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Abstract
This paper proposes and implements a parsimonious three-factor model of the

term structure whose dynamics is driven uniquely by observable state variables.
The method allows comparing alternative views on the way state variables - macro-
economic variables, in particular - in�uence the yield curve dynamics, avoids curse
of dimensionality problems commonly appearing in traditional models, and pro-
vides more reliable inference by using both the cross-sectional and the time series
dimension of the data. I simulate the small-sample properties of the procedure
and conduct in- and out-of-sample studies using a comprehensive set of US data. I
show that even a parsimonious model where the level, slope and curvature factors
of the term structure are driven by, respectively, measures of in�ation, monetary
policy and economic activity consistently outperforms the (latent-variable) bench-
mark model out-of-sample, when considering the �ve NBER-dated recessions of
the last three decades.
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1 Introduction

This paper proposes and implements a parsimonious three-factor model of the term
structure whose dynamics is driven uniquely by observable state variables, as opposed
to latent variables.1 It builds upon a three-factor model describing the term structure
behaviour �rst proposed in Nelson and Siegel (1987) and recetly reinterpreted by Diebold
and Li (2006, DL) as a dynamic latent factor model. The Nelson-Siegel method is suf-
�ciently �exible to approximate the changing shape of the yield curve yet parsimonious
and easy to implement.

The interaction between the term structure of interest rates and macroeconomic
variables has been extensively explored in a number of papers in the last decade or so,
thanks in part to the fact that �yields-only�models based on no-arbitrage were found
to do well in �tting the cross-section of yields at a particular point in time (de Jong,
2000; Dai and Singleton, 2000), but poorly in describing the dynamics of the yield curve
(Du¤ee, 2002; Brousseau, 2002). Although the techniques employed varied substantially,
ranging from short-rate to VAR-based models, the aim of the papers jointly investigating
yields and macro variables was to better understand (and forecast) the yield curve
dynamics, whose aim the present paper shares.2

The intuition of the modelling strategy I adopt goes as follows. If the term structure
moves as a result of changes in the economic fundamentals � here represented by a set
of state variables � the term structure factors (and, by consequence, the term structure
dynamics) should be somehow linked to these state variables. In this paper, I make this
link explicit, so that the movements of the term structure are completely exerted by the
underlying state variables.

The approach here proposed contributes to the literature from both the theoretical
and the empirical viewpoints. First, the replacement of latent factors with observable
state variables as the only drivers of the term structure factors allows comparing al-
ternative views on the way state variables � macroeconomic variables, in particular �
in�uence the yield curve dynamics.3 Besides telling more about the economic fundamen-
tals than latent variables, the use of observable variables might also provide guidance
to the construction of theoretical models of the term structure dynamics. Additionally,
the method enables testing hypotheses of economic interest � as a result, instead of

1In the text I usually refer to state variables for the sake of generality, but in the literature the set
of variables that have been mostly used are macroeconomic variables.

2Contributions to the literature in the last decade include Fuhrer and Moore (1995), Rudebusch
(1995, 2002), Evans and Marshall (1996), Fuhrer (1996), Dewachter and Lyrio (2002), Hördahl, Tristani
and Vestin (2002), Wu (2002), Piazzesi (2005), Ang and Piazzesi (2003), and Bikbov and Chernov
(2005).

3In a number of recent related studies, observable and latent factors coexist: Ang and Bekaert (2004)
use one observable (in�ation) and two latent factors; Rudebusch and Wu (2004) use two observable
(GDP growth and in�ation) and two latent; Hördahl, Tristani and Vestin (2004) use three observable
(the short rate, GDP growth, and in�ation) and one latent one; Ang, Dong, and Piazzesi (2005) use
two observable (in�ation and GDP growth) and one latent factor. Exceptions include Ang, Piazzesi,
and Wei (2004), which use the short rate, the term spread, and GDP growth as their state variables,
and Bekaert, Cho, and Moreno (2004), which uses the short rate, the output gap, and in�ation. As
opposed to what I present in the empirical exercise, these papers do not conduct model comparisons,
pre-specifying the state variables they use � this important aspect of the paper is discussed in detail
in the sequel.
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pre-specifying the drivers of the yield curve dynamics, I compare alternative models
and select the best among them. Moreover, the explicit link between term structure
factors and observable state variables enables policy experiments to be performed. As
a result, one can forecast the term structure by using forecasted variables, or perform
stress testing of the term structure using scenarios constructed using the state variables.
This feature is especially useful to bankers, who are interested in forecasting bond prices
and might have a better idea of the expected state of the economy than the expected
state of the yield curve. This feature is also of value to �nancial authorities, as a tool
to assess �nancial stability.4

Second, the method is robust to curse of dimensionality problems commonly ap-
pearing in traditional models. The curse of dimensionality imposes constraints on the
number of yields one can use and, in particular, results in poor measures of the term
structure curvature.5 Here, instead, the dimension of the parameter vector does not
increase with the number of yields under study, just with the number of state variables
explaining them, very much in the spirit of linear regression, where one loses degrees of
freedom by including additional covariates, not more observations.

Third, the identi�cation strategy comes out in a natural way. Essentially, the baseline
model needs the state variables driving the term structure to be predetermined with
respect to yields. When I incorporate a Taylor rule into the model, the identifying
assumption made is also standard, requiring the state variables to be predetermined
with respect to the monetary policy instrument.

Fourth, I conduct in- and out-of-sample studies using US data. The in-sample study
uses a thorough set of macroeconomic variables to compare alternative speci�cations of
the term structure dynamics and suggests two models which I then use in the out-of-
sample exercise: a parsimonious model where the level, slope and curvature factors of
the term structure are driven by, respectively, measures of in�ation growth, monetary
policy, and economic activity6, and a richer speci�cation where the level is driven by
measures of in�ation growth and economic activity, the slope by monetary policy and
economic activity, and the curvature by �scal policy growth.7 The out-of-sample study
shows that both speci�cations consistently outperform the (latent-variable) benchmark
model in the study of the yield curve behaviour during the �ve NBER-dated recessions
which occurred in the last three decades. Recessions are of interest not only for being bad
states against which economic agents are willing to insure, but also for being periods

4Stress testing has become crucial in the risk management toolbox of �nancial institutions. It is
de�ned in BIS (2000) as "a generic term describing various techniques used by �nancial institutions to
gauge their potential vulnerability to exceptional but plausible events". Due to the fact that standard
Value at Risk (VaR) models have been found to be of limited use in measuring exposures to extreme
events, stress testing has been incorporated into the risk management routine of �nancial institutions,
and has even been stressed during the ongoing Basel II process as a useful tool in assessing banks�
internal models.

5One needs at least three yields for the curvature to be de�ned, but by relying on only �ve yields,
as is often done in the literature, one is unlikely to obtain accurate measures of this factor.

6These are, respectively, the Consumer Price Index growth rate, the Fed Funds rate, and the Unem-
ployment Rate.

7The level is driven by the Consumer Price Index growth rate and the Unemployment Rate, the
slope by the Fed Funds rate and the Unemployment Rate, and the curvature by the growth rate of
the ratio between Government de�cit and Industrial Production � the proxy measure of GDP at the
monthly frequency.
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which tend to be preceded by the inversion of the term structure of interest rates, a
feature usually di¢ cult to be quickly captured � if at all � by term structure models.

The paper is organized as follows. Section 2 brie�y reviews term structure estimation
methods and recent developments of the Nelson-Siegel approach. Section 3 presents the
model and discusses its identi�cation and implementation. Section 4 presents simulation
results, and Section 5 performs an empirical exercise using US data. The Appendix
contains an empirical exercise using CRSP interest rate data as a robustness check and
discusses strategies for incorporating spatial modelling into the model.

2 Yield Curve Estimation

2.1 Static Methods

When analyzing the evolution of the yield curve over time, one striking feature is the
variety of shapes it can have. These vary from �at ones, where longer term rates are
roughly the same as shorter ones, to upward-sloping ones, where longer term rates are
higher, but also include �hump-shaped�, inverted, �spoon-shaped�ones etc. As a result,
yield curve �tting methods are expected to be �exible enough to match the di¤erent
shapes the yield curve can have.

A number of approaches can be used to modelling the term structure of interest rates.
First, one may consider models that make explicit assumptions about the evolution of
state variables and use either equilibrium or arbitrage methods, which corresponds to
modelling dynamic yield curves. According to this class of models, the evolution of the
yield curve is modelled as depending linearly on a small number of (arbitrarily chosen)
factors. Since in most of the cases the underlying state variable is the short term interest
rate, they are frequently labeled as �short-rate models�. The landmarks of this approach
are the papers by Vasicek (1977) and Cox, Ingersoll, and Ross (1985, CIR), both of
which use the short rate as the only underlying factor. Subsequent extensions to multi-
factor models include the two-factor model of Longsta¤ and Schwartz (1992), and the
three-factor one of Balduzzi, Das, Foresi and Sundaram (1996, BDFS). When it comes to
�tting real data, one-factor models perform poorly: the yield curve corresponding to the
Vasicek model does not allow a large range of shapes, whereas the ones corresponding
to CIR and extensions allowing time-varying parameters such as Hull and White (1990)
tend to evolve unrealistically over time. In what regards multi-factor models, there is an
understanding that at least three factors are needed to generate a wide variety of yield
curve shapes, although even so the �t close to the long end tends to be poor. Moreover,
choosing the state variables involves both a certain degree of arbitrariness and a bit of
art - direct factors may include the short rate, spot rates of various maturities, forward
rates, swap rates, whereas indirect ones may include the short rate volatility, the mean
short rate, the latter two rising issues such as the choice of the sample period involved
in their calculations. Further, multi-factor models (such as the BDFS) usually lack of
explicit formulae and are of di¢ cult calibration to market prices.

Alternatively, one can smooth data obtained from asset prices to describe the static
yield curve, usually without taking a view on the factors driving it. This corresponds
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to �tting, the yield curve as a whole. The analysis starts from information on asset
prices, from which one extracts the corresponding yields. As there are only a few ma-
turities available for which there are observations on prices (and, thus, yields), it is
interesting to somehow �connect�those points in order to evaluate instruments with ma-
turities di¤erent from those of the yields one has already extracted, usually imposing
some degree of smoothness. Among the estimation methods most widely used, there
are (regression and smoothing) spline techniques, kernel methods, but also parametric
classes of curves, broadly known as the Nelson-Siegel family of curves. Among regres-
sion splines one can �nd several sub-varieties - McCulloch (1971, 1975) used quadratic
and cubic splines, Schaefer (1981) employed Bernstein polynomials, whereas Vasicek and
Fong (1982) adopted exponential splines. Regression splines have some inconveniences
though. One has to take into account the arbitrariness involved, �rst, in the choice
of knot points, second, in the choice of basis functions. Thirdly, splines may oscillate
too much and are too sensitive to modelling parameters, with the consequence of �tting
poorly at too long and too short maturities. Fourthly, since splines are polynomials, they
imply a discount function which diverges as maturity increases rather than converging
to zero as required by theory - as a result, implied forward rates also diverge rather
than converging to any �xed limit. Fifthly, there is no simple way to ensure that the
discount function always declines with maturity i.e. that all forward rates are positive.
Although exponential splines are appealing in theory, it is not clear that they perform
better than standard splines in practice (Shea, 1985). As for smoothing splines (Fisher,
Nychka and Zervos, 1995), they reduce the amount of curvature as one may well desire
when uncomfortable with regression splines, but at the expense of a worse �t to the
yield curve.

The class of curves �rst proposed in Nelson and Siegel (1987) is parsimonious and does
well in capturing the overall shape of the yield curve, being popular among practitioners
and central banks alike (BIS, 2000).8 For a sample of N bonds measured at a given
point in time, the yield curve as a function of time to maturity � i is written as

y(� i) = �1 + �2

�
1� e��� i

�� i

�
+ �3

�
1� e��� i

�� i
� e��� i

�
+ u(� i); i = 1; :::; N

providing a parsimonious representation of the term structure which is consistent with
a well-behaved discount function i.e. continuous, positive and decreasing in � , taking
value 1 when � = 0 and approaching zero as � grows large.9 As we justify below, the
parameters �1; �2; �3 can be interpreted as, respectively, the level, (the negative of the)
slope, and curvature components, whereas the parameter �t controls the exponential
decay of the yield curve: small values produce slow decay and can better �t the curve
at long maturities, while large values generate a fast decay and can better �t the curve
at short maturities. Moreover, � also determines where the loading on �3 achieves its
maximum. The loading on �1 is a constant, implying that an increase in this factor
increases all yields equally, which results in a change in the level of the yield curve. The
loading on �2 is a function that starts at 1 but decays monotonically to zero, implying
that an increase in �2 increases short yields more than long yields, resulting in a change
in the slope of the yield curve. As for �3, this is related to the curvature of the term

8Although one could argue that a three-factor model could be too much of a simpli�cation, Diebold,
Rudebusch and Aruoba (2005) �nd no evidence that extensions of Nelson-Siegel using four or �ve factors
would do better, which is consistent with previous �ndings of Dahlquist and Svensson (1994)

9Equivalently, it guarantees positive forward rates at all horizons.
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structure, as an increase in �3 will have little e¤ect on very short or very long yields, but
will increase medium-term yields, thus resulting in an increase of curvature of the yield
curve. As �rst described by Diebold and Li (2006), this representation can be related
to a dynamic three-factor model of, respectively, level, slope, and curvature, which I
describe in the following.

2.2 Nelson-Siegel and Beyond

The framework recently proposed in Diebold and Li (2006), and also used in Diebold,
Rudebusch, and Aruoba (2006, DRA) reinterprets the Nelson and Siegel (1987) frame-
work as a dynamic latent-factor model. Following Diebold and Li (2006), for every time
period t, the yield curve is a function of time-to-maturity � (or, rather, a combination
of exponential functions thereof) and time-varying parameters interpreted as the level,
slope, and curvature factors,

yt(� i) = �1t+�2t

�
1� e��t� i

�t� i

�
+�3t

�
1� e��t� i

�t� i
� e��t� i

�
+ut(� i); i = 1; :::; N; t = 1; :::; T

Estimation could in principle be carried out using Nonlinear Least Squares (NLLS)
although the usual practice since Nelson and Siegel (1987)� and also followed in Diebold
and Li (2006) � has been to �x �t to a constant value, compute the factor loadings
(regressors), and then use OLS to estimate f�tg. The parameter �t determines the
maturity � � at which the loading on the curvature factor achieves its maximum (usually
between 2 and 3 years), and Diebold and Li (2006) simply pick a �t such that this
maximum is achieved at the midpoint between these maturities � 30 months � and set
�� = �t = 0:0609. After computing the sequence f�tg of factors and the pricing errors,
they model the factors as a univariate AR(1) models and compare the forecasting power
of the model out-of-sample with a number of alternatives, with reasonable performance,
especially given the simplicity of the model.

The above framework is intuitive and easy to implement, but is still based on latent
variables � despite the consensus that changes in the yield curve are exerted by changes
in macroeconomic conditions (or, more generally, changes in state variables), the factors
in the DL framework remain latent, whereas in DRA latent and observable factors
(pre-speci�ed by the researchers) coexist. As a result, it o¤ers no room for comparing
alternative views on the main drivers of the term structure dynamics. Moreover, the
empirical implementations restrict the dynamics of the time-varying factors in ways that,
despite their reasonability, are di¢ cult to be either veri�ed or refuted: whereas Diebold
and Li (2006) model the parameters f�pg3p=1 as univariate AR(1) processes, Diebold,
Rudebusch, and Aruoba (2006), generalize it to a �rst-order vector autoregression. In
any case, the estimation of the stochastic processes driving the level, slope, and curvature
factors does not acount for the measurement error coming from the fact that f�pg3p=1
are estimated rather than observed, so that any asymptotic statements are likely to be
misleading.
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3 Term Structure Modelling

This section proposes a term structure modelling approach building upon Nelson-Siegel
and its reinterpretation by Diebold and Li (2006). The main contrast with respect to
the DL model is that here the term structure dynamics is solely driven by the dynamics
of observable state variables, as opposed to latent factors. The intuition behind this
idea is that if the yield curve moves as a result of changes in relevant state variables,
the factors should be somehow linked to these state variables. As a result, one can now,
for instance, compare alternative hypotheses on the variables driving the term structure
factors and state that level, slope and curvature factors are driven by, say, measures of
economic activity, in�ation, and monetary policy instrument, respectively.

3.1 A Model with State Variables

The DL model writes the yields at time t as a function of the maturity vector � ,

yt(� ) = �1t + �2t

�
1� e��t�

�t�

�
+ �3t

�
1� e��t�

�t�
� e��t�

�
+ ut(� )

further assuming that �t is constant over time and setting it to a pre-speci�ed value.
Estimation of the parameter vector �t for every period is carried out using linear least
squares, which assumes that the error term does not depend on maturity. This results in
a time series of the parameter vector f�tg whose dynamics is approximated by univariate
�rst-order autoregressive processes for each of its components. The reasons for �xing �t
to a pre-speci�ed value are, according to the authors, its lack of straightforward economic
intuition and the gains from the use of simple linear techniques when estimating the
model. In fact, given the small cross-sectional dimension of the yields dataset they use,
�tting a nonlinear model can be a very challenging exercise. The main take-away point
is, however, the latent-variable character of the DL model.

The main point of departure from DL in this paper is the link between the dynamics
of the latent variables to the one of observable state variables predetermined relative to
yt(�), which I denote byMt�.10 This is done by decomposing the parameter vector �t :=
(�0t; �t)

0 as a sum of two components: the �rst, � := (�
0
; �)0, being a mean component,

and the second being the combination of the state variables Mt� and parameters � :=
(�0�; �

0
�)
0 measuring their impact on the latent variables. Thus,

�t :=

�
�t
�t

�
=

�
�

�

�
+Mt�

�
��
��

�
Decomposing the time-varying parameters in such a way amounts to assuming that

the movements of the yield curve are completely exerted by the movements of the un-
derlying state variables, apart from the error term in the regression equation. Assuming
a time-varying �t, which is now also to be estimated, complicates the problem, which
can no longer be written as a linear regression model of the form yt(�) = Xt(�

�)�t + ut
due to the pre-speci�cation of ��by the researcher, as in DL.

10In what follows, given two variables A and B, I write At� if A is predetermined with respect to B
within period t.
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The full model reads

yt(�) = Xt(�t)�t + ut(�)�
�t
�t

�
=

�
�

�

�
+Mt�

�
��
��

�
where the error term is a martingale di¤erence sequence with respect to current and past
covariate information and uncorrelated in the maturity domain i.e. E[ut(�)ut(�)

0] =
�2I.11 This model is more costly to be estimated from the numerical point of view, but
this cost is o¤set by having the dynamics of f�tg driven by state variables. Moreover,
there are also gains from modelling the dynamics of f�tg, apart from a pure generality
argument. If the parameter �3t governs the intensity of the curvature of the yield curve,
the parameter �t governs the locus of its �tilting point� or, alternatively, where the
loading associated to the factor �3t attains its maximum, thus making it unnatural to
be disconnected to the analysis of the term structure curvature.

In what regards identi�cation, the argument goes as follows. Data is observed at
the monthly frequency, but recorded at di¤erent moments within a given month � the
state variables Mt� are observed at the beginning of each month, whereas the yields are
observed at the end of the corresponding month.12 As a result, the state variables Mt�
are predetermined with respect to the yields.

Important features of the method are its robustness to errors in variables, its parsi-
mony, and its robustness to the curse of dimensionality. First, as opposed to DL, where
(i) the extraction of the f�tg sequence of parameters relies solely on the cross-sectional
dimension of the data; (ii) the estimation of the AR(1) models for factor dynamics relies
solely on the time series dimension of the data; and (iii) the estimation of the factor
dynamics uses estimates of f�tg as if they were data, incurring in measurement error
problems, estimation here relies on both the time series and the cross-sectional dimen-
sion of the data and is done in one step. Thus, by working on both T and N , the
asymptotic results tend to be much more accurate. Moreover, the fact that the esti-
mation is done simultaneously avoids the measurement error coming from the fact that
f�pg3p=1 are estimated rather than observed in DL.

Second, parsimony results from the fact that the ultimate parameters of interest
are time-invariant. Third, as opposed to traditional VAR models such as in Evans and
Marshall (2002), the number of parameters to be estimated does not increase with the
number of yields, even after imposing zero restrictions that imply exogeneity of macro
variables with respect to yields.

Finally, when it comes to simulate the movements of the term structure � or out-of-
sample forecasting, more generally � one just needs to plug-in updated (or forecasted)
values of Mt� and compute the resulting yields forecasts; alternative models, such as
DRA, which contain both latent and observable factors, would need to rely on extra
assumptions on the latent part to do so.

11The Appendix discusses how to relax the independence assumption of the error term with respect
to maturity.
12In the empirical exercise using US data, the state variables are observed at the beginning of each

month, whereas the yields are taken from the last working day of each month.
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3.2 Implementation

In this section I discuss the implementation of the model

yt(� ) = Xt(�t)�t + ut(� ); t = 1; ::; T�
�t
�t

�
=

�
�

�

�
+Mt�

�
��
��

�
where yt(� ) is the vector of yields observed at date t, and ut(:) is the error term, both
of dimension N � 1, Xt(:) is N � 3, �t and � are 3� 1, �t and � are scalars, �� and ��
are, respectively, k� � 1 and k� � 1; and Mt� =

�
M�t� 03�k�
01�k� M�t�

�
is 4� k(= k� + k�).13

The model consists of N yield observations for each one of the T periods, k state
variables per period, and k + 4 parameters to be estimated, regardless of the number
of yields or time periods in the sample � the dimension of the parameter vector grows
only with the number of state variables in the model (say, at most three per factor, so
that most likely k � 12). The nonlinearity of the model comes from the estimation of
�t in the N � 3 matrix of factor loadings at period t,

Xt(�t) =

26664
1 1�exp(��t�1)

�t�1

1�exp(��t�1)
�t�1

� exp(��t� 1)
1 1�exp(��t�2)

�t�2

1�exp(��t�2)
�t�2

� exp(��t� 2)
::: ::: :::

1 1�exp(��t�N )
�t�N

1�exp(��t�N )
�t�N

� exp(��t�N)

37775
Since �t = �+M�t���, one can write Xt(�t) = Xt(�; ��) but should bear in mind that
both � and M�t� are also arguments of Xt(:) but are omitted for convenience.

The assumption that the error term ut(� ) is a martingale di¤erence sequence with
respect to current and past covariate information implies conditional moment restrictions
of the form E [ut(� )jWt] = 0, where Wt is a vector of instruments including current and
past covariate information. In particular, for every period t, one can use unconditional
moments of the form E [W 0

tut(� )] = 0, whose sample counterpart is

0 =
1

NT

TX
t=1

NX
i=1

uitwit

=
1

NT

TX
t=1

NX
i=1

�
yt(� i)�Xt(� i; ��)� �Xt(� i; ��)M�t���

�
wit

with � := (�0�; �
0
�)
0 = (�

0
; �0�;�; �

0
�)
0 and where it should be noted that M�t� appears

inside Xt(:; :) and is omitted for convenience.

Before de�ning the estimation problem, stack the yields by period to form the NT�1
vector y = [y1(�)0; y2(�)0; :::; yT (�)0]0, the Xt(:) and M�t� matrices to form the NT � 3
13In particular, Mt� = diagfm�1

t ;m
�2
t ;m

�3
t ;m

�
t g. In the general case,

Mt� =
�
M�t�; M�t�

�
is 4� k(= k� + k�).
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matrix X(��) = [X1(��)
0; X2(��)

0; :::; XT (��)
0]0 and the NT � k matrix XM(��) =

[(X1(��)M�1�)
0 ; (X2(��)M�2�)

0 ; :::; (XT (��)M�T�)
0]0, de�ne Zt(��) = [Xt(��); Xt(��)M�t�]

and its stacked version which is of dimensionNT�(3+k), Z(��) = [Z1(��)0; Z2(��)0; :::; ZT (��)0]0,
and let W = [W 0

1; :::;W
0
T ] be an instrument matrix of dimension NT � r(� k+4). I use

a Generalized Method of Moments estimator b� of �, which is such that the quadratic
distance between GNT (�) = 1

NT

PT
t=1

PN
i=1 uitwit from zero is minimized:

b� = argmin
�2�

[GNT (�)]
0ANT [GNT (�)]

= argmin
�2�

�
1

NT
W 0u

�0
ANT

�
1

NT
W 0u

�
= argmin

�2�

�
1

NT
W 0 [y � Z(��)��]

�0
ANT

�
1

NT
W 0 [y � Z(��)��]

�
where ANT is an NT � NT , possibly random, positive semi-de�nite weighting matrix
with rank at least k+4, and the last line shows that nonlinearity comes from the subset
of parameters �� = (�; �0�)

0 governing the locus of the tilting point of the yield curve.

One particular case of the above estimator is when Wt =
h
Zt(��);

@Zt(��)��
@��

i
and

ANT = INT , which results in the Nonlinear Least Squares estimator. Here, the associated
covariance matrix is given by


 = E (r0
�A0r�)

�1
E (r0

�A0V0A0r�)E (r0
�A0r�)

�1

where the asymptotic variance is V0 = limN;T!1
1
NT
V ar

�
1p
NT

PT
t=1

PN
i=1 uitwit

�
, r� :=

@GNT (�)
@�

=
�
r�;r�� ;r�;r��

�
, with details given in the Appendix, and A0 is a positive

semi-de�nite matrix such that ANT !p A0.

The estimation problem raises a number of issues. First, the model is robust to curse
of dimensionality issues, as the dimension of the parameter vector does not increase
with the number of yields, but with the number of state variables, which is kept at
a manageable size. As a result, one does need to restrain the number of yields used
when estimating the yield curve, a fact which brings the undesirable consequence of
poorly measuring the term structure curvature and, as a result, poorly estimating the
connection between this factor and any state variables associated to it.

Second, more than just allowing the comparison of alternative speci�cations, one
can test competing theories about variables driving the term structure dynamics using
inference tools.

Finally, and in contrast with most of the literature, the estimation makes use of both
the cross-sectional and time series dimensions of the data, resulting in much faster con-
vergence of the parameter estimates.14 This is of special interest given issues commonly
raised against VAR models used in the analysis of monetary policy: Rudebusch (1998),
for instance, points out that the use of quarterly data, together with the relatively fre-
quent changes in monetary policy in the postwar period results in either short time series
or misspeci�ed VAR models, thus making inference unreliable: using quarterly data, the
twenty years of the �Greenspan era�correspond to only 80 observations.

14The following Section illustrates the �nite-sample proprties of the method and the convergence in
both the maturity and time dimensions of the data.
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4 Finite-Sample Performance

This section presents a simulation study investigating the �nite-sample performance of
the estimation method. To do so, I generate state variables Mt�, regressors Xt, popu-
lation parameter values, and errors to generate the variables yt. For every experiment,
I compute the results of 500 replications, with time-series and cross section dimensions
given by, respectively, T (= 10; 50; 100) and N (= 25; 50; 100).

The state variables Mt� are constructed by taking the exponent of independent
standard Gaussian random variables, the regressors Xt are standard Gaussian random
variables, whereas the error terms ut are Gaussian variables with a variance of 0.2.

In what follows, I consider the model

yt(� ) = Xt(�t)�t + ut(� )�
�t
�t

�
=

�
�

�

�
+Mt�

�
��
��

�
with each factor driven by one state variable. As in the empirical exercise, I make the
curvature-related factors �3t and �t i.e. the curvature intensity and the location where
the curve tilts are driven by the same state variable, so that

Mt� = diagfm1t�;m2t�;m3t�;m3t�g. In all the experiments, � = (1; 1; 1)0, �� =
(1; 1; 1)0, � = 0:05; and �� = 0:01.

[Table 1 about here]

The simulation results reported in Table 1 (with standard errors inside square brack-
ets) show fast convergence of the � parameter estimates to their population values, with
increasing precision in both N and T . For the closest case to the smallest subset of
data used in the empirical section, where N = T = 50, the biases are negligible. In
what concerns precision, estimates for �1 and ��1 tend to be more precisely estimated
than their counterparts because the corresponding factor loadings do not involve any
parameters to be estimated, thus having no uncertainty.

5 Application

5.1 The Data

The data set used comprises end-of-month yields from US bonds from January, 1970 to
December, 2003 and US macroeconomic variables obtained from the US Federal Reserve
macroeconomic database � the FRED � and observed at the monthly frequency.15 For
every given period, the macroeconomic variables used are predetermined with respect
to the interest data used.16

15The dataset is available from http://research.stlouisfed.org/fred2/.
16For instance, when using the yield curve of 31 March, 1970, I make sure I only use variables dated

prior to that e.g. 1 March, 1970. In particular, the variables in level used date from 1 March, 1970,
and the variables in growth rate are the increment from 1 February 1970 to 1 March, 1970.
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5.1.1 Interest Rates

The interest rate data used consists on the December 2003 version of the unsmoothed
Fama-Bliss yields described and thoroughly discussed in Bliss (1997).17 It includes all
available issues up to that date, implying that the range of available maturities from
which the term structures are estimated will not be uniform throughout the sample
period i.e. I use an unbalanced panel of yields ranging from 42 to 134 observations per
period. The average number of yields for the full sample is 86.944, with a standard error
of 26.854, the number of periods in the full sample is T = 408 months, and the longest
maturity used in the study is 60 months. The main features in the data are the average
upward-sloping yield curve, the fact that yield volatility tends to decrease with maturity
whereas persistence tends to increase with maturity.

5.1.2 Macroeconomic Variables

Based on the existing literature, I consider a measures of in�ation, economic activity,
monetary policy, and �scal policy. The in�ation measures used are the CPI (Con-
sumer Price Index For All Urban Consumers: All Items, seasonally adjusted), PPI1
(Producer Price Index: Finished Goods, seasonally adjusted), PPI2 (Producer Price In-
dex: All Commodities, not seasonally adjusted), PPI3 (Producer Price Index: Industrial
Commodities, not seasonally adjusted), and PCE (Personal Consumption Expenditures:
Chain-type Price Index, seasonally adjusted) � all measured in growth rates.

The measures of economic activity used are HOUST (Housing Starts: Total: New
Privately Owned Housing Units Started, seasonally adjusted), INDPRO (Industrial Pro-
duction Index, seasonally adjusted), EMP (Civilian Employment, seasonally adjusted)
� all measured in growth rates � plus TCU (Capacity Utilization: Total Industry, sea-
sonally adjusted), HELP (Index of Help Wanted Advertising in Newspapers, seasonally
adjusted) and UR (Unemployment Rate, seasonally adjusted), measured in levels.

The monetary policy instruments used are FF (Federal funds e¤ective rate), NONBR
(Non-Borrowed Reserves of Depository Institutions, seasonally adjusted � the monetary
aggregate the Fed targeted during the period from October, 1979 to October, 1982), and
M1 (Money Stock, in Billions of Dollars, seasonally adjusted).

[Table 2 about here]

All the above variables are recorded at the monthly frequency, and were obtained
from the FRED database. Finally, following Dai and Philippon�s (2005) recent �nding
that �scal policy a¤ects the term structure, I introduce the variable DEBT, which is
their quarterly �scal policy variable interpolated to the monthly frequency and divided
by INDPRO, a proxy variable for GDP at the monthly frequency. Table 2 summarizes
the macroeconomic variables used.

17I thank Robert Bliss for making his data available.
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5.2 On The Economic Determinants of the Yield Curve

This section starts by selectively reviewing the literature addressing the relation between
macroeconomic variables and the yield curve factors, thus paving the way for the empir-
ical strategy I implement next. It goes without saying that with a set of macroeconomic
variables as big as the one available from the FRED, there are countless alternative
speci�cations to be compared (153 = 3375 using only the contemporaneous variables
described above), so that a pragmatic starting point would be to consider speci�cations
based on the existing literature and summarized in Table 3. The evidence documented in
the literature is used to construct alternative con�gurations ofMt� which are then com-
pared. For the sake of parsimony, I devote a section to single-variable (SV) speci�cations
� the ones where each factor is driven by one state variable only � before addressing
the general multi-variable (MV) case. I then use the �best�SV and MV speci�cations in
the out-of-sample comparison with the benchmark Diebold-Li model.

[Table 3 about here]

Much of the work in macro-�nance gained momentum in the late 1990s (see Diebold,
Piazzesi, and Rudebusch, 2005, and references therein for the latest account on the
literature). One of the early papers is Evans and Marshall (1996) � to which Evans
and Marshall (1998) also relates � where, using a VAR framework, the authors study
the impact of shocks of measures of monetary policy, employment and in�ation on the
nominal term structure of interest rates. Their results suggest that the main e¤ect
of both employment and in�ation measures is to induce a parallel shift of the yield
curve, whereas (short-run) �uctuations in the slope and curvature of the yield curve are
primarily attributed to the monetary policy shocks.

Also within the VAR framework, but imposing no-arbitrage restrictions, Ang and
Piazzesi (2003) construct in�ation and economic growth indices which they address as
macro factors. By a factor representation of the pricing kernel they obtain a tractable
way to examine how those macro factors a¤ect the yield curve dynamics. However, in
their study macro factors are able to explain only the short end and the middle of the
yield curve. Due to di¢ culty to deal with the long end they introduce latent factors, now
allowing the pricing kernel to be driven by both macro and latent factors. By relying
on a Gaussian assumption and on the a¢ ne speci�cation, they �nd that the slope and
curvature factors can be explained by the macro factors, whereas the level factor can
be only dealt with by using latent factors. In a related paper, but within a di¤erent
framework, Piazzesi (2005) �nds that monetary policy shocks change the slope of the
yield curve, since they a¤ect short rates more than long ones.

More recently, Diebold, Rudebusch and Aruoba (2006) examine the correlations be-
tween Nelson-Siegel factors and macroeconomic variables under a VAR framework and
�nd that the level factor is highly correlated with in�ation and the slope factor is highly
correlated with real activity, whereas the curvature factor does not appear to be related
to any of the macroeconomic variables used.
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5.3 In-Sample Analysis

I start estimating SV speci�cations, where each factor is driven by one state variable
only. These can be seen either as a parsimonious way of approaching the problem or
as a �rst step before considering more complex (and di¢ cult to compute) speci�cations
forMt�, besides providing additional out-of-sample benchmarks for those more complex
speci�cations. A simplifying assumption made throughout the exercise is the curvature
intensity �3t and the parameter governing the location of the tilting point of the yield
curve are the same.

Given two competing speci�cations with the same number of variables, I compare
them using the Mean Absolute Error criterion (both the average and the median of
the MAE�s across time). The MAE is of special interest here for providing a model
selection criterion, an idea of goodness-of-�t, and of mispricing of the speci�cations.
Table 4 reports results of selected speci�cations from an exercise designed to select the
best forecasting variables from the di¤erent categories.18

The preliminary results in Table 4 provide a number of insights on the forecasting
ability of the state variables. First, the economic activity variable doing the best job at
explaining the level factor is UR (see speci�cations 15-20), the unemployment rate; in
what regards the in�ation variables, their performance is less clear, but CPI and PCE
tend to provide the lowest MAE�s (see speci�cations 1-5).

As for explaining the slope, the best monetary policy variable is FF (see speci�cations
6-8), whereas the best economic activity variable is UR (see speci�cations 21-26). Finally,
the best monetary policy variable explaining curvature is FF (see speci�cations 27-29),
and the best economic activity variable is UR (see speci�cations 9-14).

Given the above �ndings plus the recent evidence that �scal policy does play a role
at explaining the curvature factor of the term structure (Dai and Philippon, 2005), we
also include the variable DEBT in our empirical exercise together with the ones already
mentioned. As a result, we estimate SV speci�cations using the three choices for the
state variables explaining the level factor, the two choices explaining the slope factor,
and the three choices explaining the curvature factor, being left with 18 alternative
speci�cations to examine. Table 5 reports the results of the comparison using the MAE
criterion.

[Table 4 about here]

Table 5 shows a clear dominance of the speci�cations for which in�ation (either CPI
or PCE) explains the level, monetary policy (FF) explains the slope, and economic
activity (UR) explains the curvature of the term structure. Interestingly, the fact that
in�ation is the key driver of the level factor holds regardless whether CPI or PCE are
used, although the literature tends to prefer the latter (see DRA and Du¤ee, 2005).
However, although in line with the literature, it does not exactly match any of the
papers listed above.

18The results are robust with respect to choice of selection criterion used � using the minimum value
of the criterion function, the AIC or the BIC criteria gives the same results.
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[Table 5 about here]

In what follows, I refer to the best SV speci�cation (speci�cation 7 in Table 5) as SV.
The parameter estimates for the SV model show the positive impact of CPI on the level
of the term structure, the impact of the monetary policy instrument FF on the slope
(actually de�ned as ��2t), and the impact of UR on both the intensity and the locus of
the curvature, all of them found to be signi�cant using Newey and West (1987) standard
errors to account for the time dependence in the data. Interestingly, neither the CPI nor
the UR are revised, which makes them even more attractive as predetermined variables
with respect to yields. When coupled with the real time Taylor rule proposed in Evans
(1997), the �ndings are consistent with what one would intuitively expect, in the sense
that the yield curve tends to invert for values of FF above the Taylor rule, but remaining
upward-sloping for values below the threshold.

[Table 6 about here]

Based on the �ndings in the literature, SV speci�cations are likely too simple to
provide a satisfactory account of the term structure dynamics. The next step is thus
to study the more general MV speci�cations. Based on the results reported in Table 4,
I employ a general-to-speci�c approach starting with a speci�cation where CPI, PCE
and UR drive the level, FF and UR drive the slope, and DEBT, FF and UR drive
the curvature. The alternative speci�cations compared in Table 7 show that several
coe¢ cients in the larger models are statistically insigni�cant. The model with the smaller
BIC and with all of the parameters statistically signi�cant is speci�cation 7 � which I
from now on refer to as MV �, which has the level driven by CPI and UR, the slope by
FF and UR, and the curvature by DEBT. Albeit more parsimonious than the full model
the average MAE is only slightly larger.

[Table 7 about here]

The parameter estimates for the MV model are reported in Table 8. The �ndings
reported in Table 8 are in line with previous results in that economic activity and
in�ation drive the level factor, economic activity and monetary policy drive the slope,
and �scal policy drives the curvature factor. However, the performance of the model in
terms of MAE is very similar to the SV model.

[Table 8 about here]

The parameter estimates � all of which signi�cant � show the upward impact of
in�ation on the term structure, as expected. The parameters related to the slope also
have the expected sign, with FF a¤ecting shorter rates more strongly, but UR having
the opposite e¤ect.
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5.4 Incorporating Economic Relations

So far, the model presented considers only state variables which are predetermined with
respect to the yield curve, not exploring (i) any interdependence among them; (ii) any
forecasts of their future values, both of which are expected to play a role at explaining
future realizations of the yield curve. In this section I discuss how to incorporate into
the model information on the joint behaviour of the state variables. Intuitively, by
informing the model that certain variables are related one should expect to get more
accurate results, provided the relation imposed holds.

In this section I inform the model about the joint behaviour of the state variables
using a feedback interest rule, or Taylor rule. Taylor (1993) suggested a simple formula
describing how the US Federal Open Market committee has set the Federal funds rate
since 1987 as a response to measures of in�ation and output gaps � this relationship has
been dubbed the Taylor rule and has been extensively studied and developed since then.
Despite its simplicity, the Taylor rule has a number of appealing properties. Woodford
(2001) shows how it incorporates several features of an optimal monetary policy in a
class of optimizing models, and provides conditions under which the Taylor rule has
a stabilizing e¤ect on the economy. More recent developments such as Clarida, Galí
and Gertler (2000) propose and estimate a Taylor rule incorporating both forward- and
backward-looking elements. The former account for the fact that the monetary authority
is considering future paths of the output and in�ation gaps when setting the current
value of the monetary policy instrument, whereas the latter arises as a consequence of
interest rate smoothing conducted by the monetary policy authority.19 In what follows,
I estimate both forward- and backward-looking versions of the Taylor rule. Instead of
using quarterly data, as in Clarida, Galí, and Gertler (2000), I use monthly observations
and �nd that, by and large, their results follow through to the monthly frequency.

The results of this section provide the ground for alternative ways of computing
out-of-sample forecasts, in the sense that one can plug into the model estimated quan-
tities generated by a model inspired by (or consistent with) economic theory to obtain
estimates of the future behaviour of the term structure.

5.4.1 Taylor Rules

In what follows I consider the following speci�cation proposed and estimated (using
quarterly US data) in Clarida, Galí, and Gertler (2000), which nests both forward- and
backward-looking versions of the Taylor rule and states that the target rate each period is
a linear function of the gaps between expected in�ation and output and their respective
target levels,

r�t = rr� + �� + � [E (�t;l� j t)� ��] + gE
�
gt;lg j t

�
where  t is the information set available at time t, �t;l� denotes the percent change in
the price level between periods t and t+ l� (expressed in annual rates), �� is the target
for in�ation, rr�(= r� � ��) is the long-run equilibrium real rate, with r� being, by
de�nition, the desired nominal rate when both output and in�ation are at their target
values. gt;lg is a measure of the average output gap between periods t and t + lg, with

19See also Rudebusch (1995).
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the output gap being de�ned as the percent deviation between actual GDP and the
corresponding target.20

Following Clarida, Galí, and Gertler (2000), the actual Fed funds rate follows

rt = �(L)rt�1 + (1� �)r�t

where �(L) = �1 + �2L+ :::+ �lrL
lr�1 and � = �(1) =

lrP
j=1

�j, which postulates a partial

adjustment of the Fed funds rate to the target r�t , with � being an indicator of the degree
of smoothing of interest changes by the monetary policy authority.

Combining the target rate and Fed funds equations results in the Taylor rule

rt = (1� �)
�
rr� + (1� �)�� + ��t;l� + ggt;lg

�
+ �(L)rt�1 + "t

where "t = (1 � �)
�
� [E(�t;l� j t)� �t;l� ] + g

�
E(gt;lg j t)� gt;lg

��
is a linear combi-

nation of forecast errors, thus being orthogonal to any variable in the information set
 t. As one can only identify the term rr� + (1 � �)��, but not rr� or � separately,
and the in�ation target is of interest, Clarida, Galí and Gertler (2000) assume that the
equilibrium real rate rr� equals its sample average. This speci�cation allows a number
of choices regarding the lead/lag periods of in�ation and output, l� and lg, respectively,
and lags for the Fed funds, lr. The parameters of interest are ��, �, g, f�jglrj=1, so that
the dimension of the parameter vector is 3+ lr. It also nests a number of speci�cations,
as shown in Table 9.21.

[Table 9 about here]

The regression equation above implies the set of moment conditions

E
��
rt � (1� �)

�
rr� + (1� �)�� + ��t;l� + ggt;lg

�
� �(L)rt�1

�
zt
�
= 0

where zt is a vector of instruments known when rt is set (zt 2  t) and �t;l� , gt;lg , and
rt�1 also belong in  t.

The above moment conditions are used to obtain parameter estimates using the
Generalized Method of Moments. As in Clarida, Galí, and Gertler (2000), I set the
equilibrium rate rr� to its sample average, so as to be able to identify the in�ation
target. To make the feedback rule consistent with the SV speci�cation, I replace r with
FF , � with CPI, and I also follow Evans (1997)�s implementation of the Taylor rule,
replacing the output gap with the unemployment gap using Okun�s law, besides setting
the natural rate of unemployment to UR�t = UR� = 6.22 Moreover, I assume that
current in�ation and unemployment are not observed when setting the Fed Funds rate
i.e. neither of them belongs in  t. The moment conditions thus become

E ("�t zt) = 0

20Typically, the information set at time t contains past values of the Fed Funds rate and other
economic variables, and usually no information on current in�ation and output measures.
21Note that the Taylor rule is usually applied to quarterly data, whereas I consider monthly data.
22Arthur Okun observed that a one percent fall in the unemployment rate from its full employment

level tended to produce a three percent increase in real GDP relative to trend. See Evans (1997) for
discussion and robustness checks.
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where "�t = [FFt � (1 � �)[rr� + (1 � CPI)CPI� + CPICPIt�1;lCPI + +
UR3(6 �

URt�1;lUR)]� �(L)FFt�1].

Interestingly, given that in the SV speci�cation the slope is driven by the Fed funds
rate, the above speci�cation can be linked to the interest-rate rule proposed in McCallum
(1994), according to which the monetary authority reacts to term premia � the slope in
particular � when setting the monetary policy instrument.23

[Table 10 about here]

The parameter estimates of the forward-looking Taylor rule are reported in Table 10.
Although only the former is statistically signi�cant, the responses to CPI in�ation and
unemployment rate are consistent with the results in Clarida, Galí, and Gertler (2000),
which uses 1960:1-1996:4 data at the quarterly � as opposed to monthly � frequency.
The closest in�ation target level to their estimates is given by FWTR1, although not
signi�cant, and the interest rate smoothing parameter is more persistent than theirs.
The goodness-of-�t of the speci�cations is very similar and none of them is rejected
when testing for overidentifying restrictions.

Forward-looking Taylor rules might give accurate descriptions in-sample, but if the
aim is to do out-of sample forecasting, one needs backward-looking ones. Table 11 reports
estimates for alternative speci�cations of backward-looking Taylor rules regarding the
choice of lCPI and lUR, the horizons at which the monetary policy authority looks when
setting the monetary policy instrument.

[Table 11 about here]

The results for the backward-looking Taylor rules are robust to alternative horizons,
and suggest that � at least at the monthly frequency � the monetary authority looks
mostly at past in�ation and past values of the monetary policy instrument when setting
its current value. The persistence in the Fed funds rate is shown to be high, and even the
non-signi�cant parameters UR and CPI� tend to gravitate across a relatively narrow
interval, at least for non-zero values of lCPI and lUR. The J-statistics suggest that the
horizon at which the Fed looks is at least six months back. When compared to the
forward-looking estimates, the responses to in�ation seem to be tougher, and both the
response to unemployment and the in�ation target level are found not to be statistically
signi�cant.

23The McCallum interest-rate rule also allows rationalizing the empirical failure of the expectations
hypothesis � see also Kugler (1997) and Gallmeyer, Holli�eld, and Zin (2005).
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5.5 Out-of-Sample Analysis

In this section I perform an out-of-sample study by considering �ve episodes of economic
interest: the �ve NBER-dated US recessions which have entirely occurred during the
period 1970-2003. Recessions are of economic interest per se being bad states of nature,
characterized by reduced economic activity and increased lay-o¤ of workers, thus being
events against which economic agents are willing to insure. Moreover, within the term
structure literature, recessions are of interest for being periods which tend to be preceded
by the inversion of the yield curve, a feature often di¢ cult to be quickly captured �
if at all � by term structure models, making the exercise both more interesting and
challenging. The recessions considered are described in Table 13.24

[Table 12 about here]

For every month in each of the �ve recessions, I compare the forecasts of the alterna-
tive speci�cations using two measures of accuracy . I also report results for speci�cations
SV-TR and MV-TR, which incorporate the Taylor rule in an attempt to improve fore-
casting ability.

The ways I compute the out-of-sample forecasts are as follows:

For the macro-based speci�cations, assume the estimation sample has observations
from periods t = 1; :::; T , where t = 1 is January, 1970 and t = T is the month preced-
ing the recession of interest. After obtaining parameter estimates using the estimation
sample, the yield curve forecast for period t� > T , denoted as byt�jT are obtained either
from observed or estimated values Mt� of the state variables using the previously esti-
mated parameters � in the case of the SV and MV speci�cations, I keep the parameter
estimates �xed and keep updating the matrix Mt� of state variables every period

When it comes to the SV-TR and MV-TR speci�cations, I estimate the Taylor rules
as above, and just update the information on CPI, UR, and FF every period, thus
obtaining a Taylor rule-based estimate of the value of FF the following period.

Finally, for the DL model, I estimate the model for every period t = 1; :::; T; compute
the AR(1) processes describing the dynamics of each factor, and re-estimate the model
at every period t > t�.25

As a measure of �overall accuracy�, I compute average MAEs for the entire duration
of each recession i.e. for every month t� of a given recession, I compute

OAt� =
1

Nt�

Nt�X
j=1

jbyt�(� j)� yt�(� j)j ; t� 2 Recession

where Nt� refers to the number of yield at period t� in the recession. The results reported
in Table 13.

24The NBER-dated recession going from December 1969 to November 1970 is not considered here
since the dataset starts on January, 1970.

25See Diebold and Li (2005) for a thorough out-of-sample comparison of their model and previously
existing ones.
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[Table 13 about here]

The results in Table 13 show that the macro-based speci�cations consistently out-
perform the latent variable model. As a matter of fact, DL cannot beat its competitors
for any month in recessions R3-5. When comparing SV and MV speci�cations, the for-
mer tends to perform better in the �rst two or three months of the recessions, being
then outperformed by the latter. This suggests that it might take time for all the state
variables to work in favour of the MV speci�cation in such periods.

Panel A shows the dominance of the MV-TR model, especially during the second
half of the recession. Its performance is followed by the SV-TR model, which suggests
that Taylor rules convey information about the future state of the term structure.

Panel B shows the potential e¤ect of a change in policy regime on the forecasting
ability of the TR speci�cations � R2 was the �rst recession following the monetary
policy experiment, right after its introduction.26 As a result, the SV and MV-TR models
perform closely, and the Taylor rule does not seem to provide a substantial gain to the
models incorporating it.

Panels C-E show a clear dominance of the MV-TR speci�cation, which might sug-
gest two things. First, that SV speci�cations are way too simple to describe the term
structure dynamics. Second, that incorporating Taylor rules does indeed play a role,
improving the accuracy of the forecasts.

As a measure of �maturity-disaggregated accuracy�, I report time-averaged MAEs for
�xed maturities i.e. for a given maturity � j I calculate

MDA�j =
1

#t�

X
t�2Recession

jbyt�(� j)� yt(� j)j ; j = 1; :::; N

where #t� denotes the number of periods in the recession. The results are reported in
Table 14.

[Table 14 about here]

The results reported in Table 14 con�rm the view that macro-based speci�cations
outperform the benchmark DL model. Panel A shows the superior performance of the
MV-TR speci�cation up to the 36-month maturity, after which the DL speci�cation
tends to do better.

Panels B and C show the superior performance of the MV and, to a lesser extent,
SV speci�cations, most likely due to the change in the policy regime resulting from the
monetary policy experiment. Panels D and E show a dominance of the MV speci�cation,
at least for maturities up to 10-12 months. In Panel D, the better performing speci�ca-
tion from the 11-month maturity towards the long end of the curve is MV-TR, whereas
in Panel E it is speci�cation SV which performs better between the 24- to 60-month
maturities.

Although it is not obvious which macro-based speci�cation performs best throughout
the exercises, all of them consistently outperform the latent-variable benchmark.

26See Clarida, Gali, and Gertler (2000) for a study of how the Taylor rule changed with this regime
change.
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Conclusion

This paper proposes a term structure model whose factors are uniquely driven by ob-
servable � as opposed to latent � state variables. The explicit link between the term
structure factors and the state variables allows comparing alternative views on the drivers
of its dynamics and competing economic hypotheses.

The method is robust to curse of dimensionality issues commonly appearing in the
literature. This happens because instead of increasing with the number of observations
(yields) used, the dimension of the parameter vector increases with the number of state
variables, which is kept at a manageable size. As a result, the method is in a posi-
tion to deliver more accurate measures of the curvature factor, thus better explaining
intermediate maturities i.e. the �belly�of the curve.

The estimation method uses both the cross-sectional and time series dimensions
of the data, which results in faster convergence of the parameter estimates and more
reliable inference. This is in stark contrast with VAR models, which are subject to
the criticism that they make researchers choose between either short time series or
misspeci�ed models, thus making inference unreliable � a direct consequence of the
frequent changes in policy regimes in the postwar period (Rudebusch, 1998).

The empirical exercise uses a comprehensible set of US macroeconomic data to com-
pare alternative speci�cations of the term structure. In the in-sample study, the baseline
(SV) speci�cation is such that the level, slope and curvature factors are driven by, re-
spectively, measures of in�ation (CPI growth), monetary policy (the Fed Funds rate),
and economic activity (the unemployment rate). The out-of-sample study compares
macro-based models to a latent-variable benchmark model for the �ve NBER-dated re-
cessions which occurred in the last three decades, showing that the former consistently
outperforms the latter � a �nding which is robust to alternative criteria.

This paper raises a number of questions for future research. First, how does the
method perform using alternatives such as expectations variables obtained in consensus
forecasts as state variables.

Second, how it performs as a risk management tool, making it appealing to both
�nancial institutions and regulators, especially under the ongoing Basel II process.

Third, how it performs when coupled with VAR models feeding it with macroeco-
nomic variables, or measures such as the Bernanke and Mihov (1998) monetary policy
indicator.

Fourth, how it can be adapted to the study of credit risk, either at the country or
the corporate level.

Finally, although the method relies on the Nelson-Siegel yield curve �tting method,
it is by no means restricted to it. Nelson-Siegel is used here due to its intuitive appeal,
well-known properties, and the common understanding that it is a reasonable �rst-order
approximation to the yield curve. Alternative methods can be also used, and are left for
future research.
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A Covariance Matrix Derivation
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B Robustness Check Using the CRSP Data

In this Appendix I estimate a simpli�ed version of the model on CRSP data and show
that the SV and MV speci�cations still outperform the latent-variable benchmark even
when pre-specifying the parameter �, as in Diebold and Li (2005). This once again
suggests that, besides the advantages discussed in the text, observable state variables
do play a role out-of-sample.

B.1 The Data

The data set used comprises end-of-month price quotes (bid-ask average) of US bonds
from June, 1964 to March, 2000 collected by CRSP. Other than the bond yields, all
remaining data are from the US Federal Reserve�s macroeconomic database � the FRED
�, observed at the monthly frequency.

B.1.1 Interest Rates

For every period I consider 17 maturities, going up to the 10-year maturity for a total of
430 months. The maturities used are as follows: 1 to 12 months, 24, 36, 48, 60, and 120
months. Although the analysis does not require the maturities to be �xed, this greatly
simpli�es the empirical exercise. Table A1 reports some sample statistics of the bond
data.

TABLE A1 - Basic Statistics of Yields

Mean Std. Error Min Max ACF(1) ACF(9)
1mo 6.136 2.512 2.600 16.360 0.956� 0.959�

2mo 6.315 2.549 2.740 16.170 0.971� 0.781�

3mo 6.467 2.549 2.760 16.030 0.972� 0.789�

4mo 6.545 2.598 2.810 16.100 0.973� 0.793�

5mo 6.627 2.597 2.850 16.190 0.973� 0.798�

6mo 6.688 2.594 2.850 16.520 0.974� 0.799�

7mo 6.727 2.583 2.920 16.170 0.974� 0.800�

8mo 6.780 2.577 2.930 16.300 0.975� 0.800�

9mo 6.829 2.580 2.980 16.360 0.974� 0.799�

10mo 6.852 2.577 3.010 16.400 0.974� 0.799�

11mo 6.876 2.566 3.020 16.390 0.974� 0.799�

12mo 6.922 2.510 3.110 15.810 0.972� 0.795�

24mo 7.130 2.442 3.660 15.640 0.978� 0.815�

36mo 7.282 2.374 3.870 15.560 0.979� 0.829�

48mo 7.401 2.343 3.970 15.820 0.980� 0.835�

60mo 7.464 2.319 3.980 15.000 0.982� 0.847�

120mo 7.535 2.268 4.110 15.210 0.984� 0.852�

Note: Individual signi�cance at the 5% level is denoted by a superscript �.
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The main features in the data are the average upward-sloping yield curve, the fact
that yield volatility tends to decrease with maturity whereas persistence tends to increase
with maturity. The autocorrelations of all yields are individually signi�cant up to lag
nine (results available upon request).

B.1.2 Macroeconomic Variables

Based on the existing literature, I consider a number of measures of in�ation, economic
activity, monetary policy, and �scal policy. The in�ation measures used are the CPI
(Consumer Price Index For All Urban Consumers: All Items), PPI1-3 (Producer Price
Index: Finished Goods, All Commodities, and Industrial Commodities, respectively),
and PCE (Personal Consumption Expenditures: Chain-type Price Index) - all measured
in growth rates; the measures of economic activity used are HOUST (Housing Starts:
Total: New Privately Owned Housing Units Started), INDPRO (Industrial Production
Index), the HELP index (Index of Help Wanted Advertising in Newspapers), UR (Unem-
ployment Rate), and EMP (Civilian Employment) - both HELP and UR are considered
in levels and growth rates; the monetary policy instruments used are FF (Federal funds
e¤ective rate), NONBR (Non-Borrowed Reserves of Depository Institutions), and M1
(M1 Money Stock, in Billions of Dollars). All these variables are seasonally adjusted, of
monthly frequency, and were obtained from the FRED database. Finally, following Dai
and Philipon (2005)�s recent �nding that �scal policy a¤ects the term structure, the �s-
cal policy variable used is DEBT (Outstanding Credit Market Debt of U.S. Government,
State and Local Governments, and Private Non�nancial Sectors).

B.2 In-Sample Analysis

B.2.1 Single-Variable Factor Speci�cations

The empirical implementation starts by investigating speci�cations where each factor
is driven by one state variable only i.e. Mt� = diagfm1t�;m2t�;m3t�g. This can be
seen either as a parsimonious way of approaching the problem or as a �rst step before
considering more complex speci�cations for Mt�. Table A2 shows that the best per-
forming speci�cation has PCE explaining the level, FF explaining the slope, and DEBT
explaining the curvature.
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TABLE A2 - Results for Alternative Single-Variable Factor Speci�cations

b� [s.e.] b� [s.e.] MAE
L : CPI
S : FF
C :M1

7:292
�2:356
�0:826

[0:061]
[0:275]
[0:119]

82:213
0:441

�46:889

[10:585]
[0:030]
[6:525]

1:939
1:560

L : PCE
S : FF
C :M1

7:160
�2:577
�0:857

[0:063]
[0:252]
[0:111]

139:993
0:474

�42:270

[14:686]
[0:026]
[5:930]

1:911
1:492

L : PPI1
S : FF
C :M1

7:595
�2:200
�0:847

[0:052]
[0:300]
[0:127]

66:639
0:420

�41:326

[6:849]
[0:032]
[6:838]

1:981
1:690

L : PPI2
S : FF
C :M1

7:775
�2:284
�0:875

[0:056]
[0:300]
[0:127]

31:179
0:434

�38:170

[4:215]
[0:031]
[6:704]

1:993
1:709

L : PPI3
S : FF
C :M1

7:758
�2:220
�0:883

[0:057]
[0:303]
[0:128]

36:596
0:427

�38:105

[3:658]
[0:032]
[6:850]

2:009
1:759

L : PCE
S : FF
C : FFD

7:356
�2:751
�1:026

[0:046]
[0:241]
[0:103]

115:975
0:496
1:472

[8:269]
[0:024]
[0:394]

1:890
1:433

L : PCE
S : FF
C : DEBT

7:088
�3:245
�0:728

[0:047]
[0:210]
[0:103]

126:068
0:567

�46:227

[8:890]
[0:019]
[5:782]

1:848
1:344

L : PCE
S : NONBR
C : DEBT

5:512
0:748

�1:264

[0:186]
[0:309]
[0:187]

510:668
�13:162
33:981

[47:895]
[4:617]
[17:389]

1:946
1:584

L : PCE
S :M1
C : DEBT

5:648
1:162

�1:449

[0:126]
[0:312]
[0:185]

489:530
�97:129
60:586

[24:113]
[18:479]
[17:319]

1:989
1:696

L : PCE
S : HELP
C : DEBT

6:002
�1:020
�1:276

[0:097]
[0:447]
[0:179]

456:802
0:023
32:952

[20:576]
[0:004]
[16:000]

2:015
1:764

L : PCE
S : UR
C : DEBT

5:126
3:151

�1:405

[0:205]
[0:548]
[0:198]

621:969
�0:405
53:034

[41:850]
[0:085]
[17:918]

2:058
1:844

Note: Standard errors inside squared brackets. Non-signi�cant estimates at the 5% sig-
ni�cance level are marked with ?. The underlined MAE values are the smallest ones in the
Table.
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B.2.2 Multi-Variable Factor Speci�cations

Based on the �ndings in the literature and the results obtained for the SV case, I now
allow for more state variables to in�uence the term structure factors. The �ndings
reported in Table A3 are in line with previous results in that in�ation (actually, two
measures of in�ation, PCE and PPI1) drives the level factor, monetary policy drives the
slope, and �scal policy drives the curvature factor. The model is surprisingly similar
to the SV speci�cation previously obtained, as their di¤er only by the inclusion of the
extra measure of in�ation driving the level factor. Table A3 displays the results.

As opposed to previous �ndings in the literature, however, no inclusion of economic
activity measures was found to improve on the best speci�cation obtained improved
the goodness-of-�t of the model. This �nding could be rationalized by arguing that
economic agents take into account some form of the Taylor rule when looking at the
economic variables available to them and analyzing their impact on the yield curve.
Hereafter we refer to the best speci�cation for the multi-variable case (with level being
driven by PCA and PPI1, slope driven by FF, and curvature being driven by DEBT) as
the MV speci�cation.
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TABLE A3 - Results for Alternative Multi-Variable Factor Speci�cations

Panel A b� [s.e.] b� [s.e.] MAE
L : PCE
L : CPI
S : FF
S : NONBR
S :M1
C : DEBT
C :M1

6:892
�2:035
�1:013

[0:045]
[0:306]
[0:140]

22:286
189:352
0:431

�7:380
�38:681?
�7:043?
�1:161?

[17:454]
[16:838]
[0:027]
[2:173]
[41:141]
[7:062]
[21:993]

2:027
1:788

L : PCE
S : FF
S : NONBR
C : DEBT

7:237
�3:104
�0:817

[0:044]
[0:213]
[0:101]

130:721
0:553

�8:238
�33:551

[9:040]
[0:019]
[2:179]
[5:243]

1:889
1:427

L : CPI
S : FF
S : NONBR
C : DEBT

6:922
�2:680
�0:724

[0:048]
[0:228]
[0:110]

177:428
0:494

�10:821
�45:088

[9:190]
[0:022]
[1:786]
[6:002]

1:960
1:624

L : PCE
L : CPI
S : FF
S : NONBR
C : DEBT

7:058
�2:906
�0:814

[0:044]
[0:217]
[0:103]

�23:681?
162:999
0:523

�9:357
�31:819

[18:731]
[16:663]
[0:021]
[2:037]
[5:356]

1:934
1:547

L : PCE
S : FF
S : NONBR
C : DEBT
C : FFD

7:243
�3:125
�0:749

[0:046]
[0:214]
[0:104]

132:707
0:553

�5:391
�41:542
1:666

[9:378]
[0:019]
[2:400]
[5:912]
[0:398]

1:892
1:436

L : PCE
S : FF
S : NONBR
S : HELP
C : DEBT

7:214
�4:247
�0:700

[0:047]
[0:242]
[0:110]

133:358
0:492

�6:997
0:021

�53:334

[10:116]
[0:027]
[2:567]
[0:003]
[6:599]

1:924
1:510

L : PCE
S : FF
S : NONBR
S : UR
C : DEBT

7:057
�0:058
�0:911

[0:047]
[0:402]
[0:125]

193:354
0:464

�1:965?
�0:413
�9:413

[9:715]
[0:027]
[1:620]
[0:035]
[7:939]

2:058
1:848

L : PCE
S : FF
S : HELP
C : DEBT

7:059
�4:486
�0:674

[0:044]
[0:244]
[0:112]

161:146
0:472
0:025

�54:253

[7:562]
[0:029]
[0:003]
[6:839]

1:903
1:458
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Panel B b� [s.e.] b� [s.e.] avg(b�t) MAE
L : PCE
S : NONBR
S : HELP
C : DEBT

5:789
�0:901
�1:182

[0:102]
[0:415]
[0:177]

485:700
�8:658
0:022

20:663?

[26:743]
[3:266]
[0:004]
[15:622]

0:973
2:027
1:790

L : PCE
L : PPI1
S : FF
S : NONBR
C : DEBT

7:315
�3:204
�0:732

[0:054]
[0:220]
[0:104]

54:966
30:765
0:567

�5:093
�49:818

[12:670]
[4:586]
[0:021]
[2:374]
[5:753]

0:954
1:866
1:369

L : PCE
L : PPI2
S : FF
S : NONBR
C : DEBT

6:925
�2:996
�0:811

[0:055]
[0:209]
[0:101]

237:420
�18:473
0:540

�8:259
�34:563

[14:652]
[3:607]
[0:019]
[2:342]
[5:454]

0:957
1:887
1:431

L : PCE
L : PPI3
S : FF
S : NONBR
C : DEBT

7:106
�2:839
�0:716

[0:073]
[0:232]
[0:110]

170:695
�1:926?
0:519

�7:120
�51:385

[20:213]
[4:842]
[0:022]
[2:707]
[6:372]

0:961
1:892
1:436

L : PCE
L : PPI1
S : FF
S : NONBR
C : DEBT
C : FFD

7:395
�3:214
�0:618

[0:054]
[0:222]
[0:108]

58:423
16:708
0:562
2:252?

�62:828
2:962

[11:813]
[4:611]
[0:021]
[2:593]
[6:214]
[0:393]

0:953
1:866
1:369

L : PCE
L : PPI1
S : FF
C : DEBT

6:885
�3:172
�0:669

[0:042]
[0:206]
[0:104]

181:628
21:672
0:558

�55:522

[8:315]
[4:533]
[0:018]
[6:091]

0:957
1:863
1:356

L : PCE
L : PPI1
S : NONBR
C : DEBT

5:588
0:775

�1:283

[0:155]
[0:304]
[0:185]

607:654
�54:640
�13:743
36:041

[47:835]
[16:214]
[4:512]
[16:876]

0:978
1:999
1:727

L : PCE
L : PPI1
S : NONBR
C : DEBT
C : FFD

5:598
0:754

�1:220

[0:163]
[0:305]
[0:190]

597:315
�55:628
�7:687?
26:807?

2:516

[51:068]
[16:793]
[5:420]
[18:194]
[0:950]

0:978
1:980
1:685

Note: Standard errors inside squared brackets. Non-signi�cant estimates at the 5% sig-
ni�cance level are marked with ?. The underlined MAE values are the smallest ones in the
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Table.

B.2.3 In-Sample Comparison of Speci�cations

Once parameter estimates were obtained I am now in a position to compare the in-
sample behaviour of the speci�cations. Table A4 reports results in terms of R2 and
MAE quantities according to which parsimony is well rewarded in our context, given
how closely the measures of goodness-of-�t are.

TABLE A4 - Goodness-of-Fit of Alternative Models

Model Average R2 Median R2 Average MAE Median MAE

SV 0.704 0.878 1.848 1.344
MV 0.705 0.884 1.866 1.369

B.3 Out-of-Sample Analysis

In this section I perform a small out-of-sample study by considering three episodes.
These episodes are of economic interest due to NBER-dated US recessions which have
occurred during the periods December, 1969 to November, 1970; January to July, 1980;
and July, 1990 to March, 1991. I estimate the DL, SV and MV speci�cations for three
subsamples of the data, all of which starting from June, 1964. The �rst ends in Decem-
ber, 1969, the second in December, 1979, and the third in December, 1989.

TABLE A5 - Average MAEs Period-by-Period

1970 1980 1990
DL SV MV DL SV MV DL SV MV

1st month 0.15 1.51 1.63 1.14 1.20 1.28 0.52 0.63 1.03
2nd month 1.18 0.50 0.26 3.79 3.20 3.23 0.73 0.10 0.52
3rd month 1.56 0.80 0.86 4.68 2.29 2.34 0.95 0.31 0.85
4th month 0.98 0.86 0.71 0.93 0.87 0.80 1.20 0.83 1.14
5th month 1.13 1.25 1.13 0.91 0.80 0.81 0.91 0.54 0.67
6th month 1.50 1.15 1.23 0.98 0.80 0.77 0.84 0.11 0.45
7th month 1.86 0.72 0.64 0.34 1.11 1.10 0.61 0.30 0.38
8th month 1.97 1.16 1.10 1.50 2.24 2.22 0.70 0.52 0.50
9th month 2.34 0.59 0.89 2.61 2.53 2.46 0.57 0.56 0.68
10th month 2.67 0.42 0.34 3.65 3.20 3.25 0.38 0.66 0.75
11th month 3.86 0.50 0.44 4.96 3.36 3.49 0.21 0.22 0.14
12th month 4.07 0.59 0.65 4.41 2.14 2.36 0.34 0.21 0.40

Note: The underlined quantities are the smaller values for a given time period and episode.
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The results reported in Table A5 show the overall out-of-sample behaviour of the
macro-based speci�cations tend to outperform the benchmark, although the DL model
tends to perform better in one-month ahead forecasts in two out of the three episodes
considered. Although the MV speci�cation performs better for the �rst episode, the
more parsimonious SV speci�cation seems to be doing a very good job for the second
and third episodes considered.

TABLE A6 - MAEs of Alternative Speci�cations

Panel A 3rd month of event 6th month of event 9th month of event
1970 DL SV MV DL SV MV DL SV MV
1mo 1.09 0.54 0.70 1.47 0.33 0.42 1.82 0.32 0.39
2mo 0.87 0.57 0.56 1.31 0.48 0.51 1.69 0.43 0.42
3mo 0.92 0.69 0.69 1.18 0.61 0.56 1.58 0.50 0.49
4mo 0.92 0.69 0.68 1.14 0.68 0.63 1.55 0.55 0.54
5mo 0.94 0.70 0.65 1.14 0.71 0.65 1.50 0.64 0.62
6mo 0.95 0.74 0.68 1.18 0.72 0.65 1.51 0.68 0.65
7mo 0.95 0.79 0.74 1.11 0.83 0.77 1.45 0.78 0.76
8mo 0.97 0.83 0.77 1.07 0.92 0.85 1.39 0.88 0.86
9mo 1.03 0.81 0.76 1.08 0.96 0.89 1.39 0.91 0.89
10mo 1.06 0.82 0.77 1.10 0.97 0.90 1.43 0.91 0.89
11mo 1.10 0.82 0.77 1.13 0.98 0.92 1.45 0.92 0.90
12mo 1.11 0.85 0.80 1.13 1.01 0.95 1.46 0.94 0.92
24mo 1.11 1.13 1.10 1.09 1.32 1.26 1.41 1.22 1.20
36mo 1.06 1.29 1.26 1.02 1.47 1.43 1.29 1.41 1.40
48mo 0.83 1.55 1.53 0.83 1.69 1.65 1.09 1.64 1.63
60mo 0.77 1.61 1.59 0.79 1.73 1.69 1.05 1.66 1.66
120mo 0.79 1.52 1.50 0.65 1.81 1.77 0.88 1.75 1.74
Avg 0.97 0.94 0.91 1.08 1.01 0.97 1.41 0.95 0.94
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Panel B 3rd month of event 6th month of event 9th month of event
1980 DL SV MV DL SV MV DL SV MV
1mo 3.15 1.37 1.51 2.27 1.55 1.57 2.00 1.36 1.38
2mo 3.56 1.86 1.99 2.39 1.41 1.43 1.98 1.32 1.33
3mo 3.69 2.06 2.19 2.44 1.37 1.37 2.13 1.41 1.41
4mo 3.81 2.26 2.38 2.51 1.47 1.46 2.18 1.53 1.52
5mo 3.88 2.40 2.51 2.51 1.49 1.49 2.19 1.58 1.57
6mo 3.85 2.44 2.54 2.48 1.48 1.48 2.17 1.59 1.58
7mo 3.78 2.44 2.53 2.44 1.45 1.44 2.16 1.58 1.57
8mo 3.63 2.35 2.44 2.37 1.36 1.41 2.11 1.54 1.57
9mo 3.76 2.55 2.63 2.46 1.44 1.54 2.17 1.62 1.67
10mo 3.66 2.50 2.58 2.37 1.40 1.49 2.11 1.60 1.65
11mo 3.69 2.59 2.66 2.37 1.44 1.53 2.10 1.63 1.68
12mo 3.35 2.31 2.37 2.16 1.32 1.31 1.96 1.52 1.50
24mo 2.86 2.34 2.34 1.84 1.48 1.50 1.67 1.74 1.74
36mo 2.33 2.14 2.11 1.42 1.59 1.58 1.40 1.88 1.85
48mo 1.98 2.02 1.96 1.16 1.67 1.64 1.23 1.97 1.93
60mo 1.87 2.07 1.99 1.05 1.90 1.86 1.20 2.20 2.14
120mo 1.66 2.22 2.09 0.97 2.13 2.05 1.11 2.35 2.26
Avg 3.21 2.23 2.28 2.07 1.53 1.54 1.88 1.67 1.67

Panel C 3rd month of event 6th month of event 9th month of event
1990 DL SV MV DL SV MV DL SV MV
1mo 0.84 0.55 1.00 0.88 0.42 0.77 0.82 0.47 0.73
2mo 0.92 0.43 0.89 1.03 0.48 0.84 0.96 0.50 0.76
3mo 0.93 0.35 0.81 1.05 0.47 0.83 0.96 0.49 0.75
4mo 0.84 0.37 0.83 0.98 0.46 0.82 0.89 0.50 0.76
5mo 0.83 0.32 0.78 0.95 0.43 0.79 0.87 0.45 0.71
6mo 0.78 0.31 0.77 0.91 0.41 0.77 0.81 0.44 0.71
7mo 0.72 0.29 0.75 0.83 0.39 0.72 0.73 0.44 0.69
8mo 0.67 0.31 0.77 0.78 0.34 0.71 0.69 0.39 0.66
9mo 0.66 0.29 0.75 0.78 0.35 0.71 0.69 0.40 0.66
10mo 0.62 0.28 0.71 0.76 0.37 0.70 0.67 0.40 0.65
11mo 0.57 0.34 0.73 0.72 0.40 0.70 0.63 0.43 0.66
12mo 0.67 0.31 0.77 0.81 0.41 0.77 0.69 0.45 0.72
24mo 0.57 0.36 0.82 0.72 0.45 0.78 0.61 0.45 0.69
36mo 0.59 0.37 0.80 0.73 0.45 0.78 0.64 0.43 0.67
48mo 0.66 0.34 0.81 0.81 0.44 0.82 0.75 0.39 0.66
60mo 0.72 0.33 0.80 0.86 0.43 0.83 0.82 0.37 0.65
120mo 0.91 0.32 0.79 1.01 0.43 0.83 1.03 0.34 0.63
Avg 0.74 0.35 0.80 0.86 0.42 0.78 0.78 0.43 0.69

The results reported in Table A6 con�rm the view that macro-based speci�cations
tend to outperform the benchmark DL model. For Panel A, which reports the results for
year 1970, this dominance occurs for 12-13 of the 17 maturities considered. Most notably,
the cumulative average MAE across maturities of the DL speci�cation for the nine-month
horizon is 50% larger than the ones of the macro-based speci�cations. Overall, the �tting
of the macro-based speci�cations is much better than the DL one for the shorter half of
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the yield curve by signi�cant orders of magnitude, although this dominance is reversed in
favour of the DL speci�cation when it comes to the longer end. A candidate explanation
for this fact is the higher persistence and lower volatility of longer yields, as discussed
in Table A1.

The results reported in Panel B are qualitatively similar to the ones of Panel A.
However, the goodness-of-�t for all speci�cations tends to be worse than before, probably
due to the change in the way monetary policy was being conducted during that period.
Finally, Panel C shows a clear dominance of the macro-based speci�cations and, in
particular, of the parsimonious SV speci�cation over the competing alternatives.
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C Strategies for Spatial Modelling

In this Appendix I discuss two ways of relaxing assumption that the error terms ut(�)
are uncorrelated in the maturity domain i.e. the assumption of no spatial correlation
of the error terms used in the text. I start by discussing the Spatial Error Model,
according to which the error term follows a �rst-order spatial autoregressive process,
together with the corresponding estimator of Kelejian and Prucha (1999). I then discuss
the Geostatistical approach proposed in Dubin (1988), according to which the spatial
correlation matrix of the data is modelled directly as a function of their distances.

C.1 The Spatial Error Model

One intuitive way of modelling spatial dependence is by modelling the error term ut
as a �rst-order spatial autoregressive process, which can be understood as a spatial
counterpart of a �rst-order autoregressive process, sharing with it most of its pros and
cons. The �eld of spatial econometrics has already a relatively long tradition, with early
contributions going back at least to Ord (1975)27. The spatial error model (SEM)28

reads
ut = �tSut + et

where ut and et are N�dimensional stacked error vectors, S is a N�N spatial weighting
matrix i.e. a matrix of weights re�ecting the pattern of spatial dependence among the
yields, and �t is the spatial autoregressive parameter.

In what regards the spatial weighting matrix S, given a sample of N observations,
this is a matrix of dimensionN�N (by convention, [S]ij = 0 if i = j) symmetric, positive
de�nite, and is usually standardized so that its rows sum to one, in order to make the
spatial parameters comparable. Since there are N(N�1)=2 interactions being generated
by N observations, one usually imposes some structure on S to make it a parsimonious
representation of the spatial dependence of observations; classical examples include the
contiguity spatial weighting matrix, [S]ij = 1fji� jj � 1g, where 1fAg is the indicator
function29, implying that the (i; j)�th element of the matrix takes value one whenever
i and j are neighbours � the normalized version of this matrix (with rows summing
to one) was used in Case (1991) in the study of the demand for rice in Indonesia.
Another standard matrix is the �xed distance neighbouring spatial matrix, with [S]ij =
1fji � jj <critical distanceg, whereas measures of �economic distance�have also been
employed, such as [S]ij = s(ji�jj); where s(:) is a function of the distance � see DeLong
and Summers (1991). More recently, Townsend (1994) speci�ed the spatial weighting
matrix with economic distance being proxied by measures of weather correlation between
farms in Indian villages. Then, under regularity conditions on the error variance30,

27Classical contributions were surveyed in Anselin (1988), and economic applications performed by
Case (1991), DeLong and Summers (1991) and Townsend (1994), and more recent developments found
in Conley (1999), Kelejian and Prucha (1998, 1999, 2004), Brett, Pinkse and Slade (2002), and Pinkse,
Shen and Slade (2003).
28See Anselin (1988) for an introduction to this class of models.
29The indicator function 1fAg takes value one if the event A occurs, and zero otherwise.
30Typically, bounded variance and/or bounded fourth moments.
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and dependence structure31, it can be shown that �t is a straightforwardly estimable
parameter.

Estimation of this type of model is dealt with by Kelejian and Prucha (1998, 1999). It
is worth mentioning that the estimation of �t does not impose any cost on the estimation
of �t in the sense that one can do as well as estimating �t or knowing its true population
value when estimating �t.

C.1.1 The GM Estimator of Kelejian and Prucha

To derive the GM estimator of Kelejian and Prucha (1998, 1999), �rst de�ne uS = Su,
uSS = SSu and so forth (the time subscript is omitted for the sake of clarity).32 Letting
tr(:) denote the trace operator and using the relation e = u� �Se, Kelejian and Prucha
obtain the following moment conditions: (i) E(ee0=N) = �2, by the de�nition of the
variance; (ii) E(e0S 0Se) = �2(1=N)tr(S 0S); and (iii) E(e0Se=N) = 0, since tr(S) = 0
by construction (the diagonal elements of the spatial matrix are all equal to zero). By
rewriting the above relations in terms of u, one obtains the moment condition

GS() =
1

N

24 2u0SuS �u0SuS N
2u0SSSuSS �u0SSSuSSS tr(S 0S)

(u0SuSS + u0SSuSS) �u0SSuSSS 0

35  � 1

N

24 u0SuS
u0SSuSS
u0SuSS

35
where  = (�; �2; �2)0. The corresponding criterion function is

(e�;e�2; e�2) := arg min
(�;�2;�2)

G0SGS

To incorporating the GM Estimator into the term structure model, augment it to
account for spatial dependence viz.

yt(� ) = Xt(�t)�t + ut(� ); t = 1; ::; T

ut = �tSut + et24 �t
�t
�t

35 =

24 �

�
�

35+Mt�

24 ��
��
��

35
where yt(� ) is the vector of yields observed at date t, and ut(� ) is the error term, both
of dimension N � 1, Xt(:) is N � 3, �t and � are 3� 1, �t and � are scalars, ��, ��, and

�� are, respectively, k� � 1, k� � 1, and k� � 1, and Mt� =

24 M�t� 03�k� 03�k�
01�k� M�t� 01�k�
01�k� 01�k� M�t�

35 is
5� k(= k� + k� + k�). The matrix S is N �N , and �t is a scalar.

To obtain the corresponding moment conditions, de�ne ut;S = Sut, ut;SS = SSut and
so forth. The set of moment conditions of the baseline model is augmented with the

31Dependence being (a decreasing) function only of the distance between observations � a spatial
analog of the notion of covariance-stationarity for time series.
32In this section I drop the time subscript for the sake of clarity.
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inclusion of the moment conditions

GS(��) =
1

NT

TX
t=1

0@�tt �
24 u0t;Sut;S
u0t;SSut;SS
u0t;Sut;SS

351A

where �� = (�; ��)
0, �t =

24 2u0t;Sut;S �u0t;Sut;S N
2u0t;SSSut;SS �u0t;SSSut;SSS tr(S 0S)

(u0t;Sut;SS + u0t;SSut;SS) �u0t;SSut;SSS 0

35, and
t =

24 �+M�t��
(�+M�t��)

2

�2

35.
As before, convergence is in bothN and T , and the estimation is done simultaneously.

C.2 The Geostatistical Approach

Geostatistical models do not use spatial weighting matrices to summarize the spatial
relationships, and no error generating process is speci�ed. Instead, they impose a para-
metric structure on the spatial correlation of data up to a �nite-dimensional parameter
to be estimated. The correlation matrix of the data is assumed to be a function of
the distances separating them, and needs to be pre-speci�ed by the researcher. More
formally, the covariance matrix of the error term of a regression is parameterized as
V = �2	(d;�), where d denotes the distance between observations and � is the para-
meter vector of interest.

C.2.1 The Dubin Estimator

Dubin (1988) proposes to parameterize the correlation between any two observations in
a given sample as a negative exponential function of the distance between them i.e.

	(d;�) = 1 fd > 0g [�1 exp(��2d)] + 1 fd = 0g
but other parameterizations, such as the Gaussian,

	(d;�) = 1 fd > 0g
�
�1 exp(��2d)2

�
+ 1 fd = 0g

and the spherical,

	(d;�) = 1 f�2 > d > 0g
�
�1

�
1� 3d

2�2
+

d3

2b32

��
+ 1 fd = 0g

are also valid correlation functions.

In context of the linear regression model y = X� + e, the estimator is essen-
tially a GLS estimator, with 	(d;�) entering as the weighting matrix in the least
squares and error variance estimators, e� = (X 0	(d;�)�1X)(X 0	(d;�)�1y) and e�2 =
(y�Xe�)0	(d;�)�1(y�Xe�)=N . Alternatively, under the normality assumption, estima-
tion can be done via maximum likelihood (as in Dubin, 1988).
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In the general nonlinear case, one can write the moment condition

GS(�;�) =
1

N
Z 0	(d;�)(y � f(X; �))

and proceed using a two-step estimation method according to which � is estimated
given preliminary estimates of � obtained from residuals from the �rst stage regression
residuals. The corresponding criterion function is

e� = argmin
�
GS(�; e�)0ANGS(�; e�)

where e� denotes an estimate of � and AN is a conformable positive semi-de�nite
weighting matrix.

C.2.2 Incorporating the Dubin Estimator into the Term Structure Model

The augmented model now reads

yt(�) = Xt(� ; �t)�t + ut(�); t = 1; ::; T

E(ut(�)ut(�)
0) = �2t	(d;�t);24 �t

�t
�t

35 =

24 �

�
�

35+Mt�

24 ��
��
��

35
where yt(�) is the vector of yields observed at date t, and ut is the error term, both of
dimension N � 1, Xt(:) is N � 3, �t and � are 3 � 1, �t and � are scalars, ��, ��, and
�� are, respectively, k� � 1, k� � 1, and k� � 1, and Mt� =

�
M�t�; M�t� M�t�

�
is

4� k(= k� + k� + k�).

The corresponding moment condition is given by

GNT (�) =
1

NT

TX
t=1

Z 0t	(d;�t)(yt(�)�Xt(� ; �t)�t)

with �t, �t, and �t de�ned above.
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D Tables

TABLE 1 - Simulation Results for Single-Variable Factor Speci�cation

Panel A T = 10
N = 25 N = 50 N = 100

�1

�2

�3

�

��1

��2

��3

��

1:075
[0:642]
0:925
[0:675]
0:786
[1:136]
0:053
[0:030]
0:995
[0:102]
1:004
[0:119]
1:064
[0:442]
0:011
[0:011]

0:987
[0:323]
1:016
[0:389]
0:942
[0:765]
0:051
[0:019]
0:999
[0:077]
0:999
[0:105]
1:036
[0:334]
0:010
[0:006]

0:993
[0:112]
1:013
[0:208]
0:946
[0:628]
0:049
[0:011]
1:003
[0:042]
0:995
[0:082]
1:024
[0:259]
0:010
[0:004]

Panel B T = 50
N = 25 N = 50 N = 100

�1

�2

�3

�

��1

��2

��3

��

0:998
[0:458]
1:015
[0:470]
0:895
[0:742]
0:050
[0:015]
1:000
[0:040]
0:996
[0:045]
1:033
[0:165]
0:010
[0:003]

0:989
[0:134]
1:007
[0:146]
1:016
[0:340]
0:050
[0:006]
1:002
[0:028]
0:999
[0:033]
0:995
[0:094]
0:010
[0:002]

1:000
[0:055]
0:997
[0:095]
0:996
[0:274]
0:050
[0:005]
1:000
[0:014]
1:000
[0:025]
1:002
[0:075]
0:010
[0:001]

42



Panel C T = 100
N = 25 N = 50 N = 100

�1

�2

�3

�

��1

��2

��3

��

1:003
[0:367]
0:999
[0:373]
0:956
[0:577]
0:050
[0:010]
1:000
[0:033]
0:999
[0:035]
1:011
[0:111]
0:010
[0:002]

1:000
[0:108]
1:002
[0:129]
0:985
[0:269]
0:050
[0:004]
1:000
[0:021]
1:000
[0:026]
1:006
[0:064]
0:010
[0:001]

0:998
[0:045]
1:004
[0:075]
0:985
[0:203]
0:050
[0:003]
1:000
[0:010]
1:000
[0:018]
1:003
[0:049]
0:010
[0:001]

Note: Standard errors are reported within square brackets.
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TABLE 2 - Macroeconomic Variables by Group

Economic Activity In�ation Monetary Policy Fiscal Policy
URL CPI FFL DEBT
TCUL PCE NONBR
HELPL PPI1 M1
IP PPI2
EMP PPI3N

HOUST

Note: Variables in levels and not seasonally adjusted are marked with the superscripts L

and N , respectively. The remaining variables are measured in growth rates and are seasonally
adjusted.
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TABLE 3 - Macroeconomic Variables Driving Term Structure Factors

Reference Level Factor Slope Factor Curvature Factor

Evans & Marshall (1996)
Employment
In�ation

Monetary Policy Monetary Policy

Ang & Piazzesi (2003) � In�ation Output
Piazzesi (2005) � Monetary Policy �
DRA (2005) In�ation Output �
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TABLE 4 - Preliminary Results for Single-Variable Speci�cations

Speci�cation Level Slope Curvature Avg(MAE) Med(MAE)
1 CPI FF M1 1:010 0:830
2 PCE FF M1 1:031 0:825
3 PPI1 FF M1 1:012 0:836
4 PPI2 FF M1 1:025 0:830
5 PPI3 FF M1 1:023 0:833
6 PCE FF DEBT 1:069 0:869
7 PCE NONBR DEBT 1:822 1:395
8 PCE M1 DEBT 1:823 1:415
9 CPI FF UR 0:833 0:696
10 CPI FF TCU 1:022 0:851
11 CPI FF HELP 1:058 0:893
12 CPI FF IP 1:036 0:873
13 CPI FF EMP 1:042 0:898
14 CPI FF HOUST 1:050 0:889
15 UR FF DEBT 0:877 0:736
16 TCU FF DEBT 1:041 0:854
17 HELP FF DEBT 1:069 0:873
18 IP FF DEBT 1:053 0:881
19 EMP FF DEBT 1:063 0:851
20 HOUST FF DEBT 1:062 0:865
21 PCE UR M1 1:629 1:284
22 PCE TCU M1 1:817 1:449
23 PCE HELP M1 1:668 1:279
24 PCE IP M1 1:815 1:448
25 PCE EMP M1 1:817 1:437
26 PCE HOUST M1 1:811 1:401
27 UR FF FF 0:854 0:738
28 UR FF NONBR 0:884 0:746
29 UR FF M1 0:872 0:739

Note: The last two columns report, respectively, the average and the median MAE across
time.
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TABLE 5 - Further Results for Single-Variable Factor Speci�cations

Speci�cation Level Slope Curvature Avg(MAE) Med(MAE)
1 CPI FF DEBT 1:048 0:886
2 PCE FF DEBT 1:069 0:869
3 UR FF DEBT 0:876 0:729
4 CPI FF M1 1:010 0:830
5 PCE FF M1 1:031 0:825
6 UR FF M1 0:872 0:729
7� CPI FF UR 0:833 0:696
8 PCE FF UR 0:836 0:701
9 UR FF UR 0:873 0:727
10 CPI UR DEBT 1:048 0:886
11 PCE UR DEBT 1:468 1:203
12 UR UR DEBT 1:521 1:272
13 CPI UR M1 1:462 1:199
14 PCE UR M1 1:467 1:170
15 UR UR M1 1:526 1:287
16 CPI UR UR 1:462 1:211
17 PCE UR UR 1:467 1:179
18 UR UR UR 1:523 1:262

Note: The last two columns report, respectively, the average and the median MAE across
time (the smaller quantities of every column are underlined). The superscript � indicates the
best speci�cation according to the MAE criterion.
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TABLE 6 - Results for Best Single-Variable Factor Speci�cation

Speci�cation (b�0; b�)0 (b�0�;b��)0 Avg-Med(MAE)

SV:

�1t : CPI
�2t : FF
�3t : UR
�t : UR

10:655
�10:148
�13:661
0:007

[0:091]
[0:089]
[0:169]
[0:001]

55:820
0:892
2:177
0:004

[1:317]
[0:003]
[0:019]
[0:001]

0:833� 0:696

Note: Newey-West standard errors with 12 lags are reported within square brackets.
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TABLE 7 - Results for Multi-Variable Factor Speci�cations

Speci�cation Level Slope Curvature Avg(MAE) BIC
1 CPI, PCE?, UR FF, UR DEBT, FF?, UR? 0:759 49:191
2 CPI, UR FF, UR DEBT, FF?, UR 0:759 45:097
3 CPI, PCE?, UR FF, UR DEBT, UR? 0:844 45:100
4 CPI, PCE, UR FF, UR DEBT?, FF? 0:800 45:099
5 CPI, UR FF, UR DEBT, FF 0:972 41:025
6 CPI, PCE?, UR FF, UR DEBT, FF?, UR? 0:819 41:004
7� CPI, UR FF, UR DEBT 0:820 36:910

Note: The last two columns report, respectively, the average MAE across time (the smaller
quantities in every column are underlined) and Schwarz�s BIC model selection criterion. The
superscript ? denotes non-signi�cance of the corresponding parameter, whereas the superscript
� indicates the best speci�cation according to the BIC.
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TABLE 8 - Results for Multi-Variable Factor Speci�cation

Speci�cation (b�0; b�)0 (b�0�;b��)0 Avg-Med(MAE)

MV:

�1t : CPI
�1t : UR
�2t : FF
�2t : UR
�3t : DEBT
�t : DEBT

�2:017

2:094

2:011
0:031

[0:304]

[0:284]

[0:551]
[0:001]

47:564
1:791
0:886

�1:727
�6:029
�0:035

[1:330]
[0:014]
[0:004]
[0:017]
[0:153]
[0:002]

0:820

Note: Newey-West standard errors with 12 lags are reported within square brackets.
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Table 9 - Speci�cations Nested within the Interest Rate Feedback Rule

Speci�cation l� lg lr ls

(Backward) Taylor rule < 0 < 0 � �
(Backward) Taylor rule with interest rate smoothing < 0 < 0 < 0 �
Clarida-Galí-Gertler > 0 > 0 < 0 �

51



Table 10 - Parameter Estimates for Forward-Looking Interest Rate Rule

FWTR1 FWTR2 FWTR3 FWTR4
lCPI 1 1 1 1
lUR 1 1 1 1
lFF �1 �1 �1 �1
Instrument lags 1 2 3 4
CPI 2:427� 1:929�� 1:702�� 1:605��

[1:358] [0:870] [0:770] [0:746]
UR 0:454 0:473 0:618 0:615

[0:498] [0:381] [0:394] [0:404]
CPI� 2:020 1:640 1:085 0:911

[2:898] [3:054] [3:461] [4:084]
� 0:965��� 0:952��� 0:948��� 0:950���

[0:002] [0:002] [0:002] [0:002]
R2 0:993 0:993 0:993 0:993
J-statistic 0:377 7:787 10:654 12:894
df 2 5 8 11

Note: Speci�cation FWTR1 uses a constant, current values of CPI and UR, and lagged
values of CPI, UR, and FF as instruments. Speci�cation FWTR2-4 use the same instruments
as FWTR1 plus 2-4 lagged versions of CPI, UR, and UR. Newey-West standard errors with
12 lags are reported inside square brackets. Signi�cance at the 10, 5, and 1 percent levels is
denoted by superscripts �, ��, and ���; respectively.
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Table 11 - Parameter Estimates for Backward-Looking Interest Rate Rule

BWTR1 BWTR2 BWTR3 BWTR4
lCPI 0 �2 �6 �10
lUR 0 �2 �6 �10
lFF �1 �1 �1 �1
Instrument lags 1 1 1 1
CPI 2:264 2:273 2:355� 2:866�

[2:127] [1:408] [1:388] [1:691]
UR 1:158 0:410 0:598 0:352

[1:380] [0:504] [0:431] [0:416]
CPI� 1:257 2:270 1:715 2:089

[6:491] [3:305] [2:177] [1:882]
� 0:986��� 0:964��� 0:951��� 0:949���

[0:001] [0:002] [0:002] [0:002]
R2 0:993 0:993 0:993 0:993
J-statistic 26:153��� 6:326� 1:128 0:860
df 2 2 2 2

Note: Speci�cation BWTR1 uses a constant, current values of CPI and UR, and lagged
values of CPI, UR, and FF as instruments. Speci�cation BWTR2-4 use the same instruments
as BWTR1 plus 2-4 lagged versions of CPI, UR, and UR. Newey-West standard errors with
12 lags are reported inside square brackets. Signi�cance at the 10, 5, and 1 percent levels is
denoted by superscripts �, ��, and ���; respectively.
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TABLE 12 - NBER-Dated Recessions Considered

Recession Code Start Date End Date Duration
R1 November, 1973 March, 1975 16 months
R2 January, 1980 July, 1980 6 months
R3 July, 1981 November, 1982 16 months
R4 July, 1990 March, 1991 8 months
R5 March, 2001 November, 2001 8 months
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TABLE 13 - Overall Accuracy of Alternative Speci�cations

Panel A Recession R1
DL SV SV-TR MV MV-TR

1st month 1.31 1.56 0.65 1.71 1.00
2nd month 0.81 1.16 0.82 1.22 1.13
3rd month 0.62 1.17 0.79 1.16 1.08
4th month 0.60 0.56 0.39 0.68 0.59
5th month 1.09 0.45 0.33 0.52 0.41
6th month 1.48 0.95 0.85 0.87 0.67
7th month 1.37 1.21 1.13 0.94 1.00
8th month 1.57 1.67 1.60 1.39 1.15
9th month 1.74 1.69 1.67 1.32 1.15
10th month 1.88 1.12 1.13 0.83 0.67
11th month 1.14 1.05 1.06 0.92 0.63
12th month 1.38 0.71 0.79 0.61 0.24
13th month 1.05 0.34 0.38 0.40 0.28
14th month 0.77 0.37 0.40 0.57 0.43
15th month 0.99 0.71 0.65 1.79 1.07
16th month 0.73 1.09 1.03 1.68 1.65

Panel B Recession R2
DL SV SV-TR MV MV-TR

1st month 4.48 0.88 1.38 1.03 1.26
2nd month 4.57 1.69 1.77 1.82 1.69
3rd month 4.28 1.48 1.35 1.45 1.28
4th month 1.99 3.22 2.26 3.25 2.55
5th month 1.81 0.81 1.08 0.90 1.18
6th month 1.60 0.91 0.74 0.83 0.66
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Panel C Recession R3
DL SV SV-TR MV MV-TR

1st month 1.81 0.88 5.36 1.01 4.98
2nd month 3.50 2.47 2.58 2.47 1.89
3rd month 5.18 2.61 2.65 2.58 2.25
4th month 4.98 2.32 2.31 2.40 2.05
5th month 3.72 1.71 1.68 1.65 1.52
6th month 4.84 2.43 2.36 2.22 2.14
7th month 4.94 2.32 2.28 1.93 2.00
8th month 4.85 1.21 1.26 1.25 0.90
9th month 4.58 2.49 2.52 2.39 2.30
10th month 4.74 1.03 1.08 0.91 0.91
11th month 4.79 0.69 0.72 0.74 0.59
12th month 5.72 1.54 1.59 1.53 1.40
13th month 5.02 1.55 1.58 1.62 1.51
14th month 4.47 2.67 2.66 2.53 2.49
15th month 2.98 1.76 1.75 1.59 1.63
16th month 2.81 1.87 1.86 1.71 1.69

Panel D Recession R4
DL SV SV-TR MV MV-TR

1st month 1.30 0.46 0.35 0.40 0.38
2nd month 0.97 0.90 0.93 0.91 0.82
3rd month 1.02 0.71 0.72 0.73 0.64
4th month 1.11 0.64 0.64 0.67 0.59
5th month 1.52 0.58 0.58 0.59 0.53
6th month 1.77 0.57 0.57 0.56 0.51
7th month 1.86 0.86 0.86 0.87 0.82
8th month 1.88 1.00 0.99 0.98 0.95

Panel E Recession R5
DL SV SV-TR MV MV-TR

1st month 1.79 0.84 3.45 0.69 3.75
2nd month 2.52 0.64 0.65 0.60 0.56
3rd month 2.98 0.71 0.72 0.78 0.55
4th month 3.24 0.93 0.94 0.91 0.74
5th month 3.71 0.78 0.79 0.75 0.71
6th month 4.03 0.96 0.97 0.90 0.86
7th month 4.72 1.29 1.30 1.32 1.21
8th month 4.79 1.23 1.23 1.17 1.34

Note: The quantities in italics are the smaller values for a given time period and episode.
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TABLE 14 - Maturity-Disaggregated Accuracy

Panel A Recession R1
DL SV SV-TR MV MV-TR

1mo 2.45 0.90 0.96 0.90 0.73
2mo 1.36 0.86 0.90 0.86 0.70
3mo 0.63 0.83 0.85 0.82 0.67
4mo 0.95 0.80 0.81 0.80 0.65
5mo 1.49 0.57 0.57 0.54 0.58
6mo 1.93 0.60 0.57 0.58 0.58
7mo 2.23 0.62 0.56 0.63 0.59
8mo 2.36 0.66 0.56 0.66 0.55
9mo 2.37 0.71 0.59 0.71 0.58
10mo 2.27 0.75 0.63 0.76 0.61
11mo 2.12 0.78 0.65 0.80 0.63
12mo 1.94 0.81 0.66 0.90 0.72
24mo 1.27 0.91 0.76 1.00 0.76
36mo 0.84 0.91 0.80 1.01 0.79
48mo 0.70 1.02 0.86 1.03 0.77
60mo 0.93 2.13 1.95 2.21 2.01

Panel B Recession R2
DL SV SV-TR MV MV-TR

1mo 2.89 1.61 2.32 1.57 2.17
2mo 2.57 1.60 2.30 1.55 2.14
3mo 2.81 1.57 2.26 1.51 2.09
4mo 3.09 1.52 2.20 1.46 2.02
5mo 3.42 1.45 2.12 1.39 1.95
6mo 3.67 1.33 1.98 1.31 1.81
7mo 3.94 1.25 1.86 1.24 1.69
8mo 4.12 1.19 1.74 1.19 1.58
9mo 4.19 1.15 1.63 1.14 1.49
10mo 4.21 1.13 1.54 1.09 1.40
11mo 4.22 1.03 1.49 1.10 1.37
12mo 4.22 1.01 1.47 1.13 1.33
24mo 3.06 1.02 0.97 1.04 0.85
36mo 2.80 0.92 0.96 0.93 1.03
48mo 1.89 1.85 1.56 1.89 1.68
60mo 4.00 3.38 2.95 3.45 2.87
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Panel C Recession R3
DL SV SV-TR MV MV-TR

1mo 3.73 1.44 1.89 1.49 1.73
2mo 1.64 1.43 1.88 1.48 1.71
3mo 0.79 1.44 1.90 1.48 1.71
4mo 1.65 1.46 1.91 1.51 1.71
5mo 2.72 1.40 1.85 1.40 1.60
6mo 3.57 1.48 1.91 1.45 1.66
7mo 4.17 1.55 1.97 1.50 1.71
8mo 4.58 1.51 1.93 1.43 1.66
9mo 4.84 1.57 1.97 1.51 1.72
10mo 5.01 1.62 2.01 1.58 1.77
11mo 5.11 1.68 2.05 1.65 1.82
12mo 5.18 1.78 2.14 1.71 1.83
24mo 4.57 1.37 1.74 1.24 1.40
36mo 5.01 2.16 2.32 2.02 2.06
48mo 3.63 1.66 1.90 1.61 1.71
60mo 4.28 4.61 4.81 4.57 4.69

Panel D Recession R4
DL SV SV-TR MV MV-TR

1mo 6.90 0.68 0.79 0.65 0.75
2mo 5.77 0.71 0.82 0.69 0.78
3mo 4.83 0.71 0.82 0.70 0.78
4mo 4.07 0.70 0.80 0.69 0.76
5mo 3.47 0.67 0.78 0.67 0.72
6mo 3.00 0.67 0.77 0.67 0.71
7mo 2.64 0.66 0.70 0.66 0.66
8mo 2.35 0.39 0.45 0.33 0.39
9mo 2.13 0.39 0.45 0.35 0.39
10mo 1.93 0.40 0.44 0.37 0.38
11mo 1.77 0.41 0.44 0.41 0.39
12mo 1.63 0.43 0.45 0.44 0.40
24mo 1.35 0.57 0.56 0.53 0.48
36mo 0.98 0.47 0.50 0.49 0.50
48mo 0.42 1.25 1.17 1.26 1.11
60mo 0.84 0.69 0.61 0.70 0.60
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Panel E Recession R5
DL SV SV-TR MV MV-TR

1mo 7.01 1.36 1.73 1.21 2.02
2mo 6.45 1.42 1.79 1.28 2.07
3mo 5.98 1.45 1.82 1.31 2.09
4mo 5.59 1.47 1.84 1.33 2.10
5mo 5.28 1.47 1.87 1.33 2.09
6mo 5.03 1.51 1.87 1.36 2.10
7mo 4.84 1.50 1.47 1.35 2.08
8mo 4.69 1.11 1.47 0.99 1.71
9mo 4.57 1.10 1.47 0.97 1.69
10mo 4.45 1.08 1.47 0.94 1.65
11mo 4.35 1.08 1.44 0.93 1.63
12mo 4.24 1.06 1.42 0.91 1.59
24mo 3.33 0.54 0.87 0.61 0.87
36mo 2.79 0.78 0.95 0.80 0.78
48mo 2.73 0.87 1.24 0.85 1.02
60mo 2.35 1.51 1.85 1.59 1.64

Note: The quantities in italics are the smaller values for a given time period and episode.
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