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Abstract

This paper shows, from the consumer’s budget constraint, that expected future

labor income growth rates and the residuals of the cointegration relation among log

consumption, log asset wealth and log current labor income (summarized by the variable

cay of Lettau and Ludvigson (2001a)), should help predict U.S. quarterly stock market

returns and explain the cross-section of average returns. I find that a) fluctuations

in expected future labor income are a strong predictor of both real stock returns and

excess returns over a Treasury bill rate, b) when this variable is used as conditioning

information for the Consumption Capital Asset Pricing Model (CCAPM), the resulting

linear factor model explains four fifth of the variation in observed average returns across

the Fama and French (25) portfolios and prices correctly the small growth portfolio.

The paper also finds that about one third of the variance of returns is predictable, over

a horizon of one year, using expected future labor income growth rates and cay jointly

as forecasting variables.
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1 Introduction

This paper uses the representative consumer’s budget constraint to derive an equilib-

rium relation between expected future labor income growth rates — summarized by the

variable lr — and expected future asset returns. Moreover, it shows that the empirical

counterpart of these expected changes in labor income (blr) carries relevant information
for predicting future asset returns and explaining the cross-section of average returns.

Lettau and Ludvigson (2001a, 2001b) use the budget constraint to show that the

residuals of the cointegration relation among log consumption, log asset wealth and log

current labor income (summarized by the variable cay), should predict asset returns.

This paper builds on their approach and shows that cay and lr should jointly predict

future asset returns. Moreover, since lr captures the movements in human capital due

expected changes in labor income, only considering the two variables together provides

an appropriate proxy for the log consumption to total wealth ratio.

In the major industrialized countries, roughly two thirds of overall wealth consists

of claims on non-traded labor incomes. To the extent that investors hedge against

adverse fluctuations in labor income, the mere size of human capital in total wealth

makes its potential impact on equilibrium asset prices large. Expected changes in

future labor income growth rates map into changes for the market value of human

capital, therefore movements in lr capture a relevant state variable and source of risk.

The main finding of the paper is that blr has high predictive power for future asset
returns and, when used as conditioning information for the Consumption Capital Asset

Pricing Model (CCAPM), it delivers a linear factor model that rivals the Fama and

French (1993) and the Lettau and Ludvigson (2001b) three-factor models in explaining

the cross-section of expected returns of the Fama and French size and book-to-market

portfolios. In addition, the conditional factor model proposed prices correctly the

small growth portfolio and performs well in explaining the cross-section of expected

returns of several other portfolios data sets. Moreover, using cay and lr jointly as

predictors and conditioning information, about one third of the variance of returns is
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predictable over a horizon of one year and more than four fifth of the cross-sectional

variation in expected returns of the Fama and French portfolios is explained.

What drives the results? In the data, expectations of high future labor income

growth are associated with lower stock market excess returns, and low labor income

growth expectations are associated with higher than average excess returns, suggesting

that the success of lr as predictor of asset returns and conditioning variable is due to

its ability to track time varying risk premia.

I show that these results are consistent with the fact that high lr represent a state

of the world in which agents expect to have abundance of resources in the future to

finance consumption, therefore low returns on asset wealth are feared less and lower

equilibrium risk premia are required. Moreover, these findings are consistent with

a Kreps-Porteus-Epstein-Zin-Weil preferences framework where consumption growth

and dividend growth share a small predictable component, as in Bansal and Yaron

(2004), and this component is the predictable part of future labor income growth.

The empirical results presented are also checked for potential spurious regression

problems and ”look-ahead” bias, and appear to be robust to these issues. Moreover,

reduced form V AR exercises confirm that labor income has high marginal predictive

power for market returns.

The research presented in this paper is indebted in particular to the work of Camp-

bell and Shiller (1988) on the relation between the log-dividend price ratio and ex-

pected future returns, and the works of Campbell and Mankiw (1989) and Lettau and

Ludvigson (2001a, 2001b) on the implication of the consumer’s budget constraint for

asset pricing.

More generally, the paper builds on the large literature on predictability and cross-

section of asset returns. The main results are most closely related to Jagannathan and

Wang (1996), Jagannathan, Kubota, and Wang (1996) and Palacios-Huerta (2003) on

the human capital augmented Capital Asset Pricing Model (CAPM); to Santos and

Veronesi (2003) that find that the labor income to consumption ratio forecasts asset

returns and is a good conditioning variable for the CAPM; and to Constantinides
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and Duffie (1996), Heaton and Lucas (1996), Davis and Willen (2000), Storesletten,

Telmer, and Yaron (2001) and Wei (2003), on the relation between labor income risk

and market returns.

The balance of the paper is organized as follows. Section 2 uses the consumer’s

budget constraint to derive an equilibrium relation between expected future labor

income growth and asset returns. Sections 3, 4, 5 and 6 tests the implication of

the relation derived in section 2. In particular, section 3 focuses on predicting asset

returns, section 4 looks at the predictability of consumption growth, section 5 presents

a reduced form Vector Autoregressive Model (V AR) that confirms the high marginal

predictive power of labor income for market returns, and section 6 studies the cross-

section of average asset returns of the Fama and French size and book-to-market

portfolios and of several other data sets of portfolios. Section 7 rationalizes the results

of the previous sections by showing that movements in blr are associated with time
variations in risk premia and provides a structural models, based on the work of

Bansal and Yaron (2004), consistent with the outlined features of the data.

2 Why should labor income risk matter?

This section uses the consumer’s budget constraint and the link between human capital

and labor income to develop an equilibrium relation between expected future labor

income growth and future asset returns.

First, as in Campbell (1996) and Jagannathan and Wang (1996), labor income (Yt)

can be thought of as the dividend on human capital (Ht). Under this assumption we

can define the return to human capital as

1 +Rh,t+1 =
Ht+1 + Yt+1

Ht
.

Log-linearizing this relation around the steady state under the assumption that the

steady state human capital-labor income ratio is constant (Y/H = ρ−1h − 1, where
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0 < ρh < 1)
1, we get

rh,t+1 = (1− ρh) kh + ρh (ht+1 − yt+1)− (ht − yt) +∆yt+1 (1)

where r := log (1 +R) , h := logH, y := log Y , kh is a constant of no interest, and the

variables without time subscript are evaluated at their steady state value. Therefore,

assuming that limi→∞ ρih (ht+i − yt+i) = 0, the log human capital income ratio can be

rewritten as a linear combination of future labor income growth and future returns on

human capital

ht − yt =
∞X
i=1

ρi−1h (∆yt+i − rh,t+i) + kh. (2)

This last equation tells us that the log human capital to labor income ration ratio has

to be equal to the discounted sum of future labor income growth and human capital

returns. Moreover, this equation is similar, both in structure and interpretation, to the

relation between the log dividend-price ratio and future returns and dividends derived

by Campbell and Shiller (1988):2 taking time t conditional expectation of both sides

of equation (2) we have that when the log human capital to labor income ratio is high,

agents should expect high future labor income growth or low human capital returns.

Second, defining Ct as time t consumption, Wt as the aggregate wealth (given by

human capital plus asset holdings) and with Rw,t+1 the return on wealth between

period t and t+ 1, the consumer’s budget constraint can be written as

Wt+1 = (1 +Rw,t+1) (Wt − Ct) . (3)

1Baxter and Jermann (1997) calibrates Y/H = 4.5% implying ρh = 0.955
2Campbell and Shiller (1988), defining the log return of an asset as

rt = log (Pt +Dt)− logPt−1,

(where P and D are, respectively, price and dividend of the asset) derive the relation

dt − pt = Et

X
i=1

ρi−1 (rt+i −∆dt+i) + kd

where d := log d and p := logP.
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Campbell and Mankiw (1989) show that equation (3) can be approximated by Tay-

lor expansion obtaining (under the assumption that the consumption-wealth ratio is

stationary and that limi→∞ ρiw (ct+i − wt+i) = 0, where ρw = (W − C) /W < 1)

ct − wt =
∞X
i=1

ρiwrw,t+i −
∞X
i=1

ρiw∆ct+i + kw (4)

where c := logC and kw is a constant. The aggregate return on wealth can be

decomposed as

Rw,t+1 = vtRa,t+1 + (1− vt)Rh,t+1

where vt is a time varying coefficient and Ra,t+1 is the return on financial wealth.

Campbell (1996) shows that we can approximate this last expression as

rw,t = vra,t + (1− v) rh,t + kr (5)

where kr is a constant, v is the mean of vt and rw,t is the log return on total wealth.

Moreover, we can approximate the log total wealth as

wt = vat + (1− v)ht + ka (6)

where at is the log asset wealth and ka is a constant.

Substituting equations (6), (2) and (5) into (4) we get

ct − vat − (1− v)

Ã
yt +

∞X
i=1

ρi−1h ∆yt+i

!
=

∞X
i=1

ρiw (vra,t+i −∆ct+i)

+ (1− v)
∞X
i=1

¡
ρiw − ρi−1h

¢
rh,t+i + k

where k is a constant. The left hand side of this equation is the log consumption-

aggregate wealth ratio expressed as function of only observable variables, and its last

term measures the contribution of future labor income growth to the current value of

human capital. This equation holds ex-post as a direct consequence of agent’s budget

constraint, but it also has to hold ex-ante. Taking time t conditional expectation of

both sides and assuming that yt follows an ARIMA process with innovations indicated
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by εt, we have that

cayt − (1− v) lrt = Et

∞X
i=1

ρiw (vra,t+i −∆ct+i) + ηt + k (7)

where lrt := ψ (L) εt = Et

P∞
i=1 ρ

i−1
h ∆yt+i represent the discounted expected growth

in future labor income,3 ηt := (1− v)Et

P∞
i=1

¡
ρiw − ρi−1h

¢
rh,t+i is a stationary compo-

nent and, following Lettau and Ludvigson (2001a, 2001b), cayt := ct−vat− (1− v) yt.

When the left hand side of equation (7) is high, consumers expect either high

future returns on market wealth or low future consumption growth. The lrt term

measures the contribution of future labor income growth to the state variable ht,

therefore capturing the expected long run wealth effect of current and past labor

income shocks.4

For a constant cayt and expected future consumption growth, equation (7) tells us

that if agents expect their labor income to grow in the future (high lrt), the equilibrium

return on asset wealth will be lower. One interpretation is that high lrt represent a

state of the world in which agents expect to have abundance of resources in the future,

therefore low returns on asset wealth are feared less.

It is worth comparing equation (7) with a similar one obtained by Lettau and

Ludvigson (2001b)

cayt = Et

∞X
i=1

ρiw (vra,t+i −∆ct+i) + η̃t + ek (9)

3ψ (L) is a polynomial in the lag operator.
4Moreover, if we follow Campbell and Shiller (1988) and approximate the log return on human

capital as

rh,t+1 = r + (Et+1 −Et)
∞X
i=1

ρi−1h ∆yt+i

we have from equation (2) that the log human capital will depend only (disregarding constant terms)

on current and future expected labor income

ht = yt +Et

∞X
i=1

ρi−1h ∆yt+i, (8)

therefore the human capital wealth level will vary as expectations of future labor income change.
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where ek is a constant and η̃t is an error component. Based on this equation, Lettau and
Ludvigson (2001a) argue that cayt should be a good proxy for market expectations of

future asset returns (ra,t+i) and future consumption growth as long as human capital

returns are not too variable.5 When cay in equation (9) is high, the authors argue,

agents must be expecting either high future returns on the market portfolio or low

consumption growth rate. Comparing equation (7) with equation (9), it is clear that

consumption can also be high as consequence of an expected increases in future labor

income. Nevertheless, the argument of Lettau and Ludvigson (2001a) applies to the

total log consumption wealth ratio cay − (1− v) lr (where lr captures changes in

human capital wealth due to expected future changes in labor income): when this

ratio is high agents must be expecting either high market returns or low consumption

growth.

The budget constraint in equation (7) can be combined with various models of

consumer behavior, and in this case the labor income risk component will influence

equilibrium asset prices and returns. Moreover, the presence of labor income innova-

tion on the left hand side of equation (7) can be consistent with excess smoothness of

consumption. A negative labor income shock increases the left hand side of equation

(7). If labor income innovations were uncorrelated with future asset returns, agents

would have to reduce future and current consumption. If instead current labor income

innovations are negatively correlated with future asset returns, consumption will need

to be reduced less than proportionally in reaction to the shock. Indeed, the estimations

reported in the next section show that corr
¡
lrt, r

i
a,t+s

¢
is negative for s > 0 implying

that, to satisfy the budget constraint, household consumption needs to respond less

5Lettau and Ludvigson (2004) are aware that future expected labor income growth should in

principle be added to equation (9) but they argue that, if labor income follows a random walk, this

component can be neglected and cay provides an appropriate proxy for the consumption-wealth ratio.

Nevertheless, if labor income is far from being a random walk and its growth rates are predictable

(as section 5 shows), lr should be added to cay (as in equation (7)) to obtain an accurate proxy for

the consumption-wealth ratio.
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than proportionally to changes in expected future income.

Since lrt captures movements in a relevant state variable - the level of human cap-

ital - it is likely to have an influence on equilibrium asset returns. Moreover, following

the same line of argument as in Lettau and Ludvigson (2001a, 2001b), equation (7)

suggests that the labor income risk term (lr) should to some extent i) forecast pre-

dictable changes in asset returns, ii) be an appropriate conditioning variable for the

capital asset pricing model since it captures time-varying expectation of future labor

income in the economy. Both implications are analyzed in the next sections.

3 Does labor income risk help in forecasting stock

market returns?

This section explores the time series relation between the labor income risk factor

and stock returns. lrt is used as predictor of future asset returns and its empirical

performance is compared to two benchmarks: the forecasting ability of cayt (a well

known good predictor of market returns) and lagged asset returns.

In assessing the forecasting ability of lrt one faces several econometric issues. First,

Ferson, Sarkissian, and Simin (2002) argue, with a simulation exercise, that if both ex-

pected returns and the predictive variable are highly persistent the in-sample regression

results may be spurious, and both R2 and statistical significance of the regressor are bi-

ased upward.6 The autocorrelation of realized returns is low in the data,7 nevertheless

the degree of persistence of expected returns is not observable.8 Since lrt = ψ (L) εt is

autocorrelated by construction, this could give rise to spurious regression results. As a

6See also Torous, Valkanov, and Yan (2005).
7The autocorrelations of the realized CRSP-VW and S&P 500 stock returns are, respectively,

0.07 and 0.09.
8The return may be considered to be sum of an unobservable expected return plus a unpredictable

noise, and the predictable component could be highly autocorrelated.
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consequence, both in-sample and out-of-sample prediction are performed.9 Moreover,

coherently with equation (7), cayt is added as additional predictor to check whether

it drives out the statistical significance of lrt. In addition, we explore the explana-

tory power of the estimated labor income innovation (ε̂t) alone, since its time series is

serially uncorrelated.

Second, a ”look-ahead” bias might arise from the fact that the coefficients used to

generate the empirical counterpart of lrt are estimated using the full data sample. To

address this issue we also look at out of sample forecasts where the lrt is estimated

using only prior data on labor income, since this approach removes the danger of a

”look-ahead” bias.10 Moreover, section 5 shows, with a V AR exercise, that the joint

estimation of the forecasting equations for labor income and market returns implies

that labor income has a lot of marginal predictive power for returns.

Table 1 shows the results of using the empirical estimates of lrt and cayt (blrt anddcayt), and lagged market returns as predictive variables for future market returns.11
Panel A reports measures of fit and estimated coefficients of the in-sample predictive

regressions andMRSE and pseudo R2 of out-of-sample forecasts, for the one-quarter-

ahead to one-year-ahead real returns on the CRSP-VW market return index (rt,t+1

to rt,t+4). Panel B instead focuses on forecasting excess returns (ret,t+1 to ret,t+4).

The regressions are performed using quarterly data and the sample period, 1952:04

to 2001:4, is the longest possible given the available data and the desire to keep a

9Inoue and Kilian (2002) demonstrate that in-sample and out-of-sample tests of predictability are,

under the null of no predictability, asymptotically equally reliable.
10On the other hand, as argued in Lettau and Ludvigson (2002), this approach can strongly un-

derstate the predictive ability of the regressor since, in shorter samples, it would be less precisely

estimated.
11blrt = ψ (L) bεt is constructed assuming that the log labor income follows an ARIMA process. The

selected model is a MA(2) in the first difference (as in Davis and Willen (2000)). Therefore, lrt is the

linear combination of labor income shocks at time t and t−1. Details on the estimation of bεt and blrt
are reported in section 2 of the Appendix. The time series ofdcayt is taken from Sidney Ludvigson’s

homepage: http://www.econ.nyu.edu/user/ludvigsons/
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fixed sample size for both short and long horizon returns. To construct out-of-sample

forecasts, the predictive regressions are estimated recursively using data from the

first available observation to the quarter immediately preceding the forecast period.

The first out-of-sample forecast period is 1962:04,12 and the forecast performance

is evaluated by comparing the mean squared error from the set of one-step-ahead

forecasts and the pseudo R2.13

The first two rows of each panel reports R2 and R̄2 of the forecasting OLS re-

gressions. The last two rows reports root mean square error (RMSE) and the pseudo

R2. The remaining rows reports the estimated coefficients of the in-sample regressions

and (in parenthesis) their standard errors. All regressions use Newey-West correction

(Newey and West (1987)) of the standard errors for generalized serial correlation of

the residuals.14

The first column of Panel A reports the regression of rt,t+1 on the first lag of the

dependent variable (rt−1,t). The regressor has a very low predictive power (it predicts

less than 1 percent of next quarter variation in real returns) and is not statistically

significant. The forecasting power of rt−1,t becomes even weaker as we increase the

horizon over which future returns should be predicted (columns 5, 9 and 13): for rt,t+2

to rt,t+4 the R
2 is basically zero, the regressor is never statistically significant and the

estimated slope coefficient reduces with the horizon.

The second column of Panel A reports the regression of rt,t+1 on blrt. The regressor
predicts 5 percent of next quarter variation in real returns, it is strongly statistically

significant and has negative sign coherently with equation (7). The predictive impact

of blrt is also economically large: the point estimate of the coefficient is -2.20. The labor
income is used to compute blrt is in per-capita term and blrt has a standard deviation
of 0.01. Thus, a one-standard-deviation decrease in the expected future labor income

growth leads to 220 basis points rise in the expected real return on the CRSP-VW

12This allows to first estimate each forecasting equation using the first ten years of available data.
13The pseudo R2 is defined as one minus the ratio of MSE from a forecast model to the benchmark

model of constant returns.
14Similar results are obtained using Hansen and Hodrick (1980) standard errors.
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market return index. The forecasting power of blrt grows as we increase the horizon
(columns 6, 10 and 14) over which future returns are predicted, explaining up to 16

percent of the variability in future market returns at one year horizon. The estimated

slope coefficients are consistently negative, significant and increase with the horizon.blrt also shows a good out-of-sample predictive power, with a pseudo R2 that increases
in magnitude with the horizon, from 4 percent (for rt,t+1) to 15 percent (for rt,t+4),

suggesting that the in-sample results are unlikely to be spurious.

For comparison, the ability ofdcayt to forecast rt,t+1 is tested in column 3 of Panel
A.dcayt predicts 8 percent of next quarter variation in real returns and the estimated
regression coefficient is both economically and statistically significant (a one-standard-

deviation increase indcayt predicts a 195 basis points increase in expected real returns).
The forecasting ability of dcayt grows with the horizon (columns 7, 11 and 15), and
at the four quarters horizon it explains 26 percent of the variability in future market

returns. The out-of-sample performance is also very good, with a pseudo R2 that

grows with the horizon from 8 percent to 24 percent at one year horizon.

Columns 4, 8, 12 and 16 of Panel A explores the joint predictive ability of blrt anddcayt that, as the budget constraint (7) suggests, should do best. The measures of
fit always increase significantly with respect to the univariate regressions and the two

variables are able to explain from 11 percent (at the one quarter horizon) to 32 percent

(at the four quarters horizon) of the variability in returns. The regressors are always

individually and jointly significant. The estimated coefficients are somehow smaller

than the ones of the univariate regressions but the reduction is not statistically signif-

icant. The out-of-sample predictive power of the joint regressors is also remarkable,

with a pseudo R2 that ranges from 10 percent (at one quarter horizon) to 30 percent

(at one year horizon).

Panel B of Table 1 focuses on forecasting excess returns defined as the difference be-

tween the CRSP-VW market return index and the three month Treasury bills. Again,

lagged returns have little if any predictive power and the estimated coefficient on the

regressor is neither statistically nor economically significant at any of the horizons
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considered. The predictive power of blrt is again quite high: between 5 percent (at one
quarter horizon) and 17 percent (at the one year horizon) of the variability in market

excess returns is captured by this regressor. The estimated regression coefficients are

always significant and extremely similar in magnitude to the ones in Panel A. The

out-of-sample performance is also good, with a pseudo R2 that ranges from 4 percent

(at one quarter horizon) to 15 percent (at one year horizon). dcayt alone too is able
to explain a substantial share of the variability of excess returns (between 7 percent

at the one quarter horizon to 23 percent at one year horizon), the estimated regres-

sion coefficients are always significant and it has good out-of-sample predictive power

(with a pseudo R2 that ranges from 7 percent to 21 percent). blrt and dcayt jointly
are able to explain from 10 percent (at one quarter horizon) to 31 percent (at one

year horizon) of the variation in excess returns and the pseudo R2 ranges from 8 to

27 percent. Moreover, the regressors are both individually and jointly significant at

any horizon considered and the slope coefficients are not statistically different from

the ones obtained in the univariate regressions.

The findings suggest that both variables have significant predictive ability and

that they predict different components of the stochastic process of market returns,

since in the joint regressions they are both strongly statistically significant, and both

in-sample and out-of-sample measures of fit are much larger than in the univariate

regressions (the minimum increase in R̄2, moving from the univariate regressions to

the multivariate ones, ranges from 2 percent to 8 percent, and the minimum increase

in pseudo R2 ranges from 1 percent to 6 percent).

Since blrt = ψ (L) bεt is autocorrelated by construction, this could give rise to spuri-
ous in-sample regression results.15 As a robustness check Table 2 looks at the predictive

ability of bεt and bεt−1 (since blrt is a linear combination of this two estimated innovation
of the labor income process).

The table shows that both bεt and bεt−1 perform well as predictors in the univariate
15This is a common problem for both blrt and dcayt, but is likely to be less severe for the former

than the latter since their first autocorrelations are, respectively, .48 and .83.
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regressions for both returns and excess returns. The R2 ranges from 4 to 12 percent for

for bεt and from 4 to 8 percent for bεt−1. The regressors are always strongly statistically
significant and have the right sign implied by Table 1 and the estimated ARIMA

process for labor income. The out-of-sample performance is also good, with a pseudo

R2 that ranges from 4 to 12 percent for bεt and from 3 to 7 percent for bεt−1.When used
jointly as regressors, the R̄2 are slightly higher than the ones obtained using blrt as the
only regressor, but the pattern of both in-sample and out-of-sample performances are

very similar to the ones of blrt in Table 1. Whendcayt is introduced in the regression
all the regressors are still strongly statistically significant and the in-sample and out-

of-sample performance are almost the same, in term of R̄2 and pseudo R2, as the ones

obtained in Table 1 using blrt anddcayt jointly as regressors.
A concern with the results on the empirical performance of blrt and dcayt as pre-

dictors of asset returns is the potential ”look-ahead” bias, that might arise from the

fact that the coefficients used to generate blrt and dcayt are estimated using the full

data sample.16 To address this issue, Table 3 presents root mean square error and

pseudo R2 of out-of-sample one-step-ahead forecast computed estimating blrt using
only prior data on labor income. The Table also report the RMSE for the bench-

mark case of constant return. Panel A, focuses on predicting real returns while Panel

B hinges upon excess returns. The coefficients used to generate the regressor blrt are
re-estimated each period using only data prior to the forecast period, and the predic-

tive regressions are estimated recursively using data from the beginning of the sample

to the quarter immediately preceding the forecast period. Beside being a robustness

check of the previous results, this exercise is interesting per se since it reproduce the

situation that a practitioner would face using blrt to forecast future asset returns.
Since Brennan and Xia (2002) show that changing the starting point of the out-of-

sample forecast might dramatically change the measured performance, Table 3 uses

three different starting point for the out-of-sample forecast. The first starting point

16For a discussion on the potential ”look-ahead” bias in dcayt see Brennan and Xia (2002) and
Lettau and Ludvigson (2002).
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for the forecast period is, as in Table 1 and 2, the last quarter of 1962, allowing to first

estimate each forecasting equation and the parameters of blrt using the first ten years
of available data. The other two starting points considered are the last quarters of

1972 and 1982, therefore adding ten and twenty years of data to the first estimations

of the forecasting equations and of blrt.
Focusing on the 1962:Q4 starting date, and comparing the results with the ones

reported in Table 1 (that has the same starting date of out-of-sample forecast), it can

be noticed that the pseudo R2 measures of blrt remain virtually unchanged (only one
of them is reduced by one percent) and that there is very small increase in RMSE,

suggesting that the results in Table 1 are not due to ”look-ahead” bias.

The other two starting dates considered show a somehow smaller pseudo R2 but the

maximum reduction (that ranges from two to seven percent) is never as dramatic as

in Brennan and Xia (2002).17 Moreover, the predictive power of blrt is still remarkably
high for the two quarters to one year ahead returns, with a pseudo R2 between 8 and

11 percent, and a reduction in RMSE, with respect to the benchmark case of constant

returns, between 3 and 6 percent.

Overall, the results obtained with blrt as predictor of market returns seem to be

robust and unlikely to be due to a spurious regression problem or a ”look-ahead” bias.

The evidence on the predictive power of lr suggests that labor income risk is an

important determinant of equilibrium market returns and that it is likely to be an

important factor in households’ optimal portfolio choice. The increase of forecasting

power of blrt with the horizon is also consistent with the theory behind equation (7),
since it should track long-term tendencies in asset market rather than provide accu-

rate short-term forecasts of crashes and booms. Moreover, the negative sign of this

regressor in the forecasting equations in Table 1, as well as the negative signs of the

17Brennan and Xia (2002) perform a similar exercise using dcayt as predictor of asset return, and
find that similar changes in the starting date of the forecast period delivers negative pseudo R2

measures for this regressor. Lettau and Ludvigson (2002) reasonably argues that this finding is likely

to be the consequence of a poor estimate ofdcayt in shorter samples.
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estimated coefficients for labor income innovations in table 2, have a clear economic

interpretation. Positive labor income shocks increase the expected value of future la-

bor income, in turn increasing lr. Therefore, an increase in lr represent a state of the

world in which consumers are richer and expect their labor income to increase in the

future. As a consequence, low returns on asset wealth are feared less. This in turn

lead to lower equilibrium risk premia, lowering both equilibrium market returns and

excess returns.

4 Forecasting consumption growth

In principle, equation (7) also implies that expected future labor income growth fore-

casts expectations of future consumption growth. In fact, there is little evidence of

predictability of future consumption growth, reinforcing the conjecture that fluctua-

tions in the labor income risk term (lr) should forecast asset returns.

Table 4 shows the results of forecasting consumption growth (log (Ct+1+s/Ct+1))

at different horizons (from s = 1 to s = 12 quarters). Estimation is performed using

the left hand side variables of equation (7) as regressors both individually and jointly.

The regressand in Panel A is total consumption18 growth, while Panel B employs

nondurable consumption.

Focusing on total consumption, we observe that blrt has some degree of forecasting
ability, explaining 3 percent of the variation in consumption growth at one quarter

horizon. The R2 than rises up to 9 percent at one year horizon and than declines down

to 3 percent at the four years horizon. The estimated slope coefficients are generally

significant but small in magnitude: a one standard deviation change in blrt implies
18The usual concern with using total consumption is that it contains expenditures on durable

goods instead of the theoretically desired stock of durable goods. But expenditures and stocks are

cointegrated, therefore long-term movement in expenditures also measures the long-term movement

in consumption flows (see Ait-Sahalia, Parker, and Yogo (forthcoming)).
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merely a 0.14% change in consumption growth over the next quarter and a 0.71%

change over the next three years. Coherently with Lettau and Ludvigson (2001a),

cayt shows no forecasting ability for future consumption growth: its R
2 is very close

to zero and the estimated slope coefficient is never statistically different from zero.

When using the regressors jointly, the share of expected variation in consumption

growth explained does not increase with respect to the univariate regressions withblrt as the only explanatory variable, and the slope coefficients associated with this
variable are basically unchanged.

When considering nondurable consumption (Panel B) the predictive power of blrt is
lower. To some extent this may be because consumption in equation (7) refers to total

consumption flow.19 The share of variation in consumption growth explained by this

regressor alone ranges from 1 to 6 percent. The regression coefficient is statistically

not significant at one quarter and three year horizon and its size is economically small

(a one standard deviation change in blrt implies only an half a point percent change
in nondurable consumption growth over the next three years). Even in this casedcayt shows no explanatory power and, as before, when the regressors are used jointly
the results are basically unchanged form the univariate regressions with only blrt as
explanatory variable.

These results suggest that labor income risk has some degree of predictive ability

for future consumption growth as implied by equation (7), and it performs better in

predicting total consumption than the nondurable one. Nevertheless, the economic

size of the long run effects of a change in lrt on consumption growth is economically

small. Returning to equation (7) and the results presented in section 3, this finding

reinforce the conjecture that fluctuations in the labor income risk term (lr) should

forecast asset returns.

19On the other hand, it is also the case that total consumption contains expenditures that should

be correlated over time, especially with adjustment costs, and this could cause the higher degree of

predictability of this series.
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5 A skeptical look at the data: reduced form V AR

approach

As a robustness check of the previous results, this section does not impose the theo-

retical restrictions implied by the budget constraint in equation (7), and shows that

the joint estimation of the forecasting equations for labor income growth and market

returns implies that labor income has a high marginal predictive power for returns.

Moreover, both short and long run effects of labor income shocks on market returns

are shown to be consistent with the findings presented in the previous sections.

In order to assess the predictive power of labor income growth for market returns,

I fit a reduced Vector Autoregressive Model (V AR) for labor income, market returns

and the other observable variables in the log-linearize budget constraint

Xt = A (L)Xt−1 + ξt (10)

where Xt = [ra,t,∆yt,∆at,∆ct]
0 , A (L) is a matrix that contains polynomials in the

lag operator L and ξt is a vector of error terms.

This section focuses on the V AR specification in first differences in equation (10)

with the selected optimal lag length of 2. Section C of the Appendix assesses the

robustness of the findings by showing that a) the same results are obtained fitting a

V AR in levels20 (therefore allowing for cointegration among consumption, asset wealth

and labor income) and b) the results are not sensible to the selected lag length.

Table 5 reports the measures of fit and the joint significance F -tests for the four

sets of lagged regressors in the four forecasting equations of the V AR. The first

column corresponds to the forecasting regression of market returns on past market

returns, past labor income growth, past financial wealth growth and past consumption

growth. The first think to notice is that the degree of predictability of one quarter

ahead market returns is in line with the results in Table 1. Moreover, the F -tests

20Where Xt = [ra,t, yt,at, ct]
0
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show that the predictive power of the regression is entirely due to past labor income

growth rates, while the other regressors are far from being statistically significant

(both individually and jointly). The second column corresponds to the forecasting

equation for labor income growth. This variable appears to be highly predictable with

a R̄2 of 45 percent. Past labor income growth rates are highly significant regressors,

while past consumption growth and market returns are not significant and past asset

wealth growth rates are significant only at the 5 percent level. Even in this case, most

of the predictive power is ascribable to past labor income growth rates (constraining

the coefficients on other regressors to be equal to zero, the measure of fit reduces by

less than 3 percent). The last two columns correspond to the forecasting equations

for asset wealth growth and consumption growth. Asset wealth growth appears to be

very hard to predict while some degree of predictability is observed for consumption

growth. Nevertheless, none of the regressors appear to be a statistically significant

predictor in any of the two regressions.

With the estimated V AR model in hand, we can also assess the change in expected

future returns caused by a shock to any of the forecasting variables considered. Figure

1 reports the response functions of quarterly market returns to a one standard devi-

ation impulse in each of the regressors. The upper left panel shows that past market

return shocks have no effect on future market returns. Similarly, the upper and lower

right panels show that asset wealth and consumption shocks have no significant effect

on expected future returns. Instead, the lower left panel shows that a labor income

shocks causes a significant change in expected quarterly market returns over the first

five quarters following the shock. Moreover, positive labor income shocks are associ-

ated with a reduction in expected returns, coherently with the log-linearized budget

constraint and the findings reported in the previous sections using lr as forecasting

variable.

Since the V AR confirms the qualitative results obtained using expected future la-

bor income growth rates as predictor of future market returns, we can also ask whether

the two approaches deliver quantitatively similar implications. Figure 2 addresses this
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question. The solid line represents the cumulative effect of a one standard deviation

negative labor income shock on market returns implied by the estimated V AR. The

model predicts an economically significant role for labor income shocks, whit a point

estimate of the change in expected yearly returns of more than 4 percent. The dash-

dotted line represents the effect of one standard deviation negative shock in expected

labor income growth implied by the multivariate OLS regressions in Table 1 that uses

lr as forecasting variable. It is clear from the graph that the effects of labor income

shocks implied by the V AR closely match the results of the OLS regressions, and that

the two are not statistically different.

Overall, the results obtained with the V AR approach confirm the soundness, both

from a qualitative and quantitative point of view, of the findings reported in the

previous sections.21

6 Explaining the cross-section of expected returns

This section explores conditional versions of the Consumption Capital Asset Pricing

Model (CCAPM) where lr and its linear combination with cay are the conditioning

variables. These models express the stochastic discount factor as a conditional (or

scaled) factor model and are able to explain more than four fifth of the cross-sectional

variation in average stock returns of the Fama and French (1992) 25 portfolios.

Explaining the cross-section of expected stock returns has been proven to be a hard

task for most of the existing asset pricing models. The capital asset pricing model

(CAPM) of Sharpe (1964) and Lintner (1965) has virtually no power to explain the

cross section of average returns on assets sorted by size and book-to-market ratios

(Fama and French (1992, 1993), Lettau and Ludvigson (2001b) ). The consump-

tion CAPM (CCAPM), first developed by Rubinstein (1976) and Breeden (1979),

21Similar results are obtained with a V AR in levels (where Xt = [ra,t, yt,at, ct]
0) and are reported

in the Appendix.
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addressed the criticism of Merton (1973) (that the static CAPM failed to account

for the intertemporal hedging component of asset demand) and Roll (1977) (that the

market return cannot be proxied by an index of common stocks), but has been dis-

appointing empirically, performing little better than the static CAPM in explaining

the cross section of average asset returns (see Mankiw and Shapiro (1986), Breeden,

Gibbons, and Litzenberger (1989), Campbell (1996), Cochrane (1996), Lettau and

Ludvigson (2001b), Yogo (2003) and Parker and Julliard (2005)).

The results reported in section 3, and a large empirical literature,22 find that ex-

pected returns and excess returns on aggregate stock indexes are predictable, suggest-

ing that risk premia are time-varying. The budget constraint in equation (7) suggests

using cay − (1− v) lr as conditioning variable since it should capture expectations

about future asset returns.

Moreover, the labor income risk term (lr) derived from the consumer’s budget

constraint is itself a natural candidate for capturing time varying risk in the economy.

When lr is high and positive, consumers expect their labor income to increase in

the future, with a consequent perceived reduction of the level of risk since, ceteris

paribus, they will be less likely to have to reduce their future consumption because of

a negative income shock.23 Moreover, in the presence of liquidity constraints, a high

lr represent a state of the world in which consumers are less likely to be constrained

in the near future. This in turn should lead to lower equilibrium risk premia, lowering

both equilibrium market returns and excess returns.

The stochastic discount factor (Mt+1) implied by the CCAPM is equal to the

marginal rate of substitution between current and future consumption

Mt+1 ≡ δ
Uc (Ct+1, Zt+1)

Uc (Ct, Zt)

22See, among others, Shiller (1984), Campbell and Shiller (1988), Fama and French (1988, 1989),

Campbell (1991), Lamont (1998), Lettau and Ludvigson (2001a).
23lr increases when there are positive income shocks. Given the persistence in the income growth

process, a positive labor income shock today has an insurance value since it will make a reduction of

future labor income less likely.
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where Uc (.) is the marginal utility of consumption, δ is the subjective rate of time

preference and Z captures other factors that might influence utility. This can be

generally approximated as

Mt+1 ≈ at + bt∆ lnCt+1

where at and bt are potentially time-varying parameters.

Following Cochrane (1996), Ferson and Harvey (1999) and Lettau and Ludvigson

(2001b), I model the variation in conditional moments by interacting (”scaling”) the

CCAPM factor with the conditioning variable.24 This implies three factors models

with factors given by: cayt − (1− v) lrt, ∆ lnCt+1, and [cayt − (1− v) lrt]×∆ lnCt+1

when cay− (1− v) lr is the conditioning variable; lrt, ∆ lnCt+1 and lrt∆ lnCt+1 when

lr is used as conditioning variable.

In what follows, the performance of these factor models in explaining the cross

section of average stock returns is compared to the performance of the unconditional

CCAPM and the factor models of Fama and French (FF) and Lettau and Ludvigson

(LL).

Fama and French (1992, 1993) show that a three-factor model explains a large

fraction of the cross-sectional variation in expected returns in the FF portfolios. The

factors are the excess return on the market (denoted Rm), and the two excess returns

capturing the value and size premia: the excess return on a portfolio containing stocks

of firms with high ratios of book value to market equity relative to a portfolio of firms

with low book value to market equity (“high minus low” denoted HML), and the

excess return on a portfolio containing stocks of small firms relative to a portfolio of

large firms (“small minus big” denoted SMB).

Lettau and Ludvigson (2001b) present a conditional CCAPM that uses cay as

scaling variable. They show that dcayt, consumption growth (∆ lnCt+1), and their

interaction provide a three-factor model that does as well in explaining the cross-

24This methodology builds on Ferson, Kandel, and Stambaugh (1987), Harvey (1989) and Shanken

(1990) that suggest to scale the conditional betas themselves in linear cross-sectional regression model.
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section of expected returns as the FF three-factor model.

Each of this models implies that the expected return on any portfolio is the

weighted sum of the covariance of the return and each factor, and implies an un-

conditional multifactor beta representation of the form

E
£
Re
i,t+1

¤
= β0λ

where Re
i,t+1 is the excess return on asset i, β ≡ Cov

³
ft+1, f

0
t+1

´−1
Cov

¡
ft+1, R

e
i,t+1

¢
,

λ is a vector of coefficients that does not have a straightforward interpretation as

risk price,25 and ft+1 is the vector of factors. We have ft+1 = ∆ lnCt+1 in the

unconditional CCAPM, ft+1 =
¡
Rm
t+1, SMBt+1,HMLt+1

¢0
in the FF model, ft+1 =

(dcayt,∆ lnCt+1,dcayt∆ lnCt+1)
0 in the LL model, and ft+1 =

³blrt,∆ lnCt+1, blrt∆ lnCt+1

´0
when lrt is used as a conditioning variable for the CCAPM.

To test these models the analysis focuses on the quarterly returns on the Fama

and French (1992) 25 portfolios and constructs excess returns as the returns on these

portfolios minus the return on a three-month Treasury bill. These portfolios are of

particular interest because they have a large dispersion in average returns that is rela-

tively stable in sub-samples, and because they have been used extensively to evaluate

asset pricing models. Moreover, they are designed to focus on two key features of

average returns: the size effect — firms with small market value have on average higher

returns — and the value premium — firms with high book values relative to market

equity have on average higher returns.

More precisely, the FF 25 portfolios are the intersections of 5 portfolios formed on

size (market equity,ME) and 5 portfolios formed on the ratio of book equity to market

equity (B/M). Each portfolio is denoted by the rank of its ME and then the rank

of its B/M , so that the portfolio 15 belongs to the smallest quintile of stocks by ME

and the largest quintile of stocks by B/M . To match the frequency of consumption

data, we convert returns to a quarterly frequency, so that Re
i,t+1 represents the excess

return on portfolio i during the quarter t + 1. The consumption time series is the

25See Lettau and Ludvigson (2001b) for a discussion of this point.
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(chain weighted) personal consumption expenditures on nondurable goods per capita

from the National Income and Product Accounts.26

Following Yogo (2003) and Parker and Julliard (2005), the models are estimated

by Generalized Method of Moments (GMM) using the (N + F )×1 empirical moment
function (where N is the number of portfolios considered and F is the number of

factors)

g (Re
t , ft;α, µ, b) =

½
Re
t − α125 +R

e
t (ft − µ)0 b

ft − µ

¾
(11)

where Re
t is a vector containing the excess return on each asset considered, b is a F ×1

vector of coefficients on the factors and µ denotes a F × 1 parameter vector. Under
the null that the model prices expected returns, the theoretical moment restriction

E [g (Re
t , ft;α, µ, b)] = 0 holds for the true (α, µ

0,b0). The difference between the fitted

first twenty five moment and zero is a measure of the misspricing of an expected return.

The econometric specification includes an intercept (α) that allows all excess returns

to be misspriced by a common amount.27

Figure 3 plots the predicted and average returns of different portfolios for the

four models considered using the FF25 value weighted portfolios. In each panel, the

horizontal distance between a portfolio and the 450 line is the extent to which the

expected return based on the fitted model (on the horizontal axis) differs from the

observed average return (on the vertical axis). All models, besides the unconditional

CCAPM, do quite well at fitting expected returns. Both the FF model (in Panel B)

and the LL model (Panel C), when compared to the unconditional CCAPM, reduce

the pricing errors for 16 out of 25 portfolios considered. The conditional model with

lr as scaling variable performs very well too, reducing the pricing errors of 18 out

26Consumption and returns are allined using the standard “end of period” timing assumption

that consumption during quarter t takes place at the end of the quarter. The alternative timing

convention, used by Campbell (1999) for example, is that consumption occurs at the beginning of

the period.
27As a prespecified weighting matrix, the identity matrix is employed, resetting the diagonal entries

for the moments E [ft − µ] = 0 to very large numbers, as in Parker and Julliard (2005), so that the

point estimates are identical to those from the Fama and MacBeth (1973) procedure.
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of 25 portfolios when compared to the unconditional CCAPM. Moreover, it generally

performs better than the other models in pricing the small firms. This is an important

feature of the results given the well documented inability of linear factor models to

price the small growth portfolio (i.e. the lowest quintile in both size and book-to-

market equity, denoted 11 in Figure 3).28 The failure in explaining the average return

of portfolio 11 is generally justified invoking market frictions not considered by linear

factor models and frictionless equilibrium models.29 Our model instead prices this

portfolio correctly, suggesting that the labor income risk factor is able to capture a

features of the data normally unmatched by other models.

The fitted values in Figure 3 are based on the model estimate in Table 6, Panel

A, with fixed weighting matrix. The first row of the panel refers to the uncondi-

tional CCAPM. The model performs poorly in several ways. First, contemporaneous

consumption risk is not an economically significant determinant of the cross-section

of expected returns. The first column displays the percent of the variation in av-

erage returns explained by the fitted model, given by the cross-sectional R2.30 The

consumption risk factor explains only 24 percent of the cross-sectional variation in

average returns. Second, the estimated intercept (even though not statistically signifi-

cant in the first stage estimate) implies that the average excess return on a FF portfolio

exceeds that implied by the model by roughly 6 or 9 percent per year.31 Third, the

model is rejected by the data both in the first and second stage (the seventh column

presents the HJ distance and the p-value of a specification test based on this distance,

28Yogo (2003), coherently whit our estimation of FF and LL models, finds that the portfolio 11 is

an outlier for all the models considered.
29D’Avolio (2002) and Lamont and Thaler (2003) document limits to arbitrage, due to short-sale

constraints, for the types of stocks that are generally characterized as small growth.
30This measure of fit follows Jagannathan and Wang (1996) and is given by: R2 = 1 −

V arc

³
ET

£
Re
i,t

¤− R̂e
i

´
/V arc (ET [R

e
i ]) where ET [.] is the time series average operator, V arc denotes

a cross-sectional variance, and R̂e
i is the fitted average return of asset i.

31This is consistent with the well-documented poor performance of the CCAPM in explaining the

excess return on the market (Grossman and Shiller (1981) Hansen and Singleton (1982), Mehra and

Prescott (1985)).
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the last column reports the J−test and its p-value).
The second row refers to the FF factor model. The model explains a large part of

the variation in average returns, delivering a cross-sectional R2 of 73 percent. More-

over, the factors are jointly significant (even though not individually significant). Nev-

ertheless the estimated intercept is very large and statistically significant, and the

model is rejected in both GMM estimates.

The third row reports the performance of the LL model. This model delivers

a good fit explaining 70 percent of the variation in average returns, but the factors

jointly are not statistically significant (even though some of the factors are individually

significant), the estimated α is large (even though not significant in the estimation with

fixed weighting matrix) and the model is rejected in both GMM estimates. Moreover,

there is a remarkable parameter instability between the two GMM estimates.

The forth row of Panel A refers to the conditional CCAPM model with the labor

income risk factor (lr) as scaling variable. The model explains four fifths of the

variation in average returns (with a cross-sectional R2 of 81 percent) and the factors

are jointly significant. The estimated constant is still too large even though smaller

(and statistically non significant) than the one implied by the FF and LL models, and

the model is rejected by the data. This model too has a large parameter instability

between the two estimates.

The fifth row is a conditional CCAPM that uses as scaling variable a linear com-

bination of lr and cay, given by cay − (1− v) lr (with weight v to be determined by

the GMM estimation), as equation (7) would suggest. Interestingly, this is the model

that delivers the best fit (with a cross-sectional R2 of 86 percent) and the lower HJ

distance measure32 and implies that the expected return based on the fitted model is

32The HJ distance would be the square root of a weighted average of the squared pricing errors

if we did not include moments for the means of the factors. Since we do, this interpretation of

the HJ distance as a measure of average pricing error is not strictly correct. However in this case

this interpretation is not misleading given the small contribution to the measure deriving from the

moments associated with the means of the factors.
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off by (roughly) 0.57 percent per quarter for the “typical” portfolio. The estimated

weight 1−v has the right sign, is statistically different from zero and is not statistically
different from the benchmark value of the of 2/3 for the human capital share of total

wealth.33 Nevertheless, the model is still rejected by the data, and shows some degree

of parameter instability, but delivers the smaller J-test value.

Considering the results jointly it is clear that FF, LL and labor income risk model

have comparable performance, with the last two models characterized by a lager pa-

rameters instability probably due to near-singularity of their optimal weighting ma-

trices for the FF25 portfolios.

The remaining panels of Table 6 check for the robustness of the results obtained

in Panel A for the first four models considered. Panel B focuses on the FF25 equally

weighted portfolios The results are qualitatively similar to the ones in Panel A with

an increase in fit for all the models but the unconditional CCAPM. With this set of

portfolios the labor income risk model performs particularly well, delivering a cross-

sectional R2 of 91 percent. This model, like the others, is still rejected by the data

but has the lower HJ distance and J-test values among the models considered.

The last two panels of Table 6 consider two other different sets of portfolios.34 Panel

C looks at portfolios formed grouping assets according to their cash-flow price ratio

deciles. In this case the unconditional CCAPM has no explanatory power delivering

a cross-sectional R2 of only 1 percent and is strongly rejected by the data. The FF

model has a cross-sectional R2 of 55 percent and a very small intercept, but the model

is always rejected by the data. Both the LL and the labor income risk models perform

well with a cross-sectional R2 of 70 and 72 respectively. Moreover, these two models

are not rejected by the data in both GMM estimates and the estimated coefficients

are stable across estimates.

33Moreover, imposing the restriction 1 − v = 2/3 delivers results extremelly similar to the ones

reported.
34All the portfolios data are taken from Kenneth French home page:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Very similar results for the labor income risk model are obtained using portfolios

formed on dividend price ratio deciles and portfolios formed on earning price ratios

deciles (not reported) , where this model is able to explain 68 and 80 percent, respec-

tively, of the cross sectional variation in expected returns and is not rejected by the

data.

LL and FF models also have similar good results with the earning price ratios

portfolios (with a cross-sectional R2 of 73 and 83 percent respectively). These last

two models perform instead poorly in explaining the cross-section of portfolios formed

on the dividend price ratios, delivering large and negative measures of fit.

Panel D focuses on the set of portfolios in which the labor income risk model

performs worse among all the set of portfolios considered. This is a set of ten industry

portfolios. In this case all the models considered performs poorly but the lr model

still delivers the highest cross-sectional R2 (24 percent, whit 13, −28 and −48 percent
for the FF, LL and unconditional CCAPM models respectively) and an overall better

performance than the other models considered.

Overall, the results obtained in this section seem to indicate that a conditional

CCAPM with lr as conditioning variables performs as well as (or better than) the FF

and LL factor models.

7 A structural interpretation

The success of lr in predicting future market returns, and its ability to explain the

cross-section of asset returns when used as conditioning variable for the CCAPM, are

compelling. What is the structural interpretation?

lr captures consumers expectations about their future labor income growth. More-

over, given the persistence of the labor income growth process, positive labor income

shocks raise lr and the expected value of future labor income. In the presence of liq-

uidity constraints for example, this also reduces the probability that the consumer will
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be constrained in the future. Thus one possible interpretation of the results is that

when lr is high consumers expect their labor income to grow in the future, therefore

perceiving a lower level of risk since, ceteris paribus, they will be less likely to have

to reduce future consumption due to a reduction in labor income. As a consequence,

consumers will be willing to accept, in equilibrium, a lower level of risk premium on

asset returns (this is also suggested by the sign of the coefficient associated with lr

in the stock market predictability regressions of section 3 and the V AR exercise in

section 5). If this were the case, we would expect to observe large upward swings

in excess returns after lr registers large downward swing. Moreover, if lr was able

to capture this kind of variation in risk premia, this would explain its success both

as predictor of returns and as conditioning variable in the cross-sectional regressions

presented.

Figure 4 plots the time series of blr and the stock market excess return (Re).35 The

figure shows a multitude of episodes during which sharp increases in labor income

risk (represented by a decrease in blr) precede large excess returns and decreases in
labor income risk (represented by increases in blr) precede large reduction in the excess
return. The labor income risk component also displays a clear business cycle pattern:blr decreases during recessions and increases during expansions. Only in two moments
in time the relation between labor income risk and excess return seems to be weakened:

the second oil shock period and the late 90’s stock market boom and following crash36

(but the relation seems to regain strength in the last observations of the sample).

The evidence presented in Figure 4 seems to support the view that the good perfor-

mance of lr, both as predictor and conditioning variable, is due to its ability to capture

time varying risk in the economy, therefore forecasting time varying risk premia.

35Excess returns are constructed as the difference between the CRSP-VW market return index and

the return on the three month Treasury bill. The time series are standardized to have unit variance

and smoothed to facilitate the reading.
36If we had to take the argument about the link between lr and Re presented here litteraly, Figure

4 would be indicating a bubble in the stock market in the late 90’s.
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This interpretation leaves the open question of which kind of asset pricing model

could rationalize these findings. Bansal and Yaron (2004) model consumption and div-

idend growth as containing a small predictable component and show, with a calibration

exercise, that a Kreps-Porteus-Epstein-Zin-Weil37 preference setting can explain some

key asset market phenomena.

Building on their approach, and assuming that the predictable component of con-

sumption and dividend growth is the same predictable component of labor income

growth, it is possible to show that past labor income innovations will predict asset

returns consistently with the good empirical performance of lr both as predictor and

conditioning variable. The model is characterized by the utility function
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where θ := (1− γ) / (1− ψ−1) , and γ and ψ are, respectively, the relative risk aversion

and intertemporal elasticity of substitution coefficients, 0 < δ < 1 is the time discount

factor, and the budget constraint is given by equation (3). When θ = 1 this reduces
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Following Bansal and Yaron (2004), let the log dividend and log consumption growth

rates follow the processes

∆ct+1 = µc + φcxt + σcηt+1

∆dt+1 = µd + φdxt + σdut+1

where ηt+1, ut+1 ∼ i.i.d.N (0, 1) . Assume also that the log labor income follows the

ARIMA(0,1,2) process

∆yt+1 = µy + εt+1 + xt

= µy + εt+1 + ϑ1εt + ϑ2εt−1

37Epstein and Zin (1989, 1991) and Weil (1989) build on the approch of Kreps and Porteus (1978).
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where εt = σy�t and �t ∼ i.i.d.N (0, 1) . This specification of the labor income process

is the one employed in constructing lr, but here I introduce the additional assumption

that the predictable component xt is common to all the stochastic processes considered.

In this setting the conditional expectation of log market returns will depend on

past labor income innovations38

Et [ra,t+1] = r̄ −
µ
φd − θ

ψ

φc
[(θ − 1) v + 1]

¶
(ϑ1εt + ϑ2εt−1) .

Note that, if the predictable component of consumption is sufficiently small and φd > 0,

the correlation between past labor income innovations and future asset returns will be

negative coherently with the results in Table 2. Similarly, the conditional risk premia

will be time varying and predictable using past labor income innovations since

Et [ra,t+1]− rf,t+1 = B0 +B1εt +B2εt−1

where

B1 = −
µ
φd +

θ

ψ

(θ − 1) v
(θ − 1) v + 1φc

¶
ϑ1 + (θ − 1) v

µ
φd − θ

ψ

φc
[(θ − 1) v + 1]

¶
ϑ2

B2 = −
µ
φd +

θ

ψ

(θ − 1) v
(θ − 1) v + 1φc

¶
ϑ2,

implying that, with a small degree of predictability of consumption growth, φd > 0

and θ < 1,39 risk premia will be negatively correlated with labor income innovations

as shown in Table 2 and Figure 4. Moreover, since past labor income innovations will

capture variations in conditional risk premia, this finding is coherent with the good

performance of lr as conditioning variable in explaining the cross-section of asset

returns.

38Details of the derivations are reported in section D of the Appendix.
39Bansal and Yaron (2004) need a value of θ < 0 to match the equity premium observed in the

data.
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8 Conclusion

This paper uses the representative consumer’s budget constraint to derive an equi-

librium relation between expected future labor income growth rates (summarized by

the variable lr) and expected future asset returns, and explores whether the empirical

counterpart of these expected changes in labor income (blr) carries relevant information
to predict future asset returns and explain the cross-section of average asset returns.

The main finding of the paper is that blr has high predictive power for future market
returns and, when used as conditioning variable for the Consumption Capital Asset

Pricing model (CCAPM), delivers a linear factor model that rivals the Fama and

French (1993) three-factor model and the Lettau and Ludvigson (2001b) three-factor

model in explaining the cross-section of expected returns of the Fama and French size

and book-to-market portfolios. Moreover, the conditional factor model proposed prices

correctly the small growth portfolio and performs well in explaining the cross-section

of expected returns for a wide range of portfolio data sets.

The success of lr as predictor of asset returns and conditioning variable is due to its

ability to track time varying equilibrium risk premia: expectations of high future labor

income are associated with lower stock market excess returns, while low labor income

growth expectation are associated with higher than average excess returns. I interpret

this as being due to the fact that high lr represent a state of the world in which

agents expect to have abundance of resources in the future to finance consumption,

therefore low returns on asset wealth are feared less and lower equilibrium risk premia

are required. The paper also shows that these findings are consistent with a Kreps-

Porteus-Epstein-Zin-Weil preferences framework where consumption growth, dividend

growth and labor income growth share a small predictable component.
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Appendix

A Data description

All the data used in the paper are available over the sample period 1952:04 to 2001:4.

The proxy chosen for the market return is the value weighted CRSP (CRSP-VW)

market return index. The CRSP index includes NYSE, AMEX and NASDAQ, and

should provide a better proxy for market returns than the Standard & Poor (S&P)

index since it is a much broader measure.40 The proxy for the risk free rate is the

return on the 30-day Treasury bill. Labor income data are taken from the BEA

National Income and Product table 1.14 available through DRI. The time series ofdcayt is taken from Sidney Ludvigson’s homepage.41 Population data are three-month

averages of monthly data from the U.S. Census data available through DRI.

All the portfolios data are taken from Kenneth French home page.42 The FF 25

portfolios are the intersections of 5 portfolios formed on size (market equity, ME)

and 5 portfolios formed on the ratio of book equity to market equity (B/M). Each

portfolio is denoted by the rank of its ME and then the rank of its B/M , so that the

portfolio 15 belongs to the smallest quintile of stocks by ME and the largest quintile

of stocks by B/M . To match the frequency of labor income and consumption data,

I convert returns to a quarterly frequency, so that Re
i,t+1 represents the excess return

on portfolio i during the quarter t + 1. Portfolios formed on cash-flow price ratios,

dividend price ratios and earning price ratios are formed grouping assets according to

the decile they belong to. The ten industry portfolios are constructed assigning each

NYSE, AMEX, and NASDAQ stock to an industry portfolio at the end of June of

year τ based on its four-digit SIC code at that time. Returns from July of τ to June

of τ + 1 are then computed.

40Results analogous to the ones reported in the paper have been obtained using the S&P index.
41http://www.econ.nyu.edu/user/ludvigsons
42http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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The consumption time series is the (chain weighted) personal consumption ex-

penditures on nondurable goods per capita from the National Income and Product

Accounts. Consumption and returns are aligned using the standard “end of period”

timing assumption that consumption during quarter t takes place at the end of the

quarter.43 The inflation series is constructed using the consumption price deflator.

B Estimation of the labor income risk factor

In order to model the labor income process, we experimented with several specification

in the ARIMA class, and performed the standard set of Box-Jenkins selection proce-

dures. In particular, among the model considered, MA(2) and ARMA(1,1) process

fit well to first differences of log labor income. These specifications deliver similar

results in term of predictability of asset returns and fit of the cross-section of asset

returns, we henceforth restrict attention to the ARIMA(0,1,2) specification for log

income since it simplifies the exposition and it has previously used in the literature in

similar contexts.44 Thus, the fitted earning specification is

∆yt = µy + εt + ϑ1εt−1 + ϑ2εt−2 (B.1)

where εt is the time t earning innovation and the ϑ’s are moving-average coefficients.

Estimated coefficients are reported in Table A1.

Table A1: Estimated Labor Income Processcµy bϑ1 bϑ2 st. error of bε
0.013 1.531 0.598 0.0045
(0.0008) (0.0552) (0.0558)

Note: Newey-West standard errors reported in brackets

The empirical counterpart of lrt = Et

P∞
i=1 ρ

i−1
h ∆yt+i is therefore computed, dis-

regarding the constant part, as

blrt = ³bϑ1 + ρhbϑ2´ bεt + bϑ2bεt−1
43The alternative timing convention, used by Campbell (1999) for example, is that consumption

occurs at the beginning of the period.
44See Davis and Willen (2000) and MaCurdy (1982).
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where the bε’s are the estimated innovations of equation (B.1) and ρh is calibrated, as

in Baxter and Jermann (1997), at the value ρh = 0.955.

C Alternative V AR specifications

This section checks the robustness of the results reported in section 5 by considering

different lag lengths and estimating a V AR in levels where Xt = [ra,t, yt,at, ct]
0 .

Table A2 reports the measures of fit and the joint significance F -tests for the four

sets of lagged regressors in the market return forecasting equation of several V AR

specifications. The right panel focuses on the V AR in first differences and the left

panel on V AR in levels, therefore allowing for the cointegration of consumption, asset

wealth and labor income as the budget constraint suggests. Both panels consider lag

lengths from 1 to 4. Overall, the V AR in levels seem to fit better than the V AR

in first differences. In all the specifications considered, as in Table 5, the predictive

power of the regressions is almost entirely ascribable to lagged labor income: past

labor income, both in levels and in first differences, is always statistically significant

while the other regressors are never significantly different from zero except asset wealth

(at the 5 percent level) in the V AR in levels with four lags.

The impulse-response functions of market return, and the cumulative effect of a

labor income shock on market returns implied by the V AR in levels are substantially

in line with the ones obtained with V AR in first differences. Figure A1 reports the

impulse-response functions of quarterly market returns to a one standard deviation

shock in labor income (in the upper panel) and its cumulative effect (in the lower

panel) implied by the V AR in levels with 3 lags. The effects of the labor income

shocks are extremely similar to the ones in Figure 1 and Figure 2, but the cumulative

effect is slightly smaller (even though the difference is not statistically significant).

This seem to be caused by a bias toward stationarity in the estimation of the V AR

in levels, and the difference disappears introducing a unit root prior for consumption,

asset wealth and labor income.
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D Epstein-Zin preferences

Epstein and Zin (1989, 1991) and Weil (1989) build on the approach of Kreps and

Porteus (1978). The model is characterized by the utility function

Ut =
n
(1− δ)C

1−γ
θ

t + δ
¡
Et

£
U1−γ
t+1

¤¢ 1
θ

o θ
1−γ

where θ := (1− γ) / (1− ψ−1) , γ and ψ are, respectively, the RRA and IES coeffi-

cients, 0 < δ < 1 is the time discount factor, and the budget constraint is given by

equation (3). When θ = 1 this reduces to the standard CRRA setting.

The implied Euler equation is

1 = Et

"
δθ
µ
Ct+1

Ct

¶− θ
ψ

(1 +Rw,t+1)
−(1−θ) (1 +Ri,t+1)

#
and the log stochastic discount factor is given by

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1) rw,t+1.

Following Campbell (1996), Campbell and Shiller (1988) and Shiller (1993) we can

approximate

rw,t ≈ r + vra,t + (1− v) (Et −Et−1)
∞X
j=0

ρjh∆yt+j

= vra,t + (1− v) [∆yt + ρhlrt − lrt−1] .

Therefore, the log stochastic discount factor

mt+1 ≈ k̄ − θ

ψ
∆ct+1 + (θ − 1) vra,t+1 + (1− v) (θ − 1) [∆yt+1 + ρhlrt+1 − lrt]

depends on the labor income risk factor lr. Moreover, in this set up, we can show that

expected returns will depend on the labor income innovations.

Assume that the log labor income follows the ARIMA(0,1,2) process

∆yt+1 = µy + εt+1 + xt

= µy + εt+1 + ϑ1εt + ϑ2εt−1.
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where εt ∼ i.i.d.N
¡
0, σ2y

¢
. This implies that

mt+1 = k̄ − θ

ψ
∆ct+1 + (θ − 1) vra,t+1 + λ1εt+1

where λ1 = (1− v) (θ − 1) [1 + ρh (ϑ1 + ρhϑ2)] .

Following Bansal and Yaron (2004), let the log dividend and log consumption

growth rates follow the processes

∆ct+1 = µc + φcxt + σcηt+1

∆dt+1 = µd + φdxt + σdut+1

where d ηt+1, ut+1 ∼ i.i.d.N (0, 1) .

Note that we can approximate the log return on the market portfolio around the

steady state price dividend ratio as

ra,t+1 = log

µµ
Pt+1

Dt+1
+ 1

¶
Dt+1

Dt

Dt

Pt

¶
= k0 + k1za,t+1 +∆dt+1 − za,t

where za,t+1 is the log price-dividend ratio (log
Pt+1
Dt+1

) and k1 =
P/D

P/D+1
.

From the Euler equation we have that

1 = Et [exp (mt+1 + ra,t+1)] ,

implying a first order difference equation for za,t

expλ0za,t = Et

⎡⎣exp
⎛⎝ h

k̄ − θ
ψ
µc + λ0k0 + λ0µd

i
− θ

ψ
σcηt+1 + λ0σdut+1

+
³
λ0φd − θ

ψ
φc
´
(ϑ1εt + ϑ2εt−1) + λ0k1za,t+1 + λ1εt+1

⎞⎠⎤⎦
where λ0 = [(θ − 1) v + 1]. Guessing the solution to be of the form

za,t+1 = A0 +A1εt+1 +A2εt

and matching the coefficients we have that

A1 =

µ
φd − θ

ψ

φc
[(θ − 1) v + 1]

¶
(k1ϑ2 + ϑ1)

A2 =

µ
φd − θ

ψ

φc
[(θ − 1) v + 1]

¶
ϑ2.
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The return on the market portfolio will be

ra,t+1 = k0 +A0 (k1 − 1) + µd + σdηt+1 + k1A1εt+1+

−
µ
φd − θ

ψ

φc
[(θ − 1) v + 1]

¶
(ϑ1εt + ϑ2εt−1) ,

and will have the conditional expectation

Et [ra,t+1] = k0 +A0 (k1 − 1) + µd −
µ
φd − θ

ψ

φc
[(θ − 1) v + 1]

¶
(ϑ1εt + ϑ2εt−1) .

From the Euler equation we can also solve for the risk free rate obtaining

rf,t+1 = −k̄ + θ

ψ
µc − (λ0 − 1)A0 − 1

2

(
[(λ0 − 1)A1 + λ1]

2 σ2y +

µ
θσc
ψ

¶2)

−
µ
(λ0 − 1)A2 − θ

ψ
φcϑ1

¶
εt +

θ

ψ
φcϑ2εt−1.

Implying the conditional risk premia

Et [ra,t+1]− rf,t+1 = B0 +B1εt +B2εt−1

where

B0 = k0 +A0 (k1 − 1) + µ+ k̄ − θ

ψ
µc + (λ0 − 1)A0

+
1

2

(
[(λ0 − 1)A1 + λ1]

2 σ2y +

µ
θσc
ψ

¶2)

B1 = −
µ
φd +

θ

ψ

(θ − 1) v
(θ − 1) v + 1φc

¶
ϑ1 + (θ − 1) v

µ
φd − θ

ψ

φc
[(θ − 1) v + 1]

¶
ϑ2

B2 = −
µ
φd +

θ

ψ

(θ − 1) v
(θ − 1) v + 1φc

¶
ϑ2

Therefore, past labor income innovations will predict future asset returns as found

in the empirical analysis presented. Moreover, for a low degree of predictability of

consumption growth (small φc) the correlation between labor income innovations and

future market returns will be negative (given the estimated MA coefficients of labor

income growth) coherently with the empirical results of the previous sections.
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(0.49) (0.49) (0.91) (0.93) (1.25) (1.24) (1.50) (1.45)

RMSE 0.0844 0.0826 0.0816 0.0808 0.1214 0.1168 0.1146 0.1126 0.1446 0.1367 0.1340 0.1303 0.1653 0.1530 0.1470 0.1413
0.00 0.04 0.07 0.08 0.00 0.07 0.11 0.14 0.00 0.11 0.14 0.19 0.00 0.15 0.21 0.27
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Dependent variable:

Newey-West corrected standard errors in brackets under the estimated coefficients.

Panel B: Excess Returns

Dependent variable:

Table 1: Forecasting Stock Returns

Panel A: Real Returns

2R
2

R

tcay

2R
2

R
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2 Pseudo R

2 Pseudo R

tlr

tlr
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1, +ttr 2, +ttr 3, +ttr 4, +ttr
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ttr 1, +



0.04 0.04 0.07 0.12 0.06 0.07 0.12 0.20 0.08 0.10 0.17 0.28 0.12 0.08 0.19 0.34
0.03 0.03 0.06 0.10 0.05 0.06 0.11 0.19 0.08 0.10 0.16 0.27 0.12 0.08 0.18 0.33

-3.99 -3.71 -2.64 -7.58 -7.05 -4.90 -10.96 -10.16 -7.14 -15.24 -14.42 -10.41
(1.21) (1.19) (1.08) (1.84) (1.68) (1.65) (2.58) (2.28) (2.17) (2.99) (2.61) (2.32)

-4.22 -3.95 -2.86 -8.07 -7.57 -5.38 -12.11 -11.39 -8.31 -12.63 -11.60 -7.51
(1.27) (1.30) (1.37) (1.98) (1.94) (1.84) (2.67) (2.57) (2.06) (3.35) (3.20) (2.36)

1.53 3.05 4.29 5.69
(0.56) (1.04) (1.37) (1.65)

RMSE 0.0841 0.0843 0.0829 0.0810 0.1204 0.1221 0.1185 0.1133 0.1442 0.1452 0.1397 0.1316 0.1632 0.1689 0.1591 0.1446
0.04 0.03 0.06 0.11 0.06 0.04 0.09 0.17 0.08 0.07 0.13 0.23 0.12 0.05 0.16 0.31

0.03 0.04 0.07 0.11 0.06 0.07 0.12 0.19 0.08 0.10 0.17 0.26 0.12 0.08 0.19 0.31
0.03 0.03 0.06 0.09 0.05 0.06 0.11 0.17 0.08 0.10 0.16 0.25 0.12 0.08 0.18 0.30

-3.87 -3.61 -2.62 -7.29 -6.76 -4.84 -10.74 -9.96 -7.29 -14.91 -14.13 -10.59
(1.18) (1.15) (1.07) (1.80) (1.61) (1.67) (2.61) (2.29) (2.32) (2.95) (2.55) (2.47)

-4.07 -3.81 -2.81 -7.98 -7.50 -5.54 -11.85 -11.14 -8.42 -12.07 -11.07 -7.46
(1.23) (1.26) (1.36) (2.01) (1.96) (1.93) (2.66) (2.55) (2.16) (3.25) (3.07) (2.45)

1.39 2.73 3.78 5.02
(0.53) (0.95) (1.22) (1.43)

RMSE 0.0831 0.0833 0.0821 0.0805 0.1179 0.1194 0.1163 0.1121 0.1390 0.1402 0.1351 0.1289 0.1555 0.1615 0.1522 0.1408
0.03 0.03 0.05 0.09 0.06 0.03 0.08 0.15 0.08 0.06 0.13 0.21 0.12 0.05 0.15 0.28
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Panel A: Real Returns

Table 2: Forecasting Stock Returns Using Labor Income Innovations

Newey-West corrected standard errors in brackets under the estimated coefficients.

Panel B: Excess Returns

Dependent variable:

Dependent variable:
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R
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2 Pseudo R
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constant constant constant constant

RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE

1962:Q4 0.0861 0.0844 0.04 0.1252 0.1203 0.08 0.1515 0.1432 0.11 0.1756 0.1623 0.15

1972:Q4 0.0905 0.0895 0.02 0.1316 0.1277 0.06 0.1590 0.1527 0.08 0.1843 0.1737 0.11

1982:Q4 0.0811 0.0804 0.02 0.1098 0.1067 0.05 0.1288 0.1232 0.09 0.1477 0.1419 0.08

constant constant constant constant

RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE

1962:Q4 0.0850 0.0834 0.04 0.1223 0.1179 0.07 0.1462 0.1382 0.11 0.1678 0.1549 0.15

1972:Q4 0.0891 0.0883 0.02 0.1279 0.1246 0.05 0.1519 0.1462 0.07 0.1740 0.1642 0.11

1982:Q4 0.0800 0.0794 0.02 0.1079 0.1049 0.05 0.1262 0.1203 0.09 0.1441 0.1376 0.09

First 
forecast 
period

First 
forecast 
period

Panel B: Excess Returns

Table 3: Pseudo R ² and Root Mean Square Errors of Out-of-Sample Forecasts of Market Returns with Re-Estimated lr

Panel A: Real Returns
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Table 4: Forecasting Consumption Growth

           *            *
1 0.03 0.02 -0.14 0.01 0.00 -0.07

(0.06) (0.05)
0.00 -0.01 0.003 0.00 0.00 0.02

(0.07) (0.07)
0.03 0.02 -0.15 -0.03 5.46 0.01 0.00 -0.07 0.01 1.67

(0.07) (0.07) (0.065) (0.06) (0.07) (0.434)

2 0.06 0.05 -0.33 0.03 0.02 -0.21
(0.11) (0.08)

0.00 0.00 0.03 0.00 0.00 0.03
(0.15) (0.14)

0.06 0.05 -0.35 -0.04 9.35 0.03 0.02 -0.22 -0.01 7.44
(0.11) (0.15) (0.009) (0.08) (0.14) (0.024)

4 0.09 0.08 -0.66 0.06 0.05 -0.48
(0.19) (0.15)

0.00 0.00 0.08 0.00 0.00 0.05
(0.28) (0.28)

0.09 0.08 -0.68 -0.06 13.09 0.06 0.05 -0.50 -0.05 14.02
(0.20) (0.28) (0.001) (0.13) (0.27) (0.001)

6 0.08 0.07 -0.82 0.06 0.05 -0.61
(0.25) (0.21)

0.00 0.00 0.11 0.00 0.00 0.11
(0.34) (0.34)

0.08 0.07 -0.84 -0.06 11.27 0.06 0.05 -0.61 -0.02 9.77
(0.26) (0.35) (0.004) (0.20) (0.33) (0.008)

8 0.05 0.05 -0.77 0.03 0.03 -0.53
(0.31) (0.25)

0.00 0.00 0.12 0.00 0.00 0.13
(0.36) (0.35)

0.05 0.04 -0.79 -0.04 6.12 0.03 0.02 -0.52 0.02 4.54
(0.34) (0.37) (0.047) (0.25) (0.35) (0.103)

12 0.03 0.02 -0.71 0.02 0.01 -0.48
(0.48) (0.35)

0.00 -0.01 0.06 0.00 0.00 0.14
(0.34) (0.32)

0.03 0.02 -0.74 -0.09 2.27 0.02 0.01 -0.46 0.04 1.95
(0.52) (0.37) (0.321) (0.37) (0.34) (0.376)

Panel A: Total Consumption Panel B: Nondurable Consumption

Newey-West corrected standard errors in brackets under the estimated coefficients.
* p -values in brackets under the test of joint significance of the regressors.

Horizon 
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R tcay
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r ∆y ∆a ∆c

0.08 0.47 0.03 0.15

0.04 0.45 -0.01 0.11

r 0.82 2.83 0.91 1.86

[ 0.441 ] [ 0.061 ] [ 0.403 ] [ 0.158 ]

∆y 5.31 44.27 1.59 1.39

[ 0.006 ] [ 0.000 ] [ 0.207 ] [ 0.252 ]

∆a 0.48 3.84 0.57 0.39

[ 0.620 ] [ 0.023 ] [ 0.565 ] [ 0.675 ]

∆c 0.74 1.51 0.90 1.31

[ 0.479 ] [ 0.222 ] [ 0.409 ] [ 0.273 ]

Table 5: F -tests and Measures of Fit of the VAR  Estimation

Significance levels in brackets under the F -statistics.

Dependent 
variables:
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Model R 2      * Dist* J-test*

CCAPM 0.24 0.012 89.3 2.3 1.42 0.023 54.8 50.4
(0.008) (54.9) (0.126) (0.000) (0.005) (22.3) (0.001)

F&F 0.73 0.030 -2.19 3.14 3.10 10.2 0.65 0.033 -2.60 3.80 2.63 42.5
(0.013) (2.68) (2.10) (2.17) (0.017) (0.000) (0.011) (2.44) (2.10) (1.94) (0.004)

L&L 0.70 0.020 -20.6 3.7 8751 6.2 0.75 0.026 -38.1 66.6 2067 46.8
(0.012) (37.7) (28.4) (3961) (0.104) (0.000) (0.006) (17.0) (28.4) (2099) (0.001)

0.81 0.015 27.7 10.3 18162 14.4 0.70 0.022 40.9 -21.6 2259 49.5
(0.017) (22.7) (106.8) (5233) (0.002) (0.000) (0.007) (22.7) (40.4) (3184) (0.000)

0.86 0.014 -28.4 -88 19026 13.4 0.57 0.024 27.0 -74 4543 42.2
(0.010) (27.4) (63.4) (5998) (0.004) (0.000) (0.007) (27.4) (37.4) (4126) (0.004)

CCAPM 0.24 0.010 89.3 2.8 1.42 0.031 54.8 50.4
(0.011) (58.4) (0.095) (0.000) (0.006) (27.4) (0.001)

F&F 0.78 0.047 -5.07 4.93 2.27 15.1 0.68 0.038 -2.26 2.78 2.66 49.4
(0.013) (2.90) (2.04) (2.43) (0.002) (0.000) (0.010) (2.25) (2.04) (1.96) (0.000)

L&L 0.78 0.033 -53.6 22.8 7287 8.9 0.72 0.037 -39.6 81.0 3081 48.2
(0.010) (32.5) (29.9) (3357) (0.031) (0.000) (0.005) (17.8) (29.9) (2131) (0.001)

0.91 0.020 73.0 28.5 20897 6.8 0.54 0.024 62.8 -62.7 4298 42.0
(0.019) (26.1) (97.6) (9363) (0.080) (0.000) (0.006) (26.1) (28.5) (4272) (0.004)

CCAPM 0.01 0.017 81.6 3.9 2.13 0.025 43.5 45.4
(0.008) (41.6) (0.050) (0.000) (0.006) (27.3) (0.000)

F&F 0.55 -0.002 -8.0 8.1 9.3 5.9 0.74 0.013 -5.5 4.8 8.9 32.3
(0.031) (7.0) (7.7) (4.8) (0.116) (0.000) (0.028) (7.0) (7.0) (4.3) (0.000)

L&L 0.70 0.024 -12.5 -16 13724 6.3 0.65 0.028 -23.3 -16 17483 10.4
(0.016) (68.3) (56.4) (7166) (0.096) (0.223) (0.012) (68.3) (45.1) (6473) (0.107)

0.72 -0.001 -52.0 -165 25005 8.8 0.72 0.018 -74.3 -177 25798 5.9
(0.017) (89.0) (88.4) (9640) (0.032) (0.120) (0.018) (89.0) (126.2) (18757) (0.435)

CCAPM -0.48 0.023 -8.4 0.1 1.23 0.021 -18.4 15.2
(0.005) (37.4) (0.822) (0.000) (0.004) (34.2) (0.055)

F&F 0.13 0.021 -2.3 0.1 -3.5 2.8 0.63 0.016 -2.4 1.1 -3.9 10.2
(0.013) (4.9) (3.7) (2.7) (0.428) (0.000) (0.012) (4.9) (3.5) (2.5) (0.115)

L&L -0.28 0.015 -17.1 30 -691 1.2 0.77 0.017 -15.6 27 -2811 11.6
(0.009) (41.4) (32.7) (4100) (0.758) (0.000) (0.006) (41.4) (21.6) (3601) (0.072)

0.24 0.026 61.0 41 9494 3.0 0.62 0.024 18.6 13 7507 10.0
(0.009) (44.7) (65.1) (10056) (0.395) (0.000) (0.007) (44.7) (52.0) (7487) (0.123)

* p -values in brackets.

Table 6: Statistics on Predicting Average Returns for Betas from Different Factor Models

Coefficients Coefficients

GMM with identity weighting matrix Efficient GMM

Note: Newey-West corrected standard errors in brackets under the estimated coefficients. GMM with a prespecified weighting replicates the 
Fama-MacBeth point estimates by using an identity matrix for the moments corresponding to expected returns and "very high" weights on the 
diagonal for the remaining moments. Efficient GMM iterates to convergence.

Panel D: Industry portfolios

Panel C: Portfolios formed on Cash-flow/Price

Panel A: Fama-French 25 value weighted portfolios

Panel B: Fama-French 25 equally weighted portfolios
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lr

caylr  & 

lr

lr
lr

lr



Quarters

M
ar

ke
t R

et
ur

ns

0 1 2 3 4 5 6 7
-0.025

0.000

0.025

0.050

0.075

0.100

0 1 2 3 4 5 6 7
-0.024

-0.016

-0.008

0.000

0.008

0.016

0.024

0.032

0 1 2 3 4 5 6 7
-0.024

-0.016

-0.008

0.000

0.008

0.016

0.024

0.032

0 1 2 3 4 5 6 7
-0.024

-0.016

-0.008

0.000

0.008

0.016

0.024

0.032

Impulse Variable: Market Return

Figure 1: Impulse-Response Functions of Market Return

Impulse Variable: Asset Wealth

Impulse Variable: Labor Income Impulse Variable: Consumption

Note: Dashed lines represent 90% confidence bands
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Figure 2: Long Run Effect of a Negative Labor Income Shock on Market Returns
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Note: All returns are quarterly rates. Each portfolio is denoted by the rank of its market equity and then the rank of its ratio of book value to market 
value. Fitted values are based on the model estimates in Table 6.

Figure 3: Comparison of Linear Factor Models of Expected Returns

Fitted returns
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Panel D: Labor Income Risk
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Panel A: Standard C-CAPM
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Figure 4: Times Series of lr and Stock Market Excess Return

Note: Shaded areas are NBER recessions.
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1 2 3 4 1 2 3 4

0.06 0.08 0.11 0.14 0.06 0.09 0.13 0.18

0.04 0.04 0.05 0.06 0.04 0.06 0.07 0.10

r 0.86 0.82 1.15 1.67 r 0.21 0.13 1.02 2.24

[ 0.356 ] [ 0.441 ] [ 0.332 ] [ 0.158 ] [ 0.651 ] [ 0.880 ] [ 0.385 ] [ 0.066 ]

∆y 6.50 5.31 5.10 2.75 y 9.96 6.31 6.49 7.61

[ 0.012 ] [ 0.006 ] [ 0.002 ] [ 0.030 ] [ 0.002 ] [ 0.002 ] [ 0.000 ] [ 0.000 ]

∆a 0.51 0.48 0.90 1.64 a 0.98 0.95 1.69 2.94

[ 0.477 ] [ 0.620 ] [ 0.443 ] [ 0.165 ] [ 0.323 ] [ 0.388 ] [ 0.170 ] [ 0.022 ]

∆c 0.56 0.74 0.56 0.70 c 2.88 0.29 0.70 0.93

[ 0.454 ] [ 0.479 ] [ 0.643 ] [ 0.594 ] [ 0.092 ] [ 0.748 ] [ 0.555 ] [ 0.449 ]

Significance levels in brackets under the F -statistics.

Number of 
lags:

Number of 
lags:

VAR in first differences

Table A2: F -tests and Measures of Fit of VAR  Estimations of the Market Return Forecasting Equation

VAR in levels
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Figure A1: Response of Market Return to a Labor Income Shock (VAR in Levels)

Impulse-Response Function

Quarters

M
ar

ke
t R

et
ur

n

0 1 2 3 4 5 6 7
-0.024

-0.016

-0.008

0.000

0.008

0.016

0.024

0.032

0 1 2 3 4 5 6 7
0.00

0.01

0.02

0.03

0.04

0.05

0.06
Cumulative Effect

Quarters

M
ar

ke
t R

et
ur

n




