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1 Introduction

Impulse responses remain the primary empirical tool for macroeconomic analysis and constitute a

fundamental yardstick by which theoretical models are measured, and intuition about macroeco-

nomic forces is gained. It is therefore surprising what little effort practitioners make in reporting

statistical measures of uncertainty along with impulse response estimates. At least two explana-

tions for this observation come to mind: the perception that impulse responses are imprecisely

estimated; and the difficulty in deriving a closed-form analytic expression for their covariance

matrix.

This paper derives a closed-form, analytic, asymptotic covariance matrix for structural impulse

responses identified with either short-run or long-run restrictions and estimated semi-parametrically

by local projections (Jordà, 2005). These asymptotic results are the cornerstone of a standard

protocol for reporting statistical measures of uncertainty of impulse response estimates and a pro-

tocol for counterfactual simulation designed to address, to some extent, the Lucas critique (Lucas,

1976).

Impulse response coefficients are imprecisely estimated but the response trajectories themselves

are not. The coefficients of an impulse response are highly correlated and have a natural temporal

ordering: the future path of the impulse response today depends on the past through the path that

brought us to our current state, but clearly the future cannot change the path already traveled.

This observation suggests that traditional, two standard-error bands vastly overstate the un-

certainty about the time-profile of the impulse response. For this reason, I propose a different

set of visual displays that capture the uncertainty on the trajectories more precisely and which I

call time-profile bands. Time-profile bands are calculated by translating the original coordinate

system of the impulse response into an orthogonal coordinate system that preserves the temporal

ordering and allows simple construction of 95% confidence upper and lower bounds.

I then argue that a plot of the impulse response should display the estimates, two-standard
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error bands and upper and lower time-profile bands along with p-values of the hypothesis test that

the impulse response coefficients are jointly zero and the p-value of the test that their cumulative

effect is zero. An empirical example with a monetary system involving the U.S. and the U.K. with

seven variables and hence 49 different impulse response plots illustrates that these calculations

can be easily done even for rather large systems.

Impulse responses estimated by local projections provide a natural environment for counter-

factual simulation. I propose counterfactual experiments that consist of alternative policy trajec-

tories. Agents form expectations about the policy responses and insofar as their uncertainty about

the true values is well reflected by the statistical uncertainty we can measure, a counterfactual

chosen from within the 95% coverage of possible time-profiles would not cause agents to revise

their expectations. Conditional on such counterfactual, it is then straight-forward to derive the

conditional distribution of the remaining impulse responses. An example of such a counterfactual

suggests that when a central bank responds more aggressively to an inflation shock, the unem-

ployment rate is lower than it would otherwise be, even though unemployment responds positively

to interest rate shocks.

The paper provides Monte Carlo evidence on the small sample properties of the joint hypothesis

tests discussed here and an empirical application illustrating all the techniques introduced in the

paper. I begin by deriving the foundational asymptotic results for these tests.

2 Asymptotic Distribution of Structural Impulse Responses

This section provides the asymptotic distribution of reduced-form impulse responses calculated by

local projections. The derivations come from Jordà and Kozicki (2006) and provide an asymptotic

covariance matrix for all impulse response coefficients, across time and across variables under

flexible assumptions about the underlying data generating process. Structural impulse responses

can be obtained by imposing a set of restrictions on the nature of the contemporaneous correlations
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among the variables in the system. The type of identifying restrictions imposed then determines

how the asymptotic covariance matrix of the structural impulse responses should be calculated. I

provide formulas for two common approaches: short-run and long-run zero coefficient restrictions.

2.1 Reduced-Form Impulse Responses from Local Projections

Suppose we are interested in the covariance-stationary r× 1 vector of time series yt, whose Wold

decomposition is given by

yt =
∞X
j=0

Bjεt−j (1)

where for simplicity and without loss of generality, we drop the constant and any other determin-

istic terms. From the Wold decomposition theorem (see e.g. Anderson, 1994):

(i) E(εt) = 0 and εt are i.i.d.

(ii) E(εtε0t) = Σε
r×r

(iii)
P∞
j=0 kBjk <∞ where kBjk2 = tr(B0jBj) and B0 = Ir

(iv) det {B(z)} 6= 0 for |z| ≤ 1 where B(z) =P∞j=0Bjzj
The process in (1) can also be written as:

yt =
∞X
j=1

Ajyt−j + εt (2)

such that,

(v)
P∞
j=1 kAjk <∞

(vi) A(z) = Ir −
P∞
j=1Ajz

j = B(z)−1

(vii) det{A(z)} 6= 0 for |z| ≤ 1.
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In what follows, I take expression (2) as primitive in describing the class of models whose

impulse responses we are interested in characterizing.

Jordà’s (2005) local projection method of estimating impulse responses is based on the expres-

sion that results from simple recursive substitution in the V AR(∞) representation of expression

(2), specifically

yt+h = A
h
1yt +A

h
2yt−1 + ...+ εt+h +B1εt+h−1 + ...+Bh−1εt+1 (3)

where:

(i) Ah1 = Bh for h ≥ 1

(ii) Ahj = Bh−1Aj +A
h−1
j+1 where h ≥ 1; A0j+1 = 0; B0 = Ir; and j ≥ 1.

Now consider truncating the infinite lag expression (3) at lag k

yt+h = A
h
1yt +A

h
2yt−1 + ...+A

h
kyt−k+1 + vk,t+h (4)

vk,t+h =
∞X

j=k+1

Ahj yt−j + εt+h +
h−1X
j=1

Bjεt+h−j .

Jordà and Kozicki (2006) show that least-squares estimates of expression (4) produce consistent

and asymptotically normal estimates of Ah1 = Bh for h ≥ 1 as long as, among other technical

conditions described in that paper,

1. k is chosen as a function of the sample size T such that

k3

T
→ 0;T, k →∞

2. k is chosen as a function of T such that

k1/2
∞X

j=k+1

kAjk→ 0 as T, k →∞
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The main results in Jordà and Kozicki (2006) can be best reproduced with matrix algebra.

Hence, define yj for j = h, ..., 1, 0, —1, ..., —k as the (T −k−h)× r matrix of stacked observations

of the 1×r vector y0t+j . Additionally, define the (T −k−h)×r(h+1) matrix Y ≡ (y0, ...,yh) ; the

(T−k−h)×r matrixX ≡ y0; the (T−k−h)×r(k−1)+1matrix Z ≡
¡
1(T−k−h)×1,y−1, ...,y−k+1

¢
and the (T − k− h)× (T − k− h) matrix Mz = IT−k−h−Z (Z 0Z)−1 Z0. Notice that the inclusion

of y0 in Y is a simplifying notational trick that has no other effect than to ensure that the first

block of coefficients is Ir. This will be convenient when deriving the structural impulse response

function. Using standard properties of least-squares, impulse responses over h horizons can be

jointly estimated as

cBT (0, h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir

bB1
...

bBh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [Y 0MzX] [X

0MzX]
−1 (5)

Jordà and Kozicki (2006) then show that bbT = vec(cBT (0, h)) converges in distribution to
√
T
³bbT − b0´ d→ N (0,ΩB) (6)

where ΩB can be estimated with bΩB =
n
[X 0MzX]

−1 ⊗ bΣvo. Although properly speaking the
equations associated with B0 = Ir have zero variance, I find it notationally more compact and

mathematically equivalent to calculate the residual covariance matrix bΣv as
bΣv = bΨB ³Ih+1 ⊗ bΣ²´ bΨ0B,

where bΨB is

5



bΨB
r(h+1)×r(h+1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0r 0r 0r ... 0r

0r Ir 0r ... 0r

0r bB1 Ir ... 0r

...
...

... ...
...

0r bBh−1 bBh−2 ... Ir

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

with, bΣ² = cv10cv1
T−k−h ; cv1 = Mzy1 −Mzy0 bB1. Therefore, bΩB is a simple estimate of the analytic

asymptotic covariance matrix of impulse responses across time and across variables. The next

section provides formulas to compute structural impulse responses and their associated standard

errors.

2.2 The Distribution of Structural Impulse Responses

The Wold decomposition for yt in expression (1) does not assume that the residuals εt are orthogo-

nal to each other and therefore E (εtε0t) = Σε is a symmetric, positive-definite matrix with possibly

non-zero entries in the off-diagonal terms. Let the structural residuals ut be the rotation of the

reduced-form residuals εt given by Put = εt, where E (utu0t) = Ir and hence Σε = PP
0. Notice

that the decomposition of Σε is not unique: Σε contains r(r+1)/2 distinct terms but P contains

r2 terms and therefore r(r − 1)/2 additional conditions are required to achieve just-identification

of the terms in P. Traditional methods of estimating P consist in exogenously imposing r(r−1)/2,

ad-hoc, constraints. Two common approaches are identification via the Cholesky decomposition

of Σε (which is equivalent to imposing r(r − 1)/2 zero restrictions on P ); and identification with

long-run restrictions that impose r(r− 1)/2 zero restrictions on the long-run matrix of structural

responses, Φ∞ =
P∞

0 Φj .

Consequently, given some estimate bP the structural impulse responses Φi can be calculated as
follows:
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bΦ (0, h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bΦ0
bΦ1
...

bΦh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= bB (0, h) bP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir

bB1
...

bBh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
bP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bP
bB1 bP
...

bBh bP

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

Let bφT = vec
³bΦ (0, h)´ , we want to determine the asymptotic covariance matrix Ωφ since it is

clear that

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

2.2.1 Short-Run Identification

When identification is achieved by imposing short-run identification assumptions via the Cholesky

decomposition, then

Ωφ =
∂φ

∂b
ΩB

∂φ

∂b0
+

∂φ

∂vec(P )

∂vec(P )

∂vech(Σε)
ΩΣ

∂vec(P )

∂vech(Σε)0
∂φ

∂vec(P )0
(9)

with ΩΣ ≡ E
£
vech (Σε) vech (Σε)

0¤ and E [b, vech(Σε)] = 0 since E [X 0Mzv1/ (T − k − h)] p→ 0.

Since Φ(0, h) = B (0, h)P then it is easy to see that

∂φ

∂b
= (P 0 ⊗ Ih+1)

∂φ

∂vec(P )
= (Ir ⊗B (0, h))

Lütkepohl (2005), chapter 3 provides the additional results

∂vec(P )

∂vech(Σε)
= L0r {Lr (Ir2 +Krr) (P ⊗ Ir)L0r}−1 (10)

√
T
³
vech

³bΣε´− vech (Σε)´ d→ N (0,ΩΣ)

ΩΣ = 2D+
r (Σε ⊗ Σε)D+0

r
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where Lr is the elimination matrix such that for any square r× r, matrix A, vech(A) = Lrvec(A),

Krr is the commutation matrix such that vec(A0) = Krrvec(A), and D+
r = (D

0
rDr)

−1Dr, where

Dr is the duplication matrix such that vec(A) = Drvech(A) and hence D+
r vec(A) = vech(A).

Notice that D+
r = Lr only when A is symmetric, but does not hold for the more general case in

which A is just a square (but not necessarily symmetric) matrix.

Putting together all of these results, we have,

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

Ωφ = (P 0 ⊗ Ih+1)ΩB (P ⊗ Ih+1) +

2 (Ir ⊗B (0, h))CD+
r (Σε ⊗ Σε)D+0

r C
0 ¡Ir ⊗B (0, h)0¢

C = L0r {Lr (Ir2 +Krr) (P ⊗ Ir)L0r}−1

where in practice, bΩφ can be calculated by plugging the sample estimates bB (0, h) ; bΩB ; bP ; and
bΣε into the previous expression.
2.2.2 Long-Run Identification

If instead structural identification is based on long-run identification assumptions, the infinite

order process in expression (2) can be rewritten, without loss of generality, as

yt =
∞X
j=1

Ψj∆yt−j +Πyt−1 + εt (11)

with Ψi = −
P∞

j=iAj and Π =
P∞
j=1Aj . Under condition (v), then (I −Π)−1 is the reduced-

form, long-run impact matrix. For P the structural rotation matrix such that Put = εt, then the

structural long-run impact matrix is

Φ∞ =
¡
P−1 − P−1Π¢−1 = (I −Π)−1 P
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Lütkepohl (2005) then shows that long-run identification assumptions can be easily imposed by

applying the Cholesky decomposition to

Φ∞Φ0∞ = (I −Π)−1 PP 0 (I −Π0)−1 = (I −Π)−1Σε (I −Π0)−1 = QQ0 (12)

and hence P = (I −Π)Q.

An estimate of Π can be easily obtained by redefining Mz in expression (5) as

eZ ≡ ¡1(T−k)×1, ∆yt−1, ..., ∆yt−k+1¢ with fMz = IT−k − eZ ³ eZ0 eZ´−1 eZ so that
bΠ = ³y00fMzy−1

´³
y−1fMzy−1

´−1
with

√
T (bπ − π0)

d→ (0,Ωπ)

where π = vec (Π) and

Ωπ =
³
y−1fMzy−1

´−1
⊗ Σε (13)

Σε can then be estimated as bΣε = ev1ev01
T−k ; ev1 = fMzy0 − fMzy−1bΠ.

Given the estimates bΠ, bΣε, then an estimate of Q can be obtained from the Cholesky decom-

position described in expression (12) and the structural impulse responses can be constructed

as

bΦ (0, h) = bB (0, h)³I − bΠ´ bQ (14)

where the asymptotic normality of each element ensures that

√
T
³bφT − φ0

´
d→ N (0.Ωφ)

but where now
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Ωφ =
∂bφT
∂bbT ΩB ∂

bφT
∂bb0T + ∂bφT

∂bπT Ωπ ∂bφT∂bπ0T + (15)

∂bφT
∂bqT

⎡⎢⎣ ∂bqT
∂bπT Ωπ ∂bqT∂bπ0T + ∂bqT

∂vech
³bΣε´ΩΣ ∂bqT

∂vech
³bΣε´0

⎤⎥⎦ ∂bφT
∂bq0T

with bqT = vech³ bQT´ ; ΩΣ is the covariance matrix of vech³bΣε´ and we make use of the fact that
bqT and vech³bΣε´ are uncorrelated since E hy0−1fMzev1/ (T − k)i p→ 0.

The appendix explains how the following results are derived:

• ∂bφT
∂bbT = bQ0 ³I − bΠ0´⊗ I

• ∂bφT
∂bπT = −

³ bQ⊗ bB (0, h)´
• ∂bφT

∂bqT = I ⊗ bB (0, h)³I − bΠ´L0
• ∂bqT

∂bπT =
n³ bQ⊗ I´L0ro−1½³I − bΠ´−1 bΣε ⊗ I¾½³I − bΠ0´−1 ⊗ ³I − bΠ´−1¾

• ∂bqT
∂vech(bΣε) =

n
L
h³
I − bΠ´⊗ ³I − bΠ´i (Ir2 +Krr)³ bQ⊗ I´L0o−1

and Lr is the elimination matrix introduced in expression (10); ΩB is given by expression (6);

ΩΣ is given by expression (10); and Ωπ is given by expression (13).

When condition (v) is violated, it is instructive to rewrite expression (11) as

∆yt =
∞X
j=1

Ψj∆yt−j + Γyt−1 + εt

where Γ = − (I −Π) . Violation of condition (v) occurs when rank (Γ) < r, in which case Γ has

a non-standard asymptotic distribution and Γ is superconsistent, i.e., convergence in distribution

occurs at rate T instead of the conventional rate
√
T . Such rank conditions can be tested with

a Johansen cointegration test (see Hamilton, 1994, chapters 19 and 20). If rank (Γ) = 0, then

the system has exactly r unit roots and clearly the long-run impact matrix is simply I. The

superconsistency of Γ simplifies the derivation of (15): since bΓ (and hence bΠ) converges at rate T,
10



then the distribution of bφT is dominated by the terms converging at rate √T and hence expression
(15) simplifies, considerably, to

Ωφ =
∂bφT
∂bbT ΩB ∂

bφT
∂bb0T + ∂bφT

∂bqT
⎡⎢⎣ ∂bqT
∂vech

³bΣε´ΩΣ ∂bqT
∂vech

³bΣε´0
⎤⎥⎦ ∂bφT
∂bq0T (16)

where the formulas for each of the terms in the previous expression are the same as those already

derived above. Expression (16) is therefore parallel to expression (9) and serves to highlight that

any identification scheme based on constraints that do not depend on parameter estimates (irre-

spective of whether these are zero coefficient restrictions or some other form of linear restriction)

will generate a structural covariance matrix that can be calculated on the basis of expression (9).

Even when the restrictions imposed depend on coefficient estimates (such as long-run identifica-

tion restrictions but not limited to these), expression (9) is still valid as long as these coefficients

are superconsistent and have no effect on the distribution of terms converging at rate
√
T .

Knowledge of the asymptotic distribution of the structural impulse responses and the associated

covariance matrix Ωφ allows one to construct formal statistical tests on a variety of hypothesis

of interest that I discuss in the following sections. I begin by introducing an alternative visual

representation to the traditional two standard-error bands that I call “time-profile bands.” These

bands provide a 95% coverage ratio about the uncertainty of the time profile itself rather than

on individual coefficients. Next, I discuss a collection of joint hypothesis tests and a method

for counterfactual experimentation designed to broadly satisfy the Lucas critique. Monte Carlo

experimentation and an empirical application illustrate the properties of all the new techniques

introduced.

3 Time-Profile Bands

Error bands for impulse responses should provide visual cues about the uncertainty of the possible

time profiles that the responses can follow. Error bands based on the standard errors of individual
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coefficients ignore two elementary facts: (1) that impulse response coefficients have a natural

temporal ordering — the value of the impulse response today determines the possible trajectories of

the response in future periods but future periods can not change the current value of the response;

and (2) that impulse response coefficients are usually correlated. It should be clear that, absent

any correlation between impulse response coefficients, the simple practice of reporting bφT along
with bφT ± 1.96×diag³bΩφ´1/2 would indeed provide an approximate probability coverage of 95%
confidence under the result that bφT is asymptotically normal where diag³bΩφ´ is the r2 (h+ 1)×1
vector that contains the diagonal elements of bΩφ, that is, the individual variances of each of the
elements in bφT .
However and as an example, consider the response of the U.S. unemployment rate to a shock

in the U.S. federal funds rate from the empirical application in section 7 and displayed in figure

5. The correlation of the response coefficient in the first period with periods 2-12, for example,

is 0.69, 0.61, 0.55, 0.51, 0.45, 0.41, 0.36, 0.32, 0.28, 0.23, and 0.23 respectively. That is, even for

an impulse response that we would traditionally consider as being essentially zero, the response

coefficients are very highly correlated even 12 periods after impact.

Therefore, it is natural to orthogonalize the coordinate system of the impulse response coeffi-

cients to ensure uncorrelatedness and preservation of the original temporal ordering. Specifically,

suppose we are interested in displaying the impulse response of variable i given a shock to variable

k and thus associated with the coefficients bφ1i,k, ..., bφhi,k which can be collected compactly into the
vector bφi,k. Notice that we have excluded the coefficient bφ0i,k because its standard error is the
result of the contemporaneous identification assumptions and thus uncorrelated by construction

with the remaining coefficients of the impulse response profile. Let Ωφ (i, k) denote the rows and

columns of the matrix Ωφ associated with bφi,k, effectively, the variance-covariance matrix of φi,k,
given all the other impulse response coefficients. Ωφ (i, k) is a positive-definite symmetric matrix
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and therefore admits a unique Cholesky decomposition such that

Ωφ (i, k) = Ai,kDi,kA
0
i,k

where Ai,k is a lower triangular matrix with ones along the main diagonal and Di,k is a diagonal

matrix with positive entries. The matrix Ai,k has an interesting interpretation: it is the matrix

that collects the projection of the response at time 1 onto itself; the projection at time 2 onto the

responses at time 1, and 2; and so on. In other words, we project the original responses to obtain

orthogonality and to preserve the natural temporal ordering of the response trajectory. These

projected coordinates can be collected in the vector bψi,k = A−1i,k bφi,k, where bψi,k has a diagonal
covariance matrix given by Di,k and each bψsi,k is the result of a projection on to φ1i,k, ...,φsi,k; for
s = 1, ..., h.

Consequently, the uncorrelatedness of the elements in bψi,k ensures that the interval bψi,k ±
1.96×diag(Di,k)1/2 contains approximately 95% probability coverage and provides upper and lower

limits for the admissible values of bψi,k. Therefore, upper and lower limits for the time profiles of
the original impulse response coefficients bφi,k with 95% confidence can be calculated by translating
the orthogonal coordinate system back to the original coordinate system as follows:

bφ+i,k = bφi,k +Ai,k [1.96× diag(Di,k)]
bφ−i,k = bφi,k −Ai,k [1.96× diag(Di,k)]

Figure 5 displays these 95% probability coverage profile bands for the empirical application of

section 7. Overall, the time profile bands are narrower than traditional two standard-error bands.

As an example, notice that the profile bands for the response of UK unemployment to the lending

rate (the panel in row four, column six of figure 5) suggest that indeed the unemployment rate

responds significantly to a shock in short-term interest rates, seven months after impact. This

observation finds formal confirmation in a joint hypothesis test (to be described in detail shortly)

of the null that all coefficients are zero, which has a p-value of 0.075.
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Moreover, a cursory look at the remainder of the panels in figure 5 serves to dispel a common

misperception: that impulse responses are estimated too imprecisely to be useful. It is true that

individual response coefficients are estimated imprecisely but the time profiles of the impulse

responses are clearly not.

The next section introduces a number of joint hypothesis tests that complement the inference

represented by the time-profile bands.

4 Joint Tests of Impulse Responses

Commonly reported, two standard-error bands are a measure of unconditional uncertainty for

individual impulse response coefficients. They are not a measure of the uncertainty of the time-

profile of the impulse response function because impulse response coefficients are usually correlated.

Just as we do not use individual t-tests to determine the joint significance of a set of regressors,

we should not use two standard-error bands to determine whether, say, an impulse response has

a statistically significant profile. This is the main thrust of the argument in the previous section.

The availability of the joint distribution of the structural impulse response coefficients, bφT ,
suggests that better measures of uncertainty can be reported by defining more precisely the un-

derlying hypothesis tests of interest, and then constructing the appropriate test statistics. Thus,

we can think of traditional two standard-error bands as a graphic representation of the sequence

of t-tests associated with the null hypotheses, H0 : φi = 0 i = 0, 1, ..., r2 (h+ 1) . Below I discuss

two alternative families of joint hypothesis tests: significance tests and equality tests.

4.1 Joint Significance Tests

A natural and more informative question that frequently arises consists in determining the sta-

tistical significance of the impulse response profile of a variable that responds to stimuli from

another. Such a question can be cast in terms of the joint null hypothesis:
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H0 : φ
0
i,k = φ1i,k = ... = φhi,k = 0 (17)

where φji,k denotes the impulse response of variable i to a shock in variable k, at horizon j. In

the context of the local projection estimator I use here to derive the asymptotic distribution of

the impulse response coefficients, such a null effectively translates into a test of Granger-causality

along the lines of the test proposed in Sims (1972) and the more recent semi-parametric test

of Angrist and Kuersteiner (2004). Testing the null hypothesis in (17) as well as other general

hypotheses involving linear restrictions, can be easily computed by casting the null in terms of

the auxiliary matrix Q and the auxiliary vector q, such that

H0 : Q
J×r2(h+1)

φ = q
J×1

.

Since we have shown that

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

then a Wald test can be easily constructed. It will be useful to tailor the notation for the Wald

test to see how tests of the null in expression (17) can be constructed in practice. The additional

notation will come in handy when discussing some of the other tests presented below.

Let Ri
1×r

=
³
0, ..0, 1

i
, 0, .., 0

´
, that is, R is a zero row vector of dimension 1× r that contains a

one in the ith entry; let Ck
1×r

=

µ
0, ..., 0, 1

k
, 0, ..., 0

¶
, that is, C is a zero row vector of dimension

r that contains a one in the kth entry. Therefore, if we are interested in the response of the ith

variable to a shock in the kth variable, all that is required is to place a one in the correct location

in the Ri and Ck vectors. Next, construct the selector matrix

Si,k ≡ [Ck ⊗ (Ih+1 ⊗Ri)]

This selector matrix is such that

Si,kbφT = bφi,k = ³bφ0i,k, ..., bφhi,k´0
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so that the covariance matrix associated with these coefficients can be easily constructed from bΩφ
as

bΩφ(i, k) = Si,kbΩφS0i,k.
Now consider constructing a Wald test for the joint null in expression (17). This null can be

cast as

H0 : Qi,kφi,k = qi,k

Qi,k = Ir; q = 0r,1

where 0r,1 is a vector of zeroes of dimension r × 1. The asymptotic joint normality of bφT allows
one to construct the Wald statistic associated with the null as

(Qi,kSi,kφ− qi,k)0
¡
Qi,kSi,kΩφS

0
i,kQ

0
i,k

¢−1
(Qi,kSi,kφ− qi,k) d→ χ2h+1 (18)

or more specifically for the null in (17)

φ0S0i,k
¡
Si,kΩφS

0
i,k

¢−1
Si,kφ

d→ χ2h+1

or, in terms of the F-statistic

φ0S0i,k
³
Si,kΩφS

0
i,k

´−1
Si,kφ

h+ 1
d→ Fh+1,T−k−h (19)

where Ωφ can be substituted by its sample counterpart in practice. Thus, we have a method for

computing a joint significance test of the null hypothesis that all the coefficients of the response

of variable i to variable k are zero, for any pair i, k ∈ {1, ..., r}.

This framework can be used directly on other hypotheses of interest. For example, sometimes,

the question of interest is whether the cumulative effect of the impulse response is statistically
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significant. The null that captures this type of information can be cast by choosing

Qi,k = (1, ..., 1) (20)

qi,k = 0

so that the Wald test in expression (18) has degrees of freedom one or (1, T − k − h) degrees of

freedom for the F-statistic in expression (19).

4.2 Joint Equality Tests

Sometimes we may be interested in evaluating whether two variables respond in a similar fashion

to a given stimulus. We may want to assess whether the impulse response profiles are the same or

whether the cumulative effect is the same even when the profiles may differ. Each of these nulls

is, respectively:

H0 : φ
0
i,k = φ0j,l; ...;φ

h
i,k = φhj,l

and

H0 : φ
0
i,k + ...+ φhi,k = φ0j,l + ...+ φhj,l

Using the notation introduced above and noticing that

Si,kφ = φi,k

Sj,lφ = φj,l

define
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S = (Si,k Sj,k)
0

QJ = (Ih+1 − Ih+1) ; qJ = 0h+1

QC = (1, ..., 1,−1, ...,−1) ; qC = 0

Then, the Wald test of the null that the responses of variables i, and j to a shock in variable k

are the same is

(QmSφ)
0
(QmSΩφS

0Q0m)−1 (QmSφ) d→ χ2p

for m = J,C and p = h+ 1, 1 respectively.

Section 7 provides applications of all the tests discussed in this section whereas section 6 reports

Monte Carlo experiments that speak to their small sample properties.

5 Counterfactual Experimentation

The Lucas Critique (Lucas, 1976) warns of the dangers of counterfactual experimentation with

empirical models. In real economies, economic agents immediately adapt to the new environment

generated by the counterfactual in ways the empirical model cannot anticipate. In essence, the

parameters of the empirical model are not constant to the counterfactual so that predictions

based on keeping the parameters constant will be “economically” biased. Statistically speaking,

of course, there is no impediment to carrying out the calculation — the Lucas Critique simply

suggests that it may not be very useful in practice.

This section provides the mechanical details of how to carry a counterfactual simulation in

an impulse response analysis. There are at least two justifications why this exercise may be

of interest despite the Lucas critique. One is that counterfactuals chosen from within the 95%

confidence interval of possible responses would not necessarily generate a revision of the agents’

expectations insofar as agents do not know with certainty what the economy’s parameters are.
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Such a counterfactual would not be at odds (statistically speaking) with the data.

A second justification goes directly to the heart of the assumption that agents are fully rational

in practice. For example, Bernanke, Gertler and Watson (1997) have argued in favor of short-run

departures of full rationality, Hoover and Jordà (2001) produce evidence that the economy can be

better thought of as having a continuum of agents with varying degrees of rational and adaptive

behavior, and there is now a rather extensive literature on learning and adaptive behavior (see

Evans and Honkapohja, 2001).

These disclaimers notwithstanding, think of the counterfactual experiment as setting the re-

sponse of the jth variable to a shock in the kth variable to a particular vector of values chosen by

the researcher, for example, φj,k = φcj,k. Next, we want to calculate the response of variable i to

a shock in variable k conditional on the counterfactual. In other words, we want to calculate the

distribution of φi,k given φj,k = φcj,k. Since
√
T
³bφT − φ0

´
d→ N (0,Ωφ) , what we need is to take

advantage of the properties of the multivariate normal distribution.

In general, we know that if y1 and y2 are two random vectors of generic dimensions with joint

normal distribution

⎡⎢⎢⎣ y1

y2

⎤⎥⎥⎦ ∼ N
⎛⎜⎜⎝
⎡⎢⎢⎣ µ1

µ2

⎤⎥⎥⎦ ;
⎡⎢⎢⎣ Σ11 Σ12

Σ21 Σ22

⎤⎥⎥⎦
⎞⎟⎟⎠

then the conditional distribution of y1 given y2 = yc2 is

y1|y2 = yc2 ∼ N
³
µ1|2;Σ11|2

´
with

µ1|2 = µ1 +Σ12Σ
−1
22 (y

c
2 − µ2)

Σ11|2 = Σ11 − Σ12Σ−122 Σ21
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Accordingly and using the same definitions of Ri, Ck and thus Si,k introduced previously, note

that

Si,kbφT = φi,k

Sj,kbφT = φj,k

⎫⎪⎪⎬⎪⎪⎭ and

⎡⎢⎢⎣ Si,k

Sj,k

⎤⎥⎥⎦Ωφ ∙ S0i,k S0j,k

¸
=

⎡⎢⎢⎣ Σii,k Σij,k

Σji,k Σjj,k

⎤⎥⎥⎦
where, for example, Σij,k is the covariance between bφi,k and bφj,k. The conditional distribution of
φi,k given φj,k = φcj,k is therefore

bφi,k| ¡φj,k = φcj,k
¢
=

bφi,k + Si,kΩφS0j,k ¡Sj,kΩφS0j,k¢−1 hφcj,k − bφj,ki
with

Σi,k|j,k = Si,kΩφS0i,k − Si,kΩφS0j,k
¡
Sj,kΩφS

0
j,k

¢−1
Sj,kΩφS

0
i,k

Several remarks deserve comment. First, notice that the second term in the previous expres-

sion is a positive definite matrix and hence, the conditional variance given the counterfactual,

Σi,k|j,k, is smaller than its unconditional counterpart, Σi,k. This is a consequence of the observa-

tion that, effectively, the counterfactual is replacing the unknown path of the estimated response

bφj,k with the “certain” counterfactual path. Second, the counterfactual is not limited to responses
originating from a shock in the same variable — the conditioning arguments do not impose any

restriction in this respect. Third, when the correlation between the counterfactual response φj,k

and the response whose conditional distribution we are interested in calculating, φi,k, is zero, then

bφi,k| ¡φj,k = φcj,k
¢
= bφi,k. In some situations, this may, in an of itself, constitute a hypothesis of

interest that can be evaluated formally.

The next section investigates the small sample properties of the tests discussed in previous

sections and the following section provides an empirical application that illustrates all of the

techniques introduced previously.

20



6 Monte Carlo Experiments

This section investigates the small sample properties of the joint hypothesis tests introduced in

section 4. The derivation of the formulas for structural identification are not, strictly speaking, an

asymptotic approximation in that the small sample properties of the structural impulse responses

are mostly determined by the properties of the reduced-form impulse responses estimated with

local projections given the variance of whatever identification method is used. Similarly, the

small sample properties of the counterfactual experiments in section 5 are the result of applying

standard conditioning arguments to estimates whose small sample properties depend entirely on

the statistical properties of the reduced-form impulse responses.

For these reasons, the Monte Carlo experiments in this section are based on the following

model

yt = Ayt−1 + ut ut ∼ N (0,I3) ; yt = (y1t, y2t, y3t)
0 (21)

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0.25 0.375 0

0.375 0.5 0

0.3 0 0.75

⎤⎥⎥⎥⎥⎥⎥⎦
for sample sizes of 100, 250, and 500 observations after disregarding another 500 observations

to avoid initialization problems. The impulse responses that result from simulating data from

(21) are displayed in figure 1. The figure displays the true impulse responses along with error

bands and joint hypothesis tests based on the Monte Carlo covariance matrix given least-squares

estimates of the V AR(1) model in expression (21) repeated 1,000 times with a sample size of 250

observations. These measures of uncertainty are meant to provide the reader an illustration of the

type of small sample variation induced in the experiments.

Figure 1 explains the specific choice of parameter values in (21). The responses of y1t and y2t

to a shock in y3t are exactly zero and are meant to provide information about the size of the joint
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hypothesis tests. The responses of yt to its own shocks and displayed along the main diagonal of

figure 1, are a scaled version of one another with impulse response coefficients in period 1 equal

to 0.25, 0.5, and 0.75 respectively. I choose these values to obtain a power curve of the statistics

of interest as a function of the distance to the null. The response of variable y1t to a shock in

y2t is designed to be the same as the response of variable y2t to a shock in y1t so as to be able

to evaluate the joint equality tests. Because these responses are themselves scaled versions of the

responses in the main diagonal, I will be able to obtain a power curve for this test as well.

In particular, figures 2, 3, and 4 each display four graphs each, corresponding to Monte Carlo

experiments with sample sizes of 100, 250, and 500 observations respectively. The top left panel

in each figure displays the power curve of the joint-hypothesis test of the null that all the impulse

response coefficients are jointly zero for horizons that vary between 1 to 8 periods. When the

horizon is set to one period, the joint hypothesis test is equivalent to a t-test on the first coefficient.

The more periods with a zero response included in the test, the lower the power of the test will be,

just as in a classical regression context. The numbers on the horizontal axis are the values of the

first coefficient of the impulse response to which they refer. For example, 0.5 corresponds to the

response of y2t to its own shock and so on. The top right panel instead examines the power curve

when the null is that the joint cumulative effect is zero. The curves are derived for a nominal size

of 5% for a conventional 95% confidence level test.

The bottom panels of figures 2, 3, and 4 refer to the joint equality tests. The left panel tests

the null that all the coefficients between two impulse responses are equal to each other while the

right panel tests only that their cumulative effect is the same. The null is based on comparing

the responses of y1t to a shock in y2t and vice versa. Thereafter, I compare the nulls based on the

response of y2t to its own shock with the response of y2t to a shock in y1t (labeled 0.5 vs. 0.375)

and the zero response of y1t to a shock in y3t relative to the the responses of y1t, y2t, and y3t to

their own shocks (labeled 0 vs. 0.25; 0 vs. 0.50; and 0 vs. 0.75, respectively). As the horizon

grows from 1 to 8 periods, notice that the impulse responses go back to their long-run value of
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zero. This has two consequences: (1) it makes rejecting the joint null that the responses are zero

more difficult as coefficients in later periods are more imprecisely estimated and they are closer to

zero; and (2) it makes rejecting the joint null of equality more difficult for much the same reasons.

Several results deserve comment. First, the hypothesis test of the null that all the coefficients

are zero and displayed in the top left panel of figures 2, 3, and 4 is the best behaved. There are

no significant size distortions (the actual size is very close to the nominal 5% at horizon 1 and

increases to about 10% when eight periods are jointly considered) and as the sample increases,

the power of the test increases very quickly toward 1. Second, the test on the null that the joint

cumulative effect is zero and displayed in the top right panel of figures 2, 3, and 4, has good power

properties as well but tends to be somewhat oversized in small samples the more horizons in the

impulse response are included. The actual size is close to the nominal 5% for one period (4.4%)

but increases to about 30% for eight periods. Third, the test for joint equality displayed in the

bottom left panel of figures 2, 3, and 4 has weaker power properties than the two tests discussed

previously and tends to be undersized — actual size is consistently below 1% for a nominal size

of 5%. The cumulative equality test displayed in the bottom right panel suffers from the same

problems with size but has better power properties, perhaps not surprisingly as the null is less

demanding — the requirement is that the cumulative sum of coefficients be equal across impulse

responses but not that each coefficient be equal to each other.

These Monte Carlo experiments suggest the joint hypothesis tests presented here have good

power properties that rapidly increase with the sample size. However, the experiments also suggest

that the size of the tests can be distorted very quickly when one considers impulse response

coefficients at long horizons that are imprecisely estimated and/or are close to zero. While this

distortion is not surprising (even in the context of more traditional joint hypothesis test settings,

the result is well known), it raises a cautionary note to empirical practitioners: parsimony in the

impulse response horizon considered is desirable.

Admittedly, a more exhaustive Monte Carlo investigation of the properties of the statistics
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discussed in the paper would be beneficial but space considerations suggest this is better left for

a different paper. For example, there is now a fair amount of work (see Pesavento and Rossi,

forthcoming a and b) that investigates appropriate adjustments to the distribution of impulse

response coefficients in systems that have near-unit roots. Presumably, the same distortions

induced by high persistence are likely to appear in local projection estimates and it would be

interesting to explore this and other features in a different paper that goes beyond the scope of

this one.

7 Policy Trade-offs in the U.S. and in the U.K.

The philosophy of this section is entirely empirical: the essential goal is to provide a summary of

the basic features of the data considered here by means of impulse response functions estimated

semi-parametrically with local projections. The application is to a monetary system that includes

two countries and their bilateral exchange rate. The exercise is not meant to be the definitive

answer to the enigmas of monetary policy but rather to provide intuition during the presentation

that follows.

7.1 Overview

The data is for a system of seven variables and includes the unemployment rate (in percent),

consumer price inflation (in percent) and the federal funds rate (in percent) for the U.S.; the

unemployment rate (in percent), retail price inflation (in percent), and the Bank of England’s

lending rate (in percent) for the U.K.; and the U.S. Dollar/British Pound exchange rate (in logs).

The data is available monthly, beginning January 1971 and ending December 2005. Hence, for

each country, we can think of the three variable sub-system that includes unemployment, inflation

and the policy short-term rate as a variant of the New-Keynesian framework often used in the

literature that investigates optimal policy rules (see, e.g. Walsh 2003, chapter 11). Exploring a
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system of seven variables is meant to ensure the end-user that the techniques introduced in this

paper can be applied to relatively large systems.

This system results in 49 impulse responses that I estimate jointly by local projections with

equation (5) over a horizon of twelve periods (one year). The lag length for the projections is

selected automatically by AICc1 to be four. In order to obtain structural impulse responses, I

apply short-run zero coefficient constraints implied by the Wold-causal ordering of the variables

in the same order in which they are described above. A more thorough investigation of the

appropriate contemporaneous identification assumptions seems warranted but for the purposes of

keeping the discussion within the parameters of the techniques described in the paper, it is left

for future research.

Figure 5 displays these 49 impulse response functions. Each panel displays the following

information: (1) traditional, two standard-error bands; (2) 95% confidence level, time-profile

bands as described in section 4; (3) the p-value of the joint significance test of the responses

labeled “Joint” and; (4) the p-value of the cumulative joint significance test labeled “Cum,” both

described in section 4.

There are a number of natural questions of economic interest, for example: (1) what is the

sensitivity of the policy interest rate to shocks in the unemployment, inflation, and exchange rates;

(2) what is the response of unemployment, inflation and exchange rates to monetary shocks; (3)

what is the sensitivity of domestic policy rates to shocks in the foreign policy rate; (4) what is the

response of exchange rates to shocks in inflation; and (5) what is the response of the unemployment

rate when the central bank responds more aggressively to inflation shocks.

Answers to question (1) can be used to compare the relative emphasis that each central bank

places on growth and price stabilization. Question (2) establishes the effectiveness of monetary

policy; question (3) determines whether policy changes in one central bank influence policy changes

1 AICc refers to the correction to AIC introduced in Hurvich and Tsai (1989), which is specifically designed for
autoregressive models. There were no significant differences when using SIC or the traditional AIC.
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in the other; question (4) speaks loosely about the relative merits of the purchasing power parity

condition; and question (5) measures how different is the response of the unemployment rate when

the central bank’s response to shocks in inflation is more aggressive. Each of these five questions

requires different types of inference based on joint hypothesis tests and counterfactual simulations

of the type introduced in previous sections.

7.2 Results

The profile bands introduced in section 3, the joint significance test in expression (17) and the

joint cumulative test in expression (20) all provide relevant information that should be reported

in any impulse response graph. To explain the value of each element more specifically, consider

the response of the U.S. unemployment rate to a shock in the federal funds rate displayed in the

first row, third column of the panel of impulse responses in figure 5. The joint significance test

has a p-value of 0.326, and the joint cumulative test a p-value of 0.450. Both tests suggests that

the federal funds rate has no effect on the unemployment rate at a year horizon. However, the

profile bands suggest that the effect is statistically significant for the last three months. Indeed,

the response of U.S. unemployment is very similar to the response of UK unemployment to a

shock in the Bank of England lending rate (which plays a similar role to the federal funds rate

in the U.S.) and displayed in row four, column six of figure 5. The joint significance test has a

p-value of 0.075 and the joint cumulative test a p-value of 0.143 but notice that, like the U.S.,

there is basically no response of the unemployment rate for the first six to seven periods after

impact, after which the unemployment rate steadily rises. It should be clear then that the results

of the joint significance tests are dominated by the behavior of the unemployment rate response

over the first six to seven periods. The profile bands articulate this case more clearly by showing

what happens in the remaining six months: the time profile steers away from zero significantly.

This simple example argues in favor of using all three forms of uncertainty measures (profile

bands, joint significance and cumulative tests) in a complementary manner as they convey infor-
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mation on different features of the impulse response. As another illustration, consider the response

of the U.S. Dollar/British Pound exchange rate to a shock in U.S. inflation and displayed in row

seven, column two of figure 5. This is an example of a response where the joint significance test has

a p-value of 0.344 but the joint cumulative test has a p-value of 0.055, a result that confirms the

pattern displayed by the profile bands, which suggest that the U.S. Dollar significantly depreciates

between the third and the eleventh/twelfth month after impact.

Returning now to the questions posed in the previous subsection, recall that in question (1) we

are trying to assess the relative sensitivity of the central bank to shocks in unemployment, inflation

and exchange rates. This information is summarized in row three, columns one, two and seven of

figure 5 for the U.S. and row six for the U.K. In both countries, interest rates drop significantly by

about 50 basis points in response to a shock in the unemployment rate, with both significance tests

and profile bands indicating a statistically significant response (the p-values are essentially zero).

However, tests of the joint and cumulative equality of the responses are rejected pretty decisively

(with p-values of 0.000 and 0.000 respectively). Perhaps this last result is not surprising: the U.S.

drops interest rates more quickly and keeps them low for a longer period than the U.K. does.

In contrast, both countries do not respond to a shock in inflation: both significance tests have

p-values well above the normative 0.05 value and the profile bands are generally not significant

at any horizon. Finally, while joint significant tests do not indicate that interest rates respond to

fluctuations in exchange rates, the U.S. displays a significant cumulative effect of interest rates

(p-value = 0.015) in response to a depreciation of the U.S. Dollar, a result that is corroborated

by the profile bands.

Question (2) examines the relative effectiveness of monetary policy. The relevant panels are

rows one, two and seven of column three for the U.S. and rows four, five and seven in column

six for the U.K. The response of unemployment to a shock in interest rates is very similar in

both countries although only the joint significance test for the U.K. has a p-value bordering on

significance at 0.075. Unemployment remains essentially flat six to seven months after impact
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and then steadily climbs (in both countries, the profile bands suggest this climb is significant).

More formally, joint and cumulative equality tests have p-values of 0.52 and 0.83 which confirm

the similarity in the responses.

Inflation in both countries tends to climb in response to an interest rate shock but only signifi-

cantly in the U.K. (the joint cumulative test has a p-value of 0.004). The joint equality test cannot

reject the null, attaining a p-value of 0.43 although the joint cumulative equality test does, with

a p-value of 0.055. Both results seem at odds with what economic theory would predict although

this price puzzle has been detected many times before in the U.S. (see e.g. Sims, 1992).

Before discounting these results, it is important to examine the response of the exchange rate.

The U.S. Dollar tends to appreciate somewhat throughout the year after impact when interest

rates increase (the joint cumulative test has a p-value of 0.090 and the profile bands border on

the zero line). The British pound significantly depreciates on impact but then appreciates for the

remainder of the year, although not in a statistically significant way. Hence, although the initial

responses of the exchange rate are consistent, the uncovered interest rate parity condition seems

to hold only somewhat for the U.K.

In terms of the effect that each central bank has on the other (row three, column six for the U.S.

and row six, column three for the U.K.), neither country exhibits a significant response although

these tend to remain on the positive side, suggesting that both countries tend to move interest

rates in the same direction.

The final question has to do with the response of the exchange rate to a shock in inflation and

is displayed by the panels in row seven, column two for the U.S. and column five for the U.K.

The U.S. Dollar tends to depreciate in response to a positive shock in inflation, as purchasing

power parity would predict: the joint cumulative test has a p-value of 0.055 and the profile bands

are significant for about ten out of the twelve months displayed. In contrast, the British Pound

does not display any appreciable response at any horizon, an observation confirmed by the joint

significance and cumulative tests with p-values of 0.78 and 0.64 respectively.
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Finally, consider the counterfactual simulation that investigates the effects of a more aggressive

response of monetary policy to inflation shocks in the U.S. and in the U.K. The panel in the third

row, second column of figure 5 displays the response of the U.S. federal funds rate to a shock in

the U.S. inflation rate. This response is not statistically significant: the joint significance and cu-

mulative tests have p-values of 0.950 and 0.546 respectively (0.396 and 0.688 for the U.K.). Hence,

I choose a counterfactual experiment that constrains the response of the fed funds rate/lending

rate to an inflation shock to be that corresponding to the upper, two standard-error band. A more

conservative choice (insofar as we want to avoid the Lucas critique) would have been to choose

the upper boundary of the time-profile band instead. However, the former experiment provides

a better illustration of the counterfactual framework introduced in section 5 although we also

compute the latter counterfactual.

Before reporting on the counterfactual itself, notice that the response of the U.S. unemployment

rate to a positive inflation shock results in a statistically significant response of unemployment as

evinced in row one, column 2 of figure 5 by the time-profile bands and joint and cumulative tests,

with p-values 0.050 and 0.048 respectively. In contrast, the UK counterpart displayed in row four,

column 5 of figure 5, is virtually zero with corresponding p-values 0.552 and 0.867.

The counterfactual experiment is displayed in figure 6 and shows that a more aggressive re-

sponse of the central bank to an inflation shock has similar consequences in both countries: sur-

prisingly the unemployment rate is lower than it would otherwise be. Figure 6 displays the original

and the counterfactual response along with the profile bands under the counterfactual. While the

response of the unemployment rate in the UK changes little and remains statistically insignificant,

the response in the US is economically and statistically meaningful: the cumulative increase of the

unemployment rate in response to a 0.30% increase in inflation is 0.46% historically but only 0.12%

in the counterfactual. If instead we had chosen the upper time-profile band for the counterfactual,

the difference would not have been statistically significant and the cumulative effect would have

declined instead to 0.36%. However a 0.10% decline with respect to 0.46% is an economically
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sizeable decline. These results are surprising considering that an increase in the federal funds rate

generates higher unemployment according to the panel in row one, column three of figure 5.

8 Conclusion

Impulse responses are a summary statistic of the dynamic properties of a vector time series.

Associated to these statistics, there is an asymptotic distribution from which formal hypothesis

tests can be constructed. This paper derives a standard set of inferential tools for empirical

analysis with impulse responses. An important message of the paper is that impulse response

time-profiles are estimated rather accurately; that hypothesis tests on these time-profiles have

good statistical properties; that meaningful economic hypothesis can be easily tested based on

these response estimates; and that economically useful counterfactual simulations can be formally

conducted.

The foundation for these results is the local projection semi-parametric estimator introduced

by Jordà (2005). This general estimator is not only more robust to model misspecification (in

fact, the starting assumption is that the data is generated by an infinite order process), it pro-

vides a simple method to derive a closed-form, analytic expression for the covariance matrix of

structural impulse responses identified through either short-run or long-run restrictions, the two

most common approaches.

This structural covariance matrix is instrumental to derive joint inference based on the Wald

principle for a broad set of hypothesis of interest, some of which are discussed in the paper and their

small sample properties investigated with Monte Carlo experiments. The covariance matrix also

allows one to construct a new graphical representation of the uncertainty surrounding the impulse

response time-profiles (rather than the individual coefficients) and whose results complement the

information provided by joint hypothesis tests.

The asymptotic distribution of impulse response coefficients also provides an intuitive method
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for counterfactual simulation based on standard conditioning methods. The set-up consists in

choosing a dynamic path for a policy variable (or variables) from the family of trajectories within

the 95% probability coverage region. Such a choice is less likely to violate the precepts of the

Lucas critique and is simpler to articulate: one does not require knowledge of the form of the

policy equation or its underlying structural parameters.

9 Appendix

I provide here the detailed derivations required to derive the covariance of the structural impulse

responses derived by imposing long-run identification assumptions. First notice that there are

three different ways of expressing the vec version of expression (14), specifically

bφT = vec³bΦ (0, h)´ =
³ bQ0 ³I − bΠ´⊗ I´bbT³ bQ⊗ bB (0, h)´ vec³I − bΠ´³

I ⊗ bB (0, h)³I − bΠ´´ vec³ bQ´
from where we obtain ∂bφT

∂bπT , ∂bφT∂bπT , and ∂bφT
∂bqT by realizing that dvec

³
I − bΠ´ = −dvec³bΠ´ and since

Q is lower triangular, vec (Q) = L0vech(Q).

Next, I derive the expressions for ∂bqT
∂bπT and ∂bqT

∂vech(bΣε) by first noticing that

(I −Π)−1Σε (I −Π0)−1 = QQ0

so that

d (I −Π)−1Σε (I −Π0)−1 + (I −Π)−1 Σεd (I −Π0)−1+ (22)

(I −Π)−1 dΣε (I −Π0)−1 = dQQ+QdQ0

Begin by setting d (I −Π)−1 = 0 then
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(I −Π)−1 dΣε (I −Π0)−1 = dQQ+QdQ0

Taking the vec operator on both sides of this expression

h
(I −Π)−1 ⊗ (I −Π)−1

i
dvec (Σε) = (Q⊗ I) dvec (Q) + (I ⊗Q)Krrdvec(Q)

dvec (Σε) = [(I −Π)⊗ (I −Π)] (Ir2 +Krr) (Q⊗ I) dvec (Q)

using the same rule for the right hand side as in the derivation of the short-run identification case.

Finally, using the elimination matrix Lr introduced in expression (10) and noticing that since Q

is lower triangular then L0rvech (Q) = vec (Q) , we arrive at the desired result

∂q

∂vech (Σε)
= {L [(I −Π)⊗ (I −Π)] (Ir2 +Krr) (Q⊗ I)L0}−1

To derive ∂bqT
∂bπT , return to expression (22) and instead set dΣε = 0 so that
d (I −Π)−1Σε (I −Π0)−1 + (I −Π)−1 Σεd (I −Π0)−1 = dQQ+QdQ0

Taking the vec operator on both sides of the expression and using similar manipulations as in the

previous derivation, it is easy to see that we arrive at

h
(I −Π)−1Σε ⊗ I

i
dvec

n
(I −Π)−1

o
= (Q⊗ I) dvec(Q)

where the term (Ir2 +Krr) cancels on both sides of the previous expression. It is straight forward

to see then that

dvec
n
(I −Π)−1

o
=
h
(I −Π)−1 ⊗ (I −Π0)−1

i
dvec (Π)

and since L0rvech (Q) = vec (Q) , then we arrive at the desired result,

∂q

∂π
= {(Q⊗ I)L0r}−1

n
(I −Π)−1 Σε ⊗ I

on
(I −Π0)−1 ⊗ (I −Π)−1

o
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Figure 1 – True Impulse Responses and Monte Carlo Standard Errors 
 
 

 
 
Notes: True impulse responses based on the VAR(1) model in expression (21) and used 
in the Monte Carlo experiments of section 6. The figure displays conventional two 
standard-error bands (the dashed, wide bands) and time-profile bands (the dashed but 
narrow bands) based on estimating the VAR(1) on a simulated sample with 250 
observations and replicated for 1,000 times. “Joint” refers to the p-value of the null that 
all coefficients of the impulse response displayed are zero and “Cumm” refers to the p-
value of the null that the cumulative effect of the impulse response displayed is zero. 
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Figure 2 – Power Curves of the Joint Hypothesis Test for a Sample Size = 100 
 

 
 
Notes: Calculations are based on drawing samples of 100 observations (after disregarding 
an initial 500 observations), drawn 1,000 times. The “Joint Hypothesis Tests” refers to 
the null that all the coefficients are zero; the “Cumulative Test” refers to the null that the 
sum of the coefficients of the impulse response is zero; the “Joint Equality Test” refers to 
the null that two impulse responses have equal coefficients; and the “Cumulative Equality 
Test” refers to the null that the cumulative effect of these two impulse responses is the 
same. 
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Figure 3 – Power Curves of the Joint Hypothesis Test for a Sample Size = 250 
 

 
 
Notes: Calculations are based on drawing samples of 100 observations (after disregarding 
an initial 500 observations), drawn 1,000 times. The “Joint Hypothesis Tests” refers to 
the null that all the coefficients are zero; the “Cumulative Test” refers to the null that the 
sum of the coefficients of the impulse response is zero; the “Joint Equality Test” refers to 
the null that two impulse responses have equal coefficients; and the “Cumulative Equality 
Test” refers to the null that the cumulative effect of these two impulse responses is the 
same. 
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Figure 4 – Power Curves of the Joint Hypothesis Test for a Sample Size = 500 
 

 
 
 
Notes: Calculations are based on drawing samples of 100 observations (after disregarding 
an initial 500 observations), drawn 1,000 times. The “Joint Hypothesis Tests” refers to 
the null that all the coefficients are zero; the “Cumulative Test” refers to the null that the 
sum of the coefficients of the impulse response is zero; the “Joint Equality Test” refers to 
the null that two impulse responses have equal coefficients; and the “Cumulative Equality 
Test” refers to the null that the cumulative effect of these two impulse responses is the 
same. 
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Figure 5 – Seven Variable Monetary System for the U.S. and the U.K. Impulse Responses 
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Figure 6 – Counterfactual Simulation 
 

U.S. Counterfactual Path for the Response of Unemployment to a Price Shock 

 
U.K. Counterfactual Path for the Response of Unemployment to a Price Shock 

 
 

Notes: for each country, the counterfactual consists in setting the response of the policy 
interest rate to an inflation shock to the upper boundary of the two standard error band. 
Each pane; displays the original response of the unemployment rate to an inflation shock 
and then the counterfactual path surrounded by the time-profile bands given the 
counterfactual. 
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