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Abstract

This paper constructs a general equilibrium production economy with heteroge-
neous firms and irreversible investment that rationalizes the value premium. Firm
investments play a central role in explaining the cross-sectional variation of stock
returns. Profitable and fast growing “growth” firms have low expected returns be-
cause they provide “consumption insurance” to investors, especially in bad times.
Countercyclical consumption volatility generates a larger value premium during
recessions. Large firms grow more slowly, so the value premium is larger for small
stocks. The model can replicate the failure of the unconditional CAPM and the rel-
ative success of the conditional CAPM and Fama and French (1993) factor model.
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1 Introduction

“Value” stocks with high book-to-market ratios have earned higher average returns than
“growth” stocks with low book-to-market ratios (Fama and French (1992)). The Capital
Asset Pricing Model (CAPM) fails to explain this pattern in average returns, as market
betas have if anything an opposite pattern. These facts have motivated a large number
of empirically successful asset pricing models that extend the CAPM in various ways (see
Cochrane (2005) for a detailed survey). Despite their empirical success, however, little is
known about the economic mechanism that generates risk, returns and firm characteris-
tics from the underlying nature of investors’ preferences and firms’ technologies.

I develop a general equilibrium model that produces value and size effects. Firms are
subject to aggregate and firm-specific productivity shocks. The firm-specific productiv-
ity shocks generate cross-sectional variation in firm characteristics such as market equity,
book-to-market, investment and capital. Firms face adjustment costs and irreversibility
in investment. The adjustment cost is lower for firms with low capital relative to the
average firm capital. This specification implies that smaller firms invest more and grow
faster, ceteris paribus, an assumption I verify empirically in Gala (2005b). This property
makes the firm marginal and average q different, thus creating expected profitability and
size effects in both firm investment and returns. Investor preferences are simple power
utility. The model aggregates so that a single moment of the joint cross-sectional distri-
bution of firm-specific productivity and capital is a sufficient state variable for aggregate
quantities including the market risk premium.

I investigate the properties of the model through its analytic solution, and I simulate
a calibrated version to study the model’s ability to match facts in the data both quan-
titatively and qualitatively. The model captures the familiar features of the data. First,
value firms with high book-to-market ratios and small firms with low market equity have
higher average stock returns, and the value effect relating book-to-market ratios with
returns is weaker for large firms. Second, the unconditional CAPM fails completely to
capture this variation in average returns. Third, multifactor models such as the Fama-
French (1993) three factor model and a conditional CAPM do capture the pattern of
expected returns.

Most importantly, I relate patterns in the cross section of stock returns to the real
side of the economy. In my model there are two aggregate state variables, the aggregate
productivity shock and the state variable describing the cross-sectional distribution of
capital stocks. Firms are then completely characterized by two additional variables, their
firm-specific productivity shock and their level of capital. Thus, all firm-level variables
including returns, book-to-market ratios, market value, investment and profitability are
functions of firm-specific productivity and capital. As a result, I can characterize correla-
tions between these observable variables. I find in the model and confirm in the data that
firms with low book-to-market ratios have persistently high profitability and investment
rates to go with their low stock returns. I also find that firms with low investment rates
and small capital earn on average higher stock returns. These variables capture expected
profitability and size effects similar to those captured by book-to-market and market
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equity. Expected profitability and size effects arise because at the firm-level marginal q
differs from average q.

Risk premia derive ultimately from covariation with consumption. Investors bid up
the prices of firms whose returns offer consumption insurance, and require a lower pre-
mium to hold their stocks.

A firm’s ability to provide consumption insurance depends on its’ ability to mitigate
aggregate productivity shocks through investment in order to smooth dividends. Cap-
ital adjustment costs and irreversibility are the main impediments to such smoothing.
During bad times — after a sequence of poor aggregate productivity shocks — “value”
firms are more likely to face a binding investment irreversibility constraint. The firms
are unprofitable; they would like to disinvest and sell off their capital stocks, but they
cannot do so. If there is a further negative aggregate productivity shock, there is nothing
they can do to mitigate a further decline in output and dividend. In contrast, growth
firms are investing because they have persistently high profitability. They only face ad-
justment costs, smaller for small firms, to doing so. In the face of a negative aggregate
productivity shock, they can easily lower investment and maintain their dividend in this
high marginal utility state. Thus, the dividends of growth firms, and especially of small
growth firms, will fall less than those of value firms when there is a fall in aggregate
productivity. Value firms are riskier, and this difference is larger among small firms.

In good times, value firms are less likely to face a binding irreversibility constraint,
so this difference between value and growth firm’s ability to provide a smooth dividend
stream is smaller in good times. Furthermore, the market price of aggregate productivity
risk also rises in bad times. With more firms up against the irreversibility constraint,
aggregate consumption growth becomes more volatile. Therefore the greater risk of value
firms shows up in a conditional beta that is high in bad times when the market premium
is high, but not necessarily in a high unconditional beta.

In simulations, I find that the unconditional CAPM fails to price book-to-market
sorted portfolios — this theoretical possibility is quantitatively important. There is virtu-
ally no cross-sectional variation among unconditional market betas. The actual difference
in average stock returns between the highest and the lowest book-to-market portfolios is
6.7%, but the unconditional CAPM only predicts -0.2%.

I find that multifactor models including a conditional CAPM and the Fama-French
three factor model do quite well. In the model, there is one extra state variable that cap-
tures the cross-sectional distribution of firm capital, and thus all cross-sectional statistics
as well as all conditioning information for aggregate returns depend on this variable
along with aggregate productivity. The relative success of a conditional CAPM means
that conditioning variables such as the dividend yield capture the information in these
state variable for time-varying betas and market risk premiums. To interpret the success
of the Fama-French model, I note that firms’ market betas can be represented as an av-
erage of betas for assets in place and betas for growth options. The Fama-French factors,
HML and SMB, provide good proxies to account for the covariation of each market betas’
component and the market risk premium.
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Comparison to the literature

My model builds on the work of Gomes, Kogan and Zhang (2003), who construct
a multiple-firm general equilibrium model that links expected returns to size and book-
to-market characteristics. My work differs from theirs along several dimensions. They
model “projects”, while I model “firms”. In their economy, projects have ex-ante iden-
tical productivity, and once adopted, variation in the project-specific productivity only
affects that project’s capital. As in the standard Q - theory of investment, in my model
variation in firm productivity affects current investment decisions and the entire stock of
the firm’s capital. As a consequence, my model not only can rationalize the positive rela-
tion between profitability and investment, but also makes the allocation of capital among
firms with different productivities a new state variable for the dynamics of aggregate and
firm-level variables.

Zhang (2005) also focuses on the relation between the value premium and firm invest-
ments using a neoclassical model with adjustment costs and costly reversibility. Zhang
closes the model with an exogenous countercyclical market price of risk and solves the
model numerically. My model is a full general equilibrium model, solved analytically, in
which risk premia derive from investor’s risk aversion and the equilibrium consumption
stream. My model also goes beyond Zhang (2005) by replicating the failure of the CAPM
and the relative success of alternative asset pricing models.

Santos and Veronesi (2005), construct a general equilibrium endowment economy —
the dividend of the various firms is specified exogenously, but they include habit persis-
tence preferences to make a closer link between the cross-section and aggregate puzzles.
Their model also finds that a conditional CAPM and the Fama and French HML factor
outperform the unconditional CAPM.

The number of papers exploring the implications of production and investment on the
cross-section of stock returns has been growing rapidly. Additional contributions include
Berk, Green, and Naik (1999), Gomes, Yaron and Zhang (2002), Xing (2002), Cooper
(2003), Carlson, Fisher and Giammarino (2003), Gourio (2004), and Tuzel (2005).

2 The Economy

I consider an economy populated by a continuum of heterogeneous firms that produce a
single nondurable consumption good (numeraire). Firms differ in the level of productivity
and in the stock of physical capital they own. The flow of output can either be used
for investment in physical capital or it can be paid out as dividends and consumed
by households. Households are identical and derive income from accumulated financial
wealth, which consists of riskless bonds in zero net supply and risky assets in positive
net supply. The risky assets represent claims to firms’ dividends. All agents are perfectly
competitive in that they formulate optimal policies taking economy wide state variables
as given. In the rest of the section, I describe the environment where the interaction of
households and firms takes place, followed by the characterization of the equilibrium.
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2.1 Firms

Firms are infinitely-lived and all-equity financed. Given their production and investment
technologies, they formulate optimal investment policies to maximize the value of equity.
I assume that the set of firms z is exogenously fixed and I use subscript i to index an
individual firm.

2.1.1 Production

Consider a competitive firm that uses capital, K, to produce a nonstorable output flow,
Y , according to a constant return to scale technology:

Yit = (e
atxit + f)Kit (1)

where a and x denote economy wide and firm specific stochastic productivity, respectively.
The parameter f represents a common time-invariant component of the firm marginal
productivity of capital. Depending on its sign, f might be interpreted as a constant
operating cost (f < 0) or revenue (f > 0) per unit of installed capital.

The productivity index a is common to all firms and evolves stochastically according
to the process:

dat = κa (a− at) dt+ σadWat (2)

whereWa is a standard Brownian motion. This process is a standard linear mean revert-
ing process with constant speed of mean reversion, κa ∈ R++, stationary mean, a ∈ R++,
and constant volatility, σa ∈ R++. The stochastic nature of the economy wide produc-
tivity introduces aggregate uncertainty, thus ensuring the existence of an ex-ante equity
premium, which would otherwise equal zero.

The firm specific productivity x evolves according to the mean reverting square root
process:

dxit = κx (x− xit) dt+ σx
√
xitdWit (3)

where κx ∈ R++ denotes the speed of reversion to the stationary mean x ∈ R++, and
σx ∈ R++ the constant volatility loading on a scalar standard Brownian processWi. Firm
specific productivity shocks are idiosyncratic: they are independent of each other and of
all other sources of randomness in the economy. The stationary distribution of the firm
specific productivity is the same for all firms. Hence, differences in firms’ productivity
are driven by different paths in the Brownian innovations,Wi. This assumption has both
an economically appealing interpretation and an analytic advantage. From an economic
perspective, the firm specific productivity x captures the firm “competitive advantage”.
Given the transitory nature of x, the common stationary mean x guarantees that no
single firm can sustain indefinitely its “competitive advantage”, while the common speed
of mean-reversion κx makes each firm equally able to preserve its short-term “competitive
advantage”. From an analytic point of view, it has the advantage that a law of large
numbers (LLNs) for i.i.d. data can be applied to determine the conditional moments of
the cross-sectional distribution of firm specific productivity.
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The mean reversion property in (2) and (3) is important. At the aggregate level,
economic growth is endogenously generated by accumulation of physical capital. Hence,
mean-reversion in the stochastic productivity process, a, prevents the growth rate of
output from exploding. At the firm level, mean reversion is necessary to obtain a non-
degenerate equilibrium cross-sectional distribution of firms’ productivity and capital.
That is, it ensures that no firm will come to ever dominate the whole economy. This is
consistent with the cross-sectional evidence on the negative relation between growth rates
and size (e.g. Hall (1987), Evans (1987) and Gala (2005b)), as well as with the empirical
evidence on the existence of a significant degree of heterogeneity and persistence in firms’
productivity (e.g. Bartelsman and Doms (2000)).

2.1.2 Investment

The stock of capital Ki depreciates at a common fixed rate 0 ≤ δ ≤ 1 and it increases
by undertaking gross investment at a rate Ii. Hence, the stock of capital accumulates
according to the law of motion:

dKit = (Iit − δKit) dt; Kit ≥ 0 ∀t. (4)

Firms use an adjustment cost technology featuring investment irreversibility. In order
to undertake gross investment of Ii units of capital, Ii units of output must be set aside
to be installed as capital, together with c (Ii, ·) units which are used during installation.
Thus gross investment at a rate Ii has an opportunity cost of Ii+ c (Ii, ·) units of output.
The adjustment cost c (Ii, ·) has the following functional form:

c (Ii, Ki, ki) = αk
1

n−1
i

Ã
Ii − bIi
Ki

! n
n−1

Ki (5)

where α ∈ R++ is the adjustment parameter and n ∈ {2, 4, 6, ...} controls the degree
of curvature in (5).1 The adjustment cost function is strictly increasing and convex in
firm investment Ii reflecting the fact that the more units of additional capital a firm
attempts to incorporate into the existing one, the less effective those units are on the
margin at expanding firm capacity. Only investment in excess of a minimum level bIi
requires additional costs in excess to the purchase costs of investment. The adjustment
cost technology in (5) departs from the traditional formulation in that adjustment costs
are scaled by the firm relative capital, defined as the ratio of the firm capital to aggregate
(average) capital, ki ≡ Ki/K, where K ≡

R
i∈zKidi.

2

The introduction of the scaling variable, ki, implies an adjustment cost function with
increasing return to scale in Ii and Ki, which makes firm growth less costly for firms with

1Although firm investment are irreversible, restricting the value of n to lie in the set of even integers,
guarantees the existence of a one-to-one correspondence between investment and marginal q. Abel and
Eberly (1997) use a similar adjustment cost specification in a model of firm investment decisions.

2Throughout the paper, I use the symbol
R
i∈z [·] di to denote aggregation over the set of firms z.
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low capital relative to the average firm capital. This increasing return to scale property
is consistent with the empirical evidence on the negative relation between firm growth
and firm relative size as discussed in more details in Gala (2005b).

The linear homogeneity property of the adjustment cost function in Ii, Ki and K,
is consistent with the independence of growth and size at the aggregate level. This last
property favors scaling effects induced by the firm relative size, ki, rather than firm size
Ki. Therefore, the adjustment cost function (5) is jointly consistent with (i) the negative
relation between growth and relative size at the firm-level, and (ii) the independence of
growth and size at the aggregate level. While any increasing return to scale adjustment
cost function can generate (i), not all of them can jointly generate (i) and (ii), unless the
adjustment cost function exhibits increasing and constant return to scale at the firm and
aggregate level, respectively.

The set of feasible investment policy is restricted to firm investment, Ii, in excess or
equal to a minimum level, bIi ≥ 0. The minimum level of investment, bIi, might be inter-
preted as a recurring investment necessary to keep the firm installed capital productive
by partially replacing worn out equipment. The minimum level of investment is propor-
tional to the firm capital, bIi = biKi, where 0 ≤ bi < δ.3 Given that excess investment
is irreversible and bi < δ, firm capital can only decrease via depreciation and remains
positive at all times. The restriction placed on the set of feasible investment policy not
only ensures the positivity of firm capital, but also prevents firms from partitioning into
smaller parts, which in turn guarantees that the competitive equilibrium is well-defined.

The adjustment cost function (5) has also an important analytic advantage: it reduces
the number of economy wide state variables to be only the economy wide productivity
a and the second moment of the (joint) cross-sectional distribution of firm specific pro-
ductivity xi and stock of capital Ki. Under the traditional adjustment cost formulation
the number of state variables would be an infinite dimensional object, that is it would
be necessary the knowledge of the entire (joint) cross-sectional distribution of firm spe-
cific productivity xi and stock of capital Ki to compute aggregate quantities and prices.
This formulation allows me to focus on an exact general equilibrium solution rather than
resorting to approximate solutions.

Firms’ equity represent claims on the stream of future dividends, which equal oper-
ating profits net of investment costs:

Di = (e
axi + f)Ki − Ii − αk

1
n−1
i

Ã
Ii − bIi
Ki

! n
n−1

Ki. (6)

Taking economy wide state variables as given, firms choose the optimal investment strat-
egy so as to maximize the expected present value of future dividends.

3Restricting the set of feasible investment policy to nonnegative excess firm investments (Ii− bIi ≥ 0)
rather than to nonnegative firm investments (Ii ≥ 0), while preserving the same model implications about
the cross-section of investment and stock returns (as long as bi < δ), has the advantage of simplyfing the
model solution as well as ensures the existence of well-defined investment growth rates.
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2.2 Households

There is a continuum of identical infinitely lived households, who derive utility from the
consumption flow of the nonstorable consumption good, Ct. The economic behavior of
the entire household population can then be modeled as a single representative household,
which I assume has standard time-separable preferences:

U ≡ E0
·Z ∞

0

e−ρt
C1−γ
t

1− γ
dt

¸
(7)

where ρ ∈ R++ denotes the subjective discount rate and γ ∈ R++ is the Arrow-Pratt
coefficient of relative risk-aversion. Households derive income only from accumulated
financial wealth,Wt. Financial markets consist of a complete set of risky assets in positive
net supply and a riskless bond in zero net supply. I assume that financial markets are
perfect in that there are no frictions and no constraints on short sales or borrowing.

Taking the prices of all financial assets as given, the representative household chooses
paths of consumption {Ct}t≥0 to maximize its lifetime utility (7) subject to the budget
constraint:

Et

·Z ∞

0

Λt+s

Λt
Ct+sds

¸
≤Wt. (8)

In a complete financial market the term Λt+s/Λt denotes the unique pricing kernel de-
termining prices of all financial assets.

2.3 Equilibrium

With the description of the economic environment complete, the equilibrium of the model
is characterized in two steps. First, I characterize the partial equilibrium optimal invest-
ment policy and the dynamics of the economy wide state variables. Second, I characterize
the general equilibrium allocations and prices.

The optimality condition characterizing the equilibrium households’ consumption pol-
icy implies a well-know relation between consumption and the pricing kernel:

Λt+s

Λt
= e−ρs

µ
Ct+s

Ct

¶−γ
. (9)

The pricing kernel equals the marginal rate of intertemporal consumption substitution.
In general equilibrium, the optimal aggregate consumption equals aggregate dividends
as determined by the market clearing conditions.

In order to solve for the equilibrium, it is necessary to identify the state variables
characterizing the dynamics of the aggregate state of the economy. As shown in the fol-
lowing propositions, the key aggregate state variables are the economy wide productivity
a and the variable ω, which represents a capital-weighted average of the firm specific
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productivities:

ωt ≡
Z
i∈z

xit
Kit

Kt
di =

Z
i∈z

xitkitdi. (10)

This variable quantifies the conditional cross-sectional covariation between the firm spe-
cific productivity, x, and its relative capital, k. The persistence of the firm specific
productivity and the path-dependent nature of the firm capital stock imply a nonzero
endogenous cross-sectional covariation whenever firms condition their investments opti-
mally on their current productivity. Given that the x’s are cross-sectionally i.i.d., a law
of large numbers for i.i.d. random variables implies that the cross-sectional distribution
of firm specific productivity x is time-invariant and equals its steady-state distribution.
Therefore, any change in ω reflects changes in the cross-sectional distribution of firm
relative capital, k. I conjecture and verify that ω follows a singular diffusion process:

dωt = µω (at, ωt) dt. (11)

whose drift is only a function of a and ω itself. Let It denote aggregate investment defined
as It ≡

R
i∈z Iitdi. Given that firm capital depreciates at a common rate δ, it follows that

the aggregate stock of capital, Kt, accumulates according to:

dKt = (It − δKt) dt; Kt ≥ 0 ∀t. (12)

Using the dynamics of firm and aggregate capital stocks, the firm relative capital ki
evolves according to:

dkit = kit (iit − it) dt (13)

where I conjecture and verify that the firm investment rate depends on xi, ki, a and
ω, and the aggregate investment rate is only a function of the aggregate state variables
a and ω. The conjecture that a and ω are the only relevant aggregate state variables
implies that the pricing-kernel, Λ, evolves stochastically according to:

dΛt

Λt
= −r (at, ωt) dt− λ (at, ωt) dWat (14)

where r and λ depend only on a and ω. As shown in the following propositions, all
the relevant information about the aggregate state of the economy contained in the
(joint) cross-sectional distribution of x and k can be sufficiently summarized by its second
moment, ω. While solving for the equilibrium, I verify that (i) a and ω are the only state
variables sufficient to describe the aggregate state of the economy; and (ii) the equilibrium
dynamics of ω, k and Λ satisfy the conjectured laws of motion given in (11), (13) and
(14), respectively.

The following proposition states the partial equilibrium optimal firm investment pol-
icy.

Proposition 1 (Optimal Investment Policy) Given the dynamics of ω, k, and Λ
described in (11), (13) and (14), the optimal firm investment policy i∗i ≡ I∗i /Ki can be
characterized as

i∗i =bi+µn− 1αn

¶n−1
(qi − 1)n−1 k−1i 1{qi≥1} (15)
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with the firm marginal q given by

qi ≡ q (a, ω, xi) = xq (a, ω) + [xi − x] bq (a, ω) (16)

and q (a, ω), bq (a, ω) defined as
q (at, ωt) = Et

·Z ∞

0

e−(δ−
bi)sΛt+s

Λt

h
eat+s + x−1

³
f −bi´i ds¸ (17)

bq (at, ωt) = Et

·Z ∞

0

e−(κx+δ−
bi)sΛt+s

Λt
eat+sds

¸
. (18)

Proof: See Appendix.

The optimal investment policy in (15) originates from the optimality condition requir-
ing a firm to invest till the marginal benefit of investment as measured by its marginal q
equals its marginal opportunity cost.

The optimal investment rate in (15) can be decomposed into a minimum investment
rate and an excess investment rate. The optimal firm investment rate equals its min-
imum level for binding irreversibility constraint, and exceeds the minimum investment
rate, otherwise. The minimum investment rate, bi, represents the firm investment com-
mitment to partially replace worn out capital necessary to keep currently installed capital
productive. The excess investment contributes to the firm growth of capital and depends
on the firm marginal qi, the firm relative size ki and the model parameters α and n.

The firm marginal q measures the contribution of a marginal increase in the firm stock
of capital to the market value of its equity. It is equal to the expected present value of the
future stream of marginal operating profit net of the minimum investment expenditures
accruing to the firm installed capital. Given the absence of arbitrage or equivalently
the strictly positivity of the pricing-kernel Λ, the parameters’ restriction f ≥ bi suffices
to ensure the positivity of the firm marginal q.4 The factor exp

³
−
³
δ −bi´´ in (17)

and (18) captures the fact that productive capital effectively depreciates at a rate δ −bi
lower than its economic depreciation δ because of the firm minimum investment. The
firm marginal q is increasing in the state variables a, ω and x reflecting the fact that
high productivity values make the stock of capital more valuable to a firm. While the
function q represents the component of the marginal q common to all firms, the functionbq captures the sensitivity of the producer’s marginal q to its firm specific productivity.
In other words, it quantifies the extra contribution to the market value of firm capital
attributable to a firm relative competitive advantage as measured by its firm specific
productivity in excess to the market average, xi − x. Furthermore, bq is uniformly below
q, since it discounts a smaller stream of cash flows (provided f ≥bi) at a higher rate.
While the size of the firm minimum investment is proportional to the firm capital,

the size of excess investment is inversely proportional to the cost of capital adjustment.

4Given that the utility function in (7) satisfies the Inada conditions, the equilibrium aggregate con-
sumption process is always strictly positive, which implies the absence of arbitrage.

10



This cost is increasing in the adjustment parameter α, the degree of convexity in the
adjustment cost function controlled by n, and the firm relative capital ki.

Equation (15) shows that, ceteris paribus, firm excess investment rate declines with
firm relative capital a result consistent with the empirical evidence in Gala (2005b). The
resulting negative relation between firm growth and relative size stems from the positive
relation between the firm marginal cost of excess investment and its relative size.

This feature of the model emerges clearly if we interpret the factor
¡
n−1
αn

¢n−1
k−1i in

(15) as the adjustment time of the firm capital stock given one unit change in marginal q
(e.g. Shapiro (1986) and Hall (2001)). For instance, in the case of quadratic adjustment
costs (n = 2), if q rises by one unit, the firm investment rate will rise by 1/2αki. To
cumulate to a unit increase, the flow must continue at this level for 2αki periods. The
lower the firm relative size the shorter the time it takes a firm to cumulate a unit increase
in its investment rate. Thus, small firms can double their size in a shorter period of time
relative to big firms, ceteris paribus.

The model also implies that small firms (low ki) tend to growth faster than big firms
(high ki), especially during economic booms. This is due to the fact that a positive
economy wide productivity shock a by increasing the marginal benefit of investment
(marginal q is increasing in a) amplifies the negative relation of firm growth rates and
relative size.

For firms with positive excess investment, the elasticity of investment rate with respect
to relative size takes on values between minus one and zero. The importance of scale
effects in firm investment rates can be controlled by the parameters bi and α. The higher
their values the lower the elasticity of investment rate with respect to relative size.

2.3.1 Heterogeneity and Aggregation

The following proposition states the aggregate (average) quantities computed by aggre-
gation of their firm-level counterparts. To compute aggregate quantities I appeal to a
law of large numbers for a continuum of i.i.d. random variables.5 According to the firm
optimal investment policy in (15) a firm face a binding irreversibility constraint when-
ever its marginal q falls below one, or equivalently using equation (16), xi falls below the
threshold ext ≡ ex (at, ωt) = [1− x (qt − bqt)] /bqt, where ex ∈ [0, 1/bq).
Proposition 2 (Aggregate Quantities) Define θ ≡ 2κx/σ2x and υ ≡ 2κxx/σ2x. Then,
the equilibrium aggregate output Y can be represented as

Y ≡
Z
i∈z

Yidi = (e
aω + f)K, (19)

5The techniques needed to prove the existence of a continuous-time i.i.d. process satisfying the strong
law of large numbers were developed by Dobb (1953 chapter II), and an existence proof has been given
in full by Judd (1985). Aside from technicalities, alternative models of law of large numbers for large
economies have been formalized in Feldman and Gilles (1985), Uhlig (1990), Anderson (1991) and Green
(1994).
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the aggregate investment, I∗, can be characterized as

I∗ ≡
Z
i∈z

I∗i di =

"bi+µn− 1
αn

¶n−1
g (a, ω;n− 1, 1)

#
K, (20)

and similarly the aggregate dividend, D∗, can be written as

D∗ ≡
Z
i∈z

D∗
i di = Y − I∗ − α−(n−1)

µ
n− 1
n

¶n

g (a, ω;n, 1)K (21)

where

g (a, ω;m1,m2) ≡ bqm1

m1X
k=0

Γ (m1 + 1)ΓU (k + υ, θex)
Γ (m1 + 1− k)Γ (k +m2)Γ (υ)

(−ex)m1−k θ−k (22)

and Γ and ΓU denote the gamma and the upper incomplete gamma function, respectively.

Proof: See Appendix.

As shown in (19), the stochastic component of the aggregate marginal productivity of
capital can be represented as the product of two terms: the exogenous productivity index
a, and the endogenous productivity index ω. This last one accounts for the distribution
of capital among firms with different productivity.

Aggregate investment is proportional to aggregate capital, which implies that the
growth of aggregate capital is scale independent, consistently with the empirical evidence
in Gala (2005b). The aggregate investment rate is procyclical since it results from a
capital-weighted average of a convex transformation of the firm marginal q.

Aggregate dividends are linearly homogeneous in aggregate capital. This makes the
model equivalent to an “Ak” model of stochastic growth augmented by an adjustment
cost technology. To ensure nonstochastic perpetual growth, it is sufficient to impose
the condition that (eax+ f − δ) > ρ. If this condition were not satisfied, and instead
(eax+ f − δ) < ρ, then the economy would shrink towards zero.

The following proposition characterizes the dynamics of the state variable ω repre-
senting the endogenous component of aggregate productivity.

Proposition 3 (Dynamics of ω) The endogenous component of aggregate productiv-
ity, ω, evolves according to the singular stochastic process:

dω =

½h
κx + i−bii (x− ω) +

³
i−bi´ θ−1g (a, ω;n− 1, 0)

g (a, ω;n− 1, 1)
¾
dt (23)

with the function g (·) defined in (22).

Proof: See Appendix.
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The irreversibility of firm investment prevents firm capital from being negative and
thus ensures the positivity of ω. However, we can say more about the minimum attainable
value of ω: the state variable ω is bounded from below by x. This is due to the fact that
at any time there is nonnegative cross-sectional covariation between the firm capital stock
and its firm specific productivity, since firm gross investment endogenously increases with
its productivity and the stock of capital depreciates at a common rate.

By the law of large numbers the cross-sectional distribution of firm specific produc-
tivity x is time-invariant and equals its steady-state distribution. Therefore, the state
variable ω tracks the evolution of the capital allocation among firms with different pro-
ductivity. When the capital is uniformly distributed across firms, which is when each firm
has a capital stock equal to the aggregate (average) capital, ω is equal to the steady-state
mean of the firm specific productivity x. The higher the concentration of capital among
more productive firms, the higher the value of ω.

The instantaneous change in the state variable ω is driven by two forces. First, the
component in square brackets in (23) is positive and tend to pull ω back to its lower
bound x. This reverting force is offset by the second component in (23) which is always
positive and increasing in the current value of ω. The first force is induced by the negative
relation between firm growth and relative size: small firms tend to growth faster than
big firms thus attenuating the cross-sectional dispersion in firm capital share. This effect
becomes stronger during booms, when all firms benefit of the procyclical variation in their
shadow value of capital. The second force tend always to increase ω and it is stronger
the higher the cross-sectional dispersion of firm specific productivity and the better the
current state of the economy. For a given firm relative size distribution, the higher the
cross-sectional dispersion of firm specific productivity, the higher the value of ω, since
more firms are concentrated on the right tail of the x distribution.

Indeed, the presence of these offsetting forces prevents the firm relative capital distri-
bution from degenerating into a spike. Finally, the fact that ω is a sufficient statistic for
the characterization of the aggregate state of the economy is the by-product of the linear
production technology and the independence of firm excess investment from its capital
stock.

2.3.2 Equilibrium Allocations

With the characterization of the optimal firm policies and aggregate quantities complete,
I now state the definition of the competitive general equilibrium.

Definition 4 (Competitive Equilibrium) A competitive general equilibrium is sum-
marized by stochastic processes for the pricing kernel Λ, the optimal consumption policy
C∗, and the optimal firm investment policy I∗i , such that:(i) taking asset returns as given,
the representative household maximizes its expected utility (7), subject to the budget con-
straint (8); (ii) taking the pricing kernel and aggregate capital as given, producers make
investment decisions according to (15); (iii) consumption good market clears, C∗ = D∗.
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The following proposition establishes the general equilibrium consumption and in-
vestment policies as the solution to a system of two partial differential equations and two
algebraic equations.

Proposition 5 (Equilibrium Allocations) The competitive equilibrium is character-
ized by the optimal firm investment policy i∗ (a, ω, xi, ki) described in (15) - (16), and
consumption policy C∗ (a, ω,K), which satisfy:

C∗ (a, ω,K) = c∗ (a, ω)K (24)

and

c∗ = eaω + f −bi−µn− 1
αn

¶n−1 ·
g (a, ω;n− 1, 1) +

µ
n− 1
n

¶
g (a, ω;n, 1)

¸
(25)

with the function g (·) defined in (22), and
q = c∗ (a, ω)γ Φ (a, ω) (26)bq = c∗ (a, ω)γ bΦ (a, ω) (27)

where the functions Φ (a, ω) and bΦ (a, ω) satisfy the partial differential equations (79) -
(80) in Appendix.

Proof: See Appendix.

The general equilibrium framework allows me to provide a consumption-technology
based explanation of the behavior of investment and asset prices at both firm and aggre-
gate levels.

The general equilibrium analysis differentiates my model from most of the existing
literature, which instead proceed by keeping the pricing kernel entirely exogenous, thus
separating the optimal investment decisions from the consumption allocation.

An exception in the existing literature is the general equilibrium analysis of Gomes,
Kogan and Zhang (2003), who first proposed a general equilibrium framework for the
analysis of the cross-section of asset returns. For the sake of analytical tractability,
they assume that firm capital investment is ex-ante independent of current productivity.
Although counterfactual, this assumption enables them to characterize the aggregate
economy separately from the cross-section of firms. In my framework, the cross-section of
firms is endogenous and affect the aggregate economy so that cross-sectional heterogeneity
can indeed have asset pricing implications at both the aggregate and firm level.

2.3.3 Equilibrium Asset Prices

I now characterize the economy wide financial investment opportunity set, including both
aggregate and firm level stock prices.
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Financial Investment Opportunity Set The following proposition summarizes the
results for the equilibrium values of the risk-free rate, r, and the market price of produc-
tivity risk, λ.

Proposition 6 (Financial Investment Opportunity Set) The aggregate investment
opportunity set is characterized by the equilibrium instantaneous risk-free rate:

r (a, ω) = ρ+ γ
Da,ω,K [C∗]

C∗
− 1
2
γ (γ + 1)σ2a

·
∂aC

∗

C∗

¸2
(28)

and the equilibrium instantaneous market price of productivity risk:

λ (a, ω) = γσa
∂aC

∗

C∗
(29)

where Da,ω,K [·] denotes the infinitesimal generator of the stochastic processes a, ω and
K :

Da,ω,K [M (·)] = κa (a− a) ∂aM (·)+ σ2a
2
∂2aaM (·)+µω (a, ω) ∂ωM (·)+(I∗ − δK) ∂KM (·) .

(30)

Proof: See Appendix.

As conjectured in (14), both the risk-free rate and the market price of productivity
risk are only function of the economy wide productivity a and the state variable ω.

Aside from technicalities, the economic intuition behind equations (28) - (29) is quite
simple. The risk-free rate is increasing in the subjective discount rate ρ, and the ex-
pected growth rate of aggregate consumption D [C∗] /C∗. Those components reflect in-
tertemporal substitution motives. The higher households’ impatience and the expected
consumption growth, the higher households’ willingness to substitute future for current
consumption. Then, households would like to borrow, driving up the equilibrium risk-
free rate. The last term in (28) reflects precautionary savings motives. As aggregate
uncertainty increases, households are more willing to save, driving down the equilibrium
risk-free rate.

The market price of productivity risk represents the equilibrium premium per unit of
risk that households require to hold the market portfolio and hence bear the systematic
risk of aggregate consumption fluctuations. It is increasing in the household’s coefficient
of relative risk aversion γ, the volatility of economy wide productivity σa and the sen-
sitivity of aggregate consumption to changes in economy wide productivity ∂aC

∗/C∗.
The higher the aggregate consumption sensitivity to economy wide productivity shocks,
the higher the uncertainty of the economy wide productivity and the more risk-averse
the households, the higher the unit risk premium required to hold claims on aggregate
consumption.
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Individual Firm Asset Prices. Firms’ equity represent claims on the dividends paid
out to shareholders. The following proposition characterizes the equilibrium market value
of an individual firm, Vi.

Proposition 7 (Equilibrium Firm-Level Asset Prices) The market value of indi-
vidual firm, Vi, is determined by

Vi = Et

·Z ∞

0

Λt+s

Λt
Di

t+sds

¸
= q (a, ω, xi)Ki + h (a, ω, xi)K (31)

where the firm marginal q (i.e. ∂Vi/∂Ki) is described in (16) and the firm marginal h
(i.e. ∂Vi/∂K) is determined by:

h (a, ω, xi) = c∗ (a, ω)γ H (a, ω, xi) (32)

where the function H (a, ω, xi) satisfies the partial differential equation (88) provided in
the Appendix.

Proof: See Appendix.

From equation (31), the market value of individual firms Vi is characterized as the
sum of two components, Vi = V A

i + V O
i . The first component is the value of “assets in

place”: the present value of the firm future operating profits accruing to the firm stock
of capital currently in place, and it is given by

V A
i = q (a, ω, xi)Ki. (33)

The firm marginal q described in (16) quantifies the present value of the firm future
operating profits per unit of installed capital accounting for its effective economic depre-
ciation.

The second component is the value of “growth opportunities”: the present value of
rents accruing to the firm from the adjustment technology, and it is determined by

V O
i = h (a, ω, xi)K. (34)

The function h (a, ω, xi) represents the marginal contribution to the firm market value
of a reduction in the capital adjustment cost. Specifically, the firm marginal h quantifies
the marginal gain in the firm market value of a decrease in the firm relative size. The
average capital in (34) arises because each firm benefits from the investment activity of
other firms in the economy. That is, the value of “growth opportunities” represents the
value of the option to use capital investments in order to take advantage of the current
economic conditions. The higher the average capital in the economy, the lower the firm
relative size, the lower the capital adjustment cost, and the more valuable this option.

In the absence of arbitrage, h (a, ω, xi) is positive and increasing in the state variables
a, ω and xi reflecting the fact that a marginal decrease in the marginal cost of investment
is more valuable the higher the firm productivity.
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The non-homogeneity property in the firm cash flow translates one-to-one into the
firm market value, thus creating a wedge between the firm marginal q (i.e. ∂Vi/∂Ki) and
the firm Tobin’s Q (i.e. Vi/Ki): the value of growth opportunities per unit of installed
capital, (hiK) /Ki. The higher the firm profitability and the lower the firm relative size
the larger this wedge.

Aggregate Market Value. The aggregate stock market value is defined as the price
of a claim to aggregate consumption, which in equilibrium equals aggregate dividends.
The law of one price and the absence of arbitrage ensure that its value can be computed
by aggregating individual firm market values. Equivalently, it can be directly computed
as the expected present value of future consumption streams. The following proposition
characterizes the equilibrium stock market value, V .

Proposition 8 (Equilibrium Stock Market Value) The stock market value, V , is
determined by

V = [qm (a, ω) + hm (a, ω)]K (35)

where qm denotes the average firm marginal q:

qm (a, ω) = xq (a, ω) + [ω − x] bq (a, ω)
with the functions q and bq described in (26) - (27), and the function hm represents the
average firm marginal h:

hm (a, ω) = c∗ (a, ω)γ Hm (a, ω) (36)

where the function Hm satisfies the partial differential equation (94) provided in the Ap-
pendix.

Proof: See Appendix.

In line with the decomposition of individual firm market value, I characterize the
aggregate stock market value V as the sum of the value of aggregate assets in place, V A,
and the value of aggregate growth opportunities, V O. The value of aggregate assets in
place is the present value of the aggregate operating profits accruing to the aggregate
stock of capital currently in place, and it is given by

V A ≡
Z
i∈z

V A
i di = qm (a, ω)K = [xq (a, ω) + [ω − x] bq (a, ω)]K. (37)

The value of aggregate growth options is the present value of rents accruing to the
economy as a whole (average firm) from the firm-level adjustment technology, and it is
determined by

V O
t ≡

Z
i∈z

V O
i di = hm (a, ω)K. (38)
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The marginal and Tobin’s q of the average firm (aggregate economy) are identical.
This equivalence stems from the homogeneity property of aggregate cash flow. The pres-
ence of scale effects induced by the firm relative size, while creating increasing return to
scale in the firm cash flow, makes the cash flow of the average firm linearly homogeneous.
Scale effects induced by firm size would counterfactually preserve the same increasing
return to scale property both at the firm and aggregate level. Hence, the marginal q
of the average firm exceeds the average firm marginal q, which causes aggregate under-
investment relative to a social optimum and a Pareto inefficient allocations of resources.

2.3.4 Stock Returns and Conditional CAPM

With the characterization of the equilibrium aggregate and firm-level asset prices com-
plete, I now describe the asset risk-return representation. From (35), the process for
cumulative aggregate stock return can be represented as

dR =
dV

V
+

D

V
dt = µR (a, ω) dt+ σR (a, ω) dWa (39)

where the instantaneous aggregate stock market expected return µR (a, ω) and volatility
σR (a, ω) are respectively given by equation (97) and (98) in Appendix. Aggregate stock
market returns vary because of innovations to the economy wide productivity, dWa, which
represents the only source of systematic risk in the economy.

Similarly, from (31), the cumulative stock return for a individual firm has the following
factor representation:

dRi =
dVi
Vi
+

Di

Vi
dt = µRi

(a, ω, xi, ki) dt+ σRi,a (a, ω, xi, ki) dWa + σRi,x (a, ω, xi, ki) dWi

(40)
where the instantaneous stock expected return µRi

(a, ω, xi, ki) and the volatility loadings
on the economy wide productivity innovations σRi,a (a, ω, xi, ki) and on the firm specific
innovations σRi,x (a, ω, xi, ki) are respectively given by equation (100), (101) and (102)
in Appendix. Differently from the aggregate stock market returns, individual stock re-
turns vary because of innovations to both the economy wide productivity, dWa, and the
firm specific productivity, dWi, which represents the source of idiosyncratic risk in the
economy.

The general equilibrium model implies conditional perfect correlation between the
instantaneous aggregate stock market return and aggregate consumption growth (and
hence the pricing-kernel). Given the single-factor nature of the model, where the only
source of systematic risk is the aggregate productivity uncertainty, the cross-sectional
distribution of expected returns is fully determined by the distribution of firm consump-
tion or market betas. The risk-return relation of any traded asset in the economy can be
characterized as a conditional Consumption-CAPM, or similarly as a conditional Capital
Asset Pricing Model (CCAPM) since the aggregate market portfolio is instantaneously
conditionally mean-variance efficient. The next proposition establishes the risk-return
relation as CCAPM.
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Proposition 9 (Conditional CAPM) The instantaneous risk and expected return of
individual firms can be characterized by a conditional CAPM:

µRi,t = rt + βit
£
µR,t − rt

¤
(41)

with the conditional firm market beta given by

βit =
∂ [ln (Vit/Kit)]

∂ [ln (Vt/Kt)]
=

Kit

Vit
ξqit +

Kt

Vit
ξhit (42)

with ξqit and ξhit measuring the risk of firm assets in place and growth opportunities as
described in Appendix.

Proof: See Appendix.

The decomposition of aggregate and firm-level asset prices into value of “assets in
place” and value of “growth options” provides a convenient framework to relate individual
firm and aggregate market values in that it unveils the relation between the riskiness of
the firm value as measured by its market beta, βit, and observable firm characteristics.
Equation (42) provides a description of such a relation: market betas depend on the
firm book-to-market (Ki/Vi), the firm size (Vi) and the quantities ξ

qi and ξhi .6 The first
term in the right hand side of equation (42) creates a positive relation between the firm
book-to-market ratio and its market beta provided that ξqi > 0. The term ξqi denotes
the firm specific elasticity of the firm marginal q (i.e. value of assets in place per unit
of capital) with respect to changes in the aggregate market-to-book ratio. It measures
the sensitivity of the firm marginal q and hence investments to changes in the aggregate
state of the economy.

The second component in (42) determines a negative relation between the firm size
and its market beta provided that ξhi > 0. The term ξhi denotes the firm specific elasticity
of the firm growth option with respect to changes in the aggregate market-to-book ratio.
It measures the sensitivity of the firm growth option to changes in the aggregate state
of the economy. Furthermore, since both the elasticities ξqi and ξhi depend on the firm
specific productivity, the relation between firm market betas, book-to-market and size is
nonlinear. Since firm dividends are not homogeneous in firm capital, both fundamental
firm characteristics, xi and ki, or market based firm characteristics, Ki/Vi and Vi, are
needed to identify cross-sectional differences in expected returns.

The general equilibrium analysis provides a “consumption insurance” explanation
for the relation between risk and expected returns. Specifically, given the investors’ risk-
aversion towards uncertain consumption stream and its preference for early consumption,
a rational investor objective is “consumption-smoothing” over time and states of the
economy. Therefore, the riskiness of a firm equity is directly linked to its ability to

6Since the produced consumption good in the economy can be used either for consumption or for
investment as capital good, the price of new capital equals the price of the consumption good, which is
normalized to one. Therefore, the firm stock of capital K, can be interpreted as its capital measured in
historical costs (book value).
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provide consumption insurance. The more able a firm is in this regard, the less risky
is its equity: investors bid up the prices of those firms whose returns offer consumption
insurance, and require a lower premium to hold their stocks.

A firm ability to provide consumption insurance depends on its’ ability to use capital
investment in response to shocks in the current state of the economy. Capital adjust-
ment costs and irreversibility are the main impediments to the use of capital investment
to smooth dividends. During bad times, unprofitable firms, value firms, would like to
disinvest and sell off their capital stocks, but they cannot do so because face a binding
investment irreversibility constraint. If there is a further negative aggregate productivity
shock, there is nothing they can do to mitigate a further decline in output and dividend.
In contrast, growth firms are investing because they have persistently high profitability.
They only face adjustment costs to doing so. In the face of a negative aggregate produc-
tivity shock, they can lower investment and maintain their dividend in this high marginal
utility state. Thus, the dividends of growth firms will fall less than those of value firms in
response to an adverse aggregate productivity shock. As a result, value firms are riskier
than growth firms.

This economic explanation of the value premium finds support in the empirical evi-
dence provided by Xing and Zhang (2004), who find that the fundamentals of value firms
such as earning, dividend and investment growth, are more adversely affected by negative
business cycle shocks than those of growth firms.

2.3.5 The Relation between Marginal q and Tobin’s Q

The relation between marginal q and Tobin’s Q can be conveniently rewritten as a func-
tion of the expected returns earned on each component of the firm market value. The
following proposition establishes this relation.

Proposition 10 (Marginal q and Tobin’s Q) A firm Tobin’s Q can be related to its
marginal q as

Vi
Ki
= qi

£
µIi − µOi

¤£
µRi − µOi

¤ (43)

where µIi and µOi
denote the instantaneous expected returns on firm investment (i.e.

marginal q) and growth options, respectively given by:

µIi ≡
D [qi]
qi

+
eaxi + f −bi

qi
−
³
δ −bi´ (44)

µOi
≡ D [hi]

hi
+

η (qi − 1)n
hi

1{qi≥1} − (δ − i) . (45)

The relation in (43) can be conveniently approximated around the unconditional mean
stock return (µR) of a firm with equal marginal q and Tobin’s Q as

ln

·
Vi
Ki

¸
≈ ln [qi] +

£
µIi − µRi

¤
µR

. (46)
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Proof: See Appendix.

The relation (43) follows from the representation of a firm expected stock return as a
weighted average of the returns on its assets in place and growth options. The expected
return on firm investment equals the expected change in the firm marginal q (the market
value of a unit of installed capital) plus the flow of marginal operating profit net of
effective depreciation due to owning one additional unit of capital. The expected return
on growth options is given by the expected change in the marginal contribution to the
firm market value of a reduction in the capital adjustment cost.

The approximate relation (46) makes clear the relation between expected returns
and firm valuation. If marginal q and Tobin’s Q are identical then the expected return
on firm investments equals the expected return on firm equity. This is consistent with
Cochrane (1991) and Zhang (2005). However, if marginal q differs from Tobin’s Q then
the expected return on investment differs from the expected return on equity. Since the
firm marginal q is never greater than the firm market value according to (31), it must
be the case that the expected return on firm investment exceeds its cost capital. That
is, undertaking investment projects whose expected returns are higher than the cost of
capital creates value. This relation reconnect the economic Q-theory of investment to
first principles of corporate finance.

Most of the existing literature in investment supports the equivalence of return on
investment and return on firm equity based on the absence of arbitrage. This way of
reasoning implicitly assumes the investor/consumer ability to directly trade in both
claims to physical and financial capital (equity). Under this assumption, an arbitrage-
free model of equilibrium investment would deliver the equivalence between returns on
physical and financial capital. However, under this assumption the technological invest-
ment opportunity-set a firm faces when making investment decisions is equivalent to the
financial investment opportunity set a market investor faces when making a decision on
how to allocate its wealth among different financial assets.

My model offers an equilibrium model of investment that builds on the plausible
assumption that the investor/consumer can directly trade only in claims to the firm
financial capital (hence firm return on investment can differ from return on firm equity
even in equilibrium), thus generating the existence of two (not necessarily identical)
investment-opportunity sets: a technological investment-opportunities set faced by the
firm, and a financial investment-opportunity set faced by the market investor. This
explicitly recognizes a financial economic reason for the firm to exist, that is a firm can
do something that market investors cannot do directly: a firm can access to a technological
investment opportunity-set out of a single market investor/consumer reach.

3 Empirical Analysis

In this section I conduct a simulation study to evaluate the model’s ability to reproduce
the main empirical properties of firm investments and stock returns. The empirical anal-
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ysis is based on a panel of firms drawn from the CRSP-COMPUSTAT merged database
for the years 1962 through 2002. The description of the data is provided in the Appendix.

I restrict the values of the model parameters, γ, α, κa, a, σa, κx and σx to approxi-
mately match the unconditional mean and standard deviations of consumption growth,
real interest rate, equity premium, aggregate investment rate, the average volatility of
stock returns and the average cross-sectional correlation between (the logarithms of)
size and book-to-market. I simulate 100 artificial panels each with 200 firms and 5000
years. I calculate the return and quantity moments for each sample and then compute
the cross-sample averages.

The values of the parameters used in the simulation study are as follows: the risk
aversion coefficient, γ, 14; the time preference parameter, ρ, 0.01; the adjustment cost
parameter, α, 2; the degree of curvature in the adjustment cost function, n, 2; the
depreciation rate, δ, 0.13; the minimum investment rate, bi, 0.12; the time-invariant
component of productivity, f , 0.12; the long-run mean of the aggregate productivity
variable, a, −2.22; the rate of mean reversion of the productivity variable, κa, 0.27;
the volatility of aggregate productivity, σa, 0.05; the long-run mean of the idiosyncratic
productivity, x, 1; the rate of mean reversion of the idiosyncratic productivity, κx, 0.15;
and the volatility of the idiosyncratic productivity, σx, 0.27.

3.1 Aggregates

Although, the model ability to reproduce key features of aggregate data is not the main
objective of the paper, it seems appropriate to ensure that the time series properties
of stock returns are reasonable before proceeding to the analysis of their cross-sectional
properties.

Table I compares the model implied unconditional moments of key aggregate variables
with corresponding empirical estimates. The model captures well the historical level and
volatility of the equity premium, while maintaining reasonably low values for the first
two moments of the risk free rate and aggregate consumption growth. Given the power
utility and the low historical volatility of aggregate consumption growth of about 2.5%
for the sample starting in 1929 to 2004, this can be achieved with a sizeable value for the
risk-aversion coefficient, 14 (Mehra and Prescott (1985)).

Although the model generates a plausible value for the equity premium volatility, the
time separable nature of preferences implies that part of this variation is due to time-
varying risk-free rate. In the model, economic growth occurs via capital accumulation,
which implies that the average consumption growth of about 1% is approximately equal
to the average net investment rate, 14%− 13%.
Before examining the cross-sectional properties of stock returns, I investigate the

model implications about aggregate stock returns predictability. Table II reports the
results of predictability regressions of excess stock returns on log dividend-price ratio
and log book-to-market ratio at annual frequency. Consistently with historical data, the
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coefficients of cumulative excess returns on log dividend-price ratio are positive: low prices
relative to dividend imply high expected excess returns. The coefficients increase with the
horizon, ranging from 0.85 to 5.29 over four and ten years. I found a similar pattern when
using the log book-to-market as a predictor of excess stock returns. However, the log
dividend-price has a superior predictability power especially at a shorter horizon. This
is consistent with its higher persistence ranging from 0.28 to 0.08 versus the persistence
of the log book-to-market from 0.19 to 0.03 over four and ten years, respectively.

The predictability of excess stock returns stems from the countercyclical property of
the market price of aggregate productivity risk and the persistence in aggregate produc-
tivity. With time-separable utility, the market price of risk inherits its properties from
the volatility of consumption growth. Figure 1 (Panel A) shows that the volatility of
consumption growth is particularly high during bad times, consistently with the empir-
ical findings in Kandel and Stambaugh (1990), Bansal and Yaron (2004), Bekaert and
Liu (2004), and Lettau, Ludvigson, and Wachter (2005). This is the result of investment
irreversibility. As shown in Figure 1 (Panel B), the investment irreversibility thresh-
old is high during bad times. More firms are up against the investment irreversibility
constraint and the economy has now less flexibility in using investment to insure con-
sumption against further adverse productivity shocks. Thus, investors require a higher
equity premium to bear the risk of more volatile consumption fluctuations.

3.2 The Cross-Section of Stock Returns

This section establishes the key quantitative results. After examining the relation be-
tween firm characteristics and stock returns in the next subsection, I analyze the perfor-
mance of the CAPM and other asset pricing models. To facilitate the comparison with
historical data I simulate 100 artificial panels each with 200 firms and 50 years of data.
I then report cross-sample averages.

3.2.1 Stock Returns and Firm Characteristics

In the model cross-sectional differences in firm profitability and capital generate hetero-
geneity in market based firm characteristics such as market size and book-to-market ratio.
The same differences in firm fundamentals are also responsible for the cross-sectional vari-
ation in investment rates and expected returns. In Table III and IV I compare summary
statistics of the model with their empirical counterparts. I report average excess returns
and firm characteristics for portfolios formed by a one-dimensional sort of stocks on firm
book-to-market and market equity, respectively. Panel A shows summary statistics based
on historical data, and Panel B those computed on the basis of simulated panels.

The pattern of excess stock returns and firm characteristics in the model matches the
evidence well. Average returns fall from 13.41 % per year for the highest book-to-market
portfolio to 6.67% for the lowest. The portfolio’s Sharpe ratios share the same decreasing
pattern, ranging from 0.58 to 0.28. The spread in average profitability between growth
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and value stocks is about 23%, which is close to its historical one, 27%. As expected,
average investment rates correlate positively with profitability. The portfolios with higher
book-to-market face binding excess investment irreversibility, which confirms their limited
ability to provide adequate consumption insurance to investors.

The pattern of excess stock returns and firm characteristics for market equity-sorted
portfolios is also consistent with historical data. Average returns and Sharpe ratios
decrease with market equity, though the spread in returns between small and big size
portfolios (about 4%) is lower than the historical one. Despite the positive relation be-
tween capital and market equity, investment rates also slightly increase from the smallest
to the highest market equity portfolio because of the increase in profitability.

Table V shows the average excess returns and firm characteristics across 3 x 4 portfo-
lios formed by a two-dimensional sort of stocks on firm market equity and book-to-market.
Panel A shows summary statistics based on historical data, and Panel B those computed
on simulated data. In the model and confirmed in the data, the size of the value premium
varies with market equity: the value premium is larger for small stocks. In simulated
data, the value premium declines from about 5% per year for the small size portfolios to
about 3% for the big size portfolios, thus generating a difference close to the historical
one of about 2.3%. The decline in the value premium is associated with a decrease in
the investment rate spread both in simulated and historical data. This feature of the
value premium arises in the model because capital adjustment costs are smaller for small
firms, ceteris paribus.

This property of capital adjustment costs implies a negative relation between firm
growth and capital, which is also present in historical data (Panel A). For any book-to-
market percentile, despite the positive relation between profitability and market equity,
investment rates decrease with market equity because firm capital increases.

To formally establish the relation between stock returns and firm characteristics,
Table VI shows the results from the Fama-MacBeth regressions of excess stock returns
on market-based firm characteristics such as book-to-market and market equity, and firm
fundamentals such as investment rates and relative capital. Panel A reports statistics
based on historical data, and Panel B those computed on the basis of simulated panels.
All dependent variables are in logs.

The first two univariate regressions show that book-to-market and size appears to
contain useful information about the cross-section of stock returns. The relation between
returns and book-to-market is significantly positive, while the relation with market equity
is significantly negative. Moreover, the slope coefficients are close to their historical
counterparts.

When both market-based firm characteristics are used as dependent variables, the
slope coefficients on market size and book-to-market are about −0.1% and 5.2%, respec-
tively. Both coefficients are statistically significant at conventional levels. While the
coefficient on book-to-market is in line with historical data, the market equity coefficient
is lower. However, both in the model and historical data, book-to-market effects are
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economically more significant than size effects.

Adding the interaction term between market equity and book-to-market results in a
negative coefficient of about -1.3% (-0.6% in the data), which confirms the empirically
observed decline of the value premium with market equity.

In the second bivariate regression in simulated data (line 5), I run excess stock returns
on investment rate and relative capital. The average slopes confirm the negative relation
of average stock returns with both these variables. Both coefficients are more than
two standard errors from zero. Controlling for a firm relative capital, doubling a firm
investment rate decreases on average stock returns by about 4.2% per year. Similarly, a
double of relative capital leads to a reduction in average returns of about 0.4% per year.
The relative economic significance of investment rate and relative capital is similar in
historical data. Moreover, the effect of market equity on average stock returns is of the
same order of magnitude of that generated by a firm relative capital, both in simulated
and historical data.

The correspondence between market-based firm characteristics and firm fundamentals
is reinforced when I run regressions of stock returns on market size and investment
rate (line 8). The economic and statistical significance of the average slopes remain
unchanged. The same argument applies when I consider book-to-market and relative
capital as dependent variables (line 6). Furthermore, including both book-to-market and
investment rate (line 7), as well as market equity and relative capital (line 9), makes the
average slopes statistically insignificant.

Thus, book-to-market and market equity on one side, and investment rate and relative
size on the other side, capture similar expected profitability and size effects in average
stock returns, in the model and in the data. Moreover, expected profitability effects as
captured by book-to-market and investment rate are economically more important than
size effects in explaining cross-sectional variation in average returns.

In the model, book-to-market and investment rate are related to expected returns
because they proxy for firm profitability: firms with high book-to-market and low invest-
ment rate tend to be less profitable and therefore less valuable to investors looking for
consumption insurance.

Figure 2 and 3 plot the average profitability and investment rate of value and growth
portfolios for 11 years around portfolio formation and in the time series based on simu-
lated and historical data, respectively. The figures show that book-to-market is associated
with persistent differences in profitability and investment rates. Growth firms are on av-
erage more profitable and faster growing than value firms for five years before and after
portfolio formation. The profitability of growth firms improves prior to portfolio forma-
tion and deteriorate thereafter. The opposite is true for value firms. Investment rates
follow a similar pattern. Both patterns are driven by the mean-reverting behavior of the
firm productivity and the endogeneity of firm investment. The persistent difference in
profitability and investment rate between value and growth is also confirmed when exam-
ined chronologically. In sum, firm profitability and investment rate are what determines
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value or growth characteristics.

3.2.2 Asset Pricing Models

A central finding in the asset pricing literature is the failure of the CAPM to explain the
cross-sectional differences in average stock returns. In my model, the CAPM does not
hold, provided that there is enough covariation between the time-varying firm market
betas and the expected equity premium. In this section, I investigate the extent to which
the model is consistent with the failure of the CAPM and the success of alternative asset
pricing models such as a conditional CAPM and the Fama and French (1993) model. I
use as test assets the twelve book-to-market sorted portfolios, which provide a sizeable
spread in average returns.

Table VII shows the results of time-series regressions of excess returns on each of
the twelve portfolios on the excess returns on the market portfolio. I report the results
based on historical and simulated data in Panel A and B, respectively. Each panel shows
the intercepts, α, and the market betas, βM , with their corresponding standard errors.
Standard errors starred with an asterisk are statistically significant at the five percent
level.

Both in historical and simulated data, the αs are large and statistically significant.
Moreover, they share the same pattern: growth stocks have large negative alphas whereas
value stocks have large positive ones. The market betas are all statistically significant.
There is virtually no variation in market betas across portfolios, especially in simulated
data. The failure of the CAPM can also be seen graphically in panel A of Figure 4
(simulated data) and Figure 5 (historical data), where I plot the model predicted vs.
actual mean excess returns. In both cases, mean excess returns line up vertically rather
than on the 45 degree line.

In line 2 and 6 of Table IX, I report the results from Fama-MacBeth cross-sectional
regressions. The cross-sectional intercept is statistically significant in both historical and
simulated data. The coefficient in historical data is a negative 14% and statistically
significant at the ten percent level. In simulated data the coefficient is also wrong signed,
-73%, and statistically significant. In contrast, line 1 of Table IX shows that, when using
the model implied market beta as dependent variable, the intercept becomes insignificant,
and the statistically significant coefficient only exceeds the average equity premium by
less than 1%. Additionally, the adjusted R2 reaches about 97%. Thus, the failure of the
CAPM is due to its inability to account for the covariation between time-varying betas
and market premium.

Given its superior predictability power, I use the observable log dividend-price ratio as
conditioning variable in a conditional CAPMmodel. In simulated data (line 3), there is a
substantial improvement in the fit with an adjusted R2 of about 77% and all coefficients
(including the intercept) are statistically significant as in historical data (line 7). However,
the implied equity premium is wrong signed in both datasets. While performing better
than its unconditional version, the conditional CAPM with the observable log dividend
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yield as conditioning variable can only partially capture the covariation of firm conditional
betas and expected equity premium. Panel B of Figure 4 (simulated data) and Figure 5
(historical data) shows the conditional CAPM predicted vs. actual mean excess returns.
In both simulated and historical data, the conditional CAPM does a better job in pricing
the highest and lowest book-to-market portfolios than the CAPM. However, the overall
fit is better in simulated data than in historical data.

Finally, I test the performance of a two factor model including the excess returns on
the market and HML (MKT+HML), and the Fama-French model. In both simulated and
historical data, including only the MKT and HML makes a considerable improvement
over the CAPM and the conditional CAPM. This substantial improvement can be seen
in line 4 and 8 of Table IX. Although larger than the one observed in the time-series, the
average excess market return is now positive, and the average return on HML is in line
with its time-series counterpart. Additionally, the adjusted R2 rises substantially. The
superior performance of the two factor model can also be seen graphically in Panel C of
Figure 4 (simulated data) and Figure 5 (historical data), where mean excess returns now
line up better on the 45 degree line.

The Fama and French (1993) model outperforms all the above mentioned asset pricing
models. It makes the intercept statistically insignificant and the loading on the SMB and
HML are close to their time-series averages of about 0.4% and 4.3% in simulated data.
The implied size of the equity premium is about 3%, which is lower than its time-series
counterpart, but it is statistically insignificant. The adjusted R2 is about 94%. In
historical data, the inclusion of SMB makes the size of the equity and value premia close
to their historical average (about 7% and 5%, respectively), although the size premium
becomes larger than its time-series counterpart (about 2.7%). The adjusted R2 is 81%.
The success of the Fama and French model can be better seen graphically. Panel D of
Figure 4 (simulated data) and Figure 5 (historical data) shows that mean excess returns
line up much better on the 45 degree line. The root mean squared alpha decreases from
2.55% per year (CAPM) to 0.91% (Fama and French model) in simulated data. Similarly,
in historical data, the root mean squared alpha goes from 4.33% (CAPM) to 1.7% per
year (Fama and French model).

To understand the success of the Fama-French model, I report in Table VIII (Panel
A-B) the results from time-series regressions. Both in historical and simulated data, the
alphas are lower by an order of magnitude relative to the CAPM alphas, and only few of
them remain statistically significant in the model generated data. The market beta is flat
across portfolios (a common finding in the asset pricing literature) and the loadings on
SMB and HML share the same patterns. While only few loadings on SMB are significant,
all HML loadings are significant and increasing in magnitude from growth to value.

To interpret the success of the Fama-French model, note that firms’ market betas
can be represented as a value-weighted average of betas for assets in place and betas
for growth options. Interacting each of these betas with the expected excess returns
on the market provides an alternative interpretation of the conditional CAPM relation.
That is, the expected excess returns on any asset are proportional to the market price
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of aggregate assets in place risk and to the market price of aggregate growth option
risk. While a weighted combination of the betas may not be significant in explaining the
cross-section of stock returns, each risk source’s beta may be significant since it carries
a distinct price. Obviously, their sum equals the market price of aggregate productivity
risk. While conditionally such a decomposition is redundant, it might be important
unconditionally. Indeed, the Fama-French factors, SMB and HML, provide good proxies
to account for the covariation of each market betas’ component and the market risk
premium.

From the market beta decomposition (42), firms with high book-to-market and similar
market equity derive most of their riskiness from changes in the value of assets in place.
Similarly, firms with small market equity and similar book-to-market derive most of
their riskiness from changes in the value of growth options. Therefore, according to their
definition, HML and SMB capture, within the model, the component of equity premium
associated with the aggregate assets in place risk and the aggregate growth options risk,
respectively. This is confirmed in Table VIII (Panel B) by the increasing pattern of the
loadings on HML from growth to value. Similarly, the loadings on SMB increase from
growth to value as their market equity decreases.

In Table X, I run Fama-MacBeth cross-sectional regressions of risk-adjusted returns
(i.e. actual returns minus model predicted returns from the time-series regressions) on
firm characteristics. In historical data, the conditional CAPM, the two factor model,
and the Fama-French model drive out market-based firms characteristics, although the
investment rate seems to capture part of cross-sectional variation in average returns
unaccounted by these asset pricing models. However, the fact that the asset pricing
models under consideration drive out market-based firm characteristics in historical data
might be sample specific. Recently, Jagannathan andWang (2005) find different evidence.
This might be due to the more stringent sample selection criteria I use to construct my
sample because of the inclusion of fundamental firm characteristics. In simulated data,
part of the cross-sectional variation in average returns unaccounted by the conditional
CAPM, is captured by the book-to-market ratio and the fundamental firm characteristics.
In contrast, the two factor model and the Fama-French model drive out both book-to-
market and market equity, although the firm investment rate has still some explanatory
power as in the data.
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4 Conclusion

In this paper, I show how the interaction between the economic behavior of utility-
maximizing consumers and the behavior of value-maximizing firms can rationalize many
empirical regularities in the cross-section of stock returns. Most importantly, this effort
contributes to the understanding of how risk, returns and firm characteristics relate to
the real side of the economy.

I construct a general equilibrium production economy with a continuum of hetero-
geneous firms and irreversible investment. The model aggregates so that aggregate pro-
ductivity and a single moment of the joint cross-sectional distribution of firm-specific
productivity and capital are sufficient state variables for the characterization of aggre-
gate quantities and prices.

The dynamics of investors’ demand for consumption insurance and irreversibility in
firm investments play a key role in explaining value and size effects in stock returns and
their relation to risk and firm fundamentals. The riskiness of firms’ equity depends on
their ability to supply consumption insurance. A firm can provide valuable consump-
tion insurance if she can mitigate the effect of aggregate productivity shocks through
investment in order to smooth dividends. Capital adjustment costs and investment irre-
versibility deprive unprofitable “small” and “value” firms of flexibility in cutting capital,
causing them to be riskier than “big” and “growth” firms, especially in bad times when
the aggregate consumption volatility (and the market price of productivity risk) is high.

The greater risk of small and value firms shows up in a conditional beta that is high in
bad times when the market premium is high, but not necessarily in a high unconditional
beta, thus explaining the failure of CAPM and relative success of a conditional CAPM
and the Fama-French three factor model. These last two models are relatively successful
because they better capture the covariation of firm conditional betas and the market risk
premium.

29



5 Proofs and Technical Details

In this section I provide all the proofs and technical details. In the following, I omit the
time subscript where unnecessary.

5.1 Proof of Proposition 1

Firms make investment decisions to maximize the expected present value of future divi-
dends. Let Vit ≡ V (at, ωt, xit, kit,Kit) be the value function of the firm:

Vit = max
{iit+s≥bi:s∈R+}Et

·Z ∞

0

Λt+s

Λt

µ
eat+sxit+s + f − iit+s − αk

1
n−1
it+s

³
iit+s −bi´ n

n−1
¶
Kit+sds

¸
(47)

subject to the evolution of the economy wide productivity a in (2), the law of motion
of the idiosyncratic productivity xi in (3), the firm capital accumulation with its non-
negativity constraint in (4), the evolution of the firm relative capital ki in (13), and
the conjectured dynamics of the equilibrium pricing-kernel Λ and the state variable ω
described in (14) and (11), respectively.

Then, the firm value function Vi satisfies the following Hamilton-Jacobi-Bellman
(HJB) equation:

0 = max
ii≥bi

½
ΛKi

·
eaxi + f − ii − αk

1
n−1
i

³
ii −bi´ n

n−1
¸
+D [ΛVi]

¾
(48)

with D [ΛVi] denoting the infinitesimal generator of the Markov processes a and xi, and
the singular processes Ki, ki and ω, applied to the discounted firm value function ΛVi,
along with the transversality (“no bubble”) condition:

lim
T→∞

Et [|Λt+TVit+T |] = 0. (49)

Conjecture that the value function takes the form:

V (a, ω, xi, ki, Ki) =
£
q (a, ω, xi) + h (a, ω, xi) k

−1
i

¤
Ki (50)

Then, the HJB equation in (48) reads:

0 = max
ii≥bi

½
eaxi + f − ii − αk

1
n−1
i

³
ii −bi´ n

n−1
+
D [ΛqiKi]

ΛKi
+
D [ΛhiK]

ΛKi

¾
(51)

where

D [ΛqiKi] = Λqi (Ii − δKi) +KiD [Λqi]
D [ΛhiK] = Λhi (I − δK) +KD [Λhi] .
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Rearranging terms in (51) leads to:

0 = max
ii≥bi

½
[qi − 1] ii − αk

1
n−1
i

³
ii −bi´ n

n−1
¾

+eaxi + f − qiδ +
D [Λqi]

Λ
+ k−1i

·
hi (i− δ) +

D [Λhi]
Λ

¸
(52)

Given that the maximand in (52) is strictly concave and everywhere differentiable in ii,
the first order condition uniquely determining the optimal investment policy i∗i is given
by

[qi − 1]− αn

n− 1k
1

n−1
i

³
ii −bi´ 1

n−1 ≤ 0 (53)

along with the complementary slackness condition·
[qi − 1]− αn

n− 1k
1

n−1
i

³
ii −bi´ 1

n−1
¸³

ii −bi´ = 0. (54)

According to equations (53) - (54) the firm optimal investment policy can be summarized
as

i∗i =bi+µn− 1αn

¶n−1
(qi − 1)n−1 k−1i 1{qi≥1}. (55)

When the irreversibility constraint is not binding, a firm equates the marginal cost of
investment and its marginal benefit as measured by qi. However, when the irreversibility
constraint is binding, the optimal investment rate equals the minimum level bi. Hence,
evaluating equation (52) at the optimal investment policy (55) leads to:·
qi
³
δ −bi´− eaxi − f +bi− D [Λqi]

Λ

¸
= k−1i

·
η (qi − 1)n 1{qi≥1} + hi (i− δ) +

D [Λhi]
Λ

¸
(56)

where η = (n− 1)n−1 α−(n−1)n−n > 0. Since the left-hand side of equation (56) is inde-
pendent of the value ki ∈ R+, in order for (56) to hold for all ki ∈ R+ the term in square
brackets on the left-hand side must equal zero:

Λ
³
eaxi + f −bi´− Λqi

³
δ −bi´+D [Λqi] = 0 (57)

and the right-hand side must also equal zero:

Λη (qi − 1)n 1{qi≥1} − Λhi (δ − i) +D [Λhi] = 0. (58)

The Feynman-Kac Theorem7 implies that the partial differential equation (57) admits
the following probabilistic solution for q ∈ C2 (R×R+ ×R+):

q (at, ωt, xit) = Et

·Z ∞

0

e−(δ−
bi)sΛt+s

Λt

³
eat+sxit+s + f −bi´ ds¸ . (59)

7See, for example, Duffie (Appendix E, 2001), Karatzas and Shreve (Theorem 7.6, 1991), Krylov
(Theorem 4, pag. 198, 1995), Yong and Zhou (Theorem 4.1-3, pag. 373-5,1999).
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The probabilistic solution to the partial differential equation (59) can be further repre-
sented as

q (at, ωt, xit)
(1)
=

Z ∞

0

e−(δ−
bi)sEt

·
Λt+s

Λt
eat+s

¸
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¸
(3)
= xq (at, ωt) + [xit − x] bq (at, ωt) (60)

where (1) follows from the application of Tonelli’s Theorem and the independence of xit
from at and ωt, (2) follows from the Strong Markov property of xit and from E [xit+s|xit] =
x+ [xit − x] e−κxs and (3) from

q (at, ωt) = Et

·Z ∞

0

e−(δ−
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Λt

h
eat+s + x−1

³
f −bi´i ds¸

bq (at, ωt) = Et
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0

e−(κx+δ−
bi)sΛt+s

Λt
eat+sds

¸
.

Given the absence of arbitrage or equivalently the strictly positivity of the pricing-kernel
Λ inherited from the strictly positivity of aggregate consumption ensured by the Inada
conditions, it is sufficient to restrict f ≥bi to ensures the positivity of the firm “marginal
q”.

Q.E.D.
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5.2 Proof of Proposition 2

Let
R
i∈z [·] di denote the aggregation operator over firms, and define the aggregate (aver-

age) capital stock as K ≡ R
i∈zKidi. In order to facilitate the representation of aggregate

quantities, let g (a, ω;m1,m2) denote a function of the state variables a and ω defined as

g (a, ω;m1,m2) ≡ bqm1

m1X
k=0

Γ (m1 + 1)ΓU (k + υ, θex)
Γ (m1 + 1− k)Γ (k +m2)Γ (υ)

(−ex)m1−k θ−k (61)

where m1 and m2 represent constant parameters.

Aggregate output is defined as Y ≡ R
i∈z Yidi and can be represented as

Y =

Z
i∈z
(eaxiKi + fKi) di

(1)
=

·
ea
Z
i∈z

xikidi+ f

¸
K

(2)
= (eaω + f)K (62)

where (1) follows from the definition of K and the firm relative capital ki ≡ Ki/K, and
(2) from the definition of the endogenous aggregate productivity component ω in (10).

Similarly, aggregate (average) investment is defined as I ≡ R
i∈z I

∗
i di and can be

characterized as follows:

I
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¶n−1 bqn−1K Z
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(xi − ex)n−1 1{xi−ex≥0}di

(3)
= biK +

µ
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¶n−1 bqn−1K Z ∞

0

(x− ex)n−1 1{x−ex≥0}fx (x; θ, υ) dx
(4)
= biK +

µ
n− 1
αn

¶n−1 bqn−1K Z ∞

ex+ (x− ex)n−1 θυ

Γ (υ)
xυ−1e−θxdx (63)

where (1) follows from the firm optimal investment policy in (55), (2) from the definition
of aggregate (average) capital K ≡ R

i∈zKidi and from the fact that the firm marginal q
can be rewritten as qi = 1+bq (xi − ex), where ex ≡ [1− x (q − bq)] /bq denotes the investment
irreversibility threshold with reference to the firm specific productivity and it is expressed
in terms of the aggregate values q and bq. The third equality follows from the Glivenko-
Cantelli Theorem8, according to which the cross-sectional distribution of the i.i.d. firm
specific productivity x equals its stationary distribution fx (x; θ, υ), and (4) from the fact
that the stationary distribution of the stochastic process x whose dynamics is given in
(3) is a gamma distribution:9

fx (x; θ, υ) =
θυ

Γ (υ)
xυ−1e−θx1{0≤x<∞}; θ, υ > 0 (64)

8See, for example, Billingsley (Theorem 20.6, 1979) and Parthasarathy (Theorem II.7.1, 1967).

9See, for example, Cox, Ingersoll, Ross (1985).
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with θ ≡ 2κx/σ2x and υ ≡ 2κxx/σ2x (κx, x > 0 and σx 6= 0). The value ex+ in the lower
limit of integration in (63) stands for max (0, ex) and results from the product of the two
indicator functions 1{x≥ex}× 1{0≤x<∞}.
The integral in (63) can be further represented as:Z ∞

ex+
θυ

Γ (υ)
(x− ex)n−1 xυ−1e−θxdx (1)

=
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(−ex)n−1−k θ−k (65)

where (1) follows from the Binomial Theorem (x− ex)n−1 = Pn−1
k=0

Γ(n)xk(−ex)n−1−k
Γ(n−k)Γ(k+1) , (2)

from the change of variable y = θx, and (3) from the definition of the upper incomplete
gamma function ΓU (α, z) ≡

R∞
z

xα−1e−xdx.

In order to ensure the existence of q ∈ C2 (R×R+ ×R+), I assume throughout
the following analysis that the investment threshold never falls below zero, i.e. ex ≥ 0.
Under standard integrability conditions, it is sufficient to appropriately restrict the model
parameters such that sup |q − bq| ≤ 1/x in order to meet this restriction. Furthermore,
the strictly positivity of the firm marginal q implies that ex < 1/bq. Hence, the existence
of a strictly positive firm marginal q ∈ C2 (R× R+ ×R+) implies that the investment
threshold ex ∈ [0, 1/bq).
Therefore, aggregate investment can be characterized as:

I =

"bi+µn− 1
αn
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#
K (66)

with the function g in (61) evaluated at m1 = n− 1 and m2 = 1.
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where (1) follows from the definition of firm dividends in (6), (2) from the firm optimal
investment policy in (55) and definition of aggregate output and investment in (62) and
(66), respectively. The third equality results from the fact that the firm marginal q can
be rewritten as qi = 1 + bq (xi − ex), where ex ≡ [1− x (q − bq)] /bq denotes the investment
irreversibility threshold. The last equality follows from the Glivenko-Cantelli Theorem,
according to which the cross-sectional distribution of the i.i.d. firm specific productivity x
equals its stationary distribution in (64), and the restriction on the investment thresholdex ∈ [0, 1/bq).
The integral in (67) can be further represented as:Z ∞
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where (1) follows from the Binomial Theorem (x− ex)n =Pn
k=0
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the change of variable y = θx, and (3) from the definition of the upper incomplete gamma
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Therefore, aggregate dividend can be represented as:
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= eaω + f −bi−µn− 1
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n
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¸
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where the function g is given in (61).

Q.E.D.
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5.3 Proof of Proposition 3

The second moment of the joint cross-sectional distribution of xi and ki is defined as
ω ≡ R

i∈z xikidi. I now, derive its law of motion following two steps. First, I characterize
the law of motion of the weighted firm specific productivity xiki as:

dxiki
(1)
= ki [κx (x− xi) dt+ σx

√
xidWi] + xiki [ii − i] dt

(2)
=

(
κx (x− xi) ki +

µ
n− 1
αn

¶n−1 £bqn−1 (xi − ex)n−1 xi1{xi≥ex} − g (a, ω;n− 1, 1)xiki
¤)

dt

+kiσx
√
xidWi (70)

where (1) follows from the application of Ito’s Formula to xiki with the processes xi and
ki evolving as in (3) and (13), respectively, and (2) from the optimal firm investment
policy and aggregate investment rate in (55) and (66), respectively. Then, it follows that
ω evolves according to:

dω
(1)
=

Z
i∈z

dxikidi

(2)
=

(
κx (x− ω) +

µ
n− 1
αn

¶n−1 ·bqn−1 Z
i∈z

xi (xi − ex)n−1 1{xi≥ex}di− g (a, ω;n− 1, 1)ω
¸)

dt(71)

where (1) follows from Fubini’s Theorem under the assumption of joint measurability, (2)
from the definition of ω ≡ R

i∈z xikidi and the fact that
R
i∈z kidi = 1. The independence of

ki
√
xi and dWi and the law of large numbers applied to dWi’s, which are cross-sectionally

i.i.d. with zero mean and finite variance, ensures that σx
R
i∈z ki

√
xidWidi = 0.

The integral in (71) can be computed as:Z
i∈z

xi (xi − ex)n−1 1{xi≥ex}di (1)= Z ∞

ex x (x− ex)n−1 θυ

Γ (υ)
xυ−1e−θxdx

(2)
= θ−1

n−1X
k=0

Γ (n) (−ex)n−1−k θ−k
Γ (n− k)Γ (k + 1)Γ (υ)

Z ∞

θex yk+υe−ydy

(3)
= θ−1

n−1X
k=0

Γ (n)ΓU (k + υ + 1, θex)
Γ (n− k)Γ (k + 1)Γ (υ)

(−ex)n−1−k θ−k
(4)
= θ−1

n−1X
k=0

Γ (n) (−ex)n−1−k θ−k
Γ (n− k)Γ (k + 1)Γ (υ)

h
(k + υ)ΓU (k + υ, θex) + (θex)k+υ e−θexi

(5)
=

n−1X
k=0

Γ (n)ΓU (k + υ, θex)
Γ (n− k)Γ (k + 1)Γ (υ)

(−ex)n−1−k θ−kµk
θ
+ x

¶
(72)

where (1) follows from the Glivenko-Cantelli Theorem, according to which the cross-
sectional distribution of the i.i.d. firm specific productivity x equals its stationary dis-
tribution in (64), and the restriction on the investment threshold ex ∈ [0, 1/bq). The
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second equality follows from the Binomial Theorem, (x− ex)n−1 = Pn−1
k=0

Γ(n)xk(−ex)n−1−k
Γ(n−k)Γ(k+1) ,

and the change of variable y = θx, (3) from the definition of the upper incomplete
gamma function ΓU (α, z) ≡

R∞
z

xα−1e−xdx. The fourth equality results from the prop-
erty of the upper incomplete gamma function (integration by parts), ΓU (k + υ + 1, θex) =
(k + υ)ΓU (k + υ, θex)+(θex)k+υ e−θex, and (5) from the fact thatPn−1

k=0
Γ(n)

Γ(n−k)Γ(k+1) (−1)n−1−k =
(1− 1)n−1 = 0 and υ/θ = x.

Therefore, the endogenous component of aggregate productivity evolves according to:

dω
(1)
=

("
κx +

µ
n− 1
αn

¶n−1
g (a, ω;n− 1, 1)

#
(x− ω) +

µ
n− 1
αn

¶n−1
θ−1g (a, ω;n− 1, 0)

)
dt

(2)
=

½h
κx +

³
i−bi´i (x− ω) +

³
i−bi´ θ−1g (a, ω;n− 1, 0)

g (a, ω;n− 1, 1)
¾
dt (73)

where (1) results from the property of the gamma function, Γ (k + 1) = kΓ (k), and
the definition of the function g in (61), and (2) from the characterization of aggregate
investment in (66).

Q.E.D.
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5.4 Proof of Proposition 4

The market clearing condition for the consumption good requires aggregate consump-
tion C∗ to equal aggregate dividend D∗, hence equations (24) - (25) correspond to the
aggregate dividend in (21).

The equilibrium prices and quantities depend on the firm marginal q as characterized
in equations (16) - (18), which is now evaluated at the equilibrium pricing-kernel Λ.
In equilibrium, the representative household intertemporal marginal rate of substitution
between consumption at time t+ s and consumption at time t is given by:

Λt+s

Λt

(1)
= e−ρs

µ
C∗t+s
C∗t

¶−γ
(2)
= e−ρs

µ
c∗ (at+s, ωt+s)

c∗ (at, ωt)

¶−γ µ
Kt+s

Kt

¶−γ
(3)
= e

− R t+st

n
ρ+γ

hbi+(n−1αn )
n−1

g(au,ωu;n−1,1)−δ
io

du

µ
c∗ (at+s, ωt+s)

c∗ (at, ωt)

¶−γ
(74)

where (1) follows from the representative household’s first-order optimality condition,
(2) from the equilibrium consumption policy (24) - (25), and (3) from the dynamics
of the aggregate stock of capital evaluated at the equilibrium aggregate investment in
(66). From the characterization of q (a, ω) and bq (a, ω) in (17) - (18), after applying some
straightforward algebra it follows that

qt = Et

·Z ∞

0

e−(δ−
bi)sΛt+s

Λt

h
eat+s + x−1

³
f −bi´i ds¸ = c∗ (at, ωt)

γ Φ (at, ωt) (75)

bqt = Et

·Z ∞

0

e−(κx+δ−
bi)sΛt+s

Λt
eat+sds

¸
= c∗ (at, ωt)

γ bΦ (at, ωt) (76)

where

Φt ≡ Et

Z ∞

0

e
− R t+st

n
ρ+(1−γ)(δ−bi)+γ(n−1αn )

n−1
g(au,ωu;n−1,1)

o
du

h
eat+s + x−1

³
f −bi´i

c∗ (at+s, ωt+s)
γ ds

(77)
bΦt ≡ Et

·Z ∞

0

e
− R t+st

n
ρ+κx+(1−γ)(δ−bi)+γ(n−1αn )

n−1
g(au,ωu;n−1,1)

o
du eat+s

c∗ (at+s, ωt+s)
γ ds

¸
(78)

The Feynman-Kac Theorem implies that Φ, bΦ ∈ C2
¡
R×R+¢ satisfy the following

partial differential equations:(
ρ+ (1− γ)

³
δ −bi´+ γ

µ
n− 1
αn

¶n−1
g (a, ω;n− 1, 1)

)
Φ−D £Φ¤ =

ea + x−1
³
f −bi´

c∗ (a, ω)γ
(79)(

ρ+ κx + (1− γ)
³
δ −bi´+ γ

µ
n− 1
αn

¶n−1
g (a, ω;n− 1, 1)

) bΦ−D hbΦi =
ea

c∗ (a, ω)γ
(80)

provided that standard integrability conditions are satisfied, i.e. Φ, bΦ < ∞. Notice
that the existence of no arbitrage is ensured by the strictly positivity of the aggregate
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consumption process resulting from the fact that the marginal utility of consumption
satisfies the Inada conditions. The stationarity and strictly positivity of the aggregate
output-to-capital ratio and aggregate consumption-to-capital ratio imply that the aggre-
gate investment rate is bounded. This in turn implies that q and bq are also bounded,
since the aggregate investment rate is an increasing function of q and bq.
Q.E.D.
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5.5 Proof of Proposition 5

The equilibrium pricing kernel dynamics can be computed by applying Ito’s Formula to
the representative household marginal utility of consumption Λt = e−ρt (C∗t )

−γ as

dΛ

Λ
= −ρdt− γ

C∗
dC∗ +

1

2

γ (γ + 1)

(C∗)2
hdC∗, dC∗i = −r (a, ω) dt− λ (a, ω) dWa (81)

where

r (a, ω) ≡ ρ+ γ
Da,ω,K [C∗ (a, ω,K)]

C∗ (a, ω,K)
− 1
2
γ (γ + 1)σ2a

·
∂aC

∗ (a, ω,K)
C∗ (a, ω,K)

¸2
(82)

λ (a, ω) ≡ γσa
∂aC

∗ (a, ω,K)
C∗ (a, ω,K)

. (83)

and

Da,ω,K [C∗ (a, ω,K)]
C∗ (a, ω,K)

≡ κa (a− a)
∂aC

∗ (a, ω,K)
C∗ (a, ω,K)

+
1

2
σ2a

∂2aaC
∗ (a, ω,K)

C∗ (a, ω,K)

+µω (at, ωt)
∂ωC

∗ (a, ω,K)
C∗ (a, ω,K)

+ (I∗ − δK)
∂KC

∗ (a, ω,K)
C∗ (a, ω,K)

.(84)

The independence of the risk-free rate and the market price of risk from the stock of
aggregate capital follows from the linear homogeneous property of the aggregate con-
sumption (24).

Q.E.D.
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5.6 Proof of Proposition 6

The market value of firm equity can be represented as in (50). The firm marginal q can
be characterized as in (16), with q and bq having the representation in (26) - (27), and
satisfying the system of partial differential equations (79) - (80). The function h (a, ω, xi)
can be characterized as the probabilistic solution to the partial differential equation (58),
which according to the Feynman-Kac Theorem admits the following representation for
h ∈ C2 (R×R+ × R+):

h (at, ωt, xit) = Et

·Z ∞

0

e−
R t+s
t (δ−iu)duΛt+s

Λt
η (qit+s − 1)n 1{qit+s≥1}ds

¸
(85)

Notice that the strictly positivity of pricing-kernel Λ ensures the positivity of the function
h. Evaluating (85) at the equilibrium pricing-kernel in (74), the function h can be
represented as

h (at, ωt, xit) = c∗ (at, ωt)
γ H (at, ωt, xit) (86)

where

Ht ≡ Et

·Z ∞

0

e−
R t+s
t {ρ+(1−γ)(δ−iu)}duη (qit+s − 1)n 1{qit+s≥1}

c∗ (at+s, ωt+s)
γ ds

¸
. (87)

The Feynman-Kac Theorem implies that H ∈ C2 (R×R+ ×R+) satisfies the follow-
ing partial differential equation:(
ρ+ (1− γ)

Ã
δ −bi−µn− 1

αn

¶n−1
g (a, ω;n− 1, 1)

!)
H−Da,ω,x [H] =

η (qi − 1)n 1{qi≥1}
c∗ (a, ω)γ

(88)
where Da,ω,x [H] denotes the infinitesimal generator of the stochastic processes a, ω and
x, applied to the function H:

Da,ω,x [H] = κa (a− a) ∂aH+
σ2a
2
∂2aaH+µω (a, ω) ∂ωH+κx (x− x) ∂xH+

σ2xx

2
∂2xxH. (89)

Q.E.D.
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5.7 Proof of Proposition 7

The aggregate stock market value can be computed by aggregating individual firm market
values as

V =

Z
i∈z

Vidi
(1)
=

Z
i∈z

q (a, ω, xi)Ki + h (a, ω, xi)Kdi

(2)
= {xq (a, ω) + [ω − x] bq (a, ω) + hm (a, ω)}K (90)

where (1) follows from the firm market value representation in (31), and (2) from the def-
inition of K ≡ R

i∈zKidi and ω ≡
R
i∈z xikidi. The function hm (a, ω) ≡

R
i∈z h (a, ω, xi) di

can computed as

hm (a, ω)
(1)
= Et

·Z ∞

0

e−
R t+s
t (δ−iu)duΛt+s

Λt
η

·Z
i∈z
(qit+s − 1)n 1{qit+s≥1}

¸
dids

¸
(2)
= Et

·Z ∞

0

e−
R t+s
t (δ−iu)duΛt+s

Λt
η

·bqnt+s Z
i∈z
(xit+s − ext+s)n 1{xit+s≥ext+s}di¸ ds¸

(3)
= Et

·Z ∞

0

e−
R t+s
t (δ−iu)duΛt+s

Λt
η

·bqnt+s Z ∞

ext+s (xt+s − ext+s)n θυ

Γ (υ)
xυ−1t+s e

−θxt+sdxt+s

¸
ds

¸
(4)
= Et

·Z ∞

0

e−
R t+s
t (δ−iu)duΛt+s

Λt
ηg (at+s, ωt+s;n, 1) ds

¸
(91)

where (1) follows from the definition of hm (a, ω, xi) in (85) and Fubini’s Theorem under
the assumption of joint measurability, (2) from the representation of the firm marginal
q as qi = 1+ bq (xi − ex). The third equality follows from the Glivenko-Cantelli Theorem,
according to which the cross-sectional distribution of the i.i.d. firm specific productivity x
equals its stationary distribution in (64), and the restriction on the investment thresholdex ∈ [0, 1/bq). The last equality follows from (68) and the definition of the function g in
(61) evaluated at m1 = n and m2 = 1.

Evaluating (91) at the equilibrium pricing-kernel in (74), the function hm can be
represented as

hm (at, ωt) = c∗ (at, ωt)
γ Hm (at, ωt) (92)

where

Hm,t ≡ Et

·Z ∞

0

e−
R t+s
t {ρ+(1−γ)(δ−iu)}duηg (at+s, ωt+s;n, 1)

c∗ (at+s, ωt+s)
γ ds

¸
(93)

The Feynman-Kac Theorem implies that Hm ∈ C2 (R×R+) satisfies the following
partial differential equation:(
ρ+ (1− γ)

Ã
δ −bi−µn− 1

αn

¶n−1
g (a, ω;n− 1, 1)

!)
Hm −Da,ω [Hm] =

ηg (a, ω;n, 1)

c∗ (a, ω)γ

(94)
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where Da,ω [Hm] denotes the infinitesimal generator of the stochastic processes a and ω
applied to the function Hm:

Da,ω [Hm] = κa (a− a) ∂aHm +
σ2a
2
∂2aaHm + µω (a, ω) ∂ωHm. (95)

Q.E.D.
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5.8 Proof of Proposition 8

The equilibrium cumulative aggregate stock return dynamics can be computed as dR =
dV
V
+ D

V
dt, where the aggregate stock market return dynamics dV

V
is obtained by applying

Ito’s Formula to the function V (a, ω,K) defined in (35). It follows that

dR = µR (a, ω) dt+ σR (a, ω) dWa (96)

whose drift and diffusion are given by

µR (a, ω) =
V A

V

Da,ω,K
£
V A
¤

V A
+

V O

V

Da,ω,K
£
V O
¤

V O
+

D

V
(97)

σR (a, ω) =

·
V A

V

∂aV
A

V A
+

V O

V

∂aV
O

V O

¸
σa. (98)

Similarly, from (31), the cumulative firm stock return evolves according to:

dRi = µRi
(a, ω, xi, ki) dt+ σRi,a (a, ω, xi, ki) dWa + σRi,x (a, ω, xi, ki) dWi (99)

whose drift and diffusions are determined by

µRi
=

V A
i

Vi

Da,ω,x,Ki
£
V A
i

¤
V A
i

+
V O
i

Vi

Da,ω,x,K
£
V O
i

¤
V O
i

+
Di

Vi
(100)

σRi,a =

·
V A
i

Vi

∂aV
A
i

V A
i

+
V O
i

Vi

∂aV
O
i

V O
i

¸
σa (101)

σRi,x =

·
V A
i

Vi

∂xV
A
i

V A
i

+
V O
i

Vi

∂xV
O
i

V O
i

¸
σx
√
xi (102)

The optimality condition of the producer’s optimization problem described by the HJB
equation (48) implies that at the optimum the following relation must hold:

0 = ΛDi +D [ΛVi] . (103)

Rewriting the infinitesimal generator of the discounted firm value D [ΛVi] as Et [dΛVi] /dt,
and dividing both sides of equation (103) by ΛVi yields the more familiar relation:

0 =
Di

Vi
dt+Et

·
dΛVi
ΛVi

¸
. (104)

A straightforward application of Ito’s Formula to the discounted firm value ΛVi leads to
the fundamental asset pricing relation:

Et [dRi] = rtdt− Et

·
dΛ

Λ

dVi
Vi

¸
(105)

where Et [dRi] = Et

h
dVi
Vi

i
+ Di

Vi
dt denotes the cumulative stock expected return and

rt = − 1
dt
Et

£
dΛ
Λ

¤
the instantaneous risk-free rate. The asset pricing relation (105) must
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hold for any return including the aggregate stock market return. From the aggregate
stock market return dynamics (96) and the equilibrium pricing kernel dynamics (81) it
follows that the aggregate stock market return is instantaneously perfectly conditionally
correlated with the pricing-kernel, that is the aggregate market portfolio is conditionally
mean-variance efficient. Therefore, standard asset pricing results imply that the risk-
return trade-off of any traded asset admits a beta-representation10, which takes the form
of a conditional CAPM:

µRi,t
= rt + βit

£
µR,t − rt

¤
(106)

where the instantaneous conditional market beta βit ≡ covt(dRi,dR)
vart(dR)

, and µRi,t
and µR,t rep-

resent the instantaneous expected return on firm i stock and aggregate market portfolio
as characterized in (100) and (97), respectively.

The conditional market beta can then be decomposed as:

βit ≡
covt (dRit, dRt)

vart (dRt)

(1)
=

σRi,a

σR

(2)
=

∂ [ln (Vit/Kit)]

∂ [ln (Vt/Kt)]

(3)
=

Kit

Vit
ξqit +

Kt

Vit
ξhit (107)

where (1) follows from the characterization of stock returns in (96) and (99), (2) from
the representation of σRi,a = σa∂a [ln (Vit/Kit)] and σR = σa∂a [ln (Vt/Kt)], and (3) from
the definition of ξqit ≡ ∂q (at, ωt, xit) /∂ ln (Vt/Kt) and ξhit ≡ ∂h (at, ωt, xit) /∂ ln (Vt/Kt).

Q.E.D.

5.9 Proof of Proposition 9

The relation between marginal q and Tobin’s Q can be derived as follows. Equation (57)
implies that the firm marginal q must satisfy the following PDE:³

eaxi + f −bi´
qi

−
³
δ −bi´+ D [Λ]

Λ
+
D [qi]
qi

+
hdΛ, dqii

Λqi
= 0 (108)

and similarly equation (58) leads to the following PDE for the firm marginal value of
growth opportunities:

η (qi − 1)n
hi

1{qi≥1} − (δ − i) +
D [Λ]
Λ

+
D [hi]
hi

+
hdΛ, dhii

Λhi
= 0 (109)

From the definition of the firm cum-dividend stock returns in (100), it follows that

µRi

(1)
=

Ki

Vi
qi

·D [qi]
qi

+ (ii − δ)

¸
+

µ
1− Ki

Vi
qi

¶·D [hi]
hi

+ (i− δ)

¸
+

Di

Vi
(2)
= µOi

+
Ki

Vi
qi
£
µIi − µOi

¤
(110)

10See, for instance, Cochrane (2001, Chapter 6) and Duffie (2001, Section 6D).
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where (1) follows from the representation of firm cum-dividend stock returns in (100)
and the definition of the infinitesimal generator D [·]; and (2) from the characterization
of a firm dividend yield as

Di

Vi
=

Ki

Vi
qi

"
eaxi + f −bi

qi
−
³
ii −bi´#+µ1− Ki

Vi
qi

¶
η (qi − 1)n

hi
1{qi≥1} (111)

and the following definitions

µIi ≡
D [qi]
qi

+
eaxi + f −bi

qi
−
³
δ −bi´ (112)

µOi
≡ D [hi]

hi
+

η (qi − 1)n
hi

1{qi≥1} − (δ − i) . (113)

Then, rearranging equation (110) leads to

Vi
Ki
= qi

£
µIi − µOi

¤£
µRi
− µOi

¤ . (114)

Taking logs,

ln

·
Vi
Ki

¸
= ln [qi] + ln

£
µIi − µOi

¤£
µRi
− µOi

¤ (115)

and performing a first-order log-linear approximation of the second term in the right-hand
side of equation (115) around µI , µO and µR leads to

ln

£
µIi − µOi

¤£
µRi
− µOi

¤ ' ln [µI − µO]

[µR − µO]
+

£
µIi − µOi

¤
[µI − µO]

−
£
µRi
− µOi

¤
[µR − µO]

. (116)

If the approximation is made around the unconditional mean returns of a firm with
marginal q equal to Tobin’s Q, then µI = µR and µO = 0. For instance, one such a
firm could be a social planner or representative firm that internalizes the firm-level scale
effects. This leads to the following approximate relation between marginal q and Tobin’
Q :

ln

·
Vi
Ki

¸
' ln [qi] + µIi − µRi

µR
. (117)

Q.E.D.
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5.10 Computation of Competitive Equilibrium

I solve for the competitive equilibrium iteratively. I approximate the system of partial
differential equations for q (a, ω) and bq (a, ω) upon discretizing the state-space of a and
ω. Let i = 1, 2, ..., I and j = 1, 2, ..., J index the value of a ∈ R and ω ∈ R++ on the
two-dimensional state-space, respectively. At each node i×j, I can rewrite the discretized
system of algebraic equations (75) - (76) as

qi,j = (ci,j)
γ Φi,j (118a)bqi,j = (ci,j)
γ bΦi,j (118b)

along with the system of partial differential equations (79) - (80) that Φi,j, bΦi,j ∈
C2
¡
R× R++¢ must satisfy:(

ρ+ (1− γ)
³
δ −bi´+ γ

µ
n− 1
αn

¶n−1
gi,j

)
Φi,j − bD £Φi,j

¤
=

eai + x−1
³
f −bi´

(ci,j)
γ (119)(

ρ+ κx + (1− γ)
³
δ −bi´+ γ

µ
n− 1
αn

¶n−1
gi,j

) bΦi,j − bD hbΦi,j

i
=

eai

(ci,j)
γ (120)

where bD [Φi,j] is the finite-difference approximation to the infinitesimal generator D [Φ]
evaluated at the node i× j :

bD [Φi,j] = κa (a− ai) [∂aΦ]i,j +
1

2
σ2a
£
∂2aaΦ

¤
i,j
+ µω (ai, ωj) [∂ωΦ]i,j . (121)

[∂aΦ]i,j =
Φi+1,j − Φi−1,j

2ha
; [∂ωΦ]i,j =

Φi,j+1 − Φi,j−1
2hω

;
£
∂2aaΦ

¤
i,j
=

Φi+1,j − 2Φi,j + Φi−1,j
h2a

(122)

with ha and hω being the increments of a and ω on the discrete two-dimensional state-
space. The approximated system of partial differential equations (119) - (120) can be
rewritten for i = 2, ..., I − 1 and j = 2, ..., J − 1 as a system of linear algebraic equations:

Ai,jΦi,j +BiΦi+1,j + CiΦi−1,j +Di,jΦi,j+1 +Ei,jΦi,j−1 = F i,j (123)bAi,j
bΦi,j +Bi

bΦi+1,j + Ci
bΦi−1,j +Di,j

bΦi,j+1 +Ei,j
bΦi,j−1 = bFi,j (124)

where

Ai,j ≡
(
ρ+ (1− γ)

³
δ −bi´+ γ

µ
n− 1
αn

¶n−1
gi,j +

σ2a
h2a

)

bAi,j ≡
(
ρ+ κx + (1− γ)

³
δ −bi´+ γ

µ
n− 1
αn

¶n−1
gi,j +

σ2a
h2a

)

Bi ≡ −
·
κa (a− ai)

2ha
+

σ2a
2h2a

¸
; Ci ≡

·
κa (a− ai)

2ha
− σ2a
2h2a

¸
Di,j ≡ −µω (ai, ωj)

2hω
; Ei,j ≡ µω (ai, ωj)

2hω

F i,j ≡
h
eai + x−1

³
f −bi´i (ci,j)−γ ; bFi,j ≡ eai (ci,j)

−γ .
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Including the zero-gradient boundary conditions, we can rewrite equation (123) in matrix
form as:

MΦ = F (125)

where M is a [(I − 2)× (J − 2)] × [(I − 2)× (J − 2)]-dimensional five-diagonal matrix,
the column vector Φ is structured as

Φ
[[(I−2)×(J−2)]×1]

=

 Φ2
...

ΦJ−1

 , Φj
[(I−2)×1]

=

 Φ2,j
...

ΦI−1,j

 ,
and the column vector F is

F
[[(I−2)×(J−2)]×1]

=

 F 2

...
F J−1

 , F j
[(I−2)×1]

=

 F 2,j

...
F I−1,j

 .
Similarly, we can rewrite equation (124) in matrix form as

cM bΦ = bF (126)

where the matrix cM and the column vectors bΦ and bF preserve the same structure and
dimensionality as for (125). Then, I solve the system of linear equations (125) - (126)
along with with equations (118a) - (118b) by using the following iterative procedure.
At each iteration n, given candidate solutions for q(n) and bq(n), we can compute the
corresponding value of Φ

(n)
and bΦ(n) as

Φ
(n)

=
£
M
¡
q(n), bq(n)¢¤−1 F ¡q(n), bq(n)¢bΦ(n) =

hcM ¡
q(n), bq(n)¢i−1 bF ¡q(n), bq(n)¢ .

With those values at hand, we can solve for the equilibrium q(n) and bq(n) by using the
Newton-Raphson iterative procedure on the system:"

q
(n+1)
i,jbq(n+1)i,j

#
=

"
q
(n)
i,jbq(n)i,j

#
−∆

h
I2 − J

(n)
i,j

i−1 q(n)i,j −
³
c
(n)
i,j

´γ
Φ
(n)

i,jbq(n)i,j −
³
c
(n)
i,j

´γ bΦ(n)i,j


where J

(n)
i,j denotes the 2× 2 Jacobian matrix evaluated at ai and ωj

J
(n)
i,j =

nJ (n)i,j

o
11

n
J
(n)
i,j

o
12n

J
(n)
i,j

o
21

n
J
(n)
i,j

o
22

 = γ
³
c
(n)
i,j

´γ−1 Φ(n)i,j

∂c
(n)
i,j

∂q
Φ
(n)

i,j

∂c
(n)
i,j

∂bqbΦ(n)i,j

∂c
(n)
i,j

∂q
bΦ(n)i,j

∂c
(n)
i,j

∂bq
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with

n
J
(n)
i,j

o
11

=
∂
³
c
(n)
i,j

´γ
Φ
(n)

i,j

∂q
= γΦ

(n)

i,j

³
c
(n)
i,j

´γ−1 ∂c(n)i,j

∂qn
J
(n)
i,j

o
12

=
∂
³
c
(n)
i,j

´γ
Φ
(n)

i,j

∂bq = γΦ
(n)

i,j

³
c
(n)
i,j

´γ−1 ∂c(n)i,j

∂bqn
J
(n)
i,j

o
21

=
∂
³
c
(n)
i,j

´γ bΦ(n)i,j

∂q
= γbΦ(n)i,j

³
c
(n)
i,j

´γ−1 ∂c(n)i,j

∂qn
J
(n)
i,j

o
22

=
∂
³
c
(n)
i,j

´γ bΦ(n)i,j

∂bq = γbΦ(n)i,j

³
c
(n)
i,j

´γ−1 ∂c(n)i,j

∂bq
and the step-size 0 < ∆ ≤ 1 is adjusted to ensure convergence.

5.11 Data Description

The empirical analysis is based on an unbalanced panel of firms drawn from the CRSP-
COMPUSTAT merged database for the years 1962 through 2002. These data include
only publicly traded firms in NYSE, NASDAQ and AMEX. I study only December fiscal
year-end firms to eliminate the problem caused by the use of overlapping observations. To
be included in the sample I require a firm to have at least three years of valid observations.
I ignore firms with negative accounting numbers for book equity, capital and investment.
I trim the values of extreme observations at the 0.5th and 99.5th percentiles or I use logs
(where possible) to reduce the impact of extreme values which are common for ratios in
firm panels drawn from accounting data.

Market equity is price times shares outstanding. Price is from CRSP (if available)
or COMPUSTAT (item 199), shares outstanding are from CRSP (if available) or COM-
PUSTAT (item 25). Book-equity is computed as the sum of stockholders’ equity and
deferred taxes and investment tax credit minus book value of preferred stock. Negative
or zero book values are treated as missing. Stockholders’ equity is COMPUSTAT item
216 (if available), or COMPUSTAT item 60 plus COMPUSTAT item 130, or COMPU-
STAT item 6 minus COMPUSTAT item 181. Deferred taxes and investment tax credit
is COMPUSTAT item 35. Book value of preferred stock is COMPUSTAT item 56 (if
available), or COMPUSTAT item 10, or COMPUSTAT item 130. Investment is capital
expenditure (COMPUSTAT item 128). Capital is net property, plant and equipment
(COMPUSTAT item 8). Stock returns are calculated from the beginning of July to the
end of June of the following year. Profitability (ROE) is the ratio of common equity
income to the book value of common equity at the beginning of fiscal year. Common
equity income is the sum of end-of-year earnings before extraordinary items (COMPUS-
TAT item 18) and depreciation (COMPUSTAT item 14). Relative capital, is the value of
a firm net property, plant and equipment (COMPUSTAT item 8), divided by the cross-
sectional average value of net property, plant and equipment of all firms. All aggregate
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series are obtained by aggregating firm-level data (for example, the aggregate investment
rate is the ratio of the sum of firm investments over the sum of firm capital). Aggregate
capital is the cross-sectional average value of net property, plant and equipment of all
firms.

All variables are in real terms. I use the implicit price deflator for non residential
investment to deflate investment and capital. All other variables are deflated using the
personal consumption expenditures deflator. Both price indexes are obtained from NIPA.
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Table I: Aggregate Moments

Data Model
Mean Std. Mean Std.

dC/C 2.14 2.54 1.05 3.71
I/K 17.75 3.66 14.07 1.40
Rf 0.75 3.97 2.22 5.39
RM −Rf 7.74 20.4 7.92 22.15

Notes to Table I. The table reports unconditional mean and standard devia-
tions of consumption growth, aggregate investment-to-capital ratio, risk-free rate

and equity premium. The numbers reported in columns denoted “Data” are com-

puted using annual data from NIPA and CRSP for the period 1929 - 2004. The

aggregate investment-to-capital ratio is computed as capital weighted average of

firm investment rates from COMPUSTAT for the period 1962 - 2002. All series are

in real terms. See Appendix for more details. The numbers reported in columns

denoted “Model” are based on 100 artificial panels each with 200 firms and 5000

years of data. I calculate returns and quantity moments for each sample and then

report the cross-sample averages. All numbers are annual percentages.
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Table II: Excess Market Returns Predictability

A: Historical Data B: Simulated Data
Horizon (k) 4 6 8 10 4 6 8 10

ln(D/V ) ln(D/V )
b 0.36 0.67 1.22 1.71 0.85 1.58 2.90 5.29
σ (b) (0.21)∗ (0.32)∗∗ (0.33)∗∗∗ (0.40)∗∗∗ (0.12)∗∗∗ (0.45)∗∗∗ (0.65)∗∗∗ (0.78)∗∗∗

R
2

0.07 0.14 0.30 0.39 0.17 0.16 0.16 0.15

ln(K/V ) ln(K/V )
b 0.42 0.63 1.04 1.60 1.36 2.66 5.13 9.58
σ (b) (0.24)∗ (0.27)∗∗ (0.26)∗∗∗ (0.22)∗∗∗ (3.05) (2.89) (2.86)∗ (2.87)∗∗∗

R
2

0.10 0.17 0.35 0.56 0.13 0.12 0.12 0.12

Notes to Table II. This table reports the results of predictability regressions
of excess market returns (ReM) at the 4, 6, 8, 10 year horizon on the log dividend

yield (ln(D/V )) and log book-to-market (ln(K/V )):

ReM
t,t+k = ak + bkxt + εt+k for k = 4, 6, 8, 10.

I report Hansen-Hodrick corrected standard errors (in parenthesis), σ (b). Stan-
dard errors starred with one, two and three asterisks are statistically significant at

the ten, five and one percent level, respectively. R
2
denotes adjusted R2. Panel A

reports the results based on historical data from the CRSP-COMPUSTAT merged

database. Stock returns are calculated from the beginning of July to the end of

June of the following year for the period 1962 - 2002. Panel B shows the results

based on 100 artificial panels each with 50 years of data. I calculate returns and

characteristics for each sample and then report the cross-sample averages of coef-

ficients, standard errors, and adjusted R2.
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Table III: Properties of Portfolios Sorted on Book-to-Market

Portfolio
1A 1B 2 3 4 5 6 7 8 9 10A 10B

A: Historical Data
Re
p 2.99 3.64 4.53 5.45 5.25 6.02 6.76 8.16 7.25 10.74 12.99 13.66

SRp 0.12 0.19 0.27 0.31 0.30 0.35 0.41 0.47 0.44 0.62 0.65 0.58
Kp/Vp 0.21 0.29 0.42 0.54 0.66 0.79 0.92 1.08 1.29 1.65 2.05 4.58
Vp/V 2.40 2.12 1.54 1.33 1.04 0.96 0.76 0.72 0.64 0.49 0.33 0.19
Ip/Kp 32.91 28.63 26.03 23.34 21.38 19.69 18.00 15.84 14.09 13.51 12.23 9.99
ROEp 0.27 0.20 0.17 0.15 0.12 0.11 0.10 0.09 0.08 0.06 0.05 0.00
Kp/K 0.46 0.64 0.72 0.96 0.97 1.10 1.07 1.25 1.32 1.18 0.95 0.81

B: Simulated Data
Re
p 6.67 6.42 6.49 6.74 7.31 7.93 8.39 9.18 10.28 11.18 12.20 13.41

SRp 0.28 0.27 0.28 0.29 0.32 0.34 0.36 0.40 0.45 0.49 0.53 0.58
Kp/Vp 0.78 0.94 1.04 1.19 1.42 1.54 1.67 1.98 2.23 2.44 2.83 2.95
Vp/V 1.96 1.70 1.38 1.17 0.95 0.80 0.73 0.64 0.54 0.47 0.42 0.33
Ip/Kp 21.52 18.58 16.33 14.64 13.14 12.38 12.14 12.02 12.00 12.00 12.00 12.00
ROEp 0.27 0.24 0.21 0.18 0.15 0.13 0.11 0.10 0.08 0.06 0.05 0.04
Kp/K 1.46 1.47 1.37 1.31 1.25 1.19 1.18 1.15 1.12 1.10 1.08 0.96

Notes to Table III. This table reports time-series averages of portfolios charac-
teristics formed yearly on the basis of ranked values of book-to-market. Portfolios

2-9 cover corresponding book-to-market deciles. The bottom and top two portfolios

(1A, 1B, 10A and 10B) split the bottom and top deciles in half. The portfolio excess

return (Re
p) and investment-to-capital ratio (Ip/Kp) are in percentage terms. SRp

denotes the portfolio Sharpe Ratio. Kp/Vp and Vp/V are the portfolio book-to-

market and relative market value (portfolio market value relative to the aggregate

market value), respectively. ROEp is the portfolio profitability computed as port-

folio common equity income to beginning-of-year portfolio book value of equity.

Kp/K is the portfolio relative capital (portfolio capital relative to the aggregate

capital). The portfolio value of Re
p is a value-weighted average of excess returns

for all firms in the portfolio. The portfolio values of Kp/Vp, Ip/Kp and ROEp are

computed as ratios of sums of the corresponding values of each firm characteristic

for all firms in the portfolio. Panel A reports statistics based on historical data

from the CRSP-COMPUSTAT merged database. Stock returns are calculated from

the beginning of July to the end of June of the following year for the period 1962 -

2002. More details are provided in Appendix. Panel B shows the results based on

100 artificial panels each with 200 firms and 50 years of data. I calculate returns

and firm characteristics for each sample and then report the cross-sample averages.
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Table IV: Properties of Portfolios Sorted on Size

Portfolio
1A 1B 2 3 4 5 6 7 8 9 10A 10B

A: Historical Data
Re
p 16.37 12.38 10.57 9.70 8.84 8.36 7.22 8.58 6.88 6.14 5.59 3.77

SRp 0.63 0.49 0.43 0.40 0.37 0.38 0.36 0.44 0.36 0.37 0.37 0.23
Kp/Vp 1.33 1.25 1.11 1.05 0.99 0.91 0.83 0.79 0.75 0.73 0.67 0.50
Vp/V 0.01 0.02 0.04 0.07 0.11 0.18 0.31 0.56 1.10 2.48 4.44 32.03
Ip/Kp 18.60 18.41 20.31 19.12 18.38 18.60 19.56 18.54 17.72 16.23 17.31 18.87
ROEp 0.00 0.01 0.03 0.04 0.05 0.07 0.08 0.09 0.10 0.10 0.11 0.13
Kp/K 0.01 0.02 0.04 0.08 0.13 0.19 0.29 0.52 0.97 2.09 3.72 7.64

B: Simulated Data
Re
p 10.37 10.00 9.73 9.41 9.01 8.66 8.44 8.01 7.52 7.16 6.75 6.28

SRp 0.45 0.43 0.42 0.41 0.39 0.37 0.37 0.35 0.32 0.31 0.29 0.27
Kp/Vp 2.11 2.00 1.93 1.85 1.74 1.64 1.59 1.46 1.32 1.21 1.08 0.94
Vp/V 0.10 0.17 0.22 0.30 0.46 0.54 0.64 0.95 1.27 1.59 2.38 2.97
Ip/Kp 12.49 12.51 12.51 12.61 12.77 12.92 13.03 13.32 13.72 14.08 14.49 14.86
ROEp 0.08 0.09 0.09 0.10 0.11 0.12 0.12 0.14 0.16 0.17 0.20 0.23
Kp/K 0.19 0.29 0.39 0.49 0.67 0.83 0.94 1.15 1.45 1.70 2.03 2.55

Notes to Table IV. This table reports time-series averages of portfolios charac-
teristics formed yearly on the basis of ranked values of market equity. Portfolios 2-9

cover corresponding market equity deciles. The bottom and top two portfolios (1A,

1B, 10A and 10B) split the bottom and top deciles in half. The portfolio excess

return (Re
p) and investment-to-capital ratio (Ip/Kp) are in percentage terms. SRp

denotes the portfolio Sharpe Ratio. Kp/Vp and Vp/V are the portfolio book-to-

market and relative market value (portfolio market value relative to the aggregate

market value), respectively. ROEp is the portfolio profitability computed as port-

folio common equity income to beginning-of-year portfolio book value of equity.

Kp/K is the portfolio relative capital (portfolio capital relative to the aggregate

capital). The portfolio value of Re
p is a value-weighted average of excess returns

for all firms in the portfolio. The portfolio values of Kp/Vp, Ip/Kp and ROEp are

computed as ratios of sums of the corresponding values of each firm characteristic

for all firms in the portfolio. Panel A reports statistics based on historical data

from the CRSP-COMPUSTAT merged database. Stock returns are calculated from

the beginning of July to the end of June of the following year for the period 1962 -

2002. More details are provided in Appendix. Panel B shows the results based on

100 artificial panels each with 200 firms and 50 years of data. I calculate returns

and firm characteristics for each sample and then report the cross-sample averages.
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Table V: Properties of Portfolios Sorted on Book-to-Market and Size

A: Historical Data B: Simulated Data
Book-to-Market Book-to-Market

Size 1Q 2 3 4Q |4Q-1Q| 1Q 2 3 4Q |4Q-1Q|

Re
p Re

p

Small 5.83 11.40 11.41 13.94 8.11 6.49 7.66 9.21 11.52 5.03
2 4.27 7.39 8.74 11.47 7.20 6.88 7.46 9.05 11.25 4.38
Big 3.83 5.24 6.18 9.66 5.83 6.41 7.26 8.90 9.37 2.96

Ip/Kp Ip/Kp

Small 33.87 26.48 20.56 16.98 16.89 25.43 14.15 12.07 12.00 13.43
2 33.33 22.88 17.30 13.12 20.21 18.11 13.08 12.04 12.00 6.11
Big 26.74 20.79 14.87 12.63 14.11 15.85 12.65 12.03 12.00 3.85

ROEp ROEp

Small 3.98 5.43 4.23 0.39 3.59 17.68 13.95 9.63 6.11 11.57
2 16.60 11.79 8.25 3.36 13.23 19.92 14.57 9.95 6.40 13.52
Big 20.24 13.02 8.82 6.14 14.10 22.22 15.26 10.37 6.94 15.28

Kp/K Kp/K
Small 0.01 0.02 0.03 0.04 0.03 0.25 0.33 0.42 0.53 0.28
2 0.13 0.28 0.44 0.60 0.47 0.72 0.88 1.05 1.22 0.50
Big 1.72 3.52 5.53 7.50 5.79 1.66 1.79 2.06 2.44 0.79

Notes to Table V. This table reports time-series averages of portfolios charac-
teristics formed yearly on the basis of ranked values of market equity and book-to-

market. In particular, each year stocks are allocated to three size groups based on

the breakpoints for the bottom 20 percent, middle 60 percent and top 20 percent

of the ranked values of market equity. Similarly, each year stocks are allocated in

an independent sort to four book-to-market groups based on the breakpoints for

the 20, 50, and 80 percent of the ranked values of book-to-market. The twelve

portfolios are the intersection of the three size and the four book-to-market groups.

The numbers reported in columns denoted |4Q-1Q| represent the absolute value
of the difference in the values of a variable between the highest and lowest book-

to-market portfolios. The portfolio excess return (Re
p), investment-to-capital ratio

(Ip/Kp) and profitability (ROEp) are in percentage terms. ROEp is the portfo-

lio profitability computed as portfolio common equity income to beginning-of-year

portfolio book value of equity. Kp/K is the portfolio relative capital (portfolio cap-

ital relative to the aggregate capital). The portfolio value of Re
p is a value-weighted

average of excess returns for all firms in the portfolio. The portfolio values of Ip/Kp

and ROEp are computed as ratios of sums of the corresponding values of each firm

characteristic for all firms in the portfolio. Panel A reports statistics based on

historical data from the CRSP-COMPUSTAT merged database. Stock returns are
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calculated from the beginning of July to the end of June of the following year for

the period 1962 - 2002. More details are provided in Appendix. Panel B shows

the results based on 100 artificial panels each with 200 firms and 50 years of data.

I calculate returns and firm characteristics for each sample and then report the

cross-sample averages.
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Table VI: Excess Returns and Firm Characteristics

ln (Ki/Vi) ln (Vi/V ) ln (Ii/Ki) ln (Ki/K) ln (Ki/Vi)× ln (Vi/V )

A: Historical Data
1 4.36
(1.02)∗∗∗

2 −1.42
(0.53)∗∗∗

3 3.14 −1.06
(1.17)∗∗∗ (0.53)∗∗

4 2.67 −1.43 −0.60
(1.31)∗∗ (0.61)∗∗ (0.30)∗∗

5 −1.80 −1.08
(0.85)∗∗ (0.53)∗∗

6 3.48 −0.96
(1.11)∗∗∗ (0.54)∗∗

7 2.97 −0.58 −1.08
(1.07)∗∗∗ (0.76) (0.53)∗∗

8 −1.09 −1.69
(0.53)∗∗ (0.76)∗∗

9 −1.06 −1.79 −0.08
(0.62)∗ (0.76)∗∗ (0.71)

B: Simulated Panel
1 5.29
(0.27)∗∗∗

2 −1.28
(0.07)∗∗∗

3 5.19 −0.06
(0.30)∗∗∗ (0.02)∗∗∗

4 4.48 −0.18 −1.25
(0.27)∗∗∗ (0.08)∗∗ (0.07)∗∗∗

5 −4.20 −0.37
(1.36)∗∗∗ (0.11)∗∗∗

6 5.25 −0.06
(0.28)∗∗∗ (0.02)∗∗

7 2.49 −3.05 −0.43
(1.09)∗∗ (1.87) (0.19)∗∗

8 −0.93 −3.88
(0.17)∗∗∗ (1.41)∗∗∗

9 −2.57 −3.08 2.17
(1.54)∗ (1.57)∗∗ (2.02)

Notes to Table VI. The table reports coefficients and standard errors of Fama-
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MacBeth cross-sectional regressions. Coefficients and standard errors (in paren-

thesis) are in percentage terms. The dependent variable is individual firm excess

stock return, and the independent variables are the (logarithms of) book-to-market

(Ki/Vi), relative market equity (Vi/V ), investment-to-capital ratio (Ii/Ki), rela-

tive capital (Ki/K), and the interaction between the (logarithm of) book-to-market
and relative market equity. Standard errors are adjusted for heteroskedasticity and

serial correlation using Newey-West formula with one lag. Standard errors starred

with one, two and three asterisks are statistically significant at the ten, five and one

percent level, respectively. Panel A reports statistics based on historical data from

the CRSP-COMPUSTAT merged database. Stock returns are calculated from the

beginning of July to the end of June of the following year for the period 1962 -

2002. More details are provided in Appendix. Panel B shows the results based on

100 artificial panels each with 200 firms and 50 years of data. I calculate returns

and firm characteristics for each sample and then report cross-sample averages of

coefficients and standard errors.
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Table VII: CAPM - Time Series Regressions

Portfolio
1A 1B 2 3 4 5 6 7 8 9 10A 10B

A: Historical Data
α −3.61 −1.68 −0.57 0.11 0.06 1.21 2.25 3.08 2.97 6.52 8.24 8.56
σ (α) (1.15)∗(0.86)∗(0.61) (0.88) (1.19) (1.49) (1.12)∗(1.22)∗(1.72) (2.08)∗(2.36)∗(3.17)∗

βM 1.31 1.06 1.01 1.06 1.03 0.96 0.90 1.01 0.85 0.84 0.94 1.01
σ (βM) (0.19)∗(0.08)∗(0.06)∗(0.11)∗(0.06)∗(0.06)∗(0.09)∗(0.06)∗(0.07)∗(0.14)∗(0.12)∗(0.16)∗

B: Simulated Data
α −1.28 −1.57 −1.50 −1.23 −0.62 0.03 0.50 1.29 2.42 3.35 4.39 5.63
σ (α) (0.32)∗(0.20)∗(0.12)∗(0.07)∗(0.03)∗(0.05) (0.07)∗(0.10)∗(0.16)∗(0.21)∗(0.27)∗(0.34)∗

βM 0.99 1.00 1.01 1.01 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98
σ (βM) (0.03)∗(0.02)∗(0.01)∗(0.01)∗(0.00)∗(0.00)∗(0.01)∗(0.01)∗(0.01)∗(0.02)∗(0.02)∗(0.03)∗

Notes to Table VII. The table reports summary statistics of time series regres-
sions of book-to-market sorted portfolios’ excess stock returns (Rep

t+1) on the excess

stock market returns (ReM
t+1):

Rep
t+1 = αp + βpMReM

t+1 + εpt+1 for p = 1, ..., 12.

The time-series intercepts, α, and standard errors, σ (α), are in percentage terms.
The coefficients, βM , denote CAPM - βs. Standard errors (in parenthesis) are
adjusted for heteroskedasticity and serial correlation using Newey-West formula

with one lag. Standard errors starred with one asterisk are statistically significant

at the five percent level. Panel A reports statistics based on historical data from

CRSP. Stock returns are calculated from the beginning of July to the end of June of

the following year for the period 1962 - 2002. More details are provided in Appendix.

Panel B shows the results based on 100 artificial panels each with 200 firms and

50 years of data. I calculate returns for each sample and then report cross-sample

averages of regression coefficients and standard errors.
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Table VIII: Fama and French Model - Time Series Regressions

Portfolio
1A 1B 2 3 4 5 6 7 8 9 10A 10B

A: Historical Data
α 0.29 0.64 0.74 −0.71 −0.77 −0.55 −0.24 0.08 −0.97 2.18 2.96 4.23
σ (α) (1.95) (1.40) (0.65) (0.90) (1.27) (1.38) (1.29) (0.95) (1.35) (1.28) (1.91) (3.16)

βM 1.13 0.98 1.00 1.08 1.05 0.96 0.94 1.08 0.93 0.95 1.01 1.04
σ (βM) (0.18)∗(0.07)∗(0.05)∗(0.10)∗(0.06)∗(0.07)∗(0.07)∗(0.04)∗(0.07)∗(0.14)∗(0.10)∗(0.16)∗

βSMB 0.11 −0.05 −0.13 0.02 0.03 0.21 0.19 0.14 0.27 0.21 0.47 0.48
σ (βSMB) (0.16) (0.09) (0.06)∗(0.06) (0.08) (0.09)∗(0.10)∗(0.07)∗(0.09)∗(0.08)∗(0.15)∗(0.16)∗

βHML −0.64 −0.36 −0.18 0.13 0.12 0.24 0.36 0.45 0.57 0.65 0.74 0.59
σ (βHML) (0.13)∗(0.13)∗(0.04)∗(0.08) (0.10) (0.09)∗(0.10)∗(0.05)∗(0.07)∗(0.09)∗(0.11)∗(0.16)∗

R
2

0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97

B: Simulated Data
α 2.67 0.89 −0.02 −0.45 −0.56 −0.45 −0.33 −0.12 0.12 0.28 0.41 0.71
σ (α) (0.53)∗(0.22)∗(0.12) (0.07)∗(0.09)∗(0.09)∗(0.08)∗(0.09) (0.10) (0.15) (0.22) (0.31)∗

βM 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
σ (βM) (0.01)∗(0.01)∗(0.00)∗(0.00)∗(0.00)∗(0.00)∗(0.00)∗(0.00)∗(0.00)∗(0.00)∗(0.00)∗(0.01)∗

βSMB −0.29 −0.06 0.00 −0.05 −0.08 0.00 0.12 0.35 0.63 0.95 1.37 1.68
σ (βSMB) (0.52) (0.21) (0.12) (0.07) (0.08) (0.08) (0.08) (0.09)∗(0.10)∗(0.13)∗(0.21)∗(0.30)∗

βHML −0.90 −0.58 −0.35 −0.18 0.00 0.12 0.19 0.30 0.48 0.62 0.79 0.98
σ (βHML) (0.10)∗(0.04)∗(0.02)∗(0.01)∗(0.02) (0.02)∗(0.02)∗(0.02)∗(0.02)∗(0.03)∗(0.04)∗(0.06)∗

R
2

0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes to Table VIII. The table reports summary statistics of time series regres-
sions of book-to-market sorted portfolios’ excess stock returns (Rep

t+1) on the excess

stock market returns (ReM
t+1), the returns on SMB (R

SMB
t+1 ) and HML (RHML

t+1 ) :

Rep
t+1 = αp+ βpMReM

t+1+ βpSMBR
SMB
t+1 + βpHMLR

HML
t+1 + εpt+1 for p = 1, ..., 12.

The time-series intercepts, α, and standard errors, σ (α), are in percentage terms.
Standard errors (in parenthesis) are adjusted for heteroskedasticity and serial cor-

relation using Newey-West formula with one lag. Standard errors starred with one

asterisk are statistically significant at the five percent level. R
2
denotes adjusted
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R2. Panel A reports statistics based on historical data from CRSP. Stock returns

are calculated from the beginning of July to the end of June of the following year for

the period 1962 - 2002. More details are provided in Appendix. Panel B shows the

results based on 100 artificial panels each with 200 firms and 50 years of data. I cal-

culate returns for each sample and then report cross-sample averages of regression

coefficients, standard errors, and adjusted R2.
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Table IX: Asset Pricing Models: Fama-MacBeth Regressions

Intercept β MKT log(D/V )×MKT SMB HML R
2

A: Simulated Data
1 −0.18 0.09 0.97
(0.13) (0.04)∗∗

2 0.82 −0.73 0.54
(0.12)∗∗∗ (0.13)∗∗∗

3 0.46 −0.37 0.86 0.77
(0.08)∗∗∗ (0.08)∗∗∗ (0.25)∗∗∗

4 −0.18 0.26 0.04 0.86
(0.06)∗∗∗ (0.07)∗∗∗ (0.00)∗∗∗

5 0.04 0.03 0.01 0.03 0.94
(0.06) (0.06) (0.00)∗∗∗ (0.00)∗∗∗

B: Historical Data
6 0.22 −0.14 0.18
(0.08)∗∗∗ (0.08)∗

7 0.24 −0.17 0.61 0.25
(0.08)∗∗∗ (0.08)∗∗ (0.26)∗∗

8 −0.10 0.15 0.07 0.77
(0.06) (0.07)∗∗ (0.02)∗∗

9 −0.02 0.07 0.09 0.05 0.81
(0.05) (0.05) (0.04)∗∗ (0.02)∗∗

Notes to Table IX . The table reports summary statistics of Fama-MacBeth

cross-sectional regressions. The dependent variable is excess stock return on book-

to-market sorted portfolios, and the independent variables are a constant and betas

estimated by time-series regression of excess returns on the factors. Standard er-

rors (in parenthesis) are adjusted for heteroskedasticity, serial correlation (one lag)

and sampling variation in estimated betas using GMM formulas. Standard errors

starred with one, two and three asterisks are statistically significant at the ten, five

and one percent level, respectively. R
2
denotes adjusted R2. Panel A shows the

results based on 100 artificial panels each with 200 firms and 50 years of data. I

calculate returns for each sample and then report cross-sample averages of coeffi-

cients, standard errors and adjusted R2. Line 1, conditional CAPM regressions,

where the independent variable is the model implied conditional β. Line 2, CAPM
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regressions, whereMKT represents the average excess stock market return. Line 3,
conditional CAPM regressions with the aggregate log dividend yield, log(D/V ), as
conditioning variable. Line 4, two-factor model (MKT and HML), where HML
denotes the average return on the “high minus low” portfolio constructed as in

Fama and French (1993). Line 5, Fama and French (1993) model, where SMB
is the average return on the “small minus big” portfolio constructed as in Fama

and French (1993). Panel B reports statistics based on historical data from CRSP.

Stock returns are calculated from the beginning of July to the end of June of the

following year for the period 1962 - 2002. More details are provided in Appendix.
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Table X: Risk-Adjusted Returns and Firm Characteristics

Model ln (Kp/Vp) ln (Vp/V ) ln (Ip/Kp) ln (Kp/K)
A: Historical Data

1 CCAPM 1.03 −2.77
(1.90) (1.61)

2 −10.49 −2.59
(2.85)∗∗∗ (1.21)∗

3 2-FF −1.98 −2.94
(1.68) (1.68)

4 −5.51 −2.59
(1.93)∗∗ (1.18)∗

5 3-FF −1.58 −2.64
(1.76) (1.66)

6 −4.84 −2.16
(1.73)∗∗ (1.26)

B: Simulated Data
7 CCAPM 4.57 −0.57

(0.47)∗∗∗ (0.29)∗

8 −0.81 −4.06
(0.06)∗∗∗ (0.59)∗∗∗

9 2-FF −0.46 −0.58
(0.47) (0.35)

10 −0.24 −0.53
(0.02)∗∗∗ (0.25)∗

11 3-FF −1.22 −0.53
(0.63)∗ (0.32)

12 −0.08 0.16
(0.02)∗∗∗ (0.24)

Notes to Table X. The table reports coefficients and standard errors of Fama-
MacBeth cross-sectional regressions. Coefficients and standard errors (in paren-

thesis) are in percentage terms. The dependent variable is risk-adjusted return on

book-to-market sorted portfolios, and the independent variables are the (logarithms

of) book-to-market (Kp/Vp), relative market equity (Vp/V ), investment-to-capital
ratio (Ip/Kp), and relative capital (Kp/K). Risk-adjusted portfolio returns are
computed as the difference between actual and model predicted portfolio returns.

Standard errors are adjusted for heteroskedasticity, serial correlation (one lag) and

sampling variation in estimated risk-adjusted returns using GMM formulas. Stan-

dard errors starred with one, two and three asterisks are statistically significant at
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the ten, five and one percent level, respectively. Panel A reports statistics based on

historical data from CRSP. Stock returns are calculated from the beginning of July

to the end of June of the following year for the period 1962 - 2002. More details are

provided in Appendix. Line 1-2, predicted portfolio returns are computed using the

conditional CAPM with log dividend yield as conditioning variable in time-series

regressions (CCAPM). Line 3-4, predicted portfolio returns are computed using

the two factor (MKT and HML) model in time-series regressions (2-FF). Line 5-6,

predicted portfolio returns are computed using the Fama and French (1993) three

factor model in time-series regressions (3-FF). Panel B shows the results based on

100 artificial panels each with 200 firms and 50 years of data. I calculate returns

and portfolio characteristics for each sample and then report cross-sample averages

of coefficients and standard errors.
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Figure 1: Equilibrium Aggregate Variables
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Notes to Figure 1. The figure plots some relevant aggregate variables in com-
petitive equilibrium as a function of the aggregate productivity, a, and the average
value of ω. Panel A: Volatility of consumption growth. Panel B: Investment ir-
reversibility threshold, ex. Panel C: Aggregate book-to-market ratio. Panel D:

Aggregate dividend yield.
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Figure 2: Value vs. Growth in Simulated Data
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Notes to Figure 2. The figure illustrates the relation between profitability and
investment-to-capital ratio for growth and value portfolios in simulated data.Growth

(value) indicates the portfolio containing firms in the bottom (top) 20 percent of

the values of book-to-market ratios. I measure profitability by return on equity

(ROE) as [∆Kt +Dt] /Kt−1, where Kt−1 denotes the book value of equity and
Dt is the dividend payout. The profitability of a portfolio is defined as the sum

of [∆Kit +Dit] for all firms i in the portfolio divided by the sum of Kit−1. The
investment-to-capital ratio of a portfolio is defined as the sum of Iit for all firms
i in the portfolio divided by the sum of Kit−1. For each portfolio formation year
t, the ratios of [∆Kt+k +Dt+k] /Kt+k−1 and It+k/Kt+k−1 are calculated for year
t+ k, where k = −5, ..., 5. The ratio for year t+ k is then averaged across port-
folio formation years. Panel A and C show the 11 - year evolution of profitability

and investment-to-capital ratio for growth and value portfolios, respectively. Panel

B and D show the time-series of profitability and investment-to-capital ratio for

growth and value portfolios, respectively. The figure is based on 100 artificial panels

each with 200 firms and 50 years of data. I calculate profitability and investment-

to-capital ratio for value and growth portfolios for each sample, and then report

cross-sample averages.
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Figure 3: Value vs. Growth in Historical Data
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Notes to Figure 3. The figure illustrates the relation between profitability and
investment-to-capital ratio for growth and value portfolios in historical data.Growth

(value) indicates the portfolio containing firms in the bottom (top) 20 percent of

the values of book-to-market ratios. I measure profitability by return on equity

(ROE) as the ratio of common equity income for the fiscal year ending in calendar

year t and the book value of equity for year t−1. The profitability of a portfolio is
defined as the sum of common equity income for all firms in the portfolio divided

by the sum of book value of equity. The investment-to-capital ratio of a portfolio

is defined as the sum of capital expenditures for the fiscal year ending in calendar

year t for all firms in the portfolio divided by the sum of net property, plant and

equipment for year t − 1. For each portfolio formation year t, the ROEt+k and

It+k/Kt+k−1 are calculated for year t+ k, where k = −5, ..., 5. The ratio for year
t + k is then averaged across portfolio formation years. Panel A and C show the
11 - year evolution of profitability and investment-to-capital ratio for growth and

value portfolios, respectively. Panel B and D show their time-series dynamics. The

figure is based on historical data from the CRSP-COMPUSTAT merged database

for the period 1962 - 2002. More details are provided in Appendix.
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Figure 4: Predicted vs. Actual Excess Returns in Simulated Data
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Notes to Figure 4. The figure shows model predicted vs. actual annual mean
excess returns on book-to-market sorted portfolios in simulated data. Panel A:

CAPM. Panel B: conditional CAPMwith log dividend yield as conditioning variable

(CCAPM). Panel C: two factor model (MKT + HML). Panel D: Fama and French

(1993) three factor model. RMSA is the root mean squared alpha. The figure is

based on 100 artificial panels each with 200 firms and 50 years of data. I calculate

portfolios returns for each sample and then report cross-sample averages.
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Figure 5: Predicted vs. Actual Excess Returns in Historical Data
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Notes to Figure 5. The figure shows model predicted vs. actual annual mean
excess returns on book-to-market sorted portfolios in historical data. Panel A:

CAPM. Panel B: conditional CAPMwith log dividend yield as conditioning variable

(CCAPM). Panel C: two factor model (MKT + HML). Panel D: Fama and French

(1993) three factor model. RMSA is the root mean squared alpha. The figure is

based on historical data from the CRSP-COMPUSTAT merged database for the

period 1962 - 2002. More details are provided in Appendix.
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