Discussion of "Monetary Policy Inertia or Persistent Shocks?" by Julio Carrillo, Patrick Fève and Julien Matheron

Ulf Söderström IGIER, Bocconi University

May 2006

$$i_{t} = (1 - \rho_{1}) [a_{\pi}\pi_{t} + a_{y}y_{t}] + \rho_{1}i_{t-1} + e_{t}$$
$$e_{t} = \rho_{2}e_{t-1} + \nu_{t}$$

• Generalized Taylor (1993) rule:

$$i_{t} = (1 - \rho_{1}) [a_{\pi}\pi_{t} + a_{y}y_{t}] + \rho_{1}i_{t-1} + e_{t}$$
$$e_{t} = \rho_{2}e_{t-1} + \nu_{t}$$

• Taylor (1993): $a_{\pi} = 1.5, a_y = 0.5, \rho_1 = \rho_2 = 0$ works well 1987–92 Figure

$$i_{t} = (1 - \rho_{1}) [a_{\pi}\pi_{t} + a_{y}y_{t}] + \rho_{1}i_{t-1} + e_{t}$$
$$e_{t} = \rho_{2}e_{t-1} + \nu_{t}$$

- Taylor (1993): $a_{\pi} = 1.5, a_y = 0.5, \rho_1 = \rho_2 = 0$ works well 1987–92 Figure
- Any other sample, autocorrelated residuals: Figure

$$i_{t} = (1 - \rho_{1}) [a_{\pi}\pi_{t} + a_{y}y_{t}] + \rho_{1}i_{t-1} + e_{t}$$
$$e_{t} = \rho_{2}e_{t-1} + \nu_{t}$$

- Taylor (1993): $a_{\pi} = 1.5, a_y = 0.5, \rho_1 = \rho_2 = 0$ works well 1987–92 Figure
- Any other sample, autocorrelated residuals: Figure
- Interpretation:
 - Clarida et al. (2000): $\rho_1 > 0, \rho_2 = 0$, partial adjustment
 - Rudebusch (2002): $\rho_1 = 0, \rho_2 > 0$, omitted variables

$$i_{t} = (1 - \rho_{1}) [a_{\pi}\pi_{t} + a_{y}y_{t}] + \rho_{1}i_{t-1} + e_{t}$$
$$e_{t} = \rho_{2}e_{t-1} + \nu_{t}$$

- Taylor (1993): $a_{\pi} = 1.5, a_{y} = 0.5, \rho_{1} = \rho_{2} = 0$ works well 1987–92 Figure
- Any other sample, autocorrelated residuals: Figure
- Interpretation:
 - Clarida et al. (2000): $\rho_1 > 0, \rho_2 = 0$, partial adjustment
 - Rudebusch (2002): $\rho_1 = 0, \rho_2 > 0$, omitted variables
- Econometric problem: Difficult identify $ho_1,
 ho_2$

- ullet Use cross-equation restrictions from DSGE model to identify ρ_1,ρ_2
 - DSGE model with Taylor rule + estimated VAR
 - Choose $ho_1,
 ho_2$ to match VAR response to monetary policy shock (u_t)

- ullet Use cross-equation restrictions from DSGE model to identify ρ_1,ρ_2
 - DSGE model with Taylor rule + estimated VAR
 - Choose $ho_1,
 ho_2$ to match VAR response to monetary policy shock (u_t)
- Results
 - Match i response: $ho_1,
 ho_2$ not identified
 - Match i, y, π, π^w, ξ responses: ρ_1 small, ρ_2 large
 - Benchmark estimates: $\rho_1=0.298$, $\rho_2=0.874$, $\sigma_{\nu}=0.169$

- ullet Use cross-equation restrictions from DSGE model to identify ρ_1,ρ_2
 - DSGE model with Taylor rule + estimated VAR
 - Choose $ho_1,
 ho_2$ to match VAR response to monetary policy shock (u_t)
- Results
 - Match i response: $ho_1,
 ho_2$ not identified
 - Match i, y, π, π^w, ξ responses: ρ_1 small, ρ_2 large
 - Benchmark estimates: $\rho_1 = 0.298$, $\rho_2 = 0.874$, $\sigma_{\nu} = 0.169$
- Persistent shocks more important than partial adjustment

- ullet Use cross-equation restrictions from DSGE model to identify ρ_1,ρ_2
 - DSGE model with Taylor rule + estimated VAR
 - Choose $ho_1,
 ho_2$ to match VAR response to monetary policy shock (u_t)
- Results
 - Match i response: $ho_1,
 ho_2$ not identified
 - Match i, y, π, π^w, ξ responses: ρ_1 small, ρ_2 large
 - Benchmark estimates: $\rho_1 = 0.298$, $\rho_2 = 0.874$, $\sigma_{\nu} = 0.169$
- Persistent shocks more important than partial adjustment
- Cross-equation restrictions crucial in estimation: behavior of π , π^w important

- ullet Use cross-equation restrictions from DSGE model to identify ρ_1,ρ_2
 - DSGE model with Taylor rule + estimated VAR
 - Choose $ho_1,
 ho_2$ to match VAR response to monetary policy shock (u_t)
- Results
 - Match i response: $ho_1,
 ho_2$ not identified
 - Match i, y, π, π^w, ξ responses: ρ_1 small, ρ_2 large
 - Benchmark estimates: $\rho_1 = 0.298$, $\rho_2 = 0.874$, $\sigma_{\nu} = 0.169$
- Persistent shocks more important than partial adjustment
- Cross-equation restrictions crucial in estimation: behavior of π , π^w important
- Identification problem ("multiple local optima") highlighted

1. Strong evidence against the Taylor rule!

- 1. Strong evidence against the Taylor rule!
- 2. What is wrong with the Taylor rule?

- 1. Strong evidence against the Taylor rule!
- 2. What is wrong with the Taylor rule?
- 3. What is a monetary policy shock?

- 1. Strong evidence against the Taylor rule!
- 2. What is wrong with the Taylor rule?
- 3. What is a monetary policy shock?
- 4. Minor issues

• Very large exogenous deviations from the Taylor rule:

• Very large exogenous deviations from the Taylor rule:

 $e_t = 0.874e_{t-1} + \nu_t, \quad \sigma_\nu = 0.169$

• Very large exogenous deviations from the Taylor rule:

$$e_t = 0.874e_{t-1} + \nu_t, \quad \sigma_\nu = 0.169$$

 \Rightarrow Var $(e_t) = 1.80$, but Var $(i_t) = 0.58$ empirically

• Very large exogenous deviations from the Taylor rule:

 $e_t = 0.874e_{t-1} + \nu_t, \quad \sigma_\nu = 0.169$

 \Rightarrow Var $(e_t) = 1.80$, but Var $(i_t) = 0.58$ empirically

• Plot actual and fitted i_t : Figure

• Very large exogenous deviations from the Taylor rule:

 $e_t = 0.874e_{t-1} + \nu_t, \quad \sigma_\nu = 0.169$

 \Rightarrow Var $(e_t) = 1.80$, but Var $(i_t) = 0.58$ empirically

- Plot actual and fitted i_t : Figure
- Consistent with evidence from Söderlind, Söderström and Vredin (2005)

- Rewrite rule as

$$\Delta i_t = (1 - \rho_1) \underbrace{[a_\pi \pi_t + a_y y_t - i_{t-1}]}_{x_t} + e_t$$

 $-x_t$ strongly predictable, Δi_t not very predictable

 $-e_t$ must be very volatile

• Very large exogenous deviations from the Taylor rule:

 $e_t = 0.874e_{t-1} + \nu_t, \quad \sigma_\nu = 0.169$

 \Rightarrow Var $(e_t) = 1.80$, but Var $(i_t) = 0.58$ empirically

- Plot actual and fitted i_t : Figure
- Consistent with evidence from Söderlind, Söderström and Vredin (2005)

 $-\operatorname{Rewrite}$ rule as

$$\Delta i_t = (1 - \rho_1) \underbrace{[a_\pi \pi_t + a_y y_t - i_{t-1}]}_{x_t} + e_t$$

 $-x_t$ strongly predictable, Δi_t not very predictable

 $-e_t$ must be very volatile

• Taylor rule omits important elements

• Not very attractive theoretically: CB not very sophisticated (Svensson, 2003)

- Not very attractive theoretically: CB not very sophisticated (Svensson, 2003)
- What would an optimizing CB do? Use all state variables!

- Not very attractive theoretically: CB not very sophisticated (Svensson, 2003)
- What would an optimizing CB do? Use all state variables!

Try state variables from DSGE model!

- Not very attractive theoretically: CB not very sophisticated (Svensson, 2003)
- What would an optimizing CB do? Use all state variables!

Try state variables from DSGE model!

• What has the Fed been doing?

- Not very attractive theoretically: CB not very sophisticated (Svensson, 2003)
- What would an optimizing CB do? Use all state variables!

Try state variables from DSGE model!

• What has the Fed been doing?

Compare with VAR equation!

• Deviation from specified policy rule

- Deviation from specified policy rule
- With partial adjustment, interpretation of MP shock immediate

- Deviation from specified policy rule
- With partial adjustment, interpretation of MP shock immediate
- With omitted variables, not so obvious:

Shock to omitted variable or to interest rate?

- Deviation from specified policy rule
- With partial adjustment, interpretation of MP shock immediate
- With omitted variables, not so obvious: Shock to omitted variable or to interest rate?
- Should we match the effects of omitted variable shock? Not same as identified VAR shock.

- Deviation from specified policy rule
- With partial adjustment, interpretation of MP shock immediate
- With omitted variables, not so obvious: Shock to omitted variable or to interest rate?
- Should we match the effects of omitted variable shock? Not same as identified VAR shock.
- Compare with other shock in VAR?

• Very long sample (1960–2003), more than one policy regime?

- Very long sample (1960–2003), more than one policy regime?
- Quarterly GDP inflation vs. annual CPI inflation?

- Very long sample (1960–2003), more than one policy regime?
- Quarterly GDP inflation vs. annual CPI inflation?
- Taylor rule better with other calibration?

- Very long sample (1960–2003), more than one policy regime?
- Quarterly GDP inflation vs. annual CPI inflation?
- Taylor rule better with other calibration?

Report ρ_1, ρ_2 also in sensitivity analysis.

- Very long sample (1960–2003), more than one policy regime?
- Quarterly GDP inflation vs. annual CPI inflation?
- Taylor rule better with other calibration?

Report ρ_1, ρ_2 also in sensitivity analysis.

• How does model match interest rate response to other shocks? Independent check.

The Taylor (1993) rule

Back

Estimated Taylor rule without smoothing

Back

Actual and fitted interest rate using CFM estimates

Fitted: $i_t = 0.702 [1.5\pi_t + 0.125y_t] + 0.298i_{t-1}$

Back

References

- Clarida, Richard, Jordi Galí, and Mark Gertler (2000), "Monetary policy rules and macroeconomic stability: Evidence and some theory," *Quarterly Journal of Economics*, 115 (1), 147–180.
- Rudebusch, Glenn D. (2002), "Term structure evidence on interest rate smoothing and monetary policy inertia," *Journal of Monetary Economics*, 49 (6), 1161–1187.
- Söderlind, Paul, Ulf Söderström, and Anders Vredin (2005), "Dynamic Taylor rules and the predictability of interest rates," *Macroe-conomic Dynamics*, 9 (3), 412–428.
- Svensson, Lars E. O. (2003), "What is wrong with Taylor rules? Using judgment in monetary policy through targeting rules," *Journal of Economic Literature*, 41 (2), 426–477.
- Taylor, John B. (1993), "Discretion versus policy rules in practice," *Carnegie-Rochester Conference Series on Public Policy*, 39, 195–214.