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Abstract

This paper characterizes geometrically the sets of all Nash and perfect Bayesian equi-
librium payoffs achievable with unmediated communication in persuasion games, i.e.,
games with an informed expert and an uninformed decisionmaker in which the expert’s
information is certifiable. The first equilibrium characterization is provided for unilat-
eral persuasion games, and the second for multistage, bilateral persuasion games. As in
Aumann and Hart (2003), we use the concepts of diconvexification and dimartingale. A
leading example illustrates both geometric characterizations and shows how the expert,
whatever his type, can increase his equilibrium payoff compared to all equilibria of the
unilateral persuasion game by delaying information certification.
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1 Introduction

As is now well known in the literature on cheap talk games (i.e., games with costless, non-

binding, and unmediated communication), repeated communication generally allows to reach

outcomes that cannot be implemented with unilateral or single-period communication, even

if only one player is privately informed (see Aumann and Hart, 2003, Forges, 1984, 1990a,

Krishna and Morgan, 2004, and Simon, 2002). In this paper we study this feature in “sender-

receiver” communication games with partially verifiable types, also called persuasion games,

in which the informed player (the expert, or “sender”) has the ability to voluntarily certify

partial or full information to the uninformed decisionmaker (the “receiver”). We characterize

the sets of all Nash and perfect Bayesian equilibrium payoffs achievable with unmediated

communication, by allowing players to talk for many periods. At each stage of this commu-

nication phase, the sender can certify part of his information.

This possibility of certifying information, in addition to make cheap talk claims, is justified

by many concrete interactive decision situations. For example, players may present physical

proofs such as documents, observable characteristics of a product, endowments or costs.

Alternatively, in economic or legal interactions there may be labels, penalties for perjury,

false advertising and warranty violations, or accounting principles that allow agents to submit

substantive evidence of their information. Interesting phenomena similar to those obtained

in the cheap talk case arise in games with strategic information certification. We show that

several bilateral communication stages and delayed information certification allow to convey

substantive information and lead to equilibrium outcomes that are not achievable when only

one signalling stage is permitted. A leading example is analyzed in Section 2.

Our study is closely related to Aumann and Hart (2003) who characterized Nash equilib-

rium payoffs of long cheap talk games, i.e., the subset of communication equilibrium payoffs

(Forges, 1986, 1990b; Myerson, 1982, 1986) that use only plain conversation. A communi-

cation equilibrium is a Nash equilibrium of an extension of the game allowing the players

to communicate for several periods, with the help of a mediator, before they make their

decisions. Here, we characterize the analog of that subset for certification equilibria (Forges

and Koessler, 2005). A certification equilibrium is defined as a communication equilibrium,

except that each player can also transmit reports from a type-dependent set, i.e., can send

certified information into the communication system.

Our general model, presented in Section 3, is a one-side incomplete information game with

an expert (the informed player) and a decision maker (the uninformed player). A common

prior probability distribution first selects the expert’s type in a finite set. The decision maker

chooses his action without observing the expert’s type. However, before the action phase,

but after the expert learns his type, the players are able to directly communicate with each
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other. The payoff of each player only depends on the expert’s type and on the decision

maker’s action. Communication is assumed strategic, non-binding (no commitment and no

contract are allowed), payoff-irrelevant, and unmediated. In addition, players are not able to

observe private payoff-irrelevant signals (“private sunspots”) and there is no extraneous noise

in communication, which thus takes place “face-to-face”. However, randomized strategies are

allowed in both the communication and action phases.

Contrary to usual cheap talk games (Crawford and Sobel, 1982; Ben-Porath, 2003; Ger-

ardi, 2004), our communication games allow the set of messages available to the expert to

be type-dependent, which reflects the ability to certify information. We will assume that

the expert has always the opportunity to remain silent, i.e., to send a meaningless message

to the decision maker. Furthermore, to guarantee that our geometric characterization be

sufficient for an equilibrium, we will require that players have access to a rich language and

that information is fully certifiable. More precisely, we make the following assumption: for

any set of types containing his real type, the expert has a sufficiently large set of messages

allowing him to certify that his real type belongs to that set.

In the associated one-shot communication game the expert learns his type and sends

a message to the decision maker, who then chooses an action. Such games are sometimes

called persuasion or disclosure games (see, e.g., Milgrom, 1981; Milgrom and Roberts, 1986;

Seidmann and Winter, 1997). To the best of our knowledge, this literature has always focused

on one-shot information revelation with very specific assumptions on players’ preferences, like

single-peakedness, strict concavity and monotonicity. Our first result (Theorem 1) is a full

characterization of Nash equilibrium payoffs of one-shot communication games with certifiable

information. Roughly, equilibrium payoff vectors are obtained by convexifying the graph of

the equilibrium payoff correspondence of the basic game without communication (the silent

game), by keeping the payoff of the informed player constant and individually rational.

In a multistage communication game, the talking phase has an arbitrarily large number

of periods. In each communication period both players simultaneously send a message. As in

Hart (1985) and Aumann and Hart (2003), our equilibrium characterization makes use of the

mathematical concepts of diconvexification and dimartingale. In Theorem 2 we characterize

the set of all Nash equilibrium payoffs which can be achieved in a possibly very long multistage

communication game. This characterization is in terms of starting points of dimartingales

which converge to the graph of the equilibrium payoff correspondence of the silent game,

and stay in an adapted set of individually rational payoffs for the informed player during the

whole process. Individual rationality must indeed be formulated in a stage-dependent way

in our model. This is the main difference with Aumann and Hart’s (2003) characterization.

Our representation can also be formulated by using the diconvexification operator. However,

by contrast to Aumann and Hart (2003), the graph of the equilibrium payoff correspondence
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of the multistage communication game is not the diconvexification of a given set.

In Theorem 3 we provide an analog of the first two theorems for perfect Bayesian equilib-

rium, thus restricting our attention to sequentially rational strategies and consistent beliefs.

While the set of Nash equilibrium payoffs for persuasion games characterized in Theorem 2

includes the associate set for cheap talk games characterized in Aumann and Hart (2003), the

set of perfect Bayesian equilibrium payoffs for persuasion games characterized in Theorem 3

has no inclusion relationship with the associated set for cheap talk games.

The paper is organized as follows. In the next section we present our leading example.

Section 3 describes the model. Section 4 (Section 5, respectively) formulates the geometric

characterizations of the Nash (perfect Bayesian, respectively) equilibrium payoffs, illustrates

them through examples, and provides a more detailed comparison with Aumann and Hart

(2003). We discuss extension to mediated persuasion in Section 6. Formal proofs of The-

orem 1 (one-shot, unilateral persuasion), Theorem 2 (multistage, bilateral persuasion), and

Theorem 3 (perfect Bayesian equilibrium) are provided in the Appendix.

2 An Example

In this section we study an example which motivates several aspects of our analysis. First,

the example illustrates how by certifying their information players can reach equilibrium

outcomes that cannot be achieved by any communication system with non-certifiable in-

formation. Second, the example shows that delayed information certification and multiple

rounds of bilateral communication may be required to achieve some equilibrium payoffs, even

if only one player has substantive information. Finally, the example provides instances in

which equilibrium outcomes may or may not be Bayesian perfect.

Consider two players, player 1 (the expert) and player 2 (the decisionmaker), who are

playing a strategic form game which depends on the true state of Nature, k1 or k2, each of

probability 1/2 (see Figure 1). Player 1 knows the true state of Nature but player 2 does

not know the actual game being played. Player 2 must choose action j1, j2, j3, j4 or j5, and

player 1 has no choice. The expected payoff of player 2, as a function of his action and his

belief p ∈ [0, 1] about state k1, is represented by Figure 2 on the next page (the thick lines

denote his best-reply payoff).

j1 j2 j3 j4 j5

k1 5, 0 3, 4 0, 7 4, 9 2, 10

k2 1, 10 3, 9 0, 7 5, 4 6, 0

Figure 1: Introductory example.
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Figure 2: Player 2’s expected payoffs (thin lines) and best-reply expected payoffs (thick lines)
in the introductory example.

Without communication possibilities (in the “silent game”), the only equilibrium payoff

is (0, 7) since action j3 yields the best expected payoff for player 2 given his prior belief

p = 1/2. If, before player 2’s decision, the players are able to talk to each other, but no

information can be certified concerning the true state of Nature then, whatever the commu-

nication possibilities, the unique equilibrium payoff remains (0, 7). Information transmission

is not possible here because if player 2 chooses his action conditionally on the messages sent

by player 1 then, whatever the true state of Nature, player 1 has always an incentive to use

the messages he should have sent at the other state. In other words, information which is

transmitted to player 2 is never credible, even if in every state it is to the advantage of both

players that player 1 tells the truth to player 2, and that the latter believes him. Notice that

allowing unboundedly long communication, or even adding a mediator, cannot help here: one

can check that the unique communication equilibrium outcome is the equilibrium j3 of the

silent game.

Assume now that player 1 can voluntarily certify his information concerning the real

state of Nature. That is, his informational reports are assumed truthful (the making of false

statements is prohibited), but he may withhold his information since he is not required to

make positive disclosures. Assume first that player 1 can only send a single message and that

player 2 cannot send any message. More precisely, assume that player 1 can choose between

two types of reports: either he certifies his information (he sends message m = c1 if the real

state is k1 and message m = c2 if the real state is k2), or he certifies no information (he
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sends message m = m which is available whatever the true state). It is easy to see that full

revelation of information is now an equilibrium, denoted by FRE: player 2 chooses action j5

if player 1 reveals that the true state is k1, he chooses j1 if player 1 reveals that the true

state is k2, and chooses j3 if player 1 reveals nothing. In such a situation, player 1 has no

incentive not to reveal his information because his payoff would be zero instead of 2 in state

k1 and 1 in state k2. Obviously, player 2 also behaves rationally because he chooses the best

action for him in each state of Nature.

As in cheap talk games, the non-revealing outcome is also a Nash equilibrium, denoted

by NRE, since player 2 can always ignore what player 1 says and choose action j3. However,

contrary to the fully revealing equilibrium, the non-revealing equilibrium is based on irrational

choices off the equilibrium path since player 2 should not choose action j3 when player 1

reveals him the true state of Nature (NRE is neither a perfect Bayesian equilibrium nor a

subgame perfect equilibrium). Restrictions to credible (sequentially rational) moves off the

equilibrium path are investigated in Section 5.

The two Nash equilibrium outcomes described above are not the only Nash equilibrium

outcomes of the one-shot communication game with certifiable information. Indeed, if we

allow player 1 to randomize, then there are two other partially revealing equilibria. One of

them is better for player 1 than any of the previous pure strategy equilibria since it gives

him a payoff of 2 whatever his type. In this equilibrium, denoted by PRE1, player 1 certifies

his type (i.e., sends message c1) with probability 1/3 and remains silent (i.e., sends message

m) with probability 2/3 in k1, and he always remain silent in state k2. Player 2’s posterior

beliefs are Pr(k1 | m) = Pr(m|k1) Pr(k1)
Pr(m) = 2/6

2/6+1/2 = 2/5 and Pr(k1 | c1) = 1, so he plays action

j5 when he receives message c1 and is indifferent between j2 and j3 when he receives message

m. If he plays j2 with probability 2/3 and j3 with probability 1/3 after m, and if he plays j1

after the off-equilibrium message c2 then player 1 has no incentive to deviate: in k1 he gets

a payoff of 2 if he sends message c1 and also (2/3)× 3 + (1/3)× 0 = 2 if he sends message m,

so he is indifferent between the two messages; in k2 he gets a payoff of 1 if he sends message

c2 and (2/3)× 3+ (1/3)× 0 = 2 if he sends message m, so he strictly prefers to send message

m.

In the second partially revealing equilibrium with randomized certification, denoted by

PRE2, player 1 always remains silent in state k1; he certifies his type with probability 1/3 and

remains silent with probability 2/3 in k2. Player 2’s posterior beliefs are Pr(k1 | m) = 3/5

and Pr(k1 | c2) = 0, so he plays action j1 when he receives message c2 and is indifferent

between j3 and j4 when he receives message m. If he plays j3 with probability 4/5 and j4

with probability 1/5 after message m, and if he plays j3 after the off-equilibrium message c1

then it can be checked as before that player 1 has no incentive to deviate. Contrary to the

previous partially revealing equilibrium, this equilibrium is based on irrational choices off the
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equilibrium path since player 2 should not choose action j3 when player 1 reveals him the

true state of Nature (PRE2 is neither a perfect Bayesian equilibrium nor a subgame perfect

equilibrium). Again, see Section 5 for Nash equilibrium refinements.

Now, we show that if players are able to talk to each other during several bilateral com-

munication rounds and to delay information certification, then player 1 can reach even a

higher equilibrium payoff of 3 whatever his type. This (perfect Bayesian) equilibrium can be

achieved in three communication stages. In the first two communication stages there is no

information certification, and in the last communication stage player 1 will certify his infor-

mation to player 2 conditionally on what both players said in the previous communication

stages.

In the first communication stage player 1 partially reveals (without certifying) his infor-

mation by using a random communication strategy which transmits the correct information

with probability 3/4 so as to leave some doubt in player 2’s mind. That is, he sends message

m = a with probability 3/4 if the real state is k1 and with probability 1/4 if the real state if

k2. Symmetrically, he sends message m = b with probability 3/4 if the real state is k2 and

with probability 1/4 if the real state if k1 (the labeling of these two messages is irrelevant but

both messages a and b are cheap talk messages: they must be available to player 1 whatever

his type). From Bayes’ rule, player 2 will believe state k1 with probability 3/4 if he receives

message a and with probability 1/4 if he receives message b. Assume that player 2 chooses

action j2 whenever he receives message b. This choice is rational given his beliefs. Otherwise,

when message a is sent, they agree on a jointly controlled 1
2 −

1
2 lottery to reach the following

compromise (this second communication stage conveys no substantive information, i.e., no

information about the fundamentals of the game).1 If head (H) occurs, then communication

stops and thus player 1 chooses action j4. On the contrary, if tail (T ) occurs, then player 1

certifies his information in the last communication stage (he sends message ck if the real state

is k). Then, player 2 chooses action j5 if c1 is sent and action j1 if c2 is sent. Player 1 has

no incentive to deviate if, for example, player 2 chooses action j3 when player 1 deviates

in the last communication stage by remaining silent. The whole communication and deci-

sion process in this equilibrium is summarized by Figure 3 (where “JCL” stands for “jointly

controlled lottery”). Player 1’s expected payoff is 3 whatever his type.

1A jointly controlled lottery is a mechanism that generates a uniform probability distribution on any
finite set from private random communication strategies so that a unilateral deviation does not change the
probability distribution. For example, a 1

2
− 1

2
lottery can be generated as follows: each player chooses a

message in {a, b} at random, both players announce their choices simultaneously and the outcome is head (H)
if the messages coincide and tail (T ) otherwise.
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Figure 3: A perfect Bayesian equilibrium outcome for the introductory example.

3 Model

We consider two players: player 1 (the informed player, or expert) and player 2 (the unin-

formed decisionmaker (DM)). J (|J | ≥ 2) is the finite action set of player 2 (player 1 has no

action). K (|K| ≥ 2) is the finite set of states (or types of player 1), with a common prior

probability distribution p = (p1, . . . , pk, . . . , pK) ∈ ∆(K). Let supp[p] ≡ {k ∈ K : pk > 0}.2

When player 2 chooses action j ∈ J and the state is k ∈ K, the payoffs to player 1 and

player 2 are Ak(j) and Bk(j), respectively.

3.1 Silent Game

The silent game, denoted by Γ(p), consists of two phases. In the information phase a state

k ∈ K is picked at random according to the probability distribution p. Player 1 is perfectly

informed about the true state k, while player 2 is not. In the action phase, player 2 chooses

an action j ∈ J .

A strategy of player 2 in the silent game Γ(p) is a mixed action y ∈ ∆(J). We extend payoff

functions linearly to mixed actions: Ak(y) =
∑

j∈J y(j)Ak(j) and Bk(y) =
∑

j∈J y(j)Bk(j).

The set of (Bayesian) Nash equilibria of the silent game Γ(p) is the set of optimal mixed

2We could assume w.l.o.g. that pk > 0 for all k ∈ K but in order to capture the games corresponding to
an updating of the prior over K, we allow pk = 0 for some k’s.
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actions for player 2 in the silent game Γ(p). It is called the set of non-revealing equilibria at

p, and is denoted by:

Y (p) ≡ arg max
y∈∆(J)

∑

k∈K

pk Bk(y)

︸ ︷︷ ︸
p B(y)

=

{
y ∈ ∆(J) :

∑

k∈K

pk Bk(y) ≥
∑

k∈K

pk Bk(j), ∀ j ∈ J

}
.

Remark 1 A pure action is always sufficient to maximize the decisionmaker’s payoff. So,

for all j, j′ ∈ supp[Y (p)] and y ∈ ∆(J) we have p B(j) = p B(j′) ≥ p B(y). However, mixed

actions will become useful once the action phase will be preceded by communication: (i) on

the equilibrium path, to make player 1 indifferent between several messages, and (ii) off the

equilibrium path, to punish player 1.

The resulting equilibrium payoffs are the (K + 1)-dimensional vectors (a, β), where a =

(a1, . . . , aK), ak = Ak(y) is the payoff of player 1 of type k, which is only relevant if k ∈

supp[p], and the scalar β = p B(y) is player 2’s expected payoff (expectation over k). Let

E(p) be the set of equilibrium payoffs of Γ(p), also called the set of non-revealing equilibrium

payoffs at p.3 That is,

E(p) ≡ {(a, β) ∈ RK × R : ∃ y ∈ Y (p), ak = Ak(y) ∀ k ∈ supp[p], β = p B(y)}.

3.2 Unilateral Persuasion Game

Here, we consider only direct (unmediated and noiseless) and unilateral communication, from

player 1 to player 2. The finite set of messages available to player 1 is state-dependent and

is denoted by M(k) when his type is k. Let M1 =
⋃

k∈K M(k) be the set of all messages

that player 1 could send. The set
⋂

k∈K M(k) is the set of all cheap talk messages available

to player 1, i.e., the set of all messages that player 1 can send whatever his type.

We assume that the set of cheap talk messages available to player 1 is nonempty. That is,

there exists m ∈ M1 such that M−1(m) = K. This “right to remain silent” assumption will

be needed for the “only if” part (from equilibrium to dimartingale) of our theorems. For the

“if” part (from dimartingale to equilibrium), we will further assume that the message space

and certifiability possibilities of the sender are sufficiently rich. That is, whatever his type k,

and for each event L ⊆ K containing k, player 1 can choose among a sufficiently large set of

messages certifying that his real type is in L. Formally, we assume that

|{m ∈ M1 : M−1(m) = L}| ≥ |L| + 1, for all L ⊆ K.

3Our definition differs from Aumann and Hart’s (2003) definition when the probability of some types
vanishes. See Subsection 4.2 for a more detailed comparison.
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Notice that this rich language and certifiability assumption implies the previous assumption

that the set
⋂

k∈K M(k) is nonempty (simply take L = K). Assuming full certifiability only

for singleton events L = {k} would not be sufficient for the “if” part of the theorems.

The signalling game determined by Γ and p, denoted by ΓS(p), is obtained by adding a one-

shot talking phase to the silent game Γ(p) before the action phase but after the information

phase. Therefore, this game corresponds to a standard persuasion game (Milgrom, 1981;

Shin, 1994; Seidmann and Winter, 1997) and has three phases (see Figure 4).

Information phase

Expert learns k ∈ K

Talking phase

Expert sends message m1 ∈ M(k)

Action phase

DM chooses action j ∈ J

Figure 4: Unilateral persuasion (signalling) game ΓS(p).

The extensive form representation of the unilateral persuasion game with only two types,

two cheap talk messages and one certificate for each type (M(k) = {a, b, ck}, k = k1, k2) is

given in Figure 5.

k2k1 N

b

a

b

a

2

2

· · ·· · ·

j

(
A1(j), B1(j)

)
· · ·· · ·

j

(
A2(j), B2(j)

)

· · ·· · ·

j

(
A1(j), B1(j)

) · · ·· · ·

j

(
A2(j), B2(j)

)

c21c1 1

...

...

j (
A2(j), B2(j)

)
2

...

...

j(
A1(j), B1(j)

)
2

Figure 5: Extensive form of the unilateral persuasion game ΓS(p) with two types, two cheap
talk messages and one certificate for each type (M(k) = {a, b, ck}, k = k1, k2).

A strategy for player 1 in the unilateral persuasion game is a profile σ = (σk)k∈K , with

σk ∈ ∆(M(k)) for all k. A strategy for player 2 is a function τ : M1 → ∆(J). A pair of

strategies (σ, τ) generates expected payoffs (a1
σ,τ , . . . , aK

σ,τ ) and βσ,τ for player 1 and player 2,

respectively. As usual, a (Bayesian) Nash equilibrium is a pair of strategies (σ, τ) satisfying

ak
σ,τ = maxσ̃ ak

σ̃,τ for all k ∈ supp[p] and βσ,τ = maxτ̃ βσ,τ̃ . Let ES(p) be the set of Nash

equilibrium payoffs of ΓS(p).
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3.3 Multistage, Bilateral Persuasion Game

We consider an arbitrarily large but finite number n ≥ 1 of communication rounds. In each

communication round t = 1, . . . , n each player can directly send a message to the other. As

in the unilateral persuasion game, the finite set of messages available to player 1 is denoted

by M(k) when his type is k, M1 =
⋃

k∈K M(k) is the set of all messages that player 1 could

send, and
⋂

k∈K M(k) 6= ∅ is the set of all cheap talk messages available to player 1. The

finite set of messages available to player 2 is denoted by M2, with |M2| ≥ 2.

As in the unilateral persuasion game we assume that |{m ∈ M1 : M−1(m) = L}| ≥ |L|+1

for all L ⊆ K. However, notice that in the multistage communication game it would be

sufficient to have two cheap talk messages and that a combination of several certificates

allows to certify any event L ⊆ K.4 The above specific assumption on the richness of the

message space is only for convenience.

The bilateral persuasion game with n communication stages, determined by Γ and p, is

denoted by Γn(p). It is obtained by adding a talking phase with n bilateral communication

rounds to the silent game Γ(p) before the action phase but after the information phase (see

Figure 6). At each period t = 1, . . . , n of the talking phase, type k ∈ K of player 1 sends a

message m1
t ∈ M(k) to player 2, and player 2 sends a message m2

t ∈ M2 to player 1 (perfect

monitoring). Messages are sent simultaneously.

Information phase

Expert learns k ∈ K

Talking phase (n ≥ 1 rounds)

Expert and DM send (m1
t ,m

2
t ) ∈ M(k) × M2

(t = 1, . . . n)

Action phase

DM chooses j ∈ J

Figure 6: n-stage bilateral persuasion game Γn(p).

A t-period history, t = 0, 1, . . . , n, is a sequence consisting of t pairs of messages,

ht = (m1
1,m

2
1, . . . ,m

1
t ,m

2
t ) ∈ (M1 × M2)

t
.

The set of all t-period histories is denoted by Mt = (M1 × M2)
t
. A strategy5 σ of player 1

in the n-period communication game Γn(p) consists of a sequence of functions σ1, . . . , σn,

where σt = (σ1
t , . . . , σ

K
t ) and σk

t : Mt−1 → ∆(M(k)) for k ∈ K and t = 1, . . . , n. A

strategy τ of player 2 consists of a sequence of functions τ1, . . . , τn, and a function τn+1,

where τt : Mt−1 → ∆(M2) for t = 1, . . . , n, and τn+1 : Mn → ∆(J).

A pair of strategies (σ, τ) generates expected payoffs aσ,τ = (a1
σ,τ , . . . , aK

σ,τ ) and βσ,τ for

4That is, it would be sufficient to assume that |
⋂

k∈K
M(k)| ≥ 2, and ∀ k, ∀ k′ 6= k, ∃ m ∈ M(k),

M−1(m) = K\{k′}.
5We focus on finite games with perfect recall. Hence, by Kuhn’s (1953) theorem behavioral strategies are

without loss of generality.
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player 1 and player 2, respectively. The set of (Bayesian) Nash equilibrium of the persuasion

game Γn(p) is denoted by En(p). Notice that ES(p) ⊆ En(p) ⊆ En+1(p) for all n ≥ 1.

Let EB(p) =
⋃

n≥1 En(p) be the set of Nash equilibrium payoffs of all multistage, bilateral

persuasion games determined by Γ and p.

4 Characterization of Nash Equilibrium Payoffs

4.1 Statement of the Results

Let H be the graph of the non-revealing equilibrium payoff correspondence, namely

H = gr E ≡ {(a, β, p) ∈ RK × R × ∆(K) : (a, β) ∈ E(p)},

where E(p) has been defined in Subsection 3.1. Notice that the set E(p) is convex for all p. In

other words, H is convex in (a, β) when p is kept constant. However, H need not be convex

in (β, p) when a is kept constant.

For every set of types L ⊆ K, let

INTIRL ≡ {a ∈ RK : ∃ y ∈ ∆(J), ak ≥ Ak(y) ∀ k ∈ L},

be the set of payoffs that are interim individually rational for player 1 when we restrict

the individual rationality constraint to a subset L of player 1’s set of types. Remark that

INTIRL ⊆ INTIRL′ whenever L′ ⊆ L. Let I be the graph of the payoffs that are interim

individually rational for player 1 in the silent game Γ(p):

I ≡ {(a, β, p) ∈ RK × R × ∆(K) : a ∈ INTIRsupp[p]}.

As H, I is convex in (a, β) when p is kept constant, but not in p when a is kept constant.

Obviously, every non-revealing equilibrium payoff is interim individually rational for player 1

so that H ⊆ I.

Let H1 ≡ conva(H) ∩ I be the set of expected payoffs obtained from H by convexifying

in (β, p) when the payoff of player 1, a, is kept constant and is interim individually rational

for player 1. Even if H is included in I, payoffs in conva(H) need not be interim individually

rational for player 1, while this is clearly a necessary equilibrium condition. We thus have

to require individual rationality explicitly in the definition of H1.
6 It turns out that this

requirement is also sufficient for the equilibrium characterization of the unilateral persuasion

game.

6The restriction to supp[p] for individual rationality is irrelevant for the next theorem, but will be important
in the multistage game.
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Theorem 1 (Unilateral Persuasion) The set ES(p) of Nash equilibrium payoffs of the

unilateral persuasion game ΓS(p) coincides with the p-section of H1:

ES(p) = H1(p) ≡ {(a, β) ∈ RK × R : (a, β, p) ∈ H1}.

In addition, any Nash equilibrium payoff of ΓS(p) can be obtained with at most K+1 messages.

Proof. See Subsection A.1.

From the proof of the “if” part of the theorem (the construction of the sender’s strategy),

the following proposition is immediate:

Proposition 1 Let pk > 0 for all k ∈ K. Every equilibrium of the unilateral persuasion game

ΓS(p) is outcome equivalent (i.e., it induces the same probability distribution over player 2’s

decision conditionally on k) to an equilibrium (σ, τ) with the following property:

For all m ∈ M1, if σk(m) > 0 for some k ∈ K, then σk′

(m) > 0 for all k′ ∈ M−1(m).

In particular, if a cheap talk message m ∈
⋂

k∈K M(k) is sent with strictly positive

probability by player 1, then all types of player 1 send this message with strictly positive

probability. The proposition says that in equilibrium, without loss of generality, if player 2’s

posterior about a certain type k of player 1 is null after some message m sent with strictly

positive probability, then k /∈ M−1(m), i.e., message m certifies that k is not realized. Hence,

all types have strictly positive posterior probability after a cheap talk message (sent with

strictly positive probability in equilibrium). Without using the geometric characterization of

Theorem 1, the intuition of the proposition is as follows. Assume that type k′ does not send

a message m but could have sent it (i.e., m ∈ M(k′)). Then, the types who send message m

could have sent another message instead of m that certifies that k′ is not realized, without

changing player 2’s posteriors and so without changing the equilibrium outcome.

In the next statement, we characterize the set of all equilibrium payoffs in all persuasion

games with an arbitrary large but bounded number of bilateral communication rounds. The

characterization states that all such equilibrium payoffs can be achieved in a canonical way,

in which signalling and jointly controlled lotteries alternate. To state the result precisely,

let us first consider the payoffs obtained as convex combinations of elements in H1 with p

fixed which are interim individually rational for player 1: H∗
1 = convp(H1)∩ I. Since H1 ⊆ I

and I is convex in (a, β) when p is fixed, convp(H1) ⊆ I so that H∗
1 = convp(H1). We then

proceed with H∗
1 as we did above with H, namely convexifying in (p, β) keeping a constant

and interim individually rational. This yields H3/2 = conva(H
∗
1 ) ∩ I. Next, by convexifying

in (a, β) at p fixed, we get H2 = convp(H3/2) = convp(H3/2) ∩ I. The p-section of the set

13



H2 is the set of equilibrium payoffs of persuasion games with four canonical communication

rounds: a jointly controlled lottery, a step of signalling, a second jointly controlled lottery,

and a second step of signalling. Next, let H3 be the set obtained from H2 by convexifying

in (β, p) when player 1’s payoff a is fixed, and then by convexifying in (a, β) when player 2’s

belief p is fixed, with again the restriction that the payoff of player 1 is interim individually

rational for the types with a strictly positive posterior. The p-section of the set H3 is the set

of equilibrium payoffs of persuasion games with six canonical communication rounds. The

set Hn, n ≥ 2, thus corresponds to 2n stages of canonical communication, in which signalling

and jointly controlled lotteries alternate. We introduce a slight disymmetry in the definition

of H1, which captures a single stage of signalling for player 1. The limit of the increasing

sequence H1, H2, . . . constructed in this way is denoted by di-co IR(H) ≡
⋃

l≥1 Hl to recall

the process of diconvexification used in the construction. Observe that, since I is not a di-

convex set, di-co IR(H) need not be di-convex (see the comparison with Aumann and Hart,

2003, in the next subsection). Points in di-co IR(H) correspond to all equilibrium payoffs of

bilateral persuasion games of bounded length. In the next theorem, the set di-co IR(H) is

expressed more elegantly as the set of starting points of particular martingales that converge

to H.

Theorem 2 (Multistage, Bilateral Persuasion) The set EB(p) of all Nash equilibrium

payoffs from all bilateral persuasion games Γn(p), n ≥ 1, coincides with the p-section of

di-co IR(H):

EB(p) = HB(p) ≡ {(a, β) ∈ RK × R : (a, β, p) ∈ di-co IR(H)}.

Equivalently, (a, β) ∈ EB(p) if and only if there exists a martingale z = (z0,z1, . . . ,zN ), with

zs = (as,βs,ps) ∈ I for all s = 0, 1, . . . , N , satisfying the following properties:

(D1) z0 = (a, β, p). That is, the starting point (and expectation) of the martingale is the

Nash equilibrium payoff under consideration.

(D2) zN ∈ H. That is, the martingale converges to the set of non-revealing equilibrium

payoffs: (aN ,βN ) ∈ E(pN ).

(D3) as+1 = as for all even s and ps+1 = ps for all odd s. That is, the martingale is a

dimartingale.7

Proof. See Subsection A.2.

Remark 2 Requiring aN ∈ INTIRK guarantees as ∈ INTIRK ⊆ INTIRsupp[ps]
for all s,

but is a much too strong condition: it is easy to construct an example with an equilibrium

7All statements involving random variables should be understood to hold for all states occurring with
strictly positive probability.
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payoff (a, β) ∈ EB(p) but aN /∈ INTIRK . On the other hand, requiring a0 ∈ INTIRK is not

sufficient. Indeed, one can easily construct a dimartingale with a0 ∈ INTIRK , (aN ,βN ,pN ) ∈

H, but (a, β) /∈ EB(p) (as /∈ INTIRsupp[ps]
for some history at s). More generally, the

condition zs ∈ I is redundant at some stages s but not at all of them. For instance, if

s is even, as+1 = as, as ∈ INTIRsupp[ps]
, and the fact that supp[ps+1] ⊆ supp[ps] imply

as+1 ∈ INTIRsupp[p
s+1]

. But the converse is not true: one may have as+1 ∈ INTIRsupp[p
s+1]

without having as = as+1 ∈ INTIRsupp[ps]. If s is odd, ps+1 = ps, as+1 ∈ INTIRsupp[ps+1]

and the martingale property imply that as ∈ INTIRsupp[ps]
. Again, the converse is not true.

These properties explain why, starting from the end of the process in order to construct

di-co IR(H), one had to intercept with I only when convexifying at a fixed.

Remark 3 In the previous statement, convex combinations of payoffs when p is fixed may

involve irrational weights (i.e., in R\Q). If the message sets M1 and M2 are finite, as assumed

above, the standard use of jointly controlled lotteries only shows that a subset of HB(p), in

which convex combinations of payoffs at p fixed have rational weights, is contained in EB(p).

However, EB(p) is not necessarily included in that subset of HB(p): for instance, it may

happen, at some point of the bilateral communication process, that player 2 alone performs a

lottery (possibly with irrational weights) over two ways of pursuing the play which give him

the same expected payoff. A full equivalence between EB(p) and HB(p) can be obtained by

allowing the cheap talk messages to lie in the unit interval (see, e.g., Gerardi, 2004) or by

allowing the players to observe the outcome of a public lottery over a finite set at every stage

(see also Subsection 4.2).

Remark 4 If there exists a worst outcome for player 1 (i.e., an action jw ∈ J such that

Ak(jw) ≤ Ak(j) for all k ∈ K and j ∈ J), then the individual rationality conditions are

automatically satisfied.

4.2 Comparison with Aumann and Hart (2003)

When some coordinates of p vanish, Aumann and Hart (2003) consider the modified equi-

librium payoffs E+(p) of the silent game Γ(p), which is the same as E(p) except that when

the probability of one of player 1’s types vanishes, then the corresponding type of player 1

can only get more than his equilibrium payoff. That is, the set of modified non-revealing

equilibrium payoffs is the set of all payoffs (a, β) such that there exits an equilibrium y ∈ Y (p)

of the silent game Γ(p) satisfying

(i) ak ≥ Ak(y), for all k ∈ K;

(ii) ak = Ak(y) if pk 6= 0;
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(iii) β =
∑

k∈K pk Bk(y).

The graph of the modified non-revealing equilibrium payoff correspondence is

G ≡ gr E+ ≡ {(a, β, p) ∈ RK × R × ∆(K) : (a, β) ∈ E+(p)}.

Here, we consider the more natural set of non-revealing equilibrium payoffs, E(p), in which

it is understood that the types of player 1 which have probability zero can get any payoff

(only conditions (ii) and (iii) above must be satisfied). Clearly, E+(p) ⊆ E(p) and if p has

full support, both sets coincide.

Let di-co (G) be the smallest set which contains G and is convex in (a, β) (respectively

(β, p)) when p (respectively a) is fixed. Aumann and Hart (2003) characterize the set of

all equilibrium payoffs achieved with finitely many stages of bilateral cheap talk as the p-

section of di-co (G).8 This extremely elegant characterization relies on the identification of

the modified set of non-revealing equilibrium payoffs E+(p) for every non interior p, which

ensures that all equilibrium conditions of player 1 can be written as equalities, namely cap-

tured by a dimartingale property. In this framework, player 1’s expected payoff remains

fully interim individually rational (in INTIRK) all along the communication process. In-

deed, at the end of the communication process, (aN , βN , pN ) ∈ G so that aN ∈ INTIRK by

condition (i) above. It follows from the martingale property that as ∈ INTIRK for every

s. Intuitively, E+(p) reflects the strength of player 1’s incentive compatibility conditions

when types are not verifiable. Our starting set H corresponds to the non-modified graph of

the non-revealing equilibrium payoff correspondence in the sense that we do not impose any

condition on player 1’s payoff when his type has zero probability. This captures the relative

weakness of player 1’s incentive compatibility conditions when types are verifiable. According

to Theorem 2, (aN , βN , pN ) ∈ H, which only guarantees that aN ∈ INTIRsupp[pN ]. Indeed, if

player 1 can send certificates in addition to cheap talk messages, some states of nature may

be eliminated forever. Player 1’s individual rationality conditions must thus be expressed

relatively to the remaining possible states. The geometric properties of our final graph of

equilibrium payoffs are not as transparent as in Aumann and Hart (2003) since, as observed

above, di-co IR(H) is not necessarily convex in (β, p) when a is fixed. Obviously, this set is

convex in (a, β) when p is fixed since the players can perform jointly controlled lotteries.

Another difference between this paper and Aumann and Hart (2003) is that they do not

require the number of communication stages to be almost surely finite, i.e., they consider any

converging dimartingale. We could reformulate Theorem 2 in the same way at the price of

adding further technicalities in the proof (as in Aumann and Hart, 2003, Sections 4.2 and 8).

This approach also entails conceptual difficulties, since it leads to assume that time has order

8With the same restrictions as in Remark 3.
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ω + 1, namely that there is an infinite sequence of time periods, with an additional period

after the whole sequence.9 No game-theoretical example illustrates that such an infinite

communication phase would enable the players to achieve relevant new equilibrium payoffs

(see Aumann and Hart, 1986, for a mathematical example, and Krishna, 2005, for further

discussion in the cheap talk case). Between the set EB(p) characterized in Theorem 2 and

the analog of the set considered in Aumann and Hart (2003), an interesting set consists of

those equilibrium payoffs which are associated with a dimartingale which converges almost

surely in a finite, but not necessarily uniformly bounded, number of stages. The examples

of Forges (1984, 1990a) can be adapted to the current framework, so that the latter set may

be larger than EB(p). It can be characterized in the same way as in Theorem 2, again at the

price of some technicalities.

4.3 Illustration of Theorem 1 (Unilateral Persuasion)

For the introductory example, the graph of the modified non-revealing equilibrium payoff

correspondence, G = gr E+, is represented on the (a1, a2)-coordinates by solid lines in Figure 7

on the following page. The graph of the non-revealing equilibrium payoff correspondence,

H = gr E , is represented in the same figure by the solid and dashed lines. The sets G and H

are also described in the second and third columns of Table 1 on page 19. Since all points at

the north-east of (0, 0) are interim individually rational for player 1, convexifying the set H by

keeping a constant and interim individually rational yields three new points at p = 1/2: FRE,

PRE1 and PRE2, which are exactly the three Nash equilibrium payoffs found in Section 2, in

addition to the non-revealing equilibrium (NRE). Indeed, each of these points corresponds to

two non-revealing equilibrium payoffs, at two different p’s forming an interval that includes

p = 1/2, giving the same payoff to player 1. Notice that, for example, the point PRE3 is not

an equilibrium payoff for p = 1/2 because 1/2 lies outside the interval [3/5, 1].

4.4 Illustration of Theorem 2 (Multistage, Bilateral Persuasion)

The dimartingale corresponding to the equilibrium with three talking stages of the introduc-

tory example (see Figure 3 on page 8) is represented by Figure 8 on page 19. It leads to the

point j2 at p = 1/2 in Figure 7, which is not achievable at p = 1/2 with only one step of

diconvexification.

Adding a jointly controlled lottery before a signalling stage allows a convexification by

keeping p fixed. This leads to the graph H∗
1 = convp(H1) described on the a-coordinates in the

fourth column of Table 1. For example, adding a jointly controlled lottery before a signalling

stage at p = 1/2 leads to all convex combinations of equilibrium payoffs of the unilateral

9Obviously, with a possibly infinite phase of communication, the problem mentioned in Remark 3 disap-
pears.
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Figure 7: Modified non-revealing equilibrium payoffs (solid lines) and interim individually
rational non-revealing equilibrium payoffs (solid and dashed lines) of the expert in the intro-
ductory example.

persuasion game, [j3,FRE,PRE1,PRE2]. Adding a second signalling stage allows a second

convexification by keeping a fixed. One can check that this does not yield new equilibrium

payoffs, except for p ∈ (2/5, 3/5). Indeed, for p ∈ (2/5, 3/5) one can combine the sets

H∗
1 (p′) = [j2,PRE2,FRE], p′ ∈ (1/5, 2/5), and H∗

1 (p′′) = [j4,PRE3,FRE], p′′ ∈ (3/5, 4/5),

which leads to the payoffs in the triangle [j2,PRE1,FRE], which were not achievable at

p ∈ (2/5, 3/5) with only 2 canonical communication stages. Hence, for p ∈ (2/5, 3/5),

H2(p) = H∗
1 (p) ∪ [j2,PRE1,FRE] = [j3,PRE2, j2,FRE]. It is easy to verify that one cannot

get new points after two steps of diconvexification in both directions, so H2 = Hn for all

n ≥ 2.
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Figure 8: Dimartingale/diconvexification corresponding to the equilibrium with three talking
stages in the introductory example.

p G H H∗
1 = convp(H1) H2

0 (a1 ≥ 5, 1) (a1, 1) · · · · · ·

(0, 1
5) j1 j1 [j1,PRE2] · · ·

1
5 [j1, j2] [j1, j2] [j1, j2,PRE2] · · ·

(1
5 , 2

5) j2 j2 [j2,PRE2,FRE] · · ·
2
5 [j2, j3] [j2, j3] [j2,PRE2, j3,FRE] · · ·

(2
5 , 3

5) j3 j3 [j3,FRE,PRE1,PRE2] [j3,PRE2, j2,FRE]
3
5 [j3, j4] [j3, j4] [j3, j4,FRE] · · ·

(3
5 , 4

5) j4 j4 [j4,PRE3,FRE] · · ·
4
5 [j4, j5] [j4, j5] [j4, j5,FRE] · · ·

(4
5 , 1) j5 j5 [j5,FRE] · · ·

1 (2, a2 ≥ 6) (2, a2) · · · · · ·

Table 1: Diconvexification of the non-revealing equilibrium payoffs of the introductory ex-

ample. “· · · ” means “as in the previous column”.
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5 Characterization of Perfect Bayesian Equilibrium Payoffs

In cheap talk games, it is well known that standard equilibrium refinements do not eliminate

any Nash equilibrium outcome. On the contrary, when information is certifiable, the set of

perfect Bayesian equilibrium outcomes is usually strictly included in the set of Nash equi-

librium outcomes. In particular, the non-revealing equilibrium outcome is always a perfect

Bayesian equilibrium outcome in cheap talk games, but not in persuasion games. This has al-

ready been observed in the literature on sender-receiver persuasion games (see, e.g., Milgrom,

1981, Milgrom and Roberts, 1986 and Seidmann and Winter, 1997) and, more generally, in

Bayesian games with strategic information revelation (Okuno-Fujiwara et al., 1990). In these

papers, it is shown that imposing sequential rationality restrictions off the equilibrium path

is powerful enough to characterize a unique equilibrium outcome (typically, a fully reveal-

ing one) in some classes of games like monotonic sender-receiver games or linear n-player

oligopoly games.

5.1 Examples

Consider again our introductory example, with the prior p = 1/2. At the non-revealing

equilibrium (NRE), player 2 should choose action j3 whatever the message sent by player 1.

However, if player 1 sends a certificate ck for type k, then in the second stage game player 2 is

in a proper subgame in which action j5 (action j1, respectively) is strictly dominant if k = k1

(k = k2, respectively). Hence, the NRE is not subgame perfect, so it is not a perfect Bayesian

equilibrium. The same conclusion holds at the second partially revealing equilibrium (PRE2),

where a strictly dominated action is played in the proper subgame following the message c1.

On the contrary, all other Nash equilibrium outcomes of the unilateral persuasion game, as

well as the 3-stage Nash equilibrium outcome depicted in Figure 3 on page 8, are perfect

Bayesian equilibrium outcomes (see below for a precise definition).

In persuasion games, the set of subgame perfect equilibrium payoffs may not coincide

with the set of perfect Bayesian equilibrium payoffs. To see this, consider the silent game of

Figure 9. The optimal actions of the decisionmaker are

Y (p) =





{j1} if p > 2/3,

{j2} if p < 2/3,

∆({j1, j2}) if p = 2/3.

If x > 3 or y > 1, the unique Nash equilibrium of the persuasion game is non-revealing.

Otherwise, there is a fully revealing Nash equilibrium. This can be seen in Figure 10 where

the point FRE is interim individually rational if and only if it is at the north-east of (x, y).
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j1 j2 j3

k1 3, 1 4, 0 x,−1 p

k2 3, 0 1, 2 y,−1 (1 − p)

Figure 9: Subgame perfect equilibrium vs. perfect Bayesian equilibrium.
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Figure 10: Modified (solid lines) and interim individually rational (solid and dashed lines)
non-revealing equilibrium payoffs of the expert in the silent game of Figure 9.

The FRE is also subgame perfect since any proper subgame is reached with strictly

positive probability. However, it is not a perfect Bayesian equilibrium because it is supported

by action j3 off the equilibrium path, but j3 is not an optimal action for the decisionmaker

whatever his belief about the expert’s type.

5.2 Belief Consistency and Sequential Rationality

Roughly, a Nash equilibrium is a perfect Bayesian equilibrium if the strategy which is used

by player 2 off the equilibrium path is optimal for player 2 for at least one belief over K con-

sistent with the history of messages sent by player 1. Formally, let Pσ,τ,p be the probability

distribution on K × Mn × J generated by players’ strategies and the prior probability dis-

tribution. For any type k ∈ K and communication history ht = (m1
1,m

2
1, . . . ,m

1
t ,m

2
t ) ∈ Mt,

denote player 2’s conditional belief that player 1’s type is k by µ(k | ht), and let

M−1
t (ht) ≡

t⋂

s=1

M−1(m1
s).

Definition 1 A perfect Bayesian equilibrium of the n-stage persuasion game Γn(p) is a pair
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of strategy profiles and belief function ((σ, τ), µ) such that for every period t, history ht ∈ Mt

and type k ∈ K:

(a) Bayes’ rule. If Pσ,τ,p(ht | l) > 0 for some l ∈ K, then

µ(k | ht) =
pkPσ,τ,p(ht | k)∑
l∈K plPσ,τ,p(ht | l)

;

(b) Player 1’s sequential rationality. σ maximizes player 1’s expected payoff under (σ, τ)

conditional on reaching ht;

(c) Player 2’s sequential rationality. τ maximizes player 2’s expected payoff under µ and

(σ, τ) conditional on reaching ht;

(d) Consistency with certification. If k /∈ M−1
t (ht), then µ(k | ht) = 0;

(e) “No signaling what you don’t know”. For every communication history h̃t that differs

from ht only in terms of player 2’s messages (i.e., ht = (m1
1,m

2
1, . . . ,m

1
t ,m

2
t ) and h̃t =

(m1
1, m̃

2
1, . . . ,m

1
t , m̃

2
t )), we have µ(k | ht) = µ(k | h̃t).

Conditions (a) to (c) are the weakest conditions for perfect Bayesian equilibrium (also

called “weak sequential equilibrium”; see, e.g., Mas-Colell et al., 1995, Section 9.C). For

histories occurring with strictly positive probability they imply that (σ, τ) is a Nash equi-

librium. The sequential rationality condition for player 2 (condition (c)) also implies that

τn+1(hn) ∈ arg maxy∈∆(J)

∑
k∈K µ(k | hn)Bk(y) = Y (µ(hn)), even for final communication

histories hn occurring with probability zero under (σ, τ).

Condition (d) is a belief consistency condition that is specific to the fact that player 1’s

message set is type-dependent, and is usual in the strategic information revelation literature

(see, for example, Okuno-Fujiwara et al., 1990, condition (b) p. 29). It simply means that,

even off the equilibrium path, player 2’s belief about player 1’s type should put strictly

positive probability only on types that are able to send the observed sequences of messages

m1
1, . . . ,m

1
t . Finally, condition (e) is the “no signaling what you don’t know” condition from

Fudenberg and Tirole (1991), which means that player 2’s belief about player 1’s type should

only be influenced by player 1’s messages. The necessity of this condition for our equilibrium

characterization in Theorem 3 is illustrated by an example in Subsection 5.4.

5.3 Statement of the Result

To get geometric characterizations like in Section 4 for perfect Bayesian equilibrium pay-

offs instead of Nash equilibrium payoffs we have to strengthen player 1’s interim individual
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rationality condition. More precisely, we must replace INTIRL by

INTIRPBE
L ≡ {a ∈ RK : ∀ X ⊆ L, ∃ pX ∈ ∆(X) and yX ∈ Y (pX), ak ≥ Ak(yX) ∀ k ∈ X},

and define di-co PBE(H) as di-co IR(H) (see Section 4.1) by replacing I by IPBE ≡ {(a, β, p) ∈

RK × R × ∆(K) : a ∈ INTIRPBE
supp[p]}. This leads to the next theorem, which is the analog of

Theorems 1 and 2 for perfect Bayesian equilibrium.

Theorem 3

(1) The set of all perfect Bayesian equilibrium payoffs of the unilateral persuasion game

ΓS(p) coincides with the p-section of conva(H) ∩ IPBE.

(2) The set of all perfect Bayesian equilibrium payoffs from all bilateral persuasion games

Γn(p), n ≥ 1, coincides with the p-section of di-co PBE(H). Equivalently, (a, β) is a perfect

Bayesian equilibrium payoff of some bilateral persuasion game Γn(p), n ≥ 1, if and only

if there exists a martingale z = (z0,z1, . . . ,zN ), with zs = (as,βs,ps) ∈ IPBE for all

s = 0, 1, . . . , N , satisfying properties (D1), (D2) and (D3) of Theorem 2.

Proof. See Subsection A.3.

It is easy to see that subgame perfection is obtained as a special case when events X in

the definition of INTIRPBE
L are reduced to singletons, i.e., by replacing INTIRPBE

L by

INTIRSPE
L ≡ {a ∈ RK : ∀ k ∈ L, ∃ yk ∈ arg max

y∈∆(J)
Bk(y), ak ≥ Ak(yk)}.

5.4 Illustration

In the introductory example, INTIRK is the set of points at the north-east of (0, 0) in Figure 7,

and INTIRPBE
K = INTIRSPE

K ( INTIRK is the set of points at the north-east of (2, 1). In

the example of Figure 9, INTIRK is the set of points at the north-east of (x, y) in Figure 10,

INTIRSPE
K ( INTIRK is the set of points at the north-east of (3, 1), and INTIRPBE

K (

INTIRSPE
K is the set of points at the north-east of the segment [j1, j2].

The next example illustrates the importance in bilateral persuasion games of the belief

consistency requirement “no signaling what you don’t know”. The silent game is given by

Figure 11. In the unilateral persuasion game ΓS(p) with p = (1/3, 1/3, 1/3), the non-revealing

Nash equilibrium payoff (3, 3, 3) for player 1 is not in INTIRPBE
K , and is indeed not a per-

fect Bayesian equilibrium because if player 1 deviates by sending a message c12 such that

M−1(c12) = {k1, k2} then his payoff is strictly higher than 3 for k1 or k2 whatever the se-

quentially rational mixed action of player 2 (which must be in Y (q) for some q ∈ ∆({k1, k2})).

Now, consider the non-revealing Nash equilibrium of the 1-stage bilateral persuasion game

Γ1(p) in which player 2 sends two messages a and b with probability 1/2 each in the talking
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phase, and plays action j1 if a occurs and j3 is b occurs after player 1 sends c12 off the equilib-

rium path. Given this strategy, player 1 has no incentive to deviate (he would get 2.5 instead

of 3). Furthermore, player 2’s strategy is sequentially rational with belief µ(k1 | c12, a) ≤ 1/4,

µ(k1 | c12, b) ≥ 3/4 and µ(k3 | c12, ·) = 0 off the equilibrium path. This belief satisfies

consistency condition (d), but not (e).

j1 j2 j3 j0

k1 5, 0 4, 3 0, 4 3, 0

k2 0, 4 4, 3 5, 0 3, 0

k3 0,−10 0,−10 0,−10 3, 0

Figure 11: An example illustrating condition (e) (“no signaling what you don’t know”).

6 Mediated Persuasion

In this paper we assumed that communication between the expert and the decisionmaker takes

place face-to-face. This excludes correlated extraneous signals and private recommendations.

In particular, there is no uncertainty on the messages received by each party during the

talking phase. If a mediator were available and if any form of costless communication were

possible between the players, then the resulting set of Nash equilibrium outcomes would be the

set of certification equilibrium outcomes introduced by Forges and Koessler (2005). Under

the assumption of full certifiability made in the current paper, a single stage of mediated

certification is sufficient and the set of certification equilibrium outcomes has a canonical

representation characterized by a transition probability q : K → ∆(J) and a punishment

strategy y ∈ ∆(J) satisfying the informational incentive constraint

∑

j∈J

q(j | k)Ak(j) ≥ Ak(y) for all k ∈ K, (1)

and the strategic incentive constraint

∑

k∈K

Prq(k | j)Bk(j) ≥
∑

k∈K

Prq(k | j)Bk(j′), ∀ j ∈ supp[q], j′ ∈ J. (2)

Let EM (p) ⊆ RK × R be the resulting set of mediated certification equilibrium payoffs. This

set includes the set of Nash equilibrium payoffs achieved with face-to-face communication, so

E(p) ⊆ ES(p) ⊆ EB(p) ⊆ EM (p), and all these inclusions may be strict.

The set of communication equilibrium outcomes (Myerson, 1982; Forges, 1986) is charac-
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terized by recommendations satisfying (2) and (3):

∑

j∈J

q(j | k)Ak(j) ≥
∑

j∈J

q(j | k′)Ak(j) for all k, k′ ∈ K. (3)

Since condition (3) is a stronger requirement than (1), the set of certification equilibrium

outcomes also includes the set of communication equilibrium outcomes.

The analysis is much more tractable when a mediator is available to help the players

to communicate and to certify their information.10 For example, the equilibrium outcome

with three talking stages of the introductory example (see Figure 3 on page 8) can easily

be implemented with the help of a mediator as follows. First, player 1 chooses whether to

make a certifiable report to the mediator concerning the true state of the world. When there

are only two types, player 1 has two possible reports in every state k: either he certifies his

information by sending message ck or he certifies nothing. Afterwards, the mediator gives

a (random) recommendation of action to player 2 conditionally on the report of player 1.

Denote respectively by q(j | k) and y(j) the probabilities that the mediator recommends

action j to player 2 when player 1 sends message ck and m 6= c1, c2, respectively. The

following recommendations mimic the equilibrium outcome:

q(j4 | k1) = q(j5 | k1) = 3/8 q(j2 | k1) = 1/4

q(j1 | k2) = q(j4 | k2) = 1/8 q(j2 | k2) = 3/4

y(j3) = 1.

If player 1 completely certifies his information and player 2 follows the recommendation of

the mediator, then no player has an incentive to deviate. Indeed, player 1 never deviates since

by certifying his information his payoff is always strictly positive, whereas by not certifying

his information his payoff would be zero. From Bayes’ rule, player 2’s beliefs about the state

of Nature given the recommendations of the mediator are Prq(k1 | j5) = 1, Prq(k1 | j4) = 3/4,

Prq(k1 | j2) = 1/4 and Prq(k1 | j1) = 0, so the recommendations are optimal for him given

his beliefs.

A Appendix: Proofs

A.1 Proof of Theorem 1

We assume w.l.o.g. that supp[p] = K, so that ES(p) can be characterized equivalently as the

p-section of conva(H) ∩ {(a, β, p) ∈ RK × R × ∆(K) : a ∈ INTIRK}.

10In particular, certification equilibrium outcomes can be characterized in a canonical way for Bayesian
games with any number of players, any information structure, and any assumption on certifiability possibilities.
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A.1.1 From equilibrium to constrained convexification: ES(p) ⊆ H1(p)

Let (σ, τ) be any Nash equilibrium of the unilateral persuasion game ΓS(p), where pk > 0 for

all k ∈ K, and let (a, β) ∈ ES(p) be the associated equilibrium payoffs. We must show that

(a, β, p) is in H1, i.e., (a, β, p) can be obtained as a convex combination of points in H = gr E

by keeping a constant and interim individually rational (a ∈ INTIRK). Let P = Pσ,τ,p be the

probability distribution on Ω = K × M1 × J generated by players’ strategies and the priors.

So,

P (m) =
∑

k∈K

pk σk(m),

is the (ex ante) probability that player 1 sends message m ∈ M1. Let M∗ = {m ∈ M1 :

P (m) > 0}. For all m ∈ M∗, let

pk
m = P (k | m) =

pk σk(m)

P (m)
,

be player 2’s posterior about player 1’s type after receiving message m, let pm = (pk
m)k∈K ,

and let

βm =
∑

k∈K

pk
m Bk(τ(m)),

be the resulting expected payoff for player 2 when m is reached. Since pk =
∑

m∈M∗ P (m) pk
m

for all k ∈ K and β =
∑

m∈M∗ P (m)βm, we have

(a, β, p) =
∑

m∈M∗

P (m) (a, βm, pm).

So, to show that (a, β, p) is a convex combination of points in H be keeping a constant it

suffices to show that (a, βm, pm) ∈ H for all m ∈ M∗, i.e., (a, βm) ∈ E(pm) for all m ∈ M∗.

Player 2’s equilibrium condition implies that τ(m) ∈ Y (pm) for all m ∈ M∗, so condition (iii)

in the definition of E(pm) (see page 16) is satisfied for all m ∈ M∗. Player 1’s equilibrium

condition implies that Ak(τ(m)) = Ak(τ(m′)) whenever σk(m) > 0 and σk(m′) > 0 (player 1

of type k should be indifferent between all messages that he sends with strictly positive

probability), so

ak =
∑

m∈M∗

σk(m)Ak(τ(m)) = Ak(τ(m)),

for all m such that σk(m) > 0 (which is equivalent to pk
m > 0 because pk > 0), so condition

(ii) in the definition of E(pm) is also satisfied for all m ∈ M∗.

Remark 5 Notice that when pk
m = 0 we may have ak < Ak(τ(m)) (because type k cannot

send message m when m /∈ M(k)), so when some coordinates of pm vanish it is possible that
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(a, βm, pm) /∈ G ≡ gr E+, contrary to the case of cheap talk (Aumann and Hart, 2003).

It remains to show that a ∈ INTIRK . Consider a message m ∈
⋂

k∈K M(k) (which exists

by the “right to remain silent” assumption), and let y = τ(m) (m may or may not be a

message sent by player 1 with positive probability, so there may be no rationality condition

on y for player 2 as long as no equilibrium refinement is introduced). By player 1’s equilibrium

condition, for all k ∈ K and m such that σk(m) > 0 we have ak = Ak(τ(m)) ≥ Ak(y), which

proves that a ∈ INTIRK .

A.1.2 From constrained convexification to equilibrium: H1(p) ⊆ ES(p)

We start from (a, β, p), a convex combination of points in H by keeping a constant, with

a ∈ INTIRK and pk > 0 for all k ∈ K, and we construct an equilibrium (σ, τ) of the

unilateral persuasion game ΓS(p) with expected payoffs (a, β). Since (a, β, p) ∈ conva(H),

we can write

(a, β, p) =
∑

w∈W

π(w) (a, βw , pw),

with π ∈ ∆(W ) and (a, βw, pw) ∈ H for all w ∈ W . Without loss of generality we assume

that π has full support. In addition, from Carathéodory’s theorem we can let |W | ≤ K + 1

since the dimension of (β, p) ∈ R×∆(K) is equal to K. For all w ∈ W , we associate a set of

types supp[pw] ≡ {k ∈ K : pk
w > 0} and a message mw ∈ M1 with mw 6= mw′ for w 6= w′, and

M−1(mw) = supp[pw]. This is possible given our rich language and certifiability assumption.

Player 1’s strategy σ. For all k ∈ K and w ∈ W define

σk(mw) =
π(w) pk

w

pk
(and σk(m) = 0 if m 6= mw for all w ∈ W ).

Player 2’s strategy τ . Since by assumption (a, βw) ∈ E(pw), for all w ∈ W we can define

(see condition (ii) and (iii) of E(pw)),

yw = τ(mw) ∈ Y (pw) such that





ak = Ak(τ(mw)) if pk
w > 0

βw =
∑

k∈K pk
w Bk(τ(mw)).

For the other messages m 6= mw, w ∈ W , since by definition a ∈ INTIRK , we can define

τ(m) = y such that ak ≥ Ak(y) for all k ∈ K.

Payoffs. We first verify that (a, β) is the payoff generated by the strategy profile (σ, τ)

defined just before. Let P = Pσ,τ,p be the probability distribution on Ω = K × M1 × J
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generated by those strategies and the prior, and let E = Eσ,τ,p be the associated expectation

operator. First, we check that P (mw) = π(w) for all w ∈ W :

P (mw) =
∑

k∈K

pk σk(mw) =
∑

k∈K

pk π(w) pk
w

pk
= π(w)

∑

k∈K

pk
w = π(w).

By construction, player 1’s expected payoff when his type is k is given by

E[Ak(j) | k = k] =
∑

w∈W

P [m = mw | k = k]E[Ak(j) | k = k,m = mw]

=
∑

w∈W

σk(mw)
∑

j∈J

τ(mw)(j)Ak(j) =
∑

w∈W

σk(mw)Ak(τ(mw)) = ak,

the last equality following from the construction of player 2’s strategy: Ak(τ(mw)) = ak

whenever σk(mw) > 0 (⇔ pk
w > 0 because pk > 0). Finally, player 2’s expected payoff is

E[Bk(j)] =
∑

k∈K

pkE[Bk(j) | k = k]

=
∑

k∈K

pk
∑

w∈W

P [m = mw | k = k]E[Bk(j) | k = k,m = mw]

=
∑

k∈K

pk
∑

w∈W

σk(mw)
∑

j∈J

τ(mw)(j)Bk(j) =
∑

k∈K

pk
∑

w∈W

π(w)pk
w

pk
Bk(τ(mw))

=
∑

w∈W

π(w)
∑

k∈K

pk
w Bk(τ(mw)) =

∑

w∈W

π(w)βw = β.

Equilibrium condition for player 2. Next, we verify that τ is a best reply for player 2

to player 1’s strategy σ. Since we have defined τ(mw) ∈ Y (pw) for all w ∈ W , and since the

messages (mw)w∈W are the only messages sent with strictly positive probability by player 1,

it suffices to verify that pw is the correct posterior belief of player 2 when he receives message

mw. This is immediately obtained by Bayes’s rule given the definition of the strategy σ:

P [k = k | m = mw] =
P [m = mw | k = k]P [k = k]

P [m = mw]
=

σk(mw)pk

π(w)
= pk

w.

Equilibrium condition for player 1. Finally, we verify that σk is a best reply for player 1

of type k to player 2’s strategy τ . Player 1 of type k sends each message mw, w ∈ W , satisfying

pk
w > 0 (⇔ σk(mw) > 0 because pk > 0) with strictly positive probability. By construction

of player 2’s strategy we have Ak(τ(mw)) = ak (see the previous paragraph “payoffs”) for

all such messages, so type k is indeed indifferent between all these messages. Next, remark

that type k cannot send the other messages mw satisfying pk
w = 0 because such messages are

such that M−1(mw) = supp[pw], with k /∈ supp[pw], so mw /∈ M(k). Finally, if player 1 sends

a message off the equilibrium path, m 6= mw for all w ∈ W (so P (m) = 0), then he gets
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Ak(τ(m)) = Ak(y) ≤ ak = Ak(τ(mw)) for σk(mw) > 0, so he does not deviate.

A.2 Proof of Theorem 2

As in the proof of Theorem 1, we assume w.l.o.g. that supp[p] = K.

A.2.1 From equilibrium to constrained dimartingale: EB(p) ⊆ HB(p)

Except for the construction of player 1’s sequence of virtual payoffs and the fact that we

consider martingales that are bounded in length, this part of the proof is similar to the

proof of Hart (1985) and Aumann and Hart (2003). Let (σ, τ) be any Nash equilibrium

of the communication game Γn(p) for some finite n ≥ 1, where pk > 0 for all k ∈ K,

with payoffs a = (a1, . . . , aK) ∈ RK for player 1 and β ∈ R for player 2. We construct

a sequence of random variables z = (z0,z1, . . . ,zN ), with N = 2n, satisfying proper-

ties (D1) to (D3) of Theorem 2, the interim individual rationality conditions zs ∈ I for

all s, and the martingale property: E[zs+1 | z0,z1, . . . ,zs] = zs, s = 0, 1, . . . , N . We

work on the probability space Ω = K × Mn × J , where Mn = (M1 × M2)
n
. A realization

ω = (k,m1
1,m

2
1, . . . ,m

1
t ,m

2
t , . . . ,m

1
n,m2

n, j) ∈ Ω consists in a type for player 1, a final com-

munication history, and an action for player 2. All random variables (denoted in bold letters

when there may be a risk of confusion) are defined on Ω. Let P = Pσ,τ,p be the probability

distribution on Ω generated by players’ strategies and the prior probability distribution on

player 1’s set of types, and let E = Eσ,τ,p be the corresponding expectation operator. For

example, P [k = k] = pk and P [m1
t = m | ht−1 = ht−1,k = k] = σk

t (ht−1)(m).

For s = 0, . . . , N we construct a new “half-steps” random variable on Ω, gs, that corre-

sponds to every history of talk, plus every history of talk followed by player 1’s message in

the next period. Formally,

gs ≡





ht = (m1
1,m

2
1, . . . ,m

1
t ,m

2
t ), if s = 2t is even, t = 0, . . . , n

(ht,m
1
t+1), if s = 2t + 1 is odd, t = 0, . . . , n − 1.

So, g0 = h0 = ∅, gN = g2n = hn, when s is even the last message in gs is from player 2, and

when s is odd the last message in gs is from player 1. We consider this new random variable

in order to have the dimartingale property (D3).

Sequence of posteriors (ps)s=0,1,...,N . For each k ∈ K and s = 0, . . . , N , define

pk
s ≡ P [k = k | gs],

and ps = (pk
s)k∈K ∈ ∆(K).
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Lemma 1 The sequence (pk
s)s=0,...,N is a (bounded) martingale satisfying

(i) p0 = p;

(ii) ps+1 = ps for all odd s.

Proof. The martingale property is simply due to the fact that (pk
s)s=0,...,N is a sequence of

posteriors by conditioning on more and more information (it is adapted to the sequence of

fields (Gs)s=0,...,N generated by (gs)s=0,...,N). (i) is immediate: pk
0 = P [k = k | g0] = P [k =

k] = pk. To prove (ii), let s = 2t + 1 be an odd number. For each k ∈ K we have

pk
s+1 = P [k = k | gs+1] = P [k = k | ht,m

1
t+1,m

2
t+1] = P [k = k | ht,m

1
t+1] = pk

s ,

the last but one equality following from the fact that, conditional on (ht,m
1
t+1), m2

t+1 and

k are independent.

Sequence of player 2’s payoff (βs)s=0,1,...,N . For each s = 0, . . . , N , define

βs ≡ E[Bk(j) | gs],

and let y = τn+1(gN ).

Lemma 2 The sequence (βs)s=0,...,N is a (bounded) martingale satisfying

(i) β0 = β;

(ii) βN =
∑

k∈K pk
N Bk(y), with y ∈ Y (pN ).

Proof. The martingale property is due to the fact that (βs)s=0,...,N is a sequence of con-

ditional expectations of a fixed random variable by conditioning on more and more infor-

mation. (i) is immediate by the definition of β: β0 = E[Bk(j)] = E
[
E[Bk(j) | k]

]
=

∑
k∈K pkE[Bk(j) | k = k] = β. Next, we have

βN ≡ E[Bk(j) | gN ] = E
[
E[Bk(j) | gN ,k]

]
=

∑

k∈K

P [k = k | gN ]E[Bk(j) | gN ,k = k]

=
∑

k∈K

pk
NE[Bk(j) | gN ] =

∑

k∈K

pk
NBk(τn+1(gN )),

the last but one equality following from the fact that, conditional on gN , j and k are inde-

pendent.11 The equilibrium condition of player 2 implies that y = τn+1(gN ) ∈ Y (pN ). This

completes the proof of the lemma.

11For the last equality, remember that we have extended Bk linearly to mixed actions.
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At this stage, we have constructed (ps)s=0,1,...,N and (βs)s=0,1,...,N that have all the prop-

erties required by the theorem. It remains to construct an appropriate sequence of player 1’s

payoffs, which is more delicate.

Sequence of player 1’s vector payoff (ak
s)s=0,1,...,N , k ∈ K. A first definition that

could come to mind for the characterization of the sequence of player 1’s payoffs is to simply

take E[Ak(j) | gs], which is always well defined. However, it is not relevant, in general,

for type k (except when s = N). To see this, consider a very simple example with one

unilateral communication period (N = 1), two types of equal probability (K = {k1, k2},

p1 = p2 = 1/2), and assume that in the first talking period type k1 sends message m with

probability one and type k2 sends message m′ 6= m with probability one. After message m,

player 2 chooses action j1, and after message m′ he chooses action j2. Then, we would have

E[Ak(j) | g0] = (1/2)Ak(j1) + (1/2)Ak(j2), which is not meaningful for any type k.

A more meaningful definition of k’s expected payoff is E[Ak(j) | gs,k = k]. Unfortunately,

it is not well defined when P [gs = gs | k = k] = 0, and this can happen even when P [gs =

gs] > 0. This can be seen easily in the previous example, where E[Ak(j) | g1 = m′,k = k1]

is not well defined albeit P [g1 = m′] = 1/2 > 0.

Finally, it is worth noticing that the definition used by Aumann and Hart (2003) does

not work in our setup. Indeed, they define the (highest) payoff that player 1 of type k can

achieve against player 2’s strategy τ after the history gs as supσ̃ Eσ̃,τ,p[A
k(j) | gs], where the

supremum is over all strategies σ̃ of player 1 such that Pσ̃,τ,p[gs | k = k] > 0. But this is

not necessarily well defined in our setup even when P [gs = gs] > 0 because a history gs may

contain a message (certificate) that cannot be sent by type k (for example, g1 = m /∈ M(k)).

Hence, we follow a different, and somehow simpler, approach. For each k ∈ K, we

construct the sequence of type k’s (virtual) payoff (ak
s)s=0,1,...,N as follows. Let ak

s = ak
s(gs).

When P [gs = gs | k = k] > 0, we define

ak
s(gs) = E[Ak(j) | gs = gs,k = k],

which is unambiguously type k’s expected payoff given the history gs (and k). Clearly, for

s = 0, ak
s(gs) is always well defined: ak

0(g0) = E[Ak(j) | k = k] = ak. More generally, assume

inductively that ak
s(gs) is well defined, i.e., assume that P [gs = gs | k = k] > 0. If s = 2t − 1

is odd, then gs+1 = (gs,m
2
t ), so P [gs+1 = gs+1 | k = k] > 0 when P [m2

t = m2
t | gs = gs] > 0,

which implies that ak
s+1(gs+1) remains well defined. If s = 2t is even, then we may have a

problem to define ak
s+1(gs+1) because now it is player 1’s message that is added to the history:

gs+1 = (gs,m
1
t+1). Indeed, we may have P [m1

t+1 = m1
t+1 | gs = gs,k = k] = σk

t+1(m
1
t+1 |

ht) = 0 (even when P [m1
t+1 = m1

t+1 | gs = gs] > 0), so P [gs+1 = gs+1 | k = k] = 0. It that
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situation, we let

ak
s+1(gs,m

1
t+1) = ak

s(gs).

First, notice that the equilibrium condition of player 1 implies ak
s(gs) = ak

s+1(gs,m) for all m

such that σk
t+1(m | gs) > 0. Second notice that we will have the same problem in all histories

following (gs,m
1
t+1) (they have probability 0 conditional on k), so we fix more generally k’s

payoff for all these histories: ak
s+l(gs,m

1
t+1, . . .) = ak

s(gs), l = 1, 2 . . .. This construction can

be summarized formally as follows. For each s = 0, . . . , N and k ∈ K define the random

variable fk
s as the longest subhistory of gs satisfying P [fk

s | k = k] > 0 (notice that this

history necessarily ends with player 2’s message, or is equal to gs), and let

ak
s = E[Ak(j) | fk

s ,k = k].

This definition is equivalent to,

ak
s =





E[Ak(j) | gs,k = k], if pk
s > 0

ak
r, if pk

s = 0,

where r is a random variable (stopping time) which is equal to the largest r such that pk
r > 0.

Lemma 3 For every k ∈ K, the sequence (ak
s)s=0,...,N is a (bounded) martingale satisfying

(i) ak
0 = ak;

(ii) ak
s+1 = ak

s for all even s;

(iii) If pk
N > 0, then ak

N = Ak(y), with y ∈ Y (pN ).

Proof. To prove the martingale property we must show that E[ak
s+1 | gs] = ak

s , for all

s = 0, 1, . . . , N . If pk
s+1 = 0, then this property is immediate because by construction we

have ak
s+1 = ak

s = ak
r , where r ≤ s is the largest number such that pk

r > 0. Now, consider

the case pk
s+1 > 0, and let s = 2t − 1 be odd (when s is even, the martingale property will

follow from (ii)). Thus, pk
s > 0 and gs+1 = (gs,m

2
t ), which implies





ak
s+1 = E[Ak(j) | gs,m

2
t ,k = k]

ak
s = E[Ak(j) | gs,k = k].
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So,

E[ak
s+1 | gs] =

∑

m∈supp[τt(gs
)]

P [m2
t = m | gs]E[Ak(j) | gs,m

2
t = m,k = k]

=
∑

m∈supp[τt(gs)]

P [m2
t = m | gs,k = k]E[Ak(j) | gs,m

2
t = m,k = k]

= E[Ak(j) | gs,k = k] = ak
s ,

the second equality following from the fact that m2
t and k are independent conditional on gs.

This proves the martingale property for all odd s. Property (i) is immediate: ak
0 = E[Ak(j) |

k = k] = ak by the definition of ak. To prove (ii) let s = 2t be even, so gs+1 = (gs,m
1
t+1).

As before, when pk
s+1 = 0 the property is immediate because ak

s+1 = ak
s = ak

r , with r ≤ s.

When pk
s+1 > 0, then pk

s > 0 and gs+1 = (gs,m
1
t+1), so





ak
s+1 = E[Ak(j) | gs,m

1
t+1,k = k]

ak
s = E[Ak(j) | gs,k = k].

In such a situation these two terms are equal by the equilibrium condition of player 1 since

every message m1
t+1 player 1 of type k sends with strictly positive probability given gs (and

k = k) should yield the same expected payoff to player 1 of type k:

ak
s =

∑

m∈supp[σk

t+1
(gs)]

P [m1
t+1 = m | gs,k = k]E[Ak(j) | gs,m

1
t+1 = m,k = k]

= E[Ak(j) | gs,m
1
t+1 = m,k = k], for all m ∈ supp[σk

t+1(gs)]

= ak
s+1.

Finally, to prove (iii), assume that pk
N > 0, so

ak
N = E[Ak(j) | gN ,k = k] = E[Ak(j) | gN ]

= Ak(τn+1(gN )) = Ak(y), with y = τn+1(gN ) ∈ Y (pN ),

the second equality following from the fact that j and k are independent conditional on gN ,

and the last from the equilibrium condition of player 2.

Lemma 4 For every s = 0, 1, . . . , N we have as ∈ INTIRsupp[ps]
.

Proof. Let us fix a history gs such that P [gs = gs] > 0 and let supp[ps] ⊆ K, supp[ps] 6= ∅,

be the set of types with a strictly positive posterior probability: pk
s = P [k = k | gs = gs] > 0
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for all k ∈ supp[ps]. We must show that there exists y ∈ ∆(J) such that

E[Ak(j) | gs = gs,k = k] ≥ Ak(y), for all k ∈ supp[ps].

Player 1’s equilibrium condition implies that, whatever his type k ∈ supp[ps], if he sends the

same message m ∈
⋂

k∈K M(k) in all upcoming periods t′ ≥ t (where t = (s + 2)/2 if s is

even, and t = (s + 3)/2 if s is odd), then his expected payoff in the current period (s/2 if s

is even, and (s + 1)/2 if s is odd) is not increased, so

E[Ak(j) | gs = gs,k = k] ≥ E[Ak(j) | gs = gs,m
1
t′ = m ∀ t′ ≥ t,k = k], for all k ∈ supp[ps].

The right hand side only depends on player 2’s strategy and is thus well defined. As a

consequence, given gs = gs and m1
t′ = m ∀ t′ ≥ t, which specifies the sequence of all

player 1’s messages in the talking phase, j and k are independent. This implies

E
[
Ak(j) | gs = gs,m

1
t′ = m ∀ t′ ≥ t,k = k

]
= E

[
Ak(j) | gs = gs,m

1
t′ = m ∀ t′ ≥ t

]

= Ak
(
E

[
τn+1(gN ) | gs = gs,m

1
t′ = m ∀ t′ ≥ t

])
.

(Remember that we have extended linearly Ak to mixed actions.) Hence, by letting

y = E
[
τn+1(gN ) | gs = gs,m

1
t′ = m ∀ t′ ≥ t

]
,

which does not depend on k (it only depends on gs and m), we have completed the proof of

the lemma.

As we have already mentioned, (ps)s=0,1,...,N and (βs)s=0,1,...,N have all the properties

required by Theorem 2 (see Lemma 1 and Lemma 2). By Lemma 3 and Lemma 4, the

sequence (as)s=0,1,...,N also satisfies all the properties of the theorem.

A.2.2 From constrained dimartingale to equilibrium: HB(p) ⊆ EB(p)

Let z = (z0,z1, . . . ,zN ) be a martingale over some probability space (F,F , π) and (finite)

sub σ-fields (Ft)t=1,...,N , satisfying the properties of Theorem 2, with pk > 0 for all k ∈ K,

and N = n. We construct a Nash equilibrium (σ, τ) of the n-stage communication game

Γn(p) with expected payoffs (a, β). First, for convenience we define the martingale z on the

nodes of a probability tree. We introduce a set W with K + 1 elements, write F as W N , and

the atoms of Ft as elements gt of W t. We thus describe the martingale z as

z = (zt(gt))t=0,1,...,n,
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where for each t = 0, 1, . . . , n, gt ∈ W t, and

zt(gt) = (at(gt), βt(gt), pt(gt)) =
∑

w∈supp[π(·|gt)]

π(w | gt) zt+1(gt, w),

for all gt ∈ W t satisfying π(gt) > 0 (this is the martingale property). Notice that this

implies E[zt] = E[zt(gt)] =
∑

gt∈W t π(gt) zt(gt) = z0, t = 0, 1, . . . , n. The properties of the

martingale in Theorem 2 can be restated as follows:

(D1) z0(g0) = z0 = (a, β, p).

(D2) If π(gn) > 0, then (an(gn), βn(gn)) ∈ E(pn(gn)).

(D3) at+1(gt+1) = at(gt) for all even t and pt+1(gt+1) = pt(gt) for all odd t, if π(gt+1) > 0.

The interim individual rationality conditions for player 1 are restated as: for all t =

0, 1, . . . , n, if π(gt) > 0, then at(gt) ∈ INTIRsupp[pt(gt)].

In odd periods t, wt is associated to a message m1
t ∈ M1 of player 1 (player 2’s message

does not affect players’ decisions at these periods), and in even periods t, wt is directly

associated to a jointly controlled lottery (possibly a series of jointly controlled lotteries),

which is not explicitly formalized here.12 Therefore, a history of messages hn consists, with

some abuse of notation, in a message m1
t ∈ M1 of player 1 in each odd period t, and in

a realization wt ∈ W of one or several jointly controlled lotteries in each even period t.

Accordingly, in the remaining of the proof we only construct explicitly player 1’s strategy

σk
t+1, k ∈ K, when t is even, and player 2’s strategy in the action phase, τn+1. The set of

histories of the talking phase up to period t is

Mt =





(M1 × W )t/2 if t is even,

(M1 × W )(t−1)/2 × W if t is odd.

To each sequence gt = (w1, . . . , wt) ∈ W t such that π(gt) > 0 we associate a history

φt(gt) ∈ Mt, with φt(gt) 6= φt(g
′
t) whenever gt 6= g′t, as follows:

φt(gt) = φt(w1, w2, w3, w4 . . . , wt) = (m1(w1), w2,m3(g3), w4, . . .),

where gr = (w1, . . . , wr), r < t, is a subsequence of gt, and for all odd t, mt(gt) ∈ M1,

mt(gt−1, wt) 6= mt(gt−1, w
′
t) whenever wt 6= w′

t, and

M−1(mt(gt)) = supp[pt(gt)].

12The technique is standard; see, e.g., Aumann and Maschler (1995) and Aumann and Hart (2003). Note
that irrational probabilities might lead to infinitely many jointly controlled lotteries (recall Remark 3). For
simplicity, the reader may simply consider wt as a signal publicly observed in even periods.
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Player 1’s strategy σ. For each even period t = 0, 2, 4, . . ., each sequence gt ∈ W t with

strictly positive probability and each type k ∈ supp[pt(gt)] we construct player 1’s local

strategy σk
t+1(φt(gt)). For each w ∈ supp[π(· | gt)], define

σk
t+1(mt+1(gt, w) | φt(gt)) =

π(w | gt) pk
t+1(gt, w)

pk
t (gt)

,

and σk
t+1(m | φt(gt)) = 0 if m 6= mt+1(gt, w) for all w ∈ W .

Player 2’s strategy τ . We construct the local strategy τn+1(hn) of player 2 for each final

history of talk hn ∈ Mn, with and without strictly positive probability (players’ strategies in

the talking phase are irrelevant off the equilibrium path, but player 2’s strategy in the action

phase is very important even after 0-probability histories).

If hn = φn(gn) for some gn ∈ W n such that π(gn) > 0, then by the second property of

the martingale assumed in the theorem, (an(gn), βn(gn)) ∈ E(pn(gn)), so we can define,

y(gn) = τn+1(hn) ∈ Y (pn(gn)) such that





ak
n(gn) = Ak(y(gn)) if pk

n(gn) > 0

βn(gn) =
∑

k∈K pk
n(gn)Bk(y(gn)).

Otherwise, if hn 6= φn(gn) for all gn ∈ W n such that π(gn) > 0, then consider the longest

subsequence gt = (w1, w2, . . . , wt) such that ht = φt(gt) and π(gt) > 0 (note: t may be 0) and

define

τn+1(hn) = y such that ak
t (gt) ≥ Ak(y) for all k ∈ supp[pt(gt)].

This is possible by the individual rationality conditions of the martingale.

Next, we check that (σ, τ) generates the appropriate expected payoffs and constitutes a

Nash equilibrium of Γn(p). Let P = Pσ,τ,p be the probability distribution on Ω = K×Mn×J

induced by (σ, τ) and p, and let E = Eσ,τ,p be the corresponding expectation operator.13

Lemma 5 For all t = 0, 1, . . . , n and gt ∈ W t, π(gt) > 0, we have:

(i) P [ht = φt(gt)] = π(gt);

(ii) P [k = k | ht = φt(gt)] = pk
t (gt) for all k ∈ K.

Proof. By induction on t. For t = 0 property (ii) is immediate: P [k = k] = pk = pk
0(g0).

For t = 1:

13Since JCL are not formalized, P and E also depend on π for the realizations wt ∈ W of JCL (public
signals) in even periods.

36



(i) P [h1 = φ1(g1)] =
∑

k∈K

pkP [h1 = φ1(g1) | k = k] =
∑

k∈K

pkσk
1 (φ1(g1))

=
∑

k∈K

pkσk
1 (m1(g1)) =

∑

k∈K

pk π(g1) pk
1(g1)

pk

= π(g1)
∑

k∈K

pk
1(g1) = π(g1).

(ii) P [k = k | h1 = φ1(g1)] =
P [h1 = φ1(g1) | k = k]P [k = k]

P [h1 = φ1(g1)]

=
σk

1(m1(g1)) pk

P [h1 = φ1(g1)]
=

σk
1 (m1(g1)) pk

π(g1)
by (i) just above

=
π(g1) pk

1(g1)

pk
0

pk

π(g1)
= pk

1(g1).

Now assume that properties (i) and (ii) are satisfied at t, and let us check them at t + 1.

We distinguish two cases: (a) t is odd, i.e., a JCL is added in t+1; (b) t is even, i.e., player 1’s

signal is added in t + 1. Case (a) is simpler because we can exploit the fact that the JCL

does not depend on k. In the rest of the proof of the lemma, let gt+1 = (gt, wt+1) ∈ W t+1.

(a) (i) Since t + 1 is even we have:

P [ht+1 = φt+1(gt+1)] = P [ht+1 = (φt(gt), wt+1)]

= P [ht = φt(gt)]P [ht+1 = (φt(gt), wt+1) | ht = φt(gt)]

= π(gt)π(wt+1 | gt), by property (i) at t

= π(gt, wt+1) = π(gt+1).

(a) (ii) Since t + 1 is even we have:

P [k = k | ht+1 = φt+1(gt+1)] = P [k = k | ht+1 = (φt(gt), wt+1)]

= P [k = k | ht = φt(gt)] because wt+1 and k are independent

= pk
t (gt) by property (ii) at t

= pk
t+1(gt+1) by the third property of the martingale.
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(b) (i) Since t + 1 is odd we have:

P [ht+1 = φt+1(gt+1)] = P [ht+1 = (φt(gt),mt+1(gt+1)]

= P [ht = φt(gt)]P [ht+1 = (φt(gt),mt+1(gt+1)) | ht = φt(gt)]

= π(gt)P [mt+1 = mt+1(gt+1) | ht = φt(gt)], by property (i) at t

= π(gt)
∑

k∈K

pk
t (gt)σk

t+1(mt+1(gt+1) | φt(gt))

= π(gt)
∑

k∈K

pk
t (gt)

π(wt+1 | gt) pk
t+1(gt+1)

pk
t (gt)

= π(gt)π(wt+1 | gt) = π(gt, wt+1) = π(gt+1).

(b) (ii) Since t + 1 is odd we have:

P [k = k | ht+1 = φt+1(gt+1)] =
P [ht+1 = φt+1(gt+1) | k = k]P [k = k]

P [ht+1 = φt+1(gt+1)]

=
P [ht+1 = φt+1(gt+1) | ht = φt(gt),k = k]P [ht = φt(gt) | k = k]P [k = k]

P [ht+1 = φt+1(gt+1)]

=
P [mt+1 = mt+1(gt+1) | ht = φt(gt),k = k]P [ht = φt(gt) | k = k]P [k = k]

π(gt+1)

=
σk

t+1(mt+1(gt+1) | φt(gt))P [ht = φt(gt)]P [k = k | ht = φt(gt)]

π(gt+1)
,

the last but one equality following from property (i) at t + 1, which has been checked just

before. By properties (i) and (ii) at t this yields:

P [k = k | ht+1 = φt+1(gt+1)] =
σk

t+1(mt+1(gt+1) | φt(gt))π(gt)p
k
t (gt)

π(gt+1)

=
π(wt+1 | gt) pk

t+1(gt+1)

pk
t (gt)

pk
t (gt)π(gt)

π(gt+1)
= pk

t+1(gt+1).

This completes the proof of Lemma 5.

Lemma 6 We have:

(i) E[Ak(j) | k = k] = ak for all k ∈ K;

(ii) E[Bk(j)] = β.

Proof. (i) We show by induction on t (starting from t = n) that, for t = 0, 1, . . . , n,

ak
t (gt) = E[Ak(j) | ht = φt(gt),k = k], ∀ k ∈ supp[pt(gt)]. (4)
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In particular, for t = 0, this will lead to what we are required to prove:

ak = ak
0(g0) = E[Ak(j) | h0 = φ0(g0),k = k] = E[Ak(j) | k = k].

Let t = n. If k ∈ supp[pn(gn)], then, by the construction of player 2’s strategy,

ak
n(gn) = Ak(τn+1(φn(gn))) = E[Ak(j) | hn = φn(gn),k = k],

so property (4) is satisfied for t = n. Now assume that the property is satisfied at t + 1 and

let us check it at t. Let k ∈ supp[pt(gt)]. By the martingale property, we have

ak
t (gt) =

∑

w∈supp[π(·|gt)]

π(w | gt) ak
t+1(gt, w).

We distinguish two cases: when t is odd and when t is even.

If t is odd. Then, pt+1(gt, w) = pt(gt) for all w ∈ supp[π(· | gt)], which implies

supp[pt+1(gt, w)] = supp[pt(gt)], so k ∈ supp[pt+1(gt, w)] for all w ∈ supp[π(· | gt)]. Therefore,

by the induction hypothesis, for all w ∈ supp[π(· | gt)] we have

ak
t+1(gt, w) = E[Ak(j) | ht+1 = φt+1(gt, w),k = k],

so ak
t (gt) =

∑

w∈supp[π(·|gt)]

π(w | gt)E[Ak(j) | ht+1 = φt+1(gt, w),k = k]

=
∑

w∈supp[π(·|gt)]

P [ht+1 = (φt(gt), w) | ht = φt(gt),k = k] E[Ak(j) | ht+1 = φt+1(gt, w),k = k]

= E[Ak(j) | ht = φt(gt),k = k].

If t is even. Then, ak
t+1(gt, w) = ak

t (gt) for all w ∈ supp[π(· | gt)], which implies, by the

induction hypothesis,

ak
t (gt) = E[Ak(j) | ht+1 = φt+1(gt, w),k = k],

for all w such that pk
t+1(gt, w) > 0. Hence, ak

t (gt) is also equal to any average of the previous

value, so we get property (4) at t.
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(ii) Player 2’s expected payoff is

E[Bk(j)] =
∑

k∈K

pkE[Bk(j) | k = k]

=
∑

k∈K

pk
∑

hn∈Mn

P [hn = hn | k = k]E[Bk(j) | k = k,hn = hn]

=
∑

k∈K

pk
∑

hn∈Mn

P [hn = hn | k = k]Bk(τn+1(hn))

=
∑

hn∈Mn

P [hn = hn]
∑

k∈K

P [k = k | hn = hn]Bk(τn+1(hn))

=
∑

gn∈W n

π(gn)
∑

k∈K

pk
n(gn)Bk(τn+1(φn(gn)), by Lemma 5

=
∑

gn∈W n

π(gn)βn(gn), by the construction of player 2’s strategy

= E[βn] = β0 = β.

This completes the proof of Lemma 6.

Lemma 7 The strategy τ of player 2 is a best reply to the strategy σ of player 1 in the

n-stage communication game Γn(p).

Proof. Since τn+1(φn(gn)) ∈ Y (pn(gn)) for π(gn) > 0 it suffices to check that pk
n(gn) =

P [k = k | hn = φn(gn)] for all k ∈ K. This has been proved in Lemma 5 (property (ii) with

t = n).

Lemma 8 The strategy σ of player 1 is a best reply to the strategy τ of player 2 in the

n-stage communication game Γn(p).

Proof. Fix t even, gt such that π(gt) > 0 and w such that π(w | gt) > 0. Assume that

player 1’s type k is such that pk
t (gt) > 0. The strategy σ prescribes to send message

mt+1(gt, w) with probability σk
t+1(mt+1(gt, w) | φt(gt)) > 0 and any message which is not

of the form mt+1(gt, w) with probability 0. By construction, player 1 of type k is not able

to send a message m of the form mt+1(gt, w
′) with pk

t+1(gt, w
′) = 0, namely a message m

that is sent along the equilibrium path but is not sent by type k. Furthermore, given the

local strategy τn+1 of player 2 constructed before, by the interim individually rational con-

dition player 1 cannot profit from sending a message m off the equilibrium path, namely a

message m not of the form mt+1(gt, w
′). Finally, if from stage t + 2 on, player 1 follows the

prescribed strategy σ, he cannot gain at stage t+1 by sending mt+1(gt, w) with a probability

different from σk
t+1(mt+1(gt, w) | φt(gt)). Indeed, by the dimartingale property (D3) on page

35 and property (4) on page 38, he is indifferent between all the allowed messages. Hence,
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by an induction argument, player 1 cannot gain by manipulating the probabilities of allowed

messages.

By Lemmas 6, 7 and 8, we have constructed the appropriate strategy profile.

A.3 Proof of Theorem 3

We only give the proof for bilateral persuasion games. The unilateral case is similar and

simpler.

A.3.1 From perfect Bayesian equilibrium to constrained dimartingale

The proof is as in Subsection A.2.1 except that we start from a PBE ((σ, τ), µ) and have to

prove a stronger version of Lemma 4, namely as ∈ INTIRPBE
supp[ps]

for all s = 0, 1, . . . , N .

Fix any history gs such that P [gs = gs] > 0, any set of types X ⊆ supp[ps], where

pk
s = P [k = k | gs = gs] for all k ∈ K, and assume that s = 2t is even (the proof is similar

when s is odd). We have to show that there exists pX ∈ ∆(X) and yX ∈ Y (pX) such that

E[Ak(j) | gs = gs,k = k] ≥ Ak(yX), for all k ∈ X. (5)

Let mX ∈ M1 be such that M−1(mX) = X, and consider any final communication history

in which player 1 sends the message mX in all periods t′ ≥ t after history gs. By belief

consistency condition (d) of Definition 1, we have

µ(gs,mX ,m2
t+1,mX ,m2

t+2, . . . ,mX ,m2
n) ∈ ∆(X),

for any sequence of messages m2
t+1 ∈ M2, m2

t+2 ∈ M2, . . . Furthermore, by belief consistency

condition (e) the above belief does not depend on the sequence of messages m2
t+1, m2

t+2, . . .

sent by player 2, so it is a constant, denoted by pX , for any such sequence. Hence, by the

sequential rationality condition (c) for player 2 we get

τn+1(gs,mX ,m2
t+1,mX ,m2

t+2, . . . ,mX ,m2
n) ∈ Y (pX),

for all sequences of messages m2
t+1, m2

t+2, . . . of player 2. Finally, the sequential rationality

condition (b) for player 1 implies that inequality (5) is satisfied by letting

yX ≡ E
[
τn+1(gN ) | gs = gs,m

1
t′ = mX ∀ t′ ≥ t + 1

]
∈ Y (pX).

Proceeding in the same way for all X ⊆ supp[ps] we get as ∈ INTIRPBE
supp[ps]

.
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A.3.2 From constrained dimartingale to perfect Bayesian equilibrium

Again, the proof follows the same lines as in Subsection A.2.2, except for the construction

of player 2’s strategy in the action phase. If hn = φn(gn) for some gn ∈ W n such that

π(gn) > 0, τn+1(hn) is defined as in the Nash equilibrium case, and player 2’s belief is simply

defined from Bayes’ rule, µ(k | hn) = pk
n(gn). Otherwise, if hn 6= φn(gn) for all gn ∈ W n such

that π(gn) > 0, let gt = (w1, w2, . . . , wt) be the longest subsequence such that ht = φt(gt)

and π(gt) > 0. Since the martingale we start with satisfies at(gt) ∈ INTIRPBE
supp[pt(gt)]

when

π(gt) > 0, we can define

τn+1(hn) = yX ∈ Y (pX) such that ak
t (gt) ≥ Ak(yX) for all k ∈ X,

and µ(k | hn) = pX for some pX ∈ ∆(X), where X = M−1
n (hn) ⊆ supp[pt(gt)].

It remains to show the analogs of Lemma 7 and Lemma 8 for sequential rationality. Given

the strategy σ of player 1 and since the belief function constructed above does not depend

on player 2’s messages, player 2’s strategy in the communication phase, τt for t ≤ n, has no

impact on the outcome of the game. In the action phase, τn+1 is sequentially rational given

µ since by construction τn+1(hn) ∈ Y (µ(hn)) for any final communication history hn ∈ Mn,

along and off the equilibrium path.

Finally, let ht ∈ Mt, t even, be some history such that ht = φt(gt) for some gt ∈ W t with

π(gt) > 0. Player 1 does not deviate in period t + 1 to messages along the equilibrium path

by the same argument as in the Nash equilibrium case. If player 1 deviates in period t + 1 to

a message off the equilibrium path, m1
t+1 6= mt+1(gt, w

′) for all w′ ∈ W , his payoff becomes

Ak(τn+1(ht,m
1
t+1, wt+2,m

1
t+3, wt+4, . . .)) = Ak(yX) ≤ ak

t (gt),

where wt+2,m
1
t+3, wt+4, . . . is some arbitrary sequence of messages, ak

t (gt) is the payoff he

gets when he does not deviate, and X = M−1(ht,m
1
t+1, wt+2,m

1
t+3, wt+4, . . .).

We have not specified what player 1 should do off the equilibrium path, for histories ht 6=

φt(gt) for all gt ∈ W t, π(gt) > 0. But the argument above for player 1 not to deviate does not

depend on how player 1 behaves after period t+1 if he deviates to a message off the equilibrium

path in period t+1, so it applies for any local strategy σt′(ht,m
1
t+1, wt+2,m

1
t+3, . . .), t′ ≥ t+2,

sequentially rational or not.
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