Marco Lippi: AGGREGATION, FUNDAMENTALNESS AND DYNAMIC FACTOR MODELS.

Plan of the talk.

1. Some issues concerning structural VAR models. More precisely, concerning the interpretation of the structural shocks or of the impulse-response functions.
2. Serious problems arise with aggregation of heterogeneous agents.
3. Serious problems arise with fundamentalness.
4. There is some overlapping between aggregation problems and fundamentalness.
5. Dynamic factor models as a way out of fundamentalness problems.
6. The talk will try to give the technical flavour of the problems.
7. The talk is a promotion of the paper Forni, Giannone, Lippi and Reichlin (2005) Opening the Black Box: Structural Factor Models with large cross-sections, but I will insist on very elementary examples.

Fundamentalness. Example.

(See on fundamantalness
Hansen, L.P and T.J. Sargent (1991) Two problems in interpreting vector autoregressions. In Rational Expectations Econometrics, L.P. Hansen and T.J. Sargent, eds. Boulder: Westview, pp.77-119,

Lippi, M. and L. Reichlin (1993) The dynamic effects of aggregate demand and supply disturbances: Comment. American Economic Review 83, pp.644-52, Lippi, M. and L. Reichlin (1994) VAR analysis, non fundamental representation, Blaschke matrices. Journal of Econometrics 63, pp.307-25.)

Suppose that w_{t} is the wage rate, the same for all firms and workers. Suppose that at the beginning of each quarter a committee gathers, negotiates and decides the increase u_{t}. However, there is a permanent agreement to smooth
increases, so that the increase u_{t} will take place in two quarters, $a_{0} u_{t}$ this quarter, $a_{1} u_{t}$ the next quarter, with $a_{0}+a_{1}=1$. As a consequence

$$
\Delta w_{t}=a_{0} u_{t}+a_{1} u_{t-1}
$$

Moreover, for the sake of simplicity, assume that u_{t} is a white noise.

Now,
(i) The econometrician does not observe u_{t}, nor has information about the coefficients a_{0} and a_{1}.
(ii) $\mathrm{He} /$ she only observes w_{t} and therefore Δw_{t}.

The questions are:
(I) Can we recover u_{t} ?
(II) Can we recover a_{0} and a_{1} ?

The answer is negative, even though, in this simple case, we are able to strongly restrict the range of possible solutions.

Solution of the problem:
(1) We can consistently estimate the autocovariance function of Δw_{t}, and

$$
\begin{aligned}
& \gamma_{0}=a_{0}^{2} \sigma_{u}^{2}+a_{1}^{2} \sigma_{u}^{2} \\
& \gamma_{1}=a_{0} a_{1} \sigma_{u}^{2}
\end{aligned}
$$

(2) Normalize temporarily by setting $a_{0}=1$ and get

$$
\frac{\gamma_{0}}{\gamma_{1}}=\frac{1+a_{1}^{2}}{a_{1}}
$$

that is

$$
a_{1}^{2}-\Gamma a_{1}+1=0
$$

where $\Gamma=\gamma_{0} / \gamma_{1}$.
(3) This equation has two solutions, α and $1 / \alpha$, with $|\alpha|>$ 1.
(4) In conclusion,

$$
\Delta w_{t}=(1-\alpha L) U_{t}=\left(1-\alpha^{-1} L\right) U_{t}^{*}
$$

Comments:

(1) We normalize by setting $u_{t}=a^{-1} U_{t}$, with $a+\alpha a=1$ (the same for the starred quantities).
(2) We cannot identify which representation (shock) is the structural one, unless more information is available. In our example, the knowledge that, say, $a_{0}>a_{1}$ would be sufficient to choose α instead of α^{-1}. So, typically, agents may know more than the econometrician.
(3) The representation $\Delta w_{t}=(1-\alpha L) U_{t}$ is called fundamental, and so is the shock U_{t}. The shock U_{t}^{*} is not fundamental. Because $1-\alpha L$ has an inverse in L, that is

$$
(1-\alpha L)^{-1}=1+\alpha L+\alpha^{2} L^{2}+\cdots
$$

then U_{t} belongs to the space spanned by

$$
\Delta w_{t}, \quad \Delta w_{t-1}, \quad \Delta w_{t-2}, \quad \ldots
$$

whereas, denoting by F the forward operator, $F=L^{-1}$,

$$
\frac{1}{1-\alpha^{-1} L}=\frac{\alpha}{\alpha-L}=\frac{-\alpha F}{1-\alpha F}=-\alpha F-\alpha^{2} F^{2}-\alpha^{3} F^{3}+\cdots,
$$

so that U_{t}^{*} lies in the space spanned by

$$
\Delta w_{t+1}, \quad \Delta w_{t+2}, \quad \Delta w_{t+3}, \quad \ldots
$$

(4) You may feel that what I am saying contradicts common practice with ARIMA models. But you should remember that ARIMA models have been introduced with the task of forecasting stochastic processes. Now, as long as forecasting is concerned, more precisely, as long as forecasting w_{t} based on past values of w_{t}, we must choose the fundamental representation. However, my point in this talk and in related work of mine is that forecasting the process w_{t} finding the structural representation for w_{t} are not the same thing, contrary to what usually macroeconomists seem to believe.

I am saying: as long as forecasting is concerned, more precisely, as long as forecasting w_{t} based on past values of w_{t}, we must choose the fundamental representation. However, my point in this talk and in related work of mine is that forecasting the process w_{t} finding the structural representation for w_{t} are not the same thing, contrary to what usually empirical macroeconomists seem to believe.

What I mean here is that usually the fundamentalness problem is solved by macroeconomists by choosing the fundamental representatation, as though their problem was forecasting, whereas they are looking for structural representations and shocks. This is what we do when we estimate and identify structural VAR models.

Firstly we estimate

$$
A(L)\binom{x_{t}}{y_{t}}=\binom{u_{t}}{v_{t}}, \quad A(L)=I-A_{1} L-\cdots-A_{p} L^{p}
$$

whete A_{j} is a 2×2 matrix. Secondly, we invert

$$
\binom{x_{t}}{y_{t}}=B(L)\binom{u_{t}}{v_{t}}
$$

with $B(L)=A(L)^{-1}$. Thirdly, we transform the shocks $\left(u_{t} v_{t}\right)^{\prime}$ by an invertible matrix C,

$$
\binom{x_{t}}{y_{t}}=\left[B(L) C^{-1}\right]\left[C\binom{u_{t}}{v_{t}}\right]=D(L)\binom{a_{t}}{b_{t}}
$$

in such a way that, for example,
(A) a_{t} and b_{t} are unit variance and orthogonal (this is a very common condition)
(B) $D_{21}(0)=0$, that is, the shock a_{t} has no contemporaneous impact on y_{t}.

It is well known that conditions (A) and (B) are sufficient to identify the matrix D .

However, what we usually do not say is that we start with a very strong assumption, that is

The structural shocks a_{t} and b_{t} are fundamental. For,

$$
\begin{aligned}
\binom{a_{t}}{b_{t}} & =C\binom{u_{t}}{v_{t}} \\
& =C\left[\binom{x_{t}}{y_{t}}-A_{1}\binom{x_{t-1}}{y_{t-1}}-\cdots-A_{p}\binom{x_{t-p}}{y_{t-p}}\right],
\end{aligned}
$$

so that a_{t} and b_{t} belong to the space spanned by the past of the observable variables x_{t} and y_{t}. But, as we have seen with our elementary example, fundamentalness is not necessarily a consequence of our knowledge about the variables x_{t} and y_{t}. In particular, there may be shocks that agents see and consider in their maximization schemes, but that an econometrician only observing present and past of the variables x_{t} and y_{t} cannot recover.

Here insert literature.

Going back to our estimation-identification procedure, the steps should be
(I) Again start with

$$
A(L)\binom{x_{t}}{y_{t}}=\binom{u_{t}}{v_{t}}, \quad A(L)=I-A_{1} L-\cdots-A_{p} L^{p}
$$

and

$$
\binom{x_{t}}{y_{t}}=B(L)\binom{u_{t}}{v_{t}}
$$

(II) Then orthonormalize the residuals in any way:
$\binom{x_{t}}{y_{t}}=B(L)\binom{u_{t}}{v_{t}}=\left[B(L) S^{-1}\right]\left[S\binom{u_{t}}{v_{t}}\right]=E(L)\binom{c_{t}}{d_{t}}$.
(III) Now consider the matrices in $L, C(L)$, such that

$$
\begin{equation*}
C(L) C^{\prime}(F)=I \tag{*}
\end{equation*}
$$

Then insert:

$$
\binom{x_{t}}{y_{t}}=[B(L) C(L)]\left[C^{\prime}(F)\binom{u_{t}}{v_{t}}\right]=D(L)\binom{a_{t}}{b_{t}}
$$

and impose that $D_{21}(0)=0$.

Comments:

(a) Matrices fulfilling (*) generalize orthogonal matrices. They are called Blaschke matrices.
(b) The vector

$$
\binom{a_{t}}{b_{t}}=C^{\prime}(F)\binom{u_{t}}{v_{t}}
$$

is a white noise. For

$$
E\left(\begin{array}{ll}
a_{t} & b_{t}
\end{array}\right)\binom{a_{t}}{b_{t}}=E\left(\begin{array}{ll}
u_{t} & v_{t}
\end{array}\right) C(L) C^{\prime}(F)\binom{u_{t}}{v_{t}}=I
$$

(c) The condition that $D_{21}(0)=0$ is no longer sufficient to identify the structural shocks. For, consider a very simple class of Blaschke matrices

$$
C(L)=K\left(\begin{array}{cc}
\frac{\alpha-L}{1-\alpha L} & 0 \\
0 & 1
\end{array}\right),
$$

depending on two parameters, the angle of K and α. Obviously, the condition $D_{21}(0)=0$ is not sufficient to identify both of them.

Alternatively, observing the vector $\left(\begin{array}{ll}x_{t} & y_{t}\end{array}\right)^{\prime}$ is equivalent to observing the matrix autocovariance function

$$
\Gamma_{k}=E\left(\begin{array}{ll}
x_{t} & y_{t}
\end{array}\right)\binom{x_{t-k}}{y_{t-k}}
$$

and therefore the spectral density

$$
f(\theta)=\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty} \Gamma_{k} e^{-i k \theta}
$$

It is well known that if

$$
\binom{x_{t}}{y_{t}}=A(L)\binom{g_{t}}{h_{t}},
$$

wehere $\binom{g_{t}}{h_{t}}$ is an ortonormal white noise, is a representation of ($\left.\begin{array}{ll}x_{t} & y_{t}\end{array}\right)$, then

$$
f(\theta)=\frac{1}{2 \pi} A\left(e^{-i \theta}\right) A^{\prime}\left(e^{i \theta}\right) .
$$

Now, if $C(L)$ is such that $C(L) C^{\prime}(F)=I$, that is $C\left(e^{-i \theta}\right) C^{\prime}\left(e^{i \theta}\right)$ I, then

$$
\begin{aligned}
\binom{x_{t}}{y_{t}} & =A(L)\binom{g_{t}}{h_{t}} \\
& =[A(L) C(L)]\left[C^{\prime}(F)\binom{g_{t}}{h_{t}}\right]=A^{*}(L)\binom{g_{t}^{*}}{h_{t}^{*}}
\end{aligned}
$$

is another representation.

In conclusion, if possible non-fundamentalness of the structural shocks is taken into consideration, the situation is one of dramatic underidentification.

A solution to this problem requires that further conditions are introduced, like the shape of the impulse-response functions, positiveness (the sign, in general) of impulseresponse at given lags, etc.

But this is not the approach I want to consider here.

The interpretation of VAR models should also take into account serious aggregation problems. See Forni, M. and M. Lippi (1997). Aggregation and the microeconomic foundations of dynamic macroeconomics. Oxford: Clarendon press.

Suppose that this is the micromodel:

$$
\binom{\Delta y_{t}^{j}}{x_{t}^{j}}=\left(\begin{array}{cc}
b_{11}^{j}(L) & (1-L) b_{12}^{j}(L) \\
b_{21}^{j}(L) & b_{22}^{j}(L)
\end{array}\right)\binom{u_{t}}{v_{t}}
$$

dove

$$
\binom{u_{t}}{v_{t}}=\left(\begin{array}{llllllll}
u_{1} & u_{2} & \cdots & u_{h} & v_{1} & v_{2} & \cdots & v_{k}
\end{array}\right)^{\prime}
$$

Now aggregate

$$
\binom{\Delta y_{t}}{x_{t}^{p}}=\left(\begin{array}{cc}
B_{11}^{p}(L) & (1-L) B_{12}^{p}(L) \\
B_{21}^{p}(L) & B_{22}^{p}(L)
\end{array}\right)\binom{u_{t}}{v_{t}}
$$

where the index p means that $a_{h k}^{p}(L)$ depends on all the individual $b_{h k}^{j}$:

$$
B_{h k}^{p}(L)=\sum_{j} b_{h k}^{j}(L)
$$

Now consider the Wold representation

$$
\binom{\Delta y_{t}^{p}}{x_{t}^{p}}=\left(\begin{array}{cc}
C_{11}^{p}(L) & C_{12}^{p}(L) \\
C_{21}^{p}(L) & C_{22}^{p}(L)
\end{array}\right)\binom{E_{t}}{F_{t}}
$$

where now the shock vector is two-dimensional, and chose the identification rule

$$
\binom{\Delta y_{t}^{p}}{x_{t}^{p}}=\left(\begin{array}{cc}
A_{11}^{p}(L) & (1-L) A_{12}^{p}(L) \\
A_{21}^{p}(L) & A_{22}^{p}(L)
\end{array}\right)\binom{U_{t}}{V_{t}}
$$

The issue is under what conditions u_{t} depends only on the $u_{j t}$ e V_{t} only on $v_{j t}$.

The answer is disappointing. In order to have "consistent aggregation", it is necessary and sufficient that there exists a 2×2 matrix $d(L)$, fundamental, and such that

$$
d(L)\left(\begin{array}{ll}
B_{11}^{p}(L) & B_{12}^{p}(L) \\
B_{21}^{p}(L) & B_{22}^{p}(L)
\end{array}\right) \quad \text { is diagonal. }
$$

This implies that

$$
\frac{a_{11,1}^{p}(L)}{a_{21,1}^{p}(L)}=\frac{a_{11, s}^{p}(L)}{a_{21, s}^{p}(L)} \quad \frac{a_{12,1}^{p}(L)}{a_{22,1}^{p}(L)}=\frac{a_{12, s}^{p}(L)}{a_{22, s}^{p}(L)}
$$

for all s.

Dynamic factor models.
See the references in the paper "Opening Black Box". We have a set of macroeconomic variables, driven by a small number q of common shocks plus idiosyncratic shocks. Let $q=2$ for simplicity:

$$
x_{i t}=\chi_{i t}+\xi_{i t}=a_{i 1}(L) u_{1 t}+a_{i 2}(L) u_{2 t}+\xi_{i t},
$$

where u_{t} is an orthonormal white noise, $\xi_{i t}$ is orthogonal to u_{t} and to $\xi_{j t}$ for $j \neq i$ at any lead and lag.

Suppose that the variables of interest are the first two, and that we accept an interpretation of the idiosyncratic variables as measurement errors, so that we are only interested in

$$
\begin{aligned}
& \chi_{1 t}=a_{11}(L) u_{1 t}+a_{12}(L) u_{2 t} \\
& \chi_{2 t}=a_{11}(L) u_{1 t}+a_{12}(L) u_{2 t}
\end{aligned}
$$

I claim that if we are able to estimate the spectral density of the vector

$$
\chi_{t}=\left(\begin{array}{llll}
\chi_{1 t} & \chi_{2 t} & \cdots & \chi_{n t}
\end{array}\right)
$$

where $n>2$, then we may solve the fundamentalness problem.

On the other hand, estimating the spectral density of the common-component is precisely what dynamic factor models do. I will only give an idea of the result. Reduce further q to 1 , suppose that we know the spectral density of χ_{t} and that the latter is consistent with

$$
x_{i t}=a_{i}\left(1-\alpha_{i} L\right) u_{t}
$$

This means that

$$
\begin{aligned}
f_{j k}(\theta) & =\frac{1}{2 \pi}\left(g_{j k, 1} e^{-i \theta}+g_{j k, 0}+g_{j k,-1} e^{i \theta}\right) \\
& =\frac{1}{2 \pi} a_{j} a_{k}\left(1-\alpha_{j} e^{-i \theta}\right)\left(1-\alpha_{k} e^{i \theta}\right)
\end{aligned}
$$

Now, if you look at the first variable, the spectral density $f_{11}(\theta)$ is consistent with α_{1} but also with α_{1}^{-1}. The same for the second. But the cross-spectrum $f_{12}(\theta)$ is decisive: assuming for simplicity that $\alpha_{1} \neq \alpha_{2}$, there is only one choice of the α which is consistent.

