψ(φ, z) is single-valued, the actions that enter equation (21), are given by (a, b̄) =

Ψ(φ, φ(1 − φ)U ′(φ)).

These simple properties of equilibria follow from the continuous-time formulation together

with the assumption that Ψ is single-valued. As the reader may guess, this result follows from
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logic similar to that of the previous section. It is impossible to create incentives to sustain

greater payoffs than those of the Markov perfect equilibrium. Informally, in a public sequential

equilibrium that achieves the largest difference W0 − U(φ0) across all priors, the joint volatility

of (φt,Wt) has to be parallel to the slope of U at t = 0, since Wt−U(φt) cannot increase for any

realization of X. It follows that rβtσ(b̄t) = U ′(φt)γ(at, b̄t, φt) at time 0. Since Ψ is a single-valued

correspondence, the players’ actions at time 0 have to be Markov, which leads to Wt − U(φt)

having a positive drift at time 0, a contradiction.

In discrete-time reputation games equilibrium behavior is typically not determined by the

population’s posterior, and Markov perfect equilibria may not even exist. Generally, in many

other classes of games, Markov perfect equilibria have proved simplifying and have been used

extensively. In reputation games, the transition rule of the payoff-relevant state variable (the

population’s posterior) is endogenous. This renders existence results (for Markov perfect equi-

librium) difficult to prove. Yet, in our continuous-time setting we are able to prove Theorem 3,

the main result of this section9

Theorem 3 assumes Condition 1 from Section 4 and Condition 2:

Condition 2. Ψ is a nonempty, single-valued, Lipschitz-continuous correspondence that

returns an atomic distribution of small players’ actions for all φ ∈ [0, 1] and z ∈ R.

Effectively, the correspondence Ψ(φ, z) returns the Bayesian Nash equilibria of an auxiliary

static game in which the large player is a commitment type with probability φ and the payoffs

of the normal type are perturbed by a reputational weight of z. In particular, with φ = z = 0

Condition 2 implies that the stage game with a normal large player has a unique Nash equi-

librium. Moreover, by Theorem 2, the complete information dynamic game also has a unique

equilibrium, the repeated play of the static Nash.

While Condition 2 is fairly essential for the uniqueness result, Condition 1 is not. If Condition

2 holds by Condition 1 fails, then the characterization of Theorem 3 would not apply. Letting

(aN , b̄N ) denote the Nash equilibrium of the stage game, in which µ(aN , b̄N ) 6= µ(a∗, b̄N ), the

dynamic game with prior p would have a unique public sequential equilibrium (at = aN , b̄t =

b̄N , φt = p), which is trivially Markov.10

Theorem 3. Under Conditions 1 and 2, E(φ) is a single-valued correspondence that coincides

with the unique bounded solution of the optimality equation

U ′′(φ) =
2U ′(φ)

1 − φ
+

2r(U(φ) − g(Ψ(φ, φ(1 − φ)U ′(φ))))

|γ(Ψ(φ, φ(1 − φ)U ′(φ)), φ)|2 . (22)

At p = 0 and 1, E(φ) satisfies the boundary conditions

lim
φ→p

U(φ) = E(p) = g(Ψ(p, 0)), and lim
φ→p

φ(1 − φ)U ′(φ) = 0. (23)

9We expect our methods to apply broadly to other continuous-time games, such as the Cournot competition

with mean-reverting prices of Sannikov and Skrzypacz (2006a). In that model the market price is the payoff-

relevant state variable.
10When Condition 1 fails but Condition 2 holds, by an argument similar to the proof of Theorem2 we can show

that the large player cannot achieve any payoff other than g(aN , b̄N ). Note that Theorem 1 implies that either

(at, b̄t) = (aN , b̄N ) or |βt| 6= 0 at all times t.
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For any prior p ∈ (0, 1) the unique public sequential equilibrium is a Markov perfect equilibrium

in the population’s belief. In this equilibrium, the players’ actions at time t are given by

(at, b̄t) = Ψ(φt, φt(1 − φt)U
′(φt)) , (24)

the population’s belief evolves according to

dφt = γ(at, b̄t, φt) σ(b̄t)
−1(dXt − µφt(at, b̄t) dt) , (25)

and the continuation values of the normal type are given by Wt = U(φt).

Proof. Proposition 7 in the Appendix shows that under Conditions 1 and 2, there exists a unique

continuous function U : [0, 1] → R that stays in the interval of feasible payoffs of the large player,

satisfies equation (21) on (0, 1) and boundary conditions (36), which include (23).

We need to prove that for any prior p ∈ (0, 1) there are no public sequential equilibria with a

payoff to the normal type different from U(p), and that the unique equilibrium with value U(p)

satisfies the conditions of the theorem.

Let us show that for any prior p ∈ (0, 1), there are no equilibria with a payoff to the large

player other than U(p). Suppose, towards a contradiction, that for some p ∈ [0, 1], (at, b̄t, φt) is

a public sequential equilibrium that yields the normal type a payoff of W0 6= U(p). Without loss

of generality, consider the case when W0 > U(p).

Then by Theorem 1, the population’s equilibrium belief follows (18), the continuation value

of the normal type follows (20) for some process (βt), and equilibrium actions and beliefs satisfy

the incentive constraints (17). Then, using (20) and (19), the process Dt = Wt−U(φt) has drift

rDt + rU(φt)
︸ ︷︷ ︸

rWt

−rg(at, b̄t) + |γ(at, b̄t, φt)|2(
U ′(φt)

1 − φt
− U ′′(φt)

2
) (26)

and volatility

rβtσ(b̄t) − γ(at, b̄t, φt)U ′(φt). (27)

Lemma 14 in the Appendix shows that for any ε > 0 one can choose δ > 0 such that for all

t ≥ 0, either

(a) the drift of Dt is greater than rDt − ε or

(b) the absolute value of the volatility of Dt is greater than δ

Here we provide a crude intuition behind Lemma 14. When the volatility of Dt is exactly 0,

then rβtσ(b̄t) = γ(at, b̄t, φt)U ′(φt), so

at ∈ arg maxa′∈A rg(a′, b̄t) + U ′(φt)γ(at, b̄t, φt)σ
−1(b̄t)

︸ ︷︷ ︸

rβt

µ(a′, b̄t)

b ∈ arg maxb′∈B u(b′, b̄t) + v(b′, b̄t) · µφt(at, b̄t) ∀ b ∈ support b̄t

and (at, b̄t) = Ψ(φt, φt(1 − φt)U
′(φt)). Then by (21), the drift of Dt is exactly rDt.
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In order for the drift of Dt to be lower than rDt, the volatility of Dt has to be different from

zero. Lemma 14 in the Appendix presents a continuity argument to show that in order for the

drift to be below rDt − ε, the volatility of Dt has to be uniformly bounded away from 0.

By (a) and (b) above it follows that Dt would grow arbitrarily large with a positive probabil-

ity, a contradiction since Wt and U(φt) are bounded processes. The contradiction shows that for

any prior p ∈ [0, 1], there cannot be an equilibrium that yields the normal type a payoff larger

than U(p). In a similar way, it can be shown that no equilibrium yields a payoff below U(p).

Next, let us construct an equilibrium for a given prior p with value U(p) to the normal type

of the large player. Let φt be a solution to the stochastic differential equation (25) with the

actions defined by (24). Let us show that (at, b̄t, φt) is a public sequential equilibrium, in which

the bounded process Wt = U(φt) is the large player’s continuation value.

Proposition 1 immediately implies that the beliefs (φt) are consistent with the strategies

(at, b̄t). Moreover, since Wt = U(φt) is a bounded process with drift r(Wt − g(at, b̄t))dt by (19)

and (21), Proposition 2 implies that Wt is the continuation value of the normal type under the

strategy profile (at, b̄t). The process (βt) associated with the representation of Wt in Proposition

2 is given by rβtσ(bt) = U ′(φt)γ(at, bt, φt). To see that the public-strategy profile (at, b̄t) is

sequentially rational with respect to beliefs (φt), recall that (at, b̄t) = Ψ(φt, φt(1 − φt)U
′(φt))

and so11

at = arg maxa′∈A rg(a′, bt) + U ′(φt)γ(at, b̄t, φt)σ
−1(b̄t)

︸ ︷︷ ︸

rβt

µ(a′, bt)

b̄t = arg maxb′∈B u(b′, b̄t) + v(b′, b̄t) · µφt(at, b̄t)

(28)

From Proposition 3 it follows immediately that the strategy profile (at, b̄t) is sequentially

rational. We conclude that (at, b̄t, φt) is a public sequential equilibrium.

Let us show that the actions of the players are determined uniquely by the population’s

belief in any public sequential equilibrium (at, b̄t, φt) by (24). Let Wt be the continuation value

of the normal type. We know that the pair (φt,Wt) must stay on the graph of U, because there

are no public sequential equilibria with values other than U(φt) for any prior φt. Therefore, the

volatility of Dt = Wt − U(φt) must be 0, i.e. rβtσ(b̄t) = U ′(φt)γ(at, b̄t, φt). Then Propostion 3

implies that (28) holds and so (at, b̄t) = Ψ(φt, φt(1 − φt)U
′(φt)), as claimed.

The game of quality standards of Section 2 satisfies Conditions 1 and 2, and so its equilibrium

is unique and Markov for any prior. The correspondence Ψ(φ, z) for that game is given by

a =

{
0 if z ≤ r,

1 − r/z otherwise,
and b =

{
0 if φa∗ + (1 − φ)a ≤ 1/4,

4 − 1/(φa∗ + (1 − φ)a) otherwise.

The example illustrates a number of properties that follow from Theorem 3:

(a) The players’ actions, which are determined from the population’s belief φ by (a, b̄) =

Ψ(φ, φ(1 − φ)U ′(φ)), vary continuously with φ. In particular, when the belief gets close

11Recall that Ψ is a single-valued correspondence that returns an atomic distribution of the small players’

actions.
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to 0, the actions converge to the static Nash equilibrium. Thus, there is no discontinuity

for very small reputations, which is typical for infinitely repeated reputation games with

perfect monitoring.

(b) The incentives of the normal type to imitate the commitment type are increasing in

φ(1−φ)U ′(φ). However, imitation is never perfect, which is true for all games that satisfy

conditions 1 and 2. Indeed, since the actions are defined by (24), (at = a∗, b̄t) would be a

Bayesian Nash equilibrium of the stage game with prior φt if the normal type imitated the

commitment type perfectly at time t. However, Condition 1 implies that the stage game

does not have Bayesian Nash equilibria in which the normal type takes action a∗.

However, the actions of the players are not monotonic in beliefs. This is definitely so for

the large player, whose actions converge to static best responses at φ = 0 and 1. Although not

visible in Figure 1 the small players’ actions are also non-monotonic for some discount rates.12

Nevertheless, the large player’s equilibrium payoff U is monotonic in the population’s belief in

this example. This fact, which does not directly follow from Theorem 3, holds generally under

additional mild conditions.

Lemma 2. Suppose that the Bayesian Nash equilibrium payoff of the normal type is weakly

increasing in the population’s belief p. Then, the sequential equilibrium payoff U(p) of the normal

type is also weakly increasing in prior p.

Proof. The Bayesian Nash equilibrium payoff of the normal type of the large player is given by

g(Ψ(φ, 0)). Recall that U(0) = g(Ψ(0, 0)) and U(1) = g(Ψ(1, 0)).

Suppose U is not weakly increasing on [0, 1]. Then U has a local maximum or a local minimum

on (0, 1). Without loss of generality, consider a local minimum φ0. Then U ′(φ0) = 0, and we

must have U(φ0) ≥ g(Ψ(φ0, 0)) because otherwise

U ′′(φ0) =
2r(U(φ0) − g(Ψ(φ0, 0)))

|γ(Ψ(φ0, 0), φ0)|2
< 0.

Let φ1 be the global maximum of U on [0, φ0]. Since φ0 is a local minimum and U(φ0) ≥ U(0),

φ1 6= 0, φ0. Then U ′(φ0) = 0 and

U(φ1) > U(φ0) ≥ g(Ψ(φ0, 0)) ≥ g(Ψ(φ1, 0)) ⇒

U ′′(φ1) =
2r(U(φ1) − g(Ψ(φ1, 0)))

|γ(Ψ(φ1, 0), φ1)|2
> 0,

and so φ1 cannot be a maximum, a contradiction.

Remark. If the Bayesian Nash equilibrium payoff of the normal large player is increasing

in the population’s belief p, then the conclusion of Theorem 3 holds even if the correspondence

Ψ(φ, z) is single-valued and Lipschitz-continuous only for z ≥ 0.13 Indeed, if construct a new

12For small discount rates r, not far from φ = 0 the slope of U gets very high as it grows towards the commitment

payoff. This can cause the normal type to get very close to imitating the commitment type, producing a peak in

the small players’ actions.
13Such a conclusion has practical value because under typical concavity assumptions, the large player’s objective

function in the definition of Ψ may become convex instead of concave for z < 0.
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correspondence Ψ̂ from Ψ by replacing values for z < 0 with a Lipschitz-continuous function,

then the optimality equation with Ψ̂ instead of Ψ would have a solution U with boundary

conditions U(0) = g(Ψ(0, 0)) and U(1) = g(Ψ(1, 0)) by Theorem 3. By Lemma 7 this solution

must be weakly decreasing, and therefore it satisfies the original equation with correspondence

Ψ. Besides the construction of a solution, all other arguments of Theorem 3 apply to U.

7 General Characterization.

In this section we extend the characterization of Section 6 to environments in which multiple

equilibria exist. When the correspondence Ψ(φ, z) is not single-valued, one should not expect

E(p) to be single-valued either. Theorem 4 characterizes E(p) for the general case.

Throughout this section, we maintain Condition 1 but relax Condition 2 to

Condition 3. Ψ is a nonempty, compact-valued, upper hemi-continuous correspondence.

When Ψ is not single-valued, there may be many bounded functions that satisfy equation

U ′′(φ) =
2U ′(φ)

1 − φ
+

2r(U(φ) − g(a, b̄))

|γ(a, b̄, φ)|2 (29)

for some (a, b̄) ∈ Ψ(φ, φ(1 − φ)U ′(φ)). The proof of Theorem 3 can be adapted to show for any

such function and any prior p, there is a sequential equilibrium that achieves value U(p) for

the normal type. Therefore, it is natural to conjecture that the correspondence E(p) contains

all values between its upper boundary, the largest solution of (29), and its lower boundary, the

smallest solution of (29). The pair (a, b̄) ∈ Ψ(φ, φ(1 − φ)U ′(φ)) would minimize the right-hand

side of (29) for the largest solution, and maximize, for the smallest solution.

Unfortunately, the equation

U ′′(φ) = H(φ,U(φ), U ′(φ)), where H(φ, u, u′) = min
(a,b̄)∈Ψ(φ,φ(1−φ)u′)

2u′

1 − φ
+

2r(u − g(a, b̄))

|γ(a, b̄, φ)|2 , (30)

does not always have a solution in the classical sense. The reason is that Ψ is generally only upper

hemi-continuous, but not continuous, and so the right-hand side of (30) fails to be Lipschitz-

continuous. We call equation (30) upper optimality equation.

Due to this difficulty, we rely on a generalized notion of a solution, a viscosity solution (we

define it below). We show that the upper boundary U of E(p) is the largest viscosity solu-

tion of (30), while the lower boundary L is the smallest solution of (30) with the minimum

replaced by the maximum. If Ψ is single-valued in a neighborhood of (φ, φ(1 − φ)U ′(φ)) and

H is Lipschitz-continuous in a neighborhood of (φ,U(φ), U ′(φ), then the viscosity solution co-

incides with a classical solution of (30). Otherwise, we show that U ′′(φ), which exists almost

everywhere since U ′(φ) is absolutely continuous, can take any value between H(φ,U(φ), U ′(φ))

and H∗(φ,U(φ), U ′(φ)), where H∗ denotes the upper semi-continuous envelope of H. H itself is

lower semi-continuous, i.e. H = H∗.
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Definition. A bounded function U : (0, 1) → R is a viscosity super-solution equation (30) if for

every φ0 ∈ (0, 1) and every C2 test function V : (0, 1) → R,

U∗(φ0) = V (φ0) and U∗ ≥ V ⇒ V ′′(φ0) ≤ H∗(φ, V (φ0), V
′(φ0))

U is a viscosity sub-solution if for every φ0 ∈ (0, 1) and every C2 test function V : (0, 1) → R

U∗(φ0) = V (φ0) and U∗ ≤ V ⇒ V ′′(φ0) ≥ H∗(φ, V (φ0), V
′(φ0)).

A bounded function U is a viscosity solution if it is both a super-solution and a sub-solution.

Appendix D presents the details of our analysis, which we summarize here. Propositions 8

and 9 show that U, the upper boundary of E(p), is a bounded viscosity solution of the upper

optimality equation. Lemma 17 shows that every bounded viscosity solution is a C1 function

with an absolutely continuous derivative (so that its second derivative exists almost everywhere).

Finally, Proposition 10 shows that U is the largest viscosity solution of (30), and that

U ′′(φ) ∈ [H(φ,U(φ), U ′(φ)) , H∗(φ,U(φ), U ′(φ))]. (31)

In particular, when H is continuous at (φ,U(φ), U ′(φ)) then U satisfies (30) in the classical

sense.

We summarize our characterization in the following theorem.

Theorem 4. Under Conditions 1 and 3, E is a nonempty, compact, convex-valued, upper hemi-

continuous correspondence. The upper boundary U of E is a C1 function with absolutely con-

tinuous derivative (so U ′′(φ) exists almost everywhere). Moreover, U is characterized as the

maximal bounded function that satisfies the differential inclusion

U ′′(φ) ∈ [H(φ,U(φ), U ′(φ)) , H∗(φ,U(φ), U ′(φ))], (32)

where the lower semi-continuous function H is defined by (30) and H∗ denotes the upper semi-

continuous envelope of H. The lower boundary of E is determined analogously.

To see an example of such an equilibrium correspondence E(p), consider the following game,

related to our example of quality commitment. Suppose that the large player, a service provider,

chooses investment in quality at ∈ [0, 1], where a∗ = 1 is the action of the commitment type,

and each customer chooses a service level bi
t ∈ [0, 2]. The public signal about the large player’s

investment is

dXt = at dt + dZt.

The large player’s payoff flow is (b̄t − at) dt and customer i receives payoff bi
tb̄t dXt − bi

t dt. The

customers’ payoff functions capture positive network externalities: greater usage b̄t of the service

by other customers allows each individual costomer to enjoy the service more.

The unique Nash equilibrium of the stage game is (0, 0). The correspondence Ψ(φ, z) defines

the action of the normal type uniquely by

a =

{
0 if z ≤ r

1 − r/z otherwise.
(33)
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Figure 4: The upper boundary of E(p).

The customers’ actions are uniquely b̄ = 0 only when (1−φ)a+φa∗ < 1/2. If (1−φ)a+φa∗ ≥ 1/2

then the game among the customers, who face a coordination problem, has two pure equilibria

with b̄ = 0 and b̄ = 2 (and one mixed equilibrium when (1 − φ)a + φa∗ > 1/2). Thus, the

correspondence Ψ(φ, z) is single-valued only on a subset of its domain.

How is this reflected in the equilibrium correspondence E(p)? Figure 4 shows the upper

boundary of E(p) for three discount rates r = 0.1, 0.2 and 0.5. The lower boundary for this

example is always 0, because the game among the customers has an equilibrium with b̄ = 0.

For each discount rate, the upper boundary U is divided into three regions. In the region

near 0, where the upper boundary is a solid line, the correspondence Ψ(φ, φ(1 − φ)U ′(φ)) is

single-valued and U satisfies the upper optimality equation in the classical sense. In the region

near 1, where the upper boundary is a dashed line, the correspondence Ψ is continuous and has

three values (two pure and one mixed). There, U also satisfies the upper optimality equation

with the population’s action b̄ = 2. In middle region, where the upper boundary is a dotted line

we have

U ′′(φ) ∈
(

2U ′(φ)

1 − φ
+

2r(U(φ) − 2 + a)

|γ(a, 2, φ)|2 ,
2U ′(φ)

1 − φ
+

2r(U(φ) − 0 + a)

|γ(a, 0, φ)|2
)

,

where a is given by (33) and 0 and 2 are two values of b̄ that the correspondence Ψ returns. In

that range, the correspondence Ψ(φ, φ(1−φ)U ′(φ)) is discontinuous in its arguments: if we lower

U(φ) slightly the equilibrium among the customers with b̄ = 2 disappears. These properties of

the upper boundary follow from the fact that it is the largest solution of the upper optimality

equation.
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A Appendix for Section 4

Assuming that Condition 1 holds, let us complete the proof of Proposition 4. We need the

following lemma:

Lemma 3. There exist M > 0 and C > 0 such that whenever |β| ≤ M, and (a, b̄, φ) satisfies

the incentive constraints (17), we have

|γ(a, b̄, φ)| ≥ Cφ(1 − φ) .

Proof. Consider the set Φ of 4-tuples (a, b̄, φ, β) such that the incentive constraints (17) hold and

µ(a, b̄) = µ(a∗, b̄). Φ is a closed set that does not intersect the compact set A×∆(B)×[0, 1]×{0},
and therefore the distance M ′ > 0 between those two sets is positive. It follows that |β| ≥ M ′

for any (a, b̄, φ, β) ∈ Φ.

Now, let M = M ′/2. Let Φ′ be the set of 4-tuples (a, b̄, φ, β) such that the incentive

constraints (17) hold and |β| ≤ M. Φ′ is a compact set, and so the continuous function

|µ(a∗, b̄)−µ(a, b̄)| must reach a minimum C1 on Φ′. We have C1 > 0 because |β| ≥ 2M whenever

|µ(a∗, b̄) − µ(a, b̄)| = 0. Since for some k > 0, |σ(b̄) · y| ≤ k|y| for all y and b̄, we have

|γ(a, b̄, φ)| ≥ Cφ(1 − φ)

whenever |β| ≤ M and (a, b̄, φ) satisfies the incentive constraints (17), where C = C1/k. This

concludes the proof of the lemma.

Now, fix a public sequetial equilibrium (at, b̄t, φt) and ε > 0. Consider the function f1(W ) =

eK1(W−g). Then, by Ito’s lemma, f1(Wt) has drift

K1e
K1(W−g)(rWt − g(at, b̄t)) + K2

1/2eK1(W−g)r2β2
t ,

which is always greater than or equal to

−K1e
K1(ḡ−g)r(ḡ − g),

and greater than or equal to

−K1e
K1(W−g)r(ḡ − g) + K2

1/2eK1(W−g)r2M2 > 1

when |βt| ≥ M (choosing K1 sufficiently large).

Consider the function f2(φt) = K2(φ
2
t − 2φt). We have

dφt = −|γ(at, b̄t, φt)|2
1 − φt

dt + γ(at, b̄t, φt) dZn

t

and so by Ito’s lemma f2(φt) has drift

−K2
|γ(at, b̄t, φt)|2

1 − φt
(2φt − 2) + K2

|γ(at, b̄t, φt)|2
2

2 = 3K2|γ(at, b̄t, φt)|2 ≥ 0

When K2 is sufficiently large, then the drift of f2(φt) is greater than or equal to K1e
K1(ḡ−g)r(ḡ−

g) + 1, whenever φt ∈ [ε, 1 − ε] and |βt| ≤ M, so that |γ(a, b̄, φ)| ≥ Cφ(1 − φ) by Lemma 3.
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It follows that until the stopping time τ when φt hits an endpoint of [ε, 1 − ε], the drift of

f1(Wt) + f2(φt) is greater than or equal to 1.

But then for some constant K3, since f1 is bounded on [g, ḡ] and f2 is bounded on [ǫ, 1− ǫ],

it follows that for all t

K3 ≥ E[f1(Wmin(τ,t)) + f2(φmin(τ,t))] ≥ f1(W0) + f2(φ0) +

∫ t

0
Prob(τ ≥ s) ds

and so Prob(τ ≥ s) must converge to 0 as s → ∞.

But then φt must converge to 0 or 1 with probability 1, and it cannot be 1 with positive

probability if the type is normal. This completes the proof of Proposition 4.

B Appendix for Section 5

This appendix supports Section 5.

Proof of Lemma 1. Pick any constant M > 0. Consider the set Φ0 of triples (a, b, β) ∈ A×∆B×
[0, 1] × R

d that satisfy

a = arg max
a′∈A

g(a′, b), b = arg max
b′∈B

h(a, b′, b̄), ∀b ∈ support b̄, g(a, b̄) ≥ v̄ + ε (34)

and |β| ≤ M.

The set Φ0 is closed (since it is defined by weak inequalities) and bounded, and therefore

compact. Therefore, the continuous function |β| achieves its minimum δ on Φ0, and δ > 0

because of the condition g(a, b̄) ≥ v̄ + ε. It follows that |β| ≥ min(M, δ) > 0 for any triple

(a, b, β) that satisfies conditions (34). QED

C Appendix for Section 6

In this appendix we will maintain Conditions 1 and 2.

C.1 Existence of a bounded solution of the optimality equation.

In this subsection we prove the following Proposition.

Proposition 5. The optimality equation has at least one solution that stays within the interval

of all feasible payoffs of the large player on (0, 1).

The proof of Proposition 5 relies on several lemmas.

Lemma 4. For all ε > 0 there exists K > 0 such that for all φ ∈ [0, 1] and u′ ∈ R,

|u′||γ(a, b̄, φ)| ≧ K ,

whenever φ(1 − φ)|u′| ≧ ε and (a, b̄) ∈ Ψ(φ, φ(1 − φ)u′).
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Proof. As shown in the proof of Proposition 4, given Condition 1 there is no Bayesian Nash

equilibium (a, b̄) of the static game with prior p > 0 in which µ(a, b̄) = µ(a∗, b̄).

If the statement of the lemma were false, there would exist a sequence (an, b̄n, u′
n, φn), with

(an, b̄n) ∈ Ψ(φn, φn(1 − φn)u′
n) and φn(1 − φn)|u′

n| ≥ ε for all n, for which |u′
n||γ(an, b̄n, φn)|

converged to 0. Let (a, b̄, φ) ∈ A×∆B × [0, 1] denote the limit of a convergent subsequence. By

upper hemi-continuity, (a, b̄) is a BNE of the static game with prior φ. Hence, µ(a, b̄) 6= µ(a∗, b̄)

and therefore lim infn |u′
n||γ(an, b̄n, φn)| ≧ ε|σ(b)−1(µ(a, b̄) − µ(a∗, b̄))| > 0, a contradiction.

Lemma 5. The solutions to the optimality equation exist locally for φ ∈ (0, 1) (that is, until a

blowup point when |U(φ)| or |U ′(φ)| become unboundedly large) and are unique and continuous

in initial conditions.

Proof. It follows from the standard theorem on existence, uniqueness and continuity of solutions

to an ordinary differential equations in initial conditions, because the right hand side of the

optimality equation is Lipschitz-continuous. Note that γ(Ψ(φ, φ(1−φ)U ′(φ)), φ) does not reach

0 for any finite u′ : if we had γ(a, b̄, φ) = 0 for (a, b̄) = Ψ(φ, φ(1− φ)U ′(φ)), then (a, b̄) would be

a BNE of the stage game with prior φ in which µ(a, b̄) = µ(a∗, b̄), a contradiction (see the proof

of Lemma 4).

Lemma 6. Consider a solution U(φ) of the optimality equation. If there is a blowup at point

φ1 ∈ (0, 1) then both |U(φ)| and |U ′(φ)| become unboundedly large near φ1.

Proof. By Lemma 4, there exists a constant k > 0 such that

|U ′(φ)||γ(Ψ(φ, φ(1 − φ)U ′(φ)), φ)| ≥ k > 0

in a neighborhood of φ1, when |U ′(φ)| is bounded away from 0. Suppose, towards a contradiction,

that U(φ) is bounded from above by K near φ1. Without loss of generality assume that U ′(φ)

(as opposed to −U ′(φ)) becomes arbitrarily large near φ1, and that φ1 is the right endpoint

of the domain of the solution U. Then let us pick points φ3 < φ2 < φ1 such that U ′(φ) stays

positive on the interval (φ3, φ2) and U ′(φ2) − U ′(φ3) is sufficiently large.

Consider the case when U ′(φ) is monotonic on (φ2, φ3), and let us parameterize the interval

(φ3, φ2) by u′ = U ′(φ). Denote

ξ(u′) =
dU(φ)

dU ′(φ)
=

U ′(φ)

U ′′(φ)
> 0

Note that

U ′′(φ) =
2U ′(φ)

1 − φ
+

2r(U(φ) − g(Ψ(φ, φ(1 − φ)U ′(φ))))

|γ(Ψ(φ, φ(1 − φ)U ′(φ)), φ)|2 ≤ k1U
′(φ) + k2U

′(φ)2

for some constants k1 and k2 that depend on φ1, K and the range of stage-game payoffs of the

large player, so that ξ(u′) ≥ 1/(k1 + k2u
′).

Then

U(φ3) − U(φ2) =

∫ U ′(φ3)

U ′(φ2)
ξ(u′)du′ ≥

∫ U ′(φ3)

U ′(φ2)
1/(k1 + k2u

′)du′ (35)
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This quantity grows arbitrarily large, leading to a contradiction, when U ′(φ3) − U ′(φ2) gets

large while U ′(φ2) stays fixed (this can be always guaranteed even if U ′(φ) flips sign many times

near φ1.)

When U ′(φ) is not monotonic on (φ2, φ3), a conclusion similar to (35) can be reached by

splitting the integral into subintervals where U ′(φ) is increasing (on which the bound (35) holds)

and the rest of the subintervals (on which U(φ) is increasing).

One consequence of Lemma 6 is that starting from any initial condition with φ0 ∈ (0, 1) the

solution of the optimality equation exists until φ = 0 and 1, or until U(φ) exits the range of

feasible payoffs of the large player.

Lemma 7. (Monotonicity) If two solutions U1 and U2 of the optimality equation satisfy U1(φ0) ≤
U2(φ0) and U ′

1(φ0) ≤ U ′
2(φ0) with at least one strict inequality, then U1(φ) ≤ U2(φ) and

U ′
1(φ) ≤ U ′

2(φ) for all φ > φ0 until the blowup point. Similarly, if U1(φ0) ≤ U2(φ0) and

U ′
1(φ0) ≥ U ′

2(φ0) with at least one strict inequality, then U1(φ) < U2(φ) and U ′
1(φ) > U ′

2(φ) for

all φ < φ0 until the blowup point.

Proof. Suppose that U1(φ0) ≤ U2(φ0) and U ′
1(φ0) < U ′

2(φ0). If U ′
1(φ) < U ′

2(φ) for all φ > φ0

until the blowup point then we also have U1(φ) < U2(φ) on that range. Otherwise, let

φ1 = inf
φ≥φ0

U ′
1(φ) ≥ U ′

2(φ).

Then U ′
1(φ1) = U ′

2(φ1) by continuity and U1(φ1) < U2(φ1) since U1(φ0) ≤ U2(φ0) and

U1(φ) < U2(φ) on [φ0, φ1). From the optimality equation, it follows that U ′′
1 (φ1) < U ′′

2 (φ1) ⇒
U ′

1(φ1 − ε) > U ′
2(φ1 − ε) for sufficiently small ε, which contradicts the definition of φ1.

For the case when U1(φ0) < U2(φ0) and U ′
1(φ0) = U ′

2(φ0) the optimality equation implies

that U ′′
1 (φ0) < U ′′

2 (φ0). Therefore, U ′
1(φ) < U ′

2(φ) on (φ0, φ0 + ε), and the argument proceeds as

above.

The monotonicity argument for φ < φ0 when U1(φ0) ≤ U2(φ0) and U ′
1(φ0) ≥ U ′

2(φ0) with at

least one strict inequality is similar.

Proof of Proposition 5. Denote by [g, ḡ] the interval of all feasible payoffs of the large player.

Fix φ0 ∈ (0, 1).

(a) Note that for any if |U ′(φ0)| is sufficiently large then the solution U must exit the interval

[g, ḡ] in a neighborhood of φ0. This conclusion can be derived using an inequality similar to (35):

|U ′(φ)| cannot become small near φ0 without a change in U(φ) of
∫ |U ′(φ0)|
|U ′(φ)| 1/(k1 + k2|x|)dx.

(b) Also, note that if a solution U reaches the boundary of the region of feasible payoffs, it

must exit the region and never reenter. Indeed, it is easy to see from the optimality equation

that when U ′(φ) = 0, U ′′(φ) ≥ 0 if U(φ) ≥ ḡ, and U ′′(φ) ≤ 0 if U(φ) ≤ g. Therefore, U ′(φ) never

changes its sign when U(φ) is outside (g, ḡ).

(c) For a given level U(φ0) = u, consider solutions of the optimality equation for φ ≤ φ0 for

different values of U ′(φ0). When U ′(φ0) is sufficiently large, the resulting solution will reach g

at some point φ1 ∈ (0, φ0) by (a). As U ′(φ0) decreases, φ1 also decreases by Lemma 7, until for

some value U ′(φ0) = L(u) the solution never reaches the lower boundary of the set of feasible
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payoffs for any φ1 ∈ (0, φ0). Note that this solution never reaches the upper boundary of the set

of feasible payoffs for any φ1 ∈ (0, φ0) : if it did, then the solution with slope U ′(φ0) = L(u) + ε

would also reach the upper boundary by Lemma 5, and by (b) it would never reach the lower

boundary. We conclude that the solution of the optimality equation with boundary conditions

U(φ0) = u and U ′(φ0) = L(u) stays within the range of feasible payoffs for all φ1 ∈ (0, φ0).

(d) Similarly, define R(u) as the smallest value of U ′(φ0) for which the resulting solution

never reaches the largest feasible payoff of the large player at any φ ∈ (φ0, 1). Then the solution

of the optimality equation with boundary conditions U(φ0) = u and U ′(φ0) = R(u) stays within

the range of feasible payoffs for all φ1 ∈ (φ0, 1), by the same logic as in (c).

(e) Now, Lemma 7 implies that L(u) is increasing in u and R(u) is decreasing in u. Moreover,

L(g) ≤ 0 ≤ L(ḡ) and R(g) ≥ 0 ≥ R(ḡ). Therefore, there exists a value of u for which L(u) =

R(u). The solution to the optimality equation with boundary conditions U(φ0) = u and U ′(φ0) =

L(u) = R(u) must stay within the interval of feasible payoffs for all φ ∈ (0, 1).

This completes the proof of Proposition 5.

C.2 Regularity conditions at the boundary.

Proposition 6. If U is a bounded solution of equation (21)on (0, 1), then U satisfies the fol-

lowing boundary conditions at p = 0, 1:

lim
φ→p

U(φ) = g(Ψ(p, 0)) , lim
φ→p

φ(1 − φ)U ′(φ) = 0 , lim
φ→p

φ2(1 − φ)2U ′′(φ) = 0 . (36)

Proof. Direct from Lemmas 11, 12 and 13 below. Lemmas 8, 9 and 10 are intermediate steps.

Lemma 8. For all M > 0 there exists C > 0 such that

|γ(a, b̄, φ)| ≧ C φ(1 − φ) ,

whenever φ(1 − φ)|u′| < M and (a, b̄) ∈ Ψ(φ, φ(1 − φ)u′).

Proof. Fix M > 0. By Lemma 4, for all ε ∈ (0,M) there exists K > 0 such that

|γ(a, b̄, φ)| ≧
K

|u′| ≧
K

M
φ(1 − φ)

whenever φ(1 − φ)|u′| ∈ (ε,M) and (a, b̄) ∈ Ψ(φ, φ(1 − φ)u′).

Therefore, Lemma 8 can be false only if

|γ(an, b̄n, φn)|
φn(1 − φn)

= σ(b̄n)−1(µ(a∗, b̄n) − µ(an, b̄n))

converges to 0 for some sequence (an, b̄n, u′
n, φn), with (an, b̄n) ∈ Ψ(φn, u′

n), φn ∈ (0, 1), and

φn(1−φn)|u′
n| → 0. Let (a, b̄, φ) ∈ A×∆(B)×[0, 1] denote the limit of a convergent subsequence.

By upper hemi-continuity, (a, b̄) is a BNE of the static game with prior φ. Hence, µ(a, b̄) 6=
µ(a∗, b̄) and so |γ(an, b̄n, φn)|/(φn(1 − φn)) cannot converge to 0, a contradiction.
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Lemma 9. Let U : (0, 1) → R be a bounded, continuously differentiable function. Then

lim inf
φ→0

φU ′(φ) ≤ 0 ≤ lim sup
φ→0

φU ′(φ) , and

lim inf
φ→1

(1 − φ)U ′(φ) ≤ 0 ≤ lim sup
φ→1

(1 − φ)U ′(φ) .

Proof. Suppose, towards a contradiction, that lim infφ→0 φU ′(φ) > 0 (the case lim supφ→0 φU ′(φ) <

0 is analogous). Then for some c > 0 and φ̄ > 0, for all φ ∈ (0, φ̄], φU ′(φ) ≥ c ⇒ U ′(φ) ≥ c/φ.

But then U cannot be bounded since the anti-derivative of 1/φ, log φ, tends to ∞ as φ → 0, a

contradiction. The proof for the case φ → 1 is analogous.

Lemma 10. If U : (0, 1) → R is a bounded solution of the optimality equation, then U has

bounded variation.

Proof. Suppose there exists a bounded solution U of the optimality equation with unbounded

variation near p = 0 (the case p = 1 is similar). Then let φn be a decreasing sequence of

consecutive local maxima and minima of U, such that φn is a local maximum for n odd and a

local minimum for n even.

Then for n odd we have U ′(φn) = 0 and U ′′(φn) ≤ 0. From the optimality equation it

follows that g(Ψ(φn, 0)) ≥ U(φn). Likewise, for n even we have g(Ψ(φn, 0)) ≤ U(φn). Thus, the

total variation of g(Ψ(φ, 0)) on (0, φ1] is no smaller than the total variation of U and therefore

g(Ψ(φ, 0)) has unbounded variation near zero. However, this is a contradiction, since g(Ψ(φ, 0))

is Lipschitz continuous.

Lemma 11. If U is a bounded solution of the optimality equation, then limφ→p φ(1−φ)U ′(φ) = 0

for p ∈ {0, 1}.

Proof. Suppose, towards a contradiction, that φU ′(φ) 9 0 as φ → 0. Then, by Lemma 9,

lim inf
φ→0

φU ′(φ) ≤ 0 ≤ lim sup
φ→0

φU ′(φ) ,

with at least one strict inequality. Without loss of generality, assume lim supφ→0 φU ′(φ) > 0.

Hence there exist constants 0 < k < K, such that φU ′(φ) crosses levels k and K infinitely many

times in a neighborhood of 0.

By Lemma 8 there exists C > 0 such that

|γ(a, b̄, φ)| ≥ C φ ,

whenever φU ′(φ) ∈ (k,K) and φ ∈ (0, 1
2). Hence, by the optimality equation, we have

|U ′′(φ)| ≤ L

φ2
,

for some constant L > 0. This bound implies that for all φ ∈ (0, 1
2) with φU ′(φ) ∈ (k,K), we

have

|(φU ′(φ))′| ≤ |φU ′′(φ)| + |U ′(φ)| = (1 +
|φU ′′(φ)|
|U ′(φ)| ) |U ′(φ)| ≤ (1 +

L

k
) |U ′(φ)| ,
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which yields

|U ′(φ)| ≥ |(φU ′(φ))′|
1 + L/k

.

It follows that on every interval where φU ′(φ) crosses k and stays in (k,K) until crossing K,

the total variation of U is at least (K − k)/(1 + L/k). Since this happens infinitely many times

in a neighborhood of φ = 0, function U must have unbounded variation in that neighborhood,

a contradiction (by virtue of Lemma 10.)

The proof that limφ→1(1 − φ)U ′(φ) = 0 is analogous.

Lemma 12. If U : (0, 1) → R is a bounded solution of the Optimality equation, then for

p ∈ {0, 1},
lim
φ→p

U(φ) = g(Ψ(p, 0)) .

Proof. First, by Lemma 10, U must have bounded variation and so the limφ→p U(φ) exists.

Consider p = 0 and assume, towards a contradiction, that limφ→0 U(φ) = U0 < g(aN , bN ), where

(aN , bN ) = Ψ(0, 0) is the Nash equilibrium of the stage game (the proof for the reciprocal case is

similar). By Lemma 11, limφ→0 φU ′(φ) = 0, which implies that the function Ψ(φ, φ(1−φ)U ′(φ))

is continuous at φ = 0. Recall the optimality equation

U ′′(φ) =
2U ′(φ)

1 − φ
+

2r(U(φ) − g(Ψ(φ, φ(1 − φ)U ′(φ)))

|γ(Ψ(φ, φ(1 − φ)U ′(φ)), φ)|2 =
2U ′(φ)

1 − φ
+

h(φ)

φ2
,

where h(φ) is a continuous function that converges to

2r(U0 − g(aN , bN ))

|σ(bN )−1(µ(a∗, bN ) − µ(aN , bN ))|2 < 0.

as φ → 0. Since U ′(φ) = o(1/φ) by Lemma 9, it follows that for some φ̄ > 0, there exists a

constant K > 0 such that

U ′′(φ) < −K

φ2

for all φ ∈ (0, φ̄). But then U cannot be bounded since the second-order anti-derivative of 1/φ2

(− log φ) tends to ∞ as φ → 0.

The proof for the case p = 1 is analogous.

Lemma 13. Let U be a solution of the Optimality Equation that satisfies:

lim
φ→p

U(φ) = g(Ψ(p, 0)) and lim
φ→p

φ(1 − φ)U ′(φ) = 0 , for p = 0 and 1.

Then,

lim
φ→p

φ2(1 − φ)2U ′′(φ) = 0 .

Proof. Consider p = 1. Fix an arbitrary M > 0 and choose φ ∈ (0, 1) so that (1−φ)|U ′(φ)| < M

for all φ ∈ (φ, 1). By Lemma 8 there exists C > 0 such that |γ(Ψ(φ, φ(1−φ)U ′(φ)), φ)| ≥ C(1−φ)

for all φ ∈ (φ, 1). Hence, by the optimality equation, we have for all φ ∈ (φ, 1):

(1 − φ)2|U ′′(φ)| ≤ 2(1 − φ)|U ′(φ)| + (1 − φ)2
2r|U(φ) − g(Ψ(φ, φ(1 − φ)U ′(φ)))|

|γ(Ψ(φ, φ(1 − φ)U ′(φ)), φ)|2
≤ 2(1 − φ)|U ′(φ)| + 2rC−2|U(φ) − g(Ψ(φ, φ(1 − φ)U ′(φ)))| −→ 0 ,
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as required. The case p = 0 is analogous.

Proposition 7. There exists a unique continuous function U : [0, 1] → R that stays in the

interval of feasible payoffs of the large player, satisfies equation (21) on (0, 1) and conditions

(36) at 0 and 1.

Proof. Propositions 5 and 6 imply that there exists at least one such solution U. Suppose that

V was another such solution. Assuming that V (φ) > U(φ) for some φ, let φ0 ∈ (0, 1) be the

point where the difference V (φ0) − U(φ0) is maximized. But then by Lemma 7 the difference

V (φ) − U(φ) must be increasing for φ > φ0, a contradiction.

C.3 A uniform lower bound on volatility.

Lemma 14. Let U be the unique bounded solution of the Optimality Equation and let

d(a, b̄, φ) = rU(φ) − rg(a, b̄) − |γ(a, b, φ)|2
1 − φ

U ′(φ) − 1

2
|γ(a, b, φ)|2U ′′(φ), (37)

and

f(a, b̄, φ, β) = rβσ(b̄) − φ(1 − φ)σ(b̄)−1(µ(a∗, b̄) − µ(a, b̄))
︸ ︷︷ ︸

γ(a,b,φ)

U ′(φ) . (38)

For any ε > 0 there exists δ > 0 such that for all (a, b̄, φ, β) that satisfy

a ∈ arg max
a′∈A

rg(a′, b) + rβµ(a′, b)

b̄ ∈ arg max
b′∈B

u(b′, b̄) + v(b′, b̄) · µφ(a, b̄) , for all b ∈ support b̄,
(39)

either d(a, b̄, φ) > −ε or f(a, b̄, φ, β) ≥ δ.

Proof. Since φ(1 − φ)U ′(φ) is bounded (by Lemma 11) and there exists c > 0 such that |σ(b̄) ·
y| ≥ c|y| for all y ∈ R

d and b̄ ∈ ∆B, there exist constants M > 0 and m > 0 such that

|f(a, b̄, φ, β)| > m for all β ∈ R
d with |β| > M .

Consider the set Φ of 4-tuples (a, b, φ, β) ∈ A×∆B × [0, 1]×R
d with |β| ≤ M, which satisfy

(39) and d(a, b̄, φ) ≤ −ε. Since U satisfies the boundary conditions (36), d(a, b, φ) is a continuous

function and the set Φ is a closed subset of the compact set

{(a, b, φ, β) ∈ A × ∆B × [0, 1] × R
d : |β| ≤ M},

and hence Φ is compact.14

Since U satisfies the boundary conditions (36), the function |f(a, b̄, φ, β)| is continuous.

Hence, it achieves its minimum, δ, on Φ. We have δ > 0, because, as we argued in the proof of

Theorem 3, d(a, b̄, φ) = 0 whenever f(a, b̄, φ, β) = 0.

It follows that for all (a, b̄, φ, β) that satisfy (39), either d(a, b̄, φ) > −ε or |f(a, b̄, φ, β)| ≥
min(m, δ).

14Since B is compact, the set ∆(B) is compact in the topology of weak convergence of probability measures.
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D Appendix for Section 7

Throughout this appendix, we will maintain Conditions 1 and 3.

Write U and L for the upper and lower boundaries of the correspondence E respectively, that

is,

U(p) = sup E(p) , L(p) = inf E(p)

for all p ∈ [0, 1].

Proposition 8. The upper boundary U : (0, 1) → R is a viscosity sub-solution of the Upper

Optimality equation.

Proof. If U is not a sub-solution, there exists q ∈ (0, 1) and a C2-function V : (0, 1) → R such

that 0 = (U∗ − V )(q) > (U∗ − V )(φ) for all φ ∈ (0, 1) \ {q}, and

2V ′(q)

1 − q
+ min

(a,b̄)∈Ψ(q,q(1−q)V ′(q))

2r(U∗(q) − g(a, b̄))

|γ(a, b̄, q)|2 − V ′′(q) > 0 .

Since the left-hand side of the inequality above is l.s.c., there exist ζ, ε > 0 such that

2V ′(φ)

1 − φ
+ min

(a,b̄)∈Ψ(φ,φ(1−φ)V ′(φ))

2r(V (φ) − g(a, b̄))

|γ(a, b̄, φ)|2 − V ′′(φ) > 2 ζ

for all φ ∈ [q − ε, q + ε] ⊂ (0, 1).

Equivalently, for all φ ∈ [q − ε, q + ε] and (a, b̄) ∈ Ψ(φ, φ(1 − φ)V ′(φ)),

rV (φ) − rg(a, b̄) + |γ(a, b̄, φ)|2(V
′(φ)

1 − φ
− V ′′(φ)

2
) > ζ|γ(a, b̄, φ)|2 ,

which implies

rV (φ) − rg(a, b̄) + |γ(a, b̄, φ)|2(V
′(φ)

1 − φ
− V ′′(φ)

2
) > ζγ2 ≡ κ , (40)

where γ denotes the minimum of |γ(a, b̄, φ)| over all (a, b̄) ∈ Ψ(φ, φ(1 − φ)V ′(φ)) and φ ∈
[q − ε, q + ε]. By Lemma 4, we have γ > 0 and therefore κ > 0.

Since U∗ is upper semi-continuous, we can choose δ ∈ (0, κ
2r

) small enough that for all

φ ∈ [q − ε, q + ε],

V (φ) − δ ≦ U∗(φ) ⇒ |φ − q| <
ε

2
. (41)

Since U is the upper boundary of the equilibrium correspondence and V (q) = U∗(q), there exists

a pair (p,w) ∈ (q − ε
2 , q + ε

2) × R such that w ∈ E(p) and V (p) − δ < w ≦ U(p).

Consider a public sequential equilibrium (at, b̄t, φt) of the game with prior p that yields the

large player a payoff of w. Let (Wt) denote the large player’s continuation payoff process. We

will show that, for a finite stopping time τ , there is positive probability that Wτ > U∗(φτ ),

which yields a contradiction since U is the upper boundary.

Let Dt = Wt − Vt, where Vt = V (φt). By Itô’s formula,

dVt = |γt|2(
V ′′

t

2
− V ′

t

1 − φt
) dt + γtV

′
t dZn

t ,
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where V ′
t = V ′(φt), V ′′

t = V ′′(φt) and γt = γ(at, b̄t, φt). Therefore,

dDt = (rDt + rVt − rgt − |γt|2(
V ′′

t

2
− V ′

t

1 − φt
)) dt + (rβtσt − γtV

′
t ) dZn

t ,

where gt = g(at, b̄t), σt = σ(b̄t) and β ∈ L∗ is the random process of Proposition 2, that is,

dWt = r(Wt − gt) dt + rβtσt dZn
t .

Consider the stopping time S = inf {t : Dt = −δ} and note that, since V (p) − δ < w, we

have S > 0.

Claim: There exists η > 0 such that for all 0 ≤ t ≤ S, either the drift of D is greater than κ
2 ,

or the norm of the volatility of D is greater than η.

Towards a proof of the claim, for each (a, b̄, φ, β) ∈ A × ∆(B) × [q − ε, q + ε] × R
d define:

d(a, b̄, φ) = rV (φ) − rg(a, b̄) − |γ(a, b̄, φ)|2(V
′′(φ)

2
− V ′(φ)

1 − φ
) ,

f(a, b̄, φ, β) = rβσ(b̄) − γ(a, b̄, φ)V ′(φ) .

Since V ′ is bounded on [q−ε, q+ε] and there exists c > 0 such that |σ(b̄) ·y| ≥ c|y| for all y ∈ R
d

and b̄ ∈ ∆B, there exist constants M,m > 0 such that |f(a, b̄, φ, β)| > m whenever |β| > M .

Consider the set Φ of 4-tuples (a, b, φ, β) ∈ A × ∆B × [q − ε, q + ε] × R
d with |β| ≤ M that

satisfy:
a ∈ arg max

a′∈A
rg(a′, b) + rβµ(a′, b)

b̄ ∈ arg max
b′∈B

u(b′, b̄) + v(b′, b̄) · µφ(a, b̄) , for all b ∈ support b̄ ,

and d(a, b̄, φ) ≤ κ.

The continuous function |f | achieves its minimum, η′, on the compact set Φ. We have η′ > 0,

since otherwise (a, b̄) ∈ Ψ(φ, φ(1−φ)V ′(φ)) for some (a, b̄, φ, β) ∈ Φ, which implies d(a, b̄, φ) > κ

by inequality (40), a contradiction.

In sum, we have shown that for all 0 ≤ t ≤ S such that φt ∈ [q − ε, q + ε], either:

norm of the volatility of D = |rβtσt − γtV
′
t | ≥ min{η′,m} ≡ η , or

drift of D = rDt + d(at, b̄t, φt) ≥ −rδ + κ >
κ

2
.

To conclude the proof of the claim, it remains to show that S ≤ T ≡ inf {t > 0 |φt = q ± ε}. In

effect, since U is the upper boundary of the equilibrium correspondence, we have WT ≦ U∗(φT )

on {T < ∞} and therefore, by (41), we have DT < −δ almost surely on {T < ∞}. By the

intermediate value theorem we have S < T on {T < ∞}, which concludes the proof of the claim.

It follows directly from the claim that there is a finite stopping time τ such that Wτ −
U∗(φτ ) ≧ Dτ > 0 with positive probability, which is a contradiction since U is the upper

boundary.

The next lemma is an auxiliary result used in the proof of Proposition 9 below.
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Lemma 15. The correspondence E of public sequential equilibrium payoffs is convex-valued and

has an arc-connected graph.

Proof. We shall first prove that E is convex-valued. Fix p ∈ (0, 1), w∗, w∗ ∈ E(p) (with w∗ > w∗)

and v ∈ (w∗, w
∗). We will prove that v ∈ E(p). Consider the set V = {(φ,w) |w = α|φ− p|+ v}

where α > 0 is chosen large enough so that α|φ − p | + v > U(φ) for all φ sufficiently close

to 0 and 1. Let (φt,Wt)t≥0 be the belief / continuation value process of a public sequential

equilibrium that yields the normal type a payoff of w∗. Let τ ≡ inf{t > 0 |(φt,Wt) ∈ V }.
Proposition 6 implies that τ < ∞ almost surely. If φτ = p with probability 1, then Wτ = v

and nothing remains to be shown. Otherwise, by the martingale property, we have φτ < p

with positive probability and φτ > p also with positive probability. Hence, there exists a

continuous curve C ⊂ graph E with endpoints (p1, w1) and (p2, w2) such that p1 < p < p2,

and for all (φ,w) ∈ C we have w > v and φ ∈ (p1, p2). Pick 0 < ε < p − p1. We will now

construct a continuous curve C′ ⊂ graph E|(0, p1+ε] that has (p1, w1) as an endpoint and satisfies

inf {φ | ∃w s.t. (φ,w) ∈ C′} = 0. Fix a public sequential equilibrium of the dynamic game with

prior p1 that yields the normal type a payoff of w1. Let P
n denote the probability measure over

the sample paths of X induced by the strategy of the normal type. By Proposition 6 we have

φt → 0 P
n-almost surely. Moreover, since (φt) is a supermartingale under P

n, the maximal

inequality for non-negative supermartingales yields:

P
n

[

sup
t≥0

φt ≦ p1 + ε

]

≧ 1 − p1

p1 + ε
> 0 .

Choose a sample path (φ̄t, W̄t) with the property that φ̄t → 0 and φ̄t ≤ p1 + ε for all t ≥ 0.

Define the curve C′ as the image of the sample path t 7→ (φ̄t, W̄t). By a similar argument we can

construct a continuous curve C′′ ⊂ graph E|[p2−ε,1) that has (p2, w2) as an endpoint and satisfies

sup {φ | ∃w s.t. (φ,w) ∈ C′′} = 1.

Thus, we have constructed a continuous curve C∗ ≡ C′ ∪C ∪C ′′ ⊂ graphE|(0,1) that projects

onto (0, 1) and satisfies inf {w | (p,w) ∈ C∗} > v. By a similar argument, there exists a continuous

curve C∗ ⊂ graphE|(0,1) that projects onto (0, 1) and satisfies sup {w | (p,w) ∈ C∗} < v.

Let φ 7→ (a(φ), b̄(φ)) be a measurable selection from the correspondence of static Bayesian

Nash equilibrium. Let (φt) be the unique weak solution of

dφt = −|γ(a(φt), b̄(φt), φt)|2
1 − φt

+ γ(a(φt), b̄(φt), φt) dZn
t

with initial condition φ0 = p.15 Let (Wt) be the unique solution of

dWt = r(Wt − g(a(φt), b̄(φt))) dt

with initial condition W0 = v, up to the stopping time T > 0 when (φt,Wt) first hits either C∗

or C∗. Define a strategy profile (at, b̄t) as follows: for t < T , (at, b̄t) ≡ (a(φt), b̄(φt)); from t = T

onwards (at, b̄t) follows an equilibrium of the game with prior φT . By Theorem 1 (at, b̄t, φt) is a

sequential equilibrium of the game with prior p that yields the normal type a payoff of v. Hence

v ∈ E(p), concluding the proof that E is convex-valued.

15Condition 1 ensures that γ(a(φt), b̄(φt), φt) is bounded away from zero, hence standard results for exis-

tence/uniqueness of weak solutions apply.
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We will now prove that the graph of E is arc-connected. Fix p < q, v ∈ E(p) and w ∈ E(q).

Consider a sequential equilibrium of the game with prior q that yields the normal type a payoff

of w. Since φt → 0, there exists a continuous curve C ⊂ graph E with endpoints (q, w) and (p, v′)

for some v′ ∈ E(p). Since E is convex-valued, the straight line C′ connecting (p, v) to (p, v′) is

contained in the graph of E . Hence C ∪C′ is a continuous curve connecting (q, w) and (p, v) that

is contained in the graph of E , concluding the proof that E has an arc-connected graph.

Proposition 9. The upper boundary U : (0, 1) → R is a viscosity super-solution of the Upper

Optimality equation.

Proof. If U is not a super-solution, there exists q ∈ (0, 1) and a C2-function V : (0, 1) → R such

that 0 = (U∗ − V )(q) < (U∗ − V )(φ) for all φ ∈ (0, 1) \ {q}, and

H∗(q, U∗(q), V
′(q)) < V ′′(q) .

Therefore, there exist ζ, ε > 0 such that for all φ ∈ [q − ε, q + ε] ⊂ (0, 1),

H(φ, V (φ), V ′(φ)) − V ′′(q) < −2ζ ,

which implies for all φ ∈ [q − ε, q + ε]

rV (φ) − max
(a,b̄)∈Ψ(φ,φ(1−φ)V ′(φ))

{rg(a, b̄) + |γ(a, b̄)|2(V
′(φ)

1 − φ
− V ′′(φ)

2
)} < −ζγ2 ≡ −κ , (42)

where γ > 0 is the minimum of |γ(a, b̄, φ)| over all (a, b̄) ∈ Ψ(φ, φ(1−φ)V ′(φ)) and φ ∈ [q−ε, q+ε].

Let (a(·), b̄(·)) be a measurable selection

φ 7→ (a(φ), b̄(φ)) ∈ Ψ
(
φ, φ(1 − φ)V ′(φ)

)
(43)

such that

rV (φ) − rg(a(φ), b̄(φ)) − |γ(a(φ), b̄(φ), φ)|2(V
′′(φ)

2
− V ′(φ)

1 − φ
) < −κ , (44)

for all φ ∈ [q − ε, q + ε].

Since U∗ is l.s.c., we can choose δ > 0 small enough that for all φ ∈ [q − ε, q + ε],

V (φ) + δ ≧ U∗(φ) ⇒ |φ − q| <
ε

4
. (45)

Since V (q) = U∗(q), there is some p ∈ (q − ε
4 , q + ε

4 ) such that V (p) + δ > U(p).

Let (φt) be the unique weak solution of

dφt = −|γ(a(φt), b̄(φt), φt)|2
1 − φt

dt + γ(a(φt), b̄(φt), φt) · dZn

t , φ0 = p , (46)

up to the first time it hits q ± ε. 16

16Existence follows from the fact that V ′(φ) is bounded on [q − ε, q + ε] and therefore γ is bounded away

from zero (Lemma 8). Uniqueness is granted because process is one-dimensional (see Remark 4.32 on pg. 327 of

Karatzas and Shreve.)
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Consider the random process (Wt) that is the unique strong solution of

dWt = r(Wt − g(a(φt), b̄(φt))) dt + γ(a(φt), b̄(φt), φt)V
′(φt) · dZn

t , W0 = V (p) + δ , (47)

up to the positive stopping time T when φt hits q ± ε for the first time.17

By virtue of (45), there exist v′ ∈ E(q− ε
3) and w′ ∈ E(q + ε

3) such that v′ > V (q− ε
3)+ δ and

w′ > V (q + ε
3) + δ. By Lemma 15, there exist v ∈ E(q − ε

3) and w ∈ E(q + ε
3), with v ≥ v′ and

w ≥ w′, and a continuous path (φ̃, ũ) : [0, 1] → gr E|[q− ε

2
,q+ ε

2
], such that (φ̃(0), ũ(0)) = (q − ε

3 , v)

and (φ̃(1), ũ(1)) = (q + ε
3 , w).

Denote by Λ the image of (φ̃, ũ) and define

τ ≡ inf {t ∈ [0, T ] | (φt,Wt) ∈ Λ} .

We will now argue that τ < ∞, that is, eventually the path (φt,Wt) must intersect the

curve Λ. Let ũ = min {ũ(ℓ) | ℓ ∈ [0, 1]} and consider the stopping time

S ≡ inf {t : Wt = ũ − 1} .

We claim that S ∧ T < ∞. To prove the latter it suffices to show that W is unbounded from

below on {T = ∞}. Let Dt = Wt−V (φt)− δ for 0 ≦ t ≦ T . By Itô’s formula and equation (47),

dDt

dt
= rDt+rV (φt)−rg(a(φt), b̄(φt))−|γ(a(φt), b̄(φt), φt)|2(

V ′′(φt)

2
−V ′(φt)

1 − φt
) , for 0 ≦ t ≦ T.

We have D0 = 0 and, by virtue of (44),

dDt

dt
≦ −κ < 0 almost surely on {T ≧ t} ∩ {Dt ≦ 0} . (48)

Therefore D is unbounded from below on {T = ∞}. Since the continuous function V is bounded

on [q− ε, q + ε], we conclude that W is unbounded from below on {T = ∞}, demonstrating that

S ∧ T < ∞.

To conclude that τ < ∞ notice that

WS∧T < max {ũ(ℓ) | ℓ ∈ [0, 1], φ̃(ℓ) = φS∧T } ,

and

W0 > U(φ0) ≧ max {ũ(ℓ) | ℓ ∈ [0, 1], φ̃(ℓ) = φ0} ,

and therefore (φ0,W0) and (φS∧T ,WS∧T ) lie on opposite sides of the continuous curve Λ. Since

(φt,Wt) has continuous sample paths, it must intersect Λ at some time before S ∧ T . Since

S ∧ T < ∞ we conclude that τ < ∞, as claimed.

We now will construct a public sequential equilibrium of the game with prior p that yields

the large player payoff W0 = V (p) + δ. Consider the strategy profile and belief process that

coincides with (at, b̄t, φt) up to time τ , and follows a public sequential equilibrium of the game

with prior φτ at all times after τ . Since τ < ∞ almost surely, it follows from inclusion (43),

17Existence/uniqueness follows from the Lipschitz and linear growth conditions in W for fixed sample path,

and the boundedness of γV ′ on {t ≦ T}.
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equations (46) and (47), and Theorem 1 that the strategy profile / belief process constructed is

a public sequential equilibrium of the game with prior p. By construction we have W0 ∈ E(p),

which is a contradiction since W0 = V (p) + δ > U(p). This contradiction shows that U must be

a super-solution of the Upper Optimality equation.

Lemma 16. Every bounded viscosity solution of the upper optimality equation is locally Lipschitz

continuous.

Proof. En route to a contradiction, suppose U is a bounded viscosity solution that is not locally

Lipschitz. That is, for some p ∈ (0, 1) and ε ∈ (0, 1
2) satisfying [p − 2ε, p + 2ε] ⊂ (0, 1) the

restriction of U to [p − ε, p + ε] is not Lipschitz continuous. Let M = sup |U |. By Lemmas 4

and 8 there exists K > 0 such that for all (φ, u, u′) ∈ [p − 2ε, p + 2ε] × [−M,M ] × R,

|H∗(φ, u, u′)| ≦ K(1 + |u′|2) , (49)

Since the restriction of U to [p−ε, p+ε] is not Lipschitz continuous, there exist φ0, φ1 ∈ [p−ε, p+ε]

such that
|U∗(φ1) − U∗(φ0)|

|φ1 − φ0|
≧ max{1, e2M(4K+ 1

ε
)} . (50)

Hereafter we will assume φ1 > φ0 and U∗(φ1) > U∗(φ0). The proof for the reciprocal case is

analogous and will be omitted.

Let V : I → R be the solution of the differential equation

V ′′(φ) = 2K(1 + V ′(φ)2) , (51)

with initial conditions given by

V (φ1) = U∗(φ1) and V ′(φ1) =
U∗(φ1) − U∗(φ0)

φ1 − φ0
, (52)

where the interval I is the maximal domain of V .

We claim V has the following two properties:

1. There exists φ∗ ∈ I ∩ (p − 2ε, p + 2ε) such that V (φ∗) = −M and φ∗ < φ0. In particular,

φ0 ∈ I.

2. V (φ0) > U∗(φ0).

We shall first prove property (a). For all φ ∈ I such that V ′(φ) > 1, we have V ′′(φ) <

4KV ′(φ)2 or, equivalently, (log V ′)′(φ) < 4KV ′(φ), which yields

V (φ̂) − V (φ̃) >
1

4K
(log(V ′(φ̂)) − log(V ′(φ̃))) , ∀φ̂, φ̃ ∈ I s.t. V ′(φ̂) > V ′(φ̃) > 1 . (53)

By (50) and (52), we have 1
4K

log(V ′(φ1)) > 2M , and therefore a unique φ̃ ∈ I exists such

that
1

4K
(log(V ′(φ1)) − log(V ′(φ̃))) = 2M . (54)
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Since V ′(φ̃) > 1, it follows from (53) that V (φ1) − V (φ̃) > 2M and so V (φ̃) < −M . Since

V (φ1) > U(φ0) ≧ −M , there exists some φ∗ ∈ (φ̃, φ1) such that V (φ∗) = −M . Moreover φ∗

must belong to (p − 2ε, p + 2ε), because the convexity of V implies

φ1 − φ∗ <
V (φ1) − V (φ∗)

V ′(φ∗)
<

2M

V ′(φ̂)
<

2M

log(V ′(φ̂))
=

2M

log(V ′(φ1)) − 8KM
< ε ,

where the equality follows from (54) and the rightmost inequality follows from (50). Finally, we

have φ∗ < φ0, otherwise the inequality V (φ∗) ≦ U∗(φ0) and the initial conditions (52) would

imply

V ′(φ1) =
U∗(φ1) − U∗(φ0)

φ1 − φ0
≦

V (φ1) − V (φ∗)

φ1 − φ∗
,

which would violate the strict convexity of V . This concludes the proof of property (a).

Turning to property (b), the strict convexity of V and the initial conditions (52) imply

U∗(φ1) − V (φ0)

φ1 − φ0
=

V (φ1) − V (φ0)

φ1 − φ0
< V ′(φ1) =

U∗(φ1) − U∗(φ0)

φ1 − φ0
,

and therefore V (φ0) > U∗(φ0), as required.

Define

L = max {V (φ) − U∗(φ) |φ ∈ [φ∗, φ1]} .

By property (b), we have L > 0. Let φ̂ be a point at which the maximum above is attained.

Since V (φ∗) = −M and V (φ1) = U∗(φ1), we have φ̂ ∈ (φ∗, φ1) and therefore V − L is a test

function that satisfies

U∗(φ̂) = V (φ̂) − L ,

and

U∗(φ) ≧ V (φ) − L for every φ ∈ (φ∗, φ1) .

Since U is a viscosity supersolution,

V ′′(φ̂) ≦ H∗(φ̂, V (φ̂) − L, V ′(φ̂)) ,

and hence, by (49),

V ′′(φ̂) ≦ K(1 + V ′(φ̂)2) < 2K(1 + V ′(φ̂)2)) ,

which is a contradiction, since by construction V satisfies equation (51).

Lemma 17. Every bounded viscosity solution of the upper optimality equation is continuously

differentiable with absolutely continuous derivatives.

Proof. Let U : (0, 1) → R be a bounded solution of the upper optimality equation. By Lemma 16,

U is locally Lipschitz and hence differentiable almost everywhere. We will now show that U is

differentiable. Fix φ ∈ (0, 1). Since U is locally Lipschitz, there exist δ > 0 and k > 0 such that

for every p ∈ (φ − δ, φ + δ) and every smooth test function V : (φ − δ, φ + δ) → R satisfying

V (p) = U(p) and V ≥ U we have

|V ′(p)| ≤ k .
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It follows from Lemma 8 that there exists some M > 0 such that

|H(p, U(p), V ′(p))| ≤ M

for every p ∈ (φ−δ, φ+δ) and every smooth test function V satisfying V ≥ U and V (p) = U(p).

Let us now show that for all ε ∈ (0, δ) and ε′ ∈ (0, ε)

−Mε′(ε − ε′) < U(φ + ε′) −
(

ε′

ε
U(φ + ε) +

ε − ε′

ε
U(φ)

)

< Mε′(ε − ε′). (55)

If not, for example if the second inequality fails, then we can choose K > 0 such that the C2

function (a parabola)

f(φ + ε′) =

(
ε′

ε
U(φ + ε) +

ε − ε′

ε
U(φ)

)

+ Mε′(ε − ε′) + K

is completely above U(φ+ ε′) except for a tangency point at ε′′ ∈ (0, ε). But this contradicts the

fact that U is a viscosity subsolution, since f ′′(φ+ε′′) = −2M < H(φ+ε′′, U(p+ε′′), U ′(φ+ε′′)).

We conclude that the bounds in (55) are valid, and so for all 0 < ε′ < ε < δ,
∣
∣
∣
∣

U(φ + ε′) − U(φ)

ε′
− U(φ + ε) − U(φ)

ε

∣
∣
∣
∣
≤ Mε.

It follows that as ε converges to 0 from above,

U(φ + ε) − U(φ)

ε

converges to a limit U ′(φ+). Similarly, if ε converges to 0 from below, the quotient above

converges to a limit U ′(φ−).

We claim that U ′(φ+) = U ′(φ−). Otherwise, if for example U ′(φ+) > U ′(φ−), then the

function

f1(φ + ε′) = U(φ) + ε′
U ′(φ−) + U ′(φ+)

2
+ Mε′2

is below U in a neighborhood of φ, except for a tangency point at φ. But this leads to a

contradiction, because f ′′
1 (φ) = 2M > H(φ,U(φ), U ′(φ)) and U is a super-solution. Therefore

U ′(φ+) = U ′(φ−) and we conclude that U is differentiable at every φ ∈ (0, 1).

We will now show that U ′ is locally Lipschitz. Fix φ ∈ (0, 1) and, arguing just as we did

above, choose δ > 0 and M > 0 so that

|H(p, U(p), V ′(p))| ≤ M

for every p ∈ (φ− δ, φ + δ) and every smooth test function V satisfying V (p) = U(p) and either

V ≥ U or V ≤ U . We affirm that for any p ∈ (φ − δ, φ + δ) and ε ∈ (0, δ)

|U ′(p) − U ′(p + ε)| ≤ 2Mε.

If not, e.g. if U ′(p + ε) > U ′(p) + 2Mε for some p ∈ (φ − δ, φ + δ) and ε ∈ (0, δ), then the test

function

f2(p + ε′) =
ε′

ε
U(p + ε) +

ε − ε′

ε
U(p) − Mε′(ε − ε′)

40



must be above U at some ε′ ∈ (0, ε) (since f ′
2(p + ε) − f ′

2(p) = 2Mε.) Therefore, there exists a

constant K > 0 such that f2(p + ε′) − K stays below U for ε′ ∈ [0, ε], except for a tangency at

some ε′′ ∈ (0, ε). But then

f ′′
2 (φ + ε′′) = 2M > H(φ + ε′′, U(φ + ε′′), U ′(φ + ε′′)),

contradicting the fact that U is a viscosity super-solution.

Proposition 10. The upper boundary U is a continuously differentiable function, with absolutely

continuous derivatives. In addition, U is characterized as the maximal bounded solution of the

following differential inclusion:

U ′′(φ) ∈ [H(φ,U(φ), U ′(φ)) , H∗(φ,U(φ), U ′(φ))] . (56)

Proof. First, note that by Propositions 8, 9 and 17, the upper boundary U is a differentiable

function with absolutely continuous derivative that solves the differential inclusion (56).

If U is not a maximal solution, then there exists another bounded solution V of the differential

inclusion (56) that is strictly above U at some p ∈ (0, 1). Choose ε > 0 such that V (p)−ε > U(p).

We will show that V (p)−ε is the payoff of a public sequential equilibrium, which is a contradiction

since U is the upper boundary.

From the inequality

V ′′(φ) ≥ H(φ, V (φ), V ′(φ)) a.e.

it follows that a measurable selection (a(φ), b̄(φ)) ∈ Ψ(φ, φ(1 − φ)V ′(φ)) exists such that

rV (φ) − rg(a(φ), b̄(φ), φ) − |γ(a(φ), b̄(φ), φ)|2(V
′′(φ)

2
− V ′(φ)

1 − φ
) ≤ 0 , (57)

for almost every φ ∈ (0, 1).

Let (φt) be the unique weak solution of

dφt = −|γ(a(φt), b̄(φt), φt)|2
1 − φt

+ γ(a(φt), b̄(φt), φt) dZn

t ,

with initial condition φ0 = p.

Let (Wt) be the unique strong solution of

dWt = r(Wt − g(a(φt), b̄(φt))) dt + V ′(φt)γ(a(φt), b̄(φt), φt) dZn

t ,

with initial condition W0 = V (p) − ε.

Consider the process Dt = Wt − V (φt). It follows from Itô’s formula for differentiable

functions with absolutely continuous derivatives that:

dDt

dt
= rDt + rV (φt) − rg(a(φt), b̄(φt), φt) − |γ(a(φt), b̄(φt), φt)|2(

V ′′(φt)

2
− V ′(φt)

1 − φt
) .

Therefore, by (57) we have
dDt

dt
≤ rDt ,
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and since D0 = −ε < 0 it follows that Wt ց −∞.

Let τ be the first time that (φt,Wt) hits the graph of U . Consider a strategy profile / belief

process that coincides with (at, b̄, φt) up to time τ and, after that, follows a public sequential

equilibrium of the game with prior φτ with value U(φτ ). It is immediate from Theorem 1 that

the strategy profile / belief process constructed is a sequential equilibrium that yields the large

player payoff V (p) − ε > U(p), a contradiction.
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