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Abstract

This paper uses di¤erent term structure models for term premia esti-
mation. In particular, we consider discrete Term Structure Models (TSM),
which specify the driving stochostic process for the yield curve by Gaussian
VAR. First, we refer to No-Arbitrage A¢ ne TSM (see Du¢ e, Kan (96);
Dai, Singleton (00)). Second, we estimate term premium by two-step pro-
cedure: we �t the yield curve by Nelson-Siegel model and then we add
the assumption about the dynamics of the factors. Finally, the results are
compared to the estimates implied by simple unrestricted VAR. We �nd
that di¤erences in term premia estimates among alternative speci�cations
of Term Structure VAR Models are small, and thus the less computation-
ally demanding method could be used to obtain the term premia.

1 Introduction

Over the last decade, di¤erent term structure models have been used for the
analysis of the Term Premium, i.e. the di¤erence between the yield to maturity
of long term bond and the average of expected future short-term bond yields,

TPn;t = y
n
t �

1

n

n�1X
j=0

Et[it+j ]: (1)

The traditional expectations hypothesis, which states that the term premium
is constant, is widely rejected by the empirical research: the term premium is
time varying and, moreover, it appears to be important variable in �nance and
macroeconomic literature. Nevertheless, a suitable theory for the term premium
is still required.

�Favero: IGIER, Universit�a Bocconi and CEPR, Via Salasco 5, 20136 Milano, Italy,
carlo.favero@uni-bocconi.it; Kaminska: Universit�a Bocconi, Via Salasco 5, 20136 Milano,
Italy, iryna.kaminska@uni-bocconi.it.
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Despite the simplicity of the concept, there are severe challenges for the term
premium estimation. First, the market expectations are not observable and
there is neither a commonly accepted theoretical model nor an agreed method
to proxy these expectations. Second, in order to estimate term premium for any
maturity we have to work with the whole yield curve, which is also unobservable.
Thus only when the term structure model could provide both, the framework
for the shape of the yield curve and the proxy for the expectations, it could be
considered as a �exible tool for the term premium analysis.
While it is not a problem to �nd a good yield curve �tting model, modeling

the market expectations is a di¢ cult task. The common approach is to use
ex-post observed returns as a valid proxy for ex-ante expected returns. The
approach has been questioned by Elton (1999), who provided ample evidence
against the belief that information surprises tend to cancel out over time. Hence,
realized returns cannot be considered as an appropriate proxy for expected
returns. Campbell and Shiller (87) circumvent this problem and propose the
VAR framework as an explicit model for the expected future rates. Given the
path of VAR-projected future short rates, it is possible to construct yields to
maturity consistent with the expectations theory and, as a residual, the term
premium.
Even if it is reasonable to combine the yield curve �tting model with Campbell-

Shiller VAR approach, VAR model is still too general framework to be a �nal
solution to the problem. Two further questions remain open: which variables
to include into the VAR?, and which restrictions to impose on the VAR coe¢ -
cients?
Campbell and Shiller (87) use bivariate VAR model, according to which the

only determinant of policy rates are long-term rates. However, the success of
Taylor rules (Taylor,1993) points out an obvious potential mis-speci�cation of
the yields-only framework: the omission of macroeconomic variables to which
the monetary policy maker reacts. Thus, focusing on the estimation of the ex-
pected future short term rates, it is natural to enrich the VAR with variables
related to in�ation and output. Clearly, including observable yields and macro-
economic variables into the unrestricted VAR will provide very large number of
estimated coe¢ cients, and hence it will be very imprecise model to work with.
An alternative solution is provided by Factor models, which assume certain

relationship between yields of di¤erent maturities and therefore impose restric-
tions on the VAR coe¢ cients.
Among the most popular dynamic term structure factor models are A¢ ne

Term Structure Models (ATSM) (see Du¢ e, Kan (96); Dai, Singleton (00)),
which, in discrete time, imply VAR of yields with complex cross-equation re-
strictions due to the no-arbitrage assumption. Despite the high dimensionality
and extreme non-linearity, many authors (see e.g. Ang et al (2004), Hördahl et
al (2004)) use this type of models to estimate term premium (1).
In contrast, there are less computationally demanding ways to measure term

premia by factor models. For example, it is possible to estimate term premium
for any maturity using Nelson-Siegel (1987) parametric form for the yield curve
and specifying additionally the VAR dynamics for the factors (as in Diebold
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and Li (2005), Carriero, Favero, Kaminska (2005)).
A natural question is: What is the impact of the alternative restrictions on

the VAR-s for modeling the term premium? In this paper, we seek to answer this
question by studying di¤erent discrete TSM, which specify the driving stochastic
process for the yield curve by Gaussian VAR. First, we consider unrestricted
VAR models. Second, to provide estimates of term premia, we estimate two
types of ATSM: following the recent tendency, together with standard ATSM,
we consider also joint macro-�nance ATSM (as Ang, Bekaert (03), Rudebusch,
Wu (04) etc.). Finally, we explore VARs implied by Nelson-Siegel dynamic
factor model.
We �nd that di¤erences in term premia estimates among alternative speci-

�cations of discrete Term Structure Models are small.
The paper is organized as follows. Section 2 de�nes the term premium

from the perspective of the expectations hypothesis. Section 3 discusses VAR,
dynamic Nelson-Siegel and No-Arbitrage A¢ ne TSM approaches. Section 4
summarizes estimation details, while Section 5 compares the term premium
estimates from di¤erent approaches. The last section concludes.

2 Expectations Hypothesis and Term Premium

The Expectations Hypothesis can be represented in several forms (Cox, In-
gersoll, Ross (1985)). We work here with the Yield to Maturity Expectations
Hypothesis in its logarithmic form1 .
Let ynt ; it denote n-period yield and one-period interest rate respectively.

Then logarithmic form of the Expectation Hypothesis states that

ynt =
1

n

n�1X
j=0

Et[it+j ] + TPn; (2)

where Et[it+j ] denotes the market�s expectations at time t of the one-period
interest rate at time t+ j: The term premium TPn could be viewed as a sum of
the risk and liquidity premium.
The traditional form of Expectations Theory (ET) assumes that a term

premium is constant (zero in the case of Pure ET). Nevertheless the assumption
of constant premium is merely a technical simpli�cation of the theory. We
follow Longsta¤ (1990) and Hamilton and Kim (2002) and from here and below
consider a variable term premium2 . Rearranging terms, we �nd an expression
for the term premium:

TPn;t = y
n
t �

1

n

n�1X
j=0

E[it+j j It] (3)

1The log form is only the approximation of the EH and is not appropriate for the periods
when the rates of returns take high values (like 1980-1983).

2With time varying term premium, the EH still holds if the term premium is restricted to
be orthogonal to the spread.
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The estimation of the term premium is di¢ cult in practice as it involves
expectations about the future path of the short-term interest rate, and alter-
native decompositions may di¤er substantially depending on how expectations
are modelled.

3 VAR-based Models for Expectations

3.1 Unrestricted VAR Models

Our VAR-based approach is closely related to the paper by Campbell and Shiller
(1987). By having an explicit model for the short-rate in VAR framework, they
circumvent the use of ex-post realized returns as a proxy for ex-ante expected
returns. By implementing the simulation based procedure one can explicitly
measure deviations from the ET and, under the null that the proposed model
delivers expected future policy rates not di¤erent from those expected by the
market, interpret them as a measure of risk premium.
The bivariate CS approach has an implicit reaction function according to

which the only determinant of policy rates are long-term rates. The success of
Taylor rules (Taylor,1993) points out an obvious potential mis-speci�cation of
the yields-only framework: the omission of macroeconomic variables to which
the monetary policy maker reacts. In general, standard approaches include in
the VAR models the interest rates and in�ation in levels, alternative speci�ca-
tions include the measures of the real activity as well ( i.e. Kozicky, Tinsley
(2001)). Ang, Piazzesi, Wei (2005) also derive expectations for future policy
rates considering a vector of state variables that follows a Gaussian Vector Au-
toregression with one lag:

Yt = �
U +�UYt�1 +��t (4)

In their case, the vector Yt contains two factors from the yield curve, the 3-
month rate, i1t , expressed at a quarterly frequency, to proxy for the level of the
yield curve, and the 5-year term spread, i20t � i1t ; to proxy for the slope of the
yield curve, the last factor is the quarterly real GDP growth, �4yt. Expected
risk-free rate are derived by simulating the VAR from (4) forward.
In this paper, working with unrestricted VAR, we consider two alternative

measures of TPt: The �rst one is obtained by applying unrestricted VAR(1)
model to the vector Yt, which contains the short yield, y3t , expressed at a monthly
frequency, and the 5-year yield, y60t : Y 0t =

�
y3t ; y

60
t

�
. The success of Taylor rules

(Taylor,1993) points out an obvious potential mis-speci�cation of the yields-only
framework: the omission of macroeconomic variables to which the monetary
policy maker reacts. We shall assess potential mis-speci�cation e¤ects by using
an extended VAR, so that in the second case the vector Yt contains the one
quarter yield, y3t , the 5-year yield, y

60
t ; and in�ation �t : Y

0
t =

�
y3t ; y

60
t ; �t

�
:

In each case, we simulate the estimated model (4) forward, to obtain projec-

tion for all relevant policy rates and to construct
^

ET t, which is the Expectations
Theory consistent spreads, as follows:
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^

ET t =
1

20

19X
j=0

E[y3t+j j 
t] (5)

where, E[y3t+j j 
t] are the VAR-based projections for the future changes in
policy rates, hence 
t is the information set used by the econometrician to
predict on the basis of the estimated unrestricted VAR model . The unrestricted
VAR-based measure of term premium is then

TPU3;60;t = y
60
t � 1

20

19X
j=0

E[y3t+j j 
t] (6)

The information set 
t does not include any theoretical restriction. Alterna-
tively, when working with term structure models, it would be natural to include
information on the absence of arbitrage opportunities into the information set
of the econometrician. We address how to impose the No-Arbitrage restrictions
into the VAR model in the next section.

3.2 No-Arbitrage Term Structure Models

According to �nancial No-Arbitrage TSM, there are only few factors, Xt; rel-
evant for pricing risk in the bond sector. If agents are risk neutral, then No-
Arbitrage implies that any bond is priced by the following rule:

Pt = Et(e
�rtPt+1); (7)

with bond�s price Pt = P (Xt); Xt+1jXt � N(�t;�t�
0
t); �t = �(Xt); �t =

�(Xt): If agents are not risk-neutral, then their behavior can be represented as
that of risk-neutral with "distorted beliefs" about the distribution ofXt : Xt+1jXt �
N(�Qt ;�t�

0
t); where �

Q
t = �t��t�t: Assuming that market uses these distorted

beliefs to evaluate Pt = EQt (e
�rtPt+1); the density to �nd these expectations

would be

fQt (Xt+1) = (2�)
�N

2 j�tj�1 exp(�
1

2
(Xt+1 � �Qt+1)0(�t�0t)�1(Xt+1 � �

Q
t+1)) =

= (2�)
�N

2 j�tj�1 exp(
(Xt+1 � �t +�t�t)0(�t�0t)�1(Xt+1 � �t +�t�t)

�2 )

= ft(Xt+1) exp(�
1

2
�0t�t � �0t��1t (Xt+1 � �t))

� ft(Xt+1) exp(�
1

2
�0t�t � �0t��1t "t+1)

The pricing kernel, Mt+1; is given by

Mt+1 � e�rte�
1
2�

0
t�t��

0
t�

�1
t "t+1 (8)

Pt = EQt (e
�rtPt+1) = Et(Mt+1Pt+1) (9)
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Estimating market prices of risk econometrician faces numerous challenges.
Importantly, the presence of unobservable (latent) variables and the absence of
the closed-form solution of the system of stochastic di¤erence equations for bond
prices do not allow one to use the maximum likelihood estimation. Instead,
a closed-form solution for bond prices could be obtained imposing the a¢ ne
structure into the model. Therefore, the majority of empirical studies adopt a
speci�cation which is a¢ ne.
We follow this direction and consider only A¢ ne Term Structure Models.

Canonical ATSM contains 3 basic equations:
1) Transition equation for the state vector relevant for pricing bonds (Gaussian

VAR):
Xt = �+�Xt�1 +�"t (10)

2) De�nition of one period rate as a linear function of the state variables,

rt = �0 + �1Xt: (11)

3) The price of risk, �t; is associated with shocks "t and it is identi�ed as
an a¢ ne function of the state of economy (see Du¤ee (02)).

�t = �0 + �1Xt (12)

Under these assumptions, as we show in the Appendix, the interest rate of
any maturity is a¢ ne function of the state variables: rt;n = An +B0nXt; where
An; Bn are the functions of the parameters f�0; �1; �0; �1; �;�;�g :�

An+1 = An +B
0
n��B0n��o + 1

2B
0
n��

0Bn
B0n+1 = B

0
n�� �01 �B0n��1

�
(13)

The yield on a zero-coupon bond of maturity n; is a¢ ne structure of the state:

yt(n) = �
1

n
(An +B0nXt) � an + b0nXt (14)

3.2.1 No-Arbitrage VAR

In this subsection we are going to show how the No-Arbitrage assumption results
in a set of restrictions on VAR from (4).
To estimate parameters and extract the factors in ATSM we use the approach

due to Chen and Scott (1993). In this setting, N unobservable factors are
measured by assuming that N bonds, R̂t; in the cross section are priced without
error:

R̂t = A1+B1Xt: (15)

Other interest rates are assumed to be priced with errors. Once all parameters
of the model are estimated, the factors, Xt; could be extracted by inverting the
pricing relationship of the model:

Xt = B1
�1[R̂t �A1] (16)
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Given the dynamics of the latent factors (10), the dynamics of the observed
bond yields can be retrieved by combining equations, (15), (16) in the following
way:

R̂t = A1+B1 (�+�Xt�1 +�"t)

=
�
A1+B1��B1�B1�1A1

�
+B1�B1�1R̂t�1 +B1�"t (17)

Note that the No-Arbitrage assumption implies the VAR for the observable
variables with complex cross equation restrictions. We denote this VAR as

Yt�1 = �
NA +�NAYt�1 +�

NA�t; (18)

where Yt stands for the observed yields (in our case Yt = [y3t ; y
60
t ]);

�NA � A1+B1��B1�B1�1A1 (19)

�NA � B1�B1�1 (20)

The No-Arbitrage based measure of term premium is then

TPNA3;60;t = y
60
t � 1

20

19X
j=0

E[y3t+j j 
NAt ]; (21)

where information set of the econometrician, 
NAt ; includes the theoretical as-
sumption of No-Arbitrage.
The huge popularity of the No-Arbitrage ATSM in �nance is due to the fact

that implied a¢ ne functions of few unobservable (latent) factors could explain
almost all movements of the yield curve (see Du¢ e, Kan (96); Dai, Singleton
(00))3 . Nevertheless, the pure ATSM has not gained the same popularity among
economists since the model is not useful for Macroeconomic Policy. There is no
any theory behind the NA-ATSM apart from the No-Arbitrage assumption and
the economic nature of the latent factors is unknown. Observing that short
term rate is a Policy Rate, macroeconomists have proposed a possible solution:
to combine ATSM No-Arbitrage models with Macroeconomic models.

3.2.2 ATSM joint with Macroeconomic Models

Ways of incorporating the macroeconomic theory into the No-Arbitrage models
could be divided into three groups. First, one can extract the unobservable
factors from the pure yields model and then to look for their macroeconomic
interpretation using Taylor rules, or other standard macroeconomic relation-
ships for output and in�ation (see Rudebusch, Wu (04)). Second, some authors
claim that all factors relevant for the bond pricing are observable. The ex-
ample of this approach is the paper of Ang, Piazzesi, Wei (04), who add to
VAR-based macro-model only the No-Arbitrage assumption. The paper by

3 just 2 factors could explain more than 99%
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Ang and Bekaert (04) belongs to the third group, which is a mixture of the
�rst two approaches. The authors assume that the state vector relevant for the
bond pricing consists from both, latent and observable, factors. The approach
is very popular and there is a bunch of papers devoted to it: Hordhal, Tris-
tani, Vestin (04); Ang, Piazzesi (03), etc. Table 1 summarizes the recent work
on the a¢ ne term structure models enriched by macroeconomic information.

Table 1. Di¤erent types of joint macro-�nance models

P a p e r S t a t e v e c t o r F D y n am ic s M e th o d Y ie ld s e x a c t w i t h e r r o r S am p le

A n g , B e ka e r t ( 0 4 ) 2 la t e n t+� Q R S -VA R (1 ) M L E 1 q , 5 y 1 y, 3 y 1 9 5 2 - 2 0 0 0

A n g , P ia z z e s i ( 0 3 ) 3 la t e n t + "�"+ " y " M VA R (1 2 ) 2 - s t e p L S 1m , 1 y, 5 y 1 q , 3 y 1 9 5 2 - 2 0 0 0

A n g e t a l ( 0 4 ) r 1+ R 1 0+ g r ow th Q VA R (1 ) 2 - s t e p L S 1 q , 5 y - 1 9 6 4 - 2 0 0 1

D a i e t s l ( 0 3 ) 3 la t e n t M R S -VA R (1 ) M L E 2 q , 2 y, 1 0 y 5 y 1 9 7 0 - 1 9 9 5

H o rd h a l e t a l ( 0 4 ) 1 la t e n t + r+�+ y M VA R (3 ) M L E 1m , 3 y 1 q , 2 q , 1 y, 7 y 1 9 7 5 - 1 9 9 8

R u d e b u s ch , W u ( 0 4 ) 2 la t e n t M VA R (1 ) M L E 1m , 5 y 1 q ,1 y, 3 y 1 9 8 8 - 2 0 0 0

The empirical studies reported in Table 1 employ quite a variety of model
speci�cations and data. Consequently, the results are di¢ cult to compare di-
rectly. Nevertheless, there is a number of results which are robust. For instance,
in the model of Rudebusch and Wu (2004), the level factor re�ects market par-
ticipants�views about the in�ation target of the central bank. Diebold, Rude-
busch, and Aruoba (2005) also �nd that the level factor is highly correlated
with in�ation, while the slope factor in their model is highly correlated with
real activity. In�ation turns to be a priced risk factor (Buraschi, Jiltsov (04),
Ang, Piazzesi(03) etc.).
To apply no-arbitrage macro-�nance framework to the analysis of the term

premium, we concentrate on the approach of Ang and Bekaert (04) and include
in�ation in ATSM as an observable factor. In this case the measure of the term
premium is derived from the simulation of VAR given by equation (18), with
Yt = [y

3
t ; y

60
t ; �t]

3.3 Nelson-Siegel Approach

In this section we use an alternative method to extract latent factors driving
the yield curve. We estimate the yield curve at each point in time by the help
of the simple term structure model proposed by Nelson and Siegel (1987). At
each point of time, we construct �nancial factors by estimating (by non-linear
least squares, on the cross-section of observed yields) the following Nelson-Siegel
model :

ykt = Lt + SLt
1� exp

�
� k
�1

�
k
�1

(22)

The parameter �1 is kept constant over time4 , as this restriction decreases the
volatility of the parametersXNS

t = (Lt; SLt)
0, making them more predictable in

4We restrict �1 at the value of 1.8.
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time. As discussed in Diebold and Li (2002) the above interpolant is very �exible
and capable of accommodating several stylized facts on the term structure and
its dynamics. In particular, Lt; SLt; which are estimated as parameters in a
cross-section of yields, can be interpreted as latent factors. Lt has a loading
that does not decay to zero in the limit, while the loadings on all the other
parameters do so, therefore this parameter can be interpreted as the long-term
factor, the level of the term-structure. The loading on SLt is a function that
starts at 1 and decays monotonically towards zero; it may be viewed a short-
term factor, the slope of the term structure. In fact, rrft = Lt+ SLt is the
limit when k goes to zero of the spot and the forward interpolant. We naturally
interpret rrft as the risk-free rate. Obviously, SLt is the slope of the yield curve.
The repeated estimation of loadings using a cross-section of yields at di¤erent
maturities allows to construct a time-series for our factors.
Interestingly, Nelson-Siegel model of the term structure is consistent with

the implications of the No-Arbitrage ATSM presented in previous subsection.
As before, the yields are a¢ ne in state factors:

ykt = a
NS;k + bNS;kXNS

t ; (NS)

where the following restriction holds:

aNS;k = 0 (23)

bNS;k =

0@1; 1� exp
�
� k
�1

�
k
�1

1A (24)

The often-quoted shortcoming of the Nelson-Siegel model is its static nature:
the factors are extracted from the current yield curve and the information about
the shapes of the past yield curves is omitted. To overcome this drawback, it is
naturally to add the assumptions on the dynamics of the Nelson-Siegel factors.
Following Diebold and Li (05) and Carriero-Favero-Kamisnka (05), we assume
that the factors follow the Gaussian VAR process:

XNS
t = �NS +�NSXNS

t�1 +�
NS�t: (25)

Finally, given the factor dynamics (25) and linear relationship between yields
and factors (??), it can be easily shown that the corresponding dynamics of the
Nelson-Siegel yields is also described by VAR:

Y NSK;J;t = �NSK;J +�
NS
K;JY

NS
K;J;t�1 +�

NS
K;J�t; (26)

�NSK;J � BNSK;J�NS (27)

�NSK;J � BNSK;J�NS
�
BNSK;J

��1
(28)

�NSK;J � BNSK;J�NS (29)

BNSK;J �

24 1 �1
1�exp

�
� k
�1

�
k

1 �1
1�exp

�
� j
�1

�
j

35 (30)
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where Y NSK;J;t denotes the vector of K- and J- maturity yields implied by Nelson-
Siegel model (22). In fact, the model implies that model-implied yields follow
VAR process, that is, Nelson-Siegel parametric restrictions are imposed on the
VAR coe¢ cients for yields of di¤erent maturities.
The Nelson-Siegel VAR-based measure of term premium TPNS60;t is then

TPNS3;60;t = y
NS;60
t � 1

20

19X
j=0

E[yNS;3t+j j 
NSt ]: (31)

Finally, it is worth noting that the structure of the Nelson-Siegel model does
not necessarily rule out the No-Arbitrage assumption. In fact, the basic relation-
ships of the ATSMmodel (10), (11) and (14), have the same form as the relation-
ships (25), (??) for the Nelson-Siegel model. Therefore, the Nelson-Siegel factors
satisfy the assumption of the No-Arbitrage if the parameters aNS;k; bNS;k are
consistent with system of di¤erence equation (13). For the details, see Diebold,
Piazzesi and Rudebusch (05), who examine under which restrictions the No-
Arbitrage restriction can be applied to the Nelson-Siegel term structure model.

4 Estimation

We consider monthly data on bond yields. In particular, we focus on the US
zero-coupon bonds, assuming them to be default-risk-free. The data is avail-
able on the G. Du¤ee�s home page.5 and consists of time series of six yields,.
[y3; y6; y12; y24; y60; y120].
First, we estimate two-factor models: standard ATSM (ATSM(2; 0)), dy-

namic Nelson-Siegel model6 , and unrestricted VAR of observed yields.
Second, to apply our framework to the analysis of the US term structure we

consider a standard speci�cation of the macroeconomic structure by including
the annual US CPI in�ation at time t; �t; into the model. Again, we estimate
a one-lag VAR model for three cases: ATSM with 2 latent factors and in�ation
as an observable factor(ATSM(2; 1)); VAR of Nelson-Siegel-implied yields and
in�ation; and unrestricted VAR of observed yields and in�ation.
We limit the sample to 1988:1-1997:12 for all models under consideration.

The choice of the sample was in�uenced by the question of the stability of
the estimates. While the relationship between yields might remain stable over
time, the relationship between interest rates and macroeconomic variables has
changed over time. Thus, including observable macrofactors into ATSM, we
have to limit samples to short intervals of plausible stability in MP regime (as
Rudebusch, Wu (04)).7

5Du¤ee uses mixed data sourses. The data through February 1991 are from McCulloch�s
home page, After February 1991, the data are from Rob Bliss.

6The Nelson-Siegel term structure approximation is based on �ve yields from the Du¤e�s
data set, [y3; y6; y12; y24; y60].

7The ATSM with Regime Switching (RS) could be an alternative solution. Dai, Singleton,
Yang (03) and Ang and Bekaert (04) develop and empirically implement an arbitrage-free,
dynamic term structure model (DTSM) with regime-shifts. However, the method is com-
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For every VAR model under consideration, given the results of the estima-
tion, the companion matrix is retrieved. For each point of our sample, the
VARs are then projected for an horizon up to twenty observations to generate
observation of the ET-consistent �ve year yield. The ET-consistent yields are
then to be compared with observed yields, and the di¤erence is interpreted as a
term premium. The procedure is repeated for a total of 120 simulations of each
model.

4.1 Estimation of ATSM

The most computationally demanding model is ATSM. We detail how to com-
pute the likelihood function in Appendix.
The Chenn-Scott estimation approach requires to assume that, in two latent

factors models, there are exactly two reference yields speci�ed without errors.
The likelihood function is the likelihood of the yields measured without error
multiplied by the likelihood of the measurement errors. The well-known problem
of the Chen-Scott approach is that di¤erent choices of the reference bonds imply
di¤erent state variable realizations. In order to choose the reference yields, we
estimate the model for all possible combinations of the pairs of reference yields
and compare their �t and stability (i.e. the model should produce good �t
for any out-of sample long-term yield, which is y120 for our case ). The best
performance of the two-factor ATSM model is achieved when the reference
yields are chosen to be [y3; y60].
In order to limit the number of parameters f�0; �1; �0; �1; �;�;�g to be

estimated, we de-mean the values of the variables for all models (the procedure
should not distort the results, since we limit the sample to the stable interval).
8 De-meaning allows us to set �0 = �0 = � = 0; and thus, to signi�cantly
decrease a number of parameters to be estimated. For the sake of the factors
identi�cation, we assume that � is diagonal, while � is lower trigonal. The
parameters in �1 are normalized to be 1 in the case of the two-factor model,
while in the case of the joint macro-�nance model, the in�ation factor loading
is unconstrained, i.e. �1 = [1 1 ��]:
We solve the nonlinear optimization problem of maximizing log-likelihood

function by using the MATLAB 6.5. routine fminsearch which represents
a generalization of the Nelder-Mead simplex algorithm. Finally, we compute
the standard errors for the estimated parameters using an approximation of
the parameter covariance matrix based on the inverse of the Hessian matrix
evaluated numerically.

putationalyy demanding and, in order to obtain closed form solution, a number of strong
restrictions must be imposed on RS process.

8 Imposing No-Arbitrage assumption into VAR by itself creates signi�cant computational
problems, which become really huge with additional macro-factors included. The trade-o¤ is
to limit certain parameters in f�0; �1; �0; �1; �;�;�g, which is, of course, not the �rst best
solution.

11



5 Empirical Results

5.1 Parameter Estimates for ATSM

We report the parameter estimates for both ATS models in Table 2.

Table 2 . Parameter estimates for ATSM.

2-factor ATSM 3-factor ATSM

�1

�
�1:0585 6:7534
1:8218 �4:9356

� 24 2:5627 �18:1559 �3:0091
0:0311 �1:9476 0:7869
�4:3771 �0:0551 1:7464

35
�1 - 1:1476

�

�
0:98507 0
0:027779 0:90766

� 24 0:9279 0 0
0:0034305 0:98587 0
�0:053238 �1:2307 0:8839

35
�

�
0:011451 0

0 0:010427

� 24 0:025531 0 0
0 0:0014736 0
0 0 0:015463

35
All factors appears to be higly persistent. Interestingly, our estimates con-

�rm the welknown results by Clarida, Gali, Gertler (2000) of Fed �active�pol-
icy since 1980s, since coe¢ cient on in�ation in policy rule is larger than one,
�� = 1:14.

5.2 Two factor models and implied VARs of yields

As described above, we consider two modelling strategies for the latent factors:
ATSM and Nelson-Siegel approaches. Additionally, we employ simple unre-
stricted VAR framework based on the observable yields, so that we end up
with three di¤erent estimates of the companion matrix for [y3; y60]: The esti-
mates of the companion matrices �U ; �NA, �NS from VARs (4), (18), (??) are
provided in Table 3.

12



Figure 1: Term premia impied by alternative two-factor models.
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corr(NA-VAR,VAR)=0.75377
corr(NA-VAR,NS)=0.90298

corr(NS,VAR)=0.94626

ATSM(2)
VAR(2)
NS(2)

Table 3. Alternative estimates of companion matrix � =

�
�11 �12
�21 �22

�
;

describing bivariate VAR(1) dynamics of the reference yields [y3; y60]

�U �NA �NS

�11
0.9555
(0:0236)

0.9564
(0:0056)

0.9596
(0:0256)

�12
0.0601
(0:0339)

0.0588
(0:0152)

0.0507
(0:0367)

�21
0.0061
(0:0322)

0.0238
(0:0066)

0.0088
(0:0357)

�22
0.9652
(0:0463)

0.9363
(0:0177)

0.9564
(0:051)

Note: Sample is 1988.01-1997.12. Standard errors are in parentheses.

An important implication of the estimation is that the corresponding co-
e¢ cients from three alternative models do not di¤er signi�cantly. The results
clearly show that di¤erent VAR-based models will imply similar ET-consistent
yields. As a conclusion, Figure 1 shows the striking similarity between the term
premia obtained by alternative models.
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5.3 Joint macro-�nance models

In this section we report the results of estimations using alternative macro-
�nance speci�cations of VAR and show that our results are robust. We provide
the relevant evidence in Table 4, where we report the results of estimating all
our models with in�ation included in VAR.

Table 4. Alternative estimates of companion matrix � =

24 �11 �12 �13
�21 �22 �23
�31 �32 �33

35 ;
describing bivariate VAR(1) dynamics of the reference vector [y3; y60; �]

�U �NA �NS

�11
0.9696
(0:023)

0.88390
(0:0180)

0.9712
(0:0251)

�12
0.1044
(0:0352)

0.1595
(0:1591)

0.0879
(0:0377)

�13
-0.0903
(0:0322)

-0.02290
(0:0134)

-0.0821
(0:0284)

�21
0.0275
(0:0327)

0
�

0.0050
(0:0361)

�22
0.9533
(0:0500)

0.9852
(0:0088)

0.9443
(0:0542)

�23
0.0243
(0:0391)

-0.0283
(0:0007)

0.0265
(0:0409)

�31
0.0216
(0:0248)

0
�

0.0209
(0:0248)

�32
0.0444
(0:0379)

-0.0014
(0:2339)

0.0361
(0:0373)

�33
0.9281
(0:0296)

0.9286
(0:0197)

0.9360
(0:0281)

Note: Sample is 1988.01-1997.12. Standard errors are in parentheses.

Table 5 summarizes the key results of our analysis. The results show that
our estimates of term premium are robust both to the choice of the model and
to the inclusion of macroeconomic information into the model.

.
Table 5. Correlations across alternative term premium estimates

ATSM(2) ATSM(3) NS(2) NS(2)+� VAR(2) VAR(3)

ATSM(2) 1.000000 0.878535 0.902975 0.930844 0.753773 0.866314
ATSM(3) 0.878535 1.000000 0.931729 0.886514 0.823887 0.826537
NS(2) 0.902975 0.931729 1.000000 0.988757 0.946256 0.964834
NS(2)+� 0.930844 0.886514 0.988757 1.000000 0.929358 0.978774
VAR(2) 0.753773 0.823887 0.946256 0.929358 1.000000 0.969941
VAR(3) 0.866314 0.826537 0.964834 0.978774 0.969941 1.000000
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5.4 Time Consistent Estimation of Term Premium

The VAR-based projections described in the previous sections have some limi-
tations. For all considered models, the VAR is estimated only once on the full-
sample and therefore VAR based projections are not based on the information
available in real time to agents. Such procedure cannot simulate the investors�
e¤ort to use the model in �real time�to forecast future monetary policy rates,
as the information from the whole sample is used to estimate parameters while
investors can use only historically available information to generate (up to n-
period ahead) predictions of policy rates. In this paper at each point in time we
estimate, using the historically available information, a model on and then we
use it to project out-of-sample policy rates up to the nth-period ahead. Given
the path of simulated future policy rates, we can construct yield to maturities
consistent with the Expectations Theory and, as a residual, the term premium.
In this section we simulate the real time decision of agents who forecast policy

rates by projecting forward a model to generate long-term yields consistent with
the expectations theory. We propose measures for ERt and TPt:To construct
such measures we estimate at each point in time, using the historically available
information, the following model:

Xt = �+�(L)Xt�1 +��t

X 0
t =

�
y3t ; y

60
t ; �t

�
We then simulate the estimated model forward, to obtain projection for all

the relevant policy rates and to construct ET, which is the ET-consistent long
term yield, as follows:

^

ERt =
1

20

19X
j=1

E[y3t+j j 
t] (32)

where, E[y3t+j j 
t] are the VAR-based projections for the future changes in
policy rates, hence 
t is the information set used by the econometrician to
predict on the basis of the estimated VAR model .
Importantly, in implementing our procedure the econometrician uses the

same information available to market participants in real-time. Future policy
rates at time t are constructed using information available in real time for pa-
rameters estimation and forward projection of the model.
Unrestricted VAR and dynamic Nelson-Siegel procedures can easily accom-

modate the time consistent estimation of the term premium. The time varying
parameters of the VAR can be obtained by estimating the model on one sample
and then re-estimating it on the next.9

However, this is not the case for the ATSM, since the theoretical structure
of the model assumes constant parameters.

9For the proof of the importance of the time varying coe¢ cients see Figure ??.
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Ang and Bekaert (04) propose an alternative solution for time varying para-
meters of the ATSM model, that is ATSM with Regime Switching (RS). The RS
- approach to the ATSM is not new. Dai,Singleton, Yang (03) also develop and
empirically implement an arbitrage-free, dynamic term structure model (DTSM)
with regime-shifts. With RS, the ATSM become more computationally di¢ cult,
nevertheless both models provide considerable limitations. Dai, Singleton and
Yang use only �nance information in their model. Ang and Bekaert (04), in or-
der to receive a solution in the closed form, assume that only mean and volatility
of the variables change across regimes, while the mean-reversion of all variables
is not regime-dependent. It is very restrictive assumption and is in odds with
the results established by the authors in their previous works.10 Moreover, Dai,
Singleton, and Yang (03) strongly reject the assumption of RS with constant
transition probability, which is the case of the model by Ang and Bekaert (04).

6 Conclusion

In this paper we employ alternative discrete term structure models in order
to estimate the term premium. In particular, we consider the models, which

10Bekaert et al (01) and Ang and Bekaert (02) reported evidence on state-dependent mean-
reversion in short rates. Evidence on state-dependent mean-reversion in in�ation is reported
in Evans and Lewis (95).
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characterize the expectations of the future yields by VAR framework. The
simple VAR of the observed yields is too limited framework since it does not
allow to estimate the term premia for any particular maturity. On the other
hand, the dynamic term structure models produce information about the whole
yield curve and thus provide a �exible tool for term premium analysis.
Among the most popular dynamic term structure models are the No-Arbitrage

A¢ ne Term Structure Models (ATSM). Following the recent tendency, together
with standard two-factor ATSM, we consider also joint macro-�nance ATSM
and enrich the model with macroeconomic information. All types of ATSM
impose on the VAR complex cross-equation restrictions due to the no-arbitrage
assumption. The model is high dimensional and extremely non-linear. This pro-
duces the maximum likelihood function with numerous local optima and implies
a di¢ cult optimization problem for ATSM estimation.
On the other hand, we estimate term premium for any maturity by less com-

putationally demanding model (Nelson-Siegel approach) specifying additionally
only dynamics of the state vector. We chose the input variables to be identi-
cal for the considered TSM, therefore the premia estimates are the functions of
the same variables and could be compared directly. Another advantage of the
Nelson-Siegel procedures is that it can easily accommodate the time consistent
estimation of the term premium, while ATSM does not permit time variability
of the parameters.
The main result of our study is that alternative approaches produces the

strongly correlated term premia, and thus the less computationally demanding
and more �exible method could be used in order to obtain the term premia.
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7 APPENDIX

7.1 Bond Prices

Since the pricing kernel, Mt+1; prices all bonds in the economy, for return of
any asset

Et(Mt+1(1 +Rt+1)) = 1;

Then the above equation allows bond prices to be computed recursively:

Pt (n) = Et fMt+1Pt+1 (n� 1)g (A1)

To keep matters simple, we assume that bond prices are exponential a¢ ne
functions of X 0

t; Pt(n) = exp(An+B0nX 0
t); so that the log prices of bonds with

maturity n are given by:
pt(n) = An +B0nX 0

t (A2)

Under the assumption that Mt+1 is conditionally lognormally distributed and
Xt+1is normally distributed, we can take logs of the Pricing Kernel to obtain

pt (n) = Et fmt+1 + pt+1 (n� 1)g+
1

2
V art fmt+1 + pt+1 (n� 1)g (A3)

The next step is to identify the recursive structure of the coe¢ cients in the
bond pricing equation. Putting together all assumptions made above, we get

pt (n+ 1) = Et fmt+1 + pt+1 (n)g+
1

2
V art fmt+1 + pt+1 (n)g =

= Et

�
�R1;t �

�0t�t
2

� �0t"t+1 +An +B0nXt+1
�
+
1

2
V art fmt+1 + pt+1 (n)g =

= �R1;t �
�0t�t
2

+An + Et[B
0
n (�+�Xt +�"t+1)] +

1

2
V art

�
��0t"t+1 +B0n�"t+1

	
=

= ��0 � �01Xt �
�0t�t
2

+An +B
0
n (�+�Xt) +

1

2
V art

��
B0n�� �0t

�
"t+1

	
=

= ��0 � �01Xt �
�0t�t
2

+An +B
0
n (�+�Xt) +

�
��0t +B0n�

� �
��0t +B0n�

�0
2

=

=

�
�0 +An +B

0
n�+

1

2
B0n��

0Bn � �00B0n�
�
+
�
��01 �B0n��01 +B0n�

�
Xt

We get An+1; Bn+1 as a solution of the system of di¤erence equations with
initial condition A1 = �0; B1 = ��01 :�

An+1 = An +B
0
n��B0n��o + 1

2B
0
n��

0Bn
B0n+1 = B

0
n�� �01 �B0n��1

�
(A4)

The yield on a zero-coupon bond of maturity n; is a¢ ne structure of the state:

yt(n) = �
1

n
(An +B0nXt) � an + b0nXt (A5)
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7.2 Maximum Likelihood estimation

We solve the nonlinear optimization problem of maximizing L by using the MAT-
LAB 6.5.routine fminsearch which represents a generalization of the Nelder-
Mead simplex algorithm.
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