
Flexibility and Cooperation with Imperfect Monitoring

Maria Bigoni Jan Potters Giancarlo Spagnolo

# Flexibility

- flexibility = ability to act and react quickly
- regarded as one of the main factors that facilitate cooperation



- strong intuition
- experimental evidence (Axelrod, 1984; Friedman Oprea 2012)

# Reflected in Antitrust body of knowledge

- IO/Antitrust handbooks: frequency of interaction (or of orders) facilitates collusion
- see e.g. Tirole (1988, p.240); Church and Ware (2000, p.343); Martin (2001, p.192); Ivaldi et al. (2003); Motta (2004, p.145), Belleflamme and Peitz (2010, p.254)
- Analogous statements in several CA's guidelines
  - OFT's "Predicting Cartels" (2005),
  - DoJ's "Primer",
  - EU "Coordinated Effects" (http://ec.europa.eu/dgs/ competition/economist/delamano2.pdf)

# Flexibility with Imperfect Monitoring (IM)

- Abreu, Milgrom and Pearce (ECTA 1991)
  - with noisy information about opponent's action
  - In flexibility also has a negative effect on cooperation
  - players have to react to poor information
- Sannikov and Skrzypacz (AER 2007)
  - collusion impossible with high flexibility and IM

#### **Our research questions:**

- collusion also impossible with low flexibility...
- $\Rightarrow$  flexibility has a non-monotonic effect on collusion!
- Is the negative effect of flexibility with imperfect monitoring behaviorally relevant?
- Can we really observe a non-monotonic effect of flexibility?

- Based on Sannikov and Skrzypacz (AER 2007)
- Stage game is a 2x2, 2-player Cournot game
  - □  $q_i \in \{3, 4\}$
  - $\Box P(Q) = 12 Q,$

 $Q = q_1 + q_2$ 

 $\square \pi_i = P(Q)q_i - 16$ 

|       |         | $q_2$    |          |  |  |  |
|-------|---------|----------|----------|--|--|--|
|       | Profits | 3  units | 4  units |  |  |  |
| $q_1$ | 3 units | 2, 2     | -1, 4    |  |  |  |
|       | 4 units | 4, -1    | 0, 0     |  |  |  |

- Imperfect monitoring
  - At the end of a period, players only observe market price, which is a noisy signal of total quantity
  - $\square P(Q_t) = 12 Q_t + \frac{\varepsilon_t}{\varepsilon_t},$

 $\varepsilon_t \sim N(0, \sigma^2), \sigma = 1.3$ , i.i.d. across periods

- Flexibility
  - $\hfill\square$  Players can change quantity every  $\Delta$  periods
  - Three treatments:  $\Delta = 1$ ,  $\Delta = 2$ ,  $\Delta = 3$
  - Two effects of  $\Delta$ 
    - players can react (punish) only after  $\Delta$  periods
    - players have ∆ independent signals about other's action before they can react

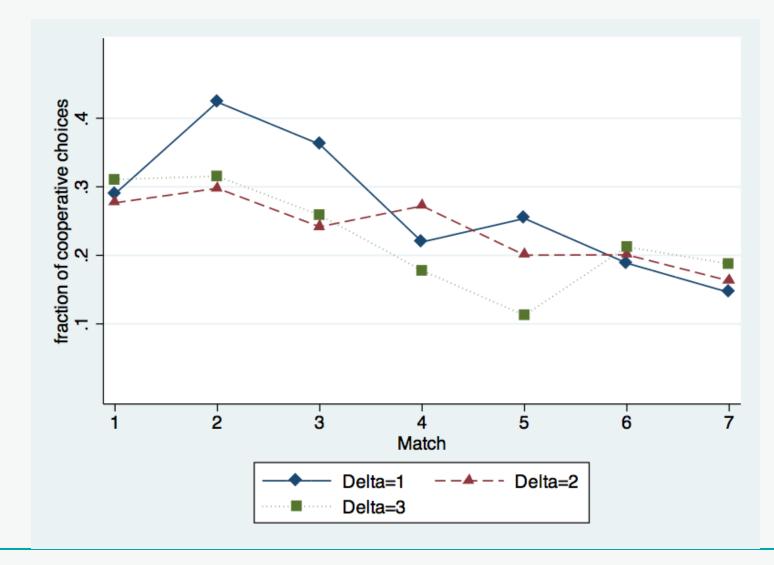
- Repeated game
  - Model: infinitely repeated game with discount rate  $\delta = e^{-r\Delta}$
  - Experiment: indefinitely repeated game with continuation probability  $\delta = e^{-r\Delta}$ 
    - After  $\Delta$  periods,
      - with probability  $\delta$  the game continues for at least another  $\Delta$  periods

 $\Box$  with probability 1- $\delta$  the game ends.

• with *r*=0.10:

•  $\delta = 0.90, 0.82, 0.74$  for  $\Delta = 1, 2, 3$ , resp.

- Theoretical predictions
  - cutoff strategies to sustain cooperation
    - play q=3 as long as  $P \ge P$ `
    - play q=4 as soon as P < P`</p>
  - $\Box \Delta = 2$ : cooperation is an equilibrium
    - with  $P` \approx 5$
  - $\Box \Delta = 1$ : cooperation is **not an equilibrium** 
    - effect of q=3 on  $Prob(P \ge P)$  is too low
  - $\Delta = 3$ : cooperation is **not an equilibrium** 
    - $\delta$  too low; future is not important enough


Experiments on imperfect monitoring

- Aoyagi and Frechette (JET 2009)
  vary the variance of the noisy signal
- Fudenberg, Rand, Dreber (AER, 2012)
  vary the gains of cooperation
- We vary flexibility
  - consider the case of "frequent actions"

#### Experimental procedure

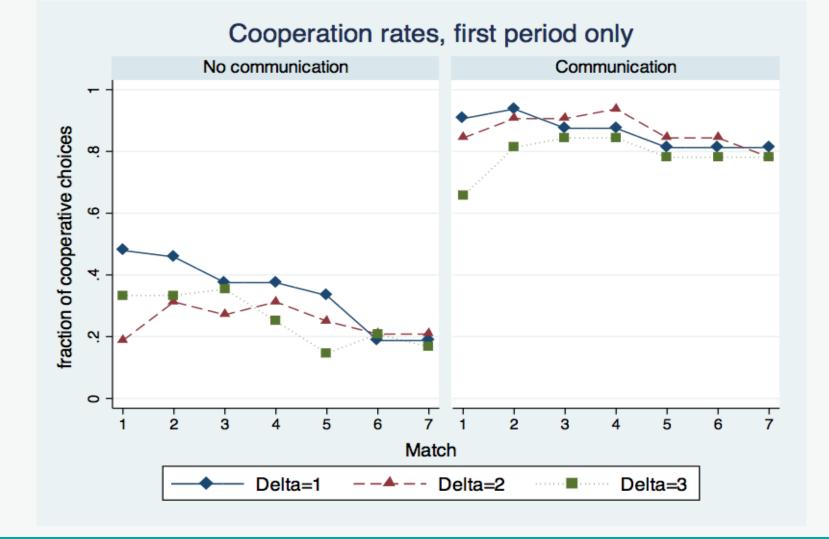
- CentERlab Tilburg, zTree
- 3 sessions per treatment
- 16 subjects per session (144 subjects in total)
- 2 matching groups of 8 subjects per session
- each subject plays 7 indefinitely repeated games
- sessions lasted about 2 hours
- average earnings €18.90 (min €10, max €38)

### Cooperation rate (all periods)



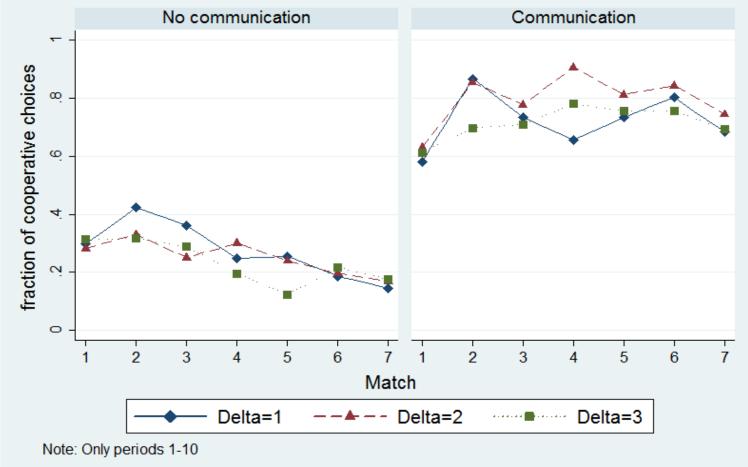
# Cooperation rate (1<sup>st</sup> period)




## Coordination problem?

- In treatment Delta=2,
  - non-cooperation is also an equilibrium
  - there are many (partially) cooperative equilibria.
- Question:
  - Is the "failure" of the predicted treatment effect, due to coordination problems in Delta=2?
  - Perhaps communication can foster cooperation, in case it is an equilibrium (Cooper and Kuhn, 2011)

#### Allow for communication


- 6 additional sessions
  - 2 sessions per Delta treatment
  - with the exact same design as before
- At the beginning of each repeated game
  - □ a chat window opens
  - paired subjects can send messages to each other
  - for 2 minutes
  - □ in free form (in English, anonymous, not offensive)

#### Impact of communication



#### Impact of communication





#### Impact of communication

- Strong effect of communication on cooperation
  in all treatments
- Communication does not merely alleviate coordination problem (Δ=2), but also seems to enable subjects to circumvent the forces that erode cooperation:
  - $\Delta = 1$ : not react to noisy signals too quickly
  - $\Delta$ =3: resist temptation to defect
- Question:
  - Is this reflected in the chats?

#### Communication data

- 6 sessions x 7 matches x 8 pairs = 336 chats
  - □ 13 lines on average
- Coding

message types (Cooper & Kuhn, 2012, Fonseca & Normann, 2012)

- Courtesy and Small talk (2 categories)
- Coordination and Agreement (5 cat.),
- Trust and Distrust (4 cat.)
- Strategies (promise, threat, leniency) (7 cat.),
- Experience (10 cat.)
- PRELIMINARY ! (only one coder yet)

# Frequency of messages by treatment

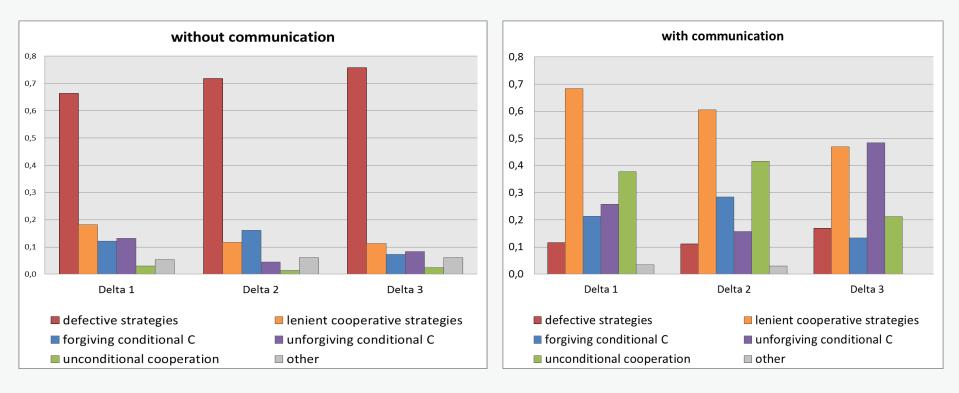
| Average Frequency         | Δ = 1 | Δ = 2 | Δ = 3 | significant<br>differences |
|---------------------------|-------|-------|-------|----------------------------|
| Greetings                 | 0.77  | 0.89  | 0.87  | 1<2                        |
| Agreement                 | 0.59  | 0.68  | 0.80  | <b>1&lt;3</b> , (2<3)      |
| Appeal to trustworthiness | 0.04  | 0.10  | 0.13  |                            |
| Promise                   | 0.19  | 0.17  | 0.16  |                            |
| Threat                    | 0.11  | 0.09  | 0.09  |                            |
| Leniency                  | 0.21  | 0.10  | 0.05  | 1>3                        |
| Agree to strategy         | 0.24  | 0.06  | 0.05  | 1>2,1>3                    |
| Mention shocks            | 0.18  | 0.13  | 0.07  |                            |
| Good experience           | 0.14  | 0.27  | 0.11  | 2>3                        |
| Bad experience            | 0.07  | 0.14  | 0.03  | 2>3                        |

notes: only messages which occur at rate of at least 0.10 in one treatment; averages and tests use four matching groups as observations

#### Relation between messages and collusion

| marginal effects (stand dev) | ∆=1          | ∆=2          | Δ=3          |
|------------------------------|--------------|--------------|--------------|
| Match                        | 05 (.03)     | 05 (.01)***  | 04 (.01)***  |
| Greetings                    | 07 (.10)     | 09 (.24)     | 24 (.08)***  |
| Agreement                    | 38 (.14)***  | .46 (.12)*** | .70 (.07)*** |
| Appeal to trustworthiness    | 43 (.45)     | 001 (.11)    | .03 (.05)    |
| Promise                      | .09 (.07)    | .03 (.13)    | .19 (.13)    |
| Threat                       | .11 (.10)    | .09 (.12)    | .25 (.15)    |
| Leniency                     | .26 (.03)*** | .11 (.10)    | .14 (.23)    |
| Agree to strategy            | 05 (.06)     | .14 (.13)    | 29 (.40)     |
| Mention shocks               | .08 (.05)    | 08 (.07)     | .23 (.17)    |
| Good experience              | 01 (.15)     | .24 (.13)*   | .09 (.18)    |
| Bad experience               | .08 (.07)    | .01 (.02)    | .05 (.18)    |
| # obs.                       | 111          | 112          | 111          |

notes: collusion=1 if, in period 1, both players play q=3; message codes by chat; logit regressions; standard errors clustered by Matching Group.


# What type of strategies did subjects use?

- estimate frequency of strategies (Dal Bo, Frechette, 2011)
- 20 strategies:

always coop, always defect; unforgiving conditional: grim trigger, lenient-grim, tit-for-tat, tit-for-2tats, 2tits-for-tat, suspicious tit-for-tat,... (Fudenberg, Rand, Dreber, 2012)

- conditional vs unconditional
- Ienient vs strict (how fast to react)
- forgiving vs unforgiving (whether to go back to coop)

# What type of strategies did subjects use?



- without communication, always defect most prevalent
- with communication, Leniency particularly frequent in Delta1, Forgiveness in Delta2, Unforgiveness in Delta3.

# Conclusion

- Common wisdom that flexibility facilitates cooperation is not robust to imperfect monitoring.
- Evidence for non-monotonic effect is weak
  - Without communication:
    - 'too little' collusion with intermediate flexibility
  - With communication:
    - 'too much' collusion with low and high flexibility
- Message content reflects behavioral relevance of the two main forces that may impede collusion:
  - reaction to noisy information with high flexibility
  - temptation to defect with low flexibility

# Thanks for your attention.