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Abstract

This paper shows how the problem of mean-downside risk portfolio

allocation can be cast in terms of penalized least squares (PLS).

The penalty is given by a power function of the returns below a

certain threshold. We derive the asymptotic properties of the PLS

estimator, allowing for possible nonlinearities and misspecification

of the model. We illustrate the usefulness of this new class of es-

timators with two empirical applications. First, we estimate an

autoregressive model, in the spirit of the GARCH literature. Sec-

ond, we suggest a simple strategy to derive the optimal portfolio

weights associated to a mean-downside risk model.
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1 Introduction

The classic paradigm for portfolio allocation is [14] Markowitz’s (1952)

mean-variance model. By using variance as a measure of risk, Markowitz

formalized the intuition that investors optimize the trade off between re-

turns and risks. The use of variance accounts for the great success and

endurance of this model, as it made the portfolio allocation problem an-

alytically tractable. The fact that the variance of a portfolio involves

all covariance terms added economic intuition and allowed to draw rich

empirical implications.

The mean-variance model has been criticized on several grounds (see,

e.g., [5] Bawa 1975 and [10] Fishburn 1977 for an early review of this

criticism). The model rests on the assumptions of quadratic preferences

and/or elliptical symmetric return distributions. Quadratic utility seems

highly implausible, as it implies increasing absolute risk aversion and neg-

ative marginal utility beyond a certain threshold. Elliptical symmetric
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distributions are not realistic as well in that they rule out asymmetry

and skewness typical of financial market returns. In addition, the use of

variance as a measure of risk is not very intuitive, as it weighs equally pos-

itive and negative returns. As [15] Markowitz (1959) himself recognizes,

investors will typically associate risk to failure of attaining a target return.

[10] Fishburn (1977) suggests an alternative mean-risk paradigm for

portfolio allocation, where risk is defined as a probability-weighted func-

tion of deviations below a specific target return. Fishburn’s model is

usually referred to as an (α, t) model, where α represents the degree of

risk aversion of following below the target return t. This model not only

builds on a more appealing definition of risk, but is also compatible with

the standard expected utility model and - unlike mean-variance - with

stochastic dominance relationships. Fishburn’s class of risk measures in-

cludes the Safety First criterion of [19] Roy (1952) and the semivariance

of [15] Markowitz (1959). It is also the building block of the Limited Ex-

pected Losses Risk Management model of [3] Basak and Shapiro (2001),

who show how a Value-at-Risk based risk management might have per-

verse effects on the stability of the financial system in the most adverse

states of the world. Value-at-Risk and the Tail Conditional Expectation

recently proposed by [2] Artzner et al. (1999) are closely related as well.
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Although more appealing from a theoretical point of view, the (α, t)

model hasn’t been as successful as the mean-variance model, essentially

because when dealing with lower partial moments, portfolio optimization

becomes analytically intractable and computationally problematic. The

reason is that there is no one to one correspondence between lower par-

tial moments of individual securities and the aggregated portfolio. This

implies that in general there is no analytical solution to the (α, t) model

of portfolio selection, making the optimization problem cumbersome and

computationally intensive.

This paper suggests an econometric strategy to estimate the general

(α, t) model, deriving the optimal portfolio allocation associated to it. We

start by observing that the expected utility of the (α, t) model with α = 1

is given by the expectile of the portfolio return distribution, where the

expectile is the Asymmetric Least Squares estimator of [17] Newey and

Powell (1987). Rewriting the Asymmetric Least Squares objective func-

tion in terms of penalized least squares, we show that the corresponding

estimator can be generalized to give the expected utility of the (α, t)model

for any α. Since the proposed estimator solves a least squares problem,

we call it projectile.

Recently, several independent contributions have shown that variants
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of the (α, t) model with α = 1 can be efficiently solved by formulating it

in terms of a linear programming problem (see [18] Rockafellar and Urya-

sev 2000, [20] Ruszczynski and Vanderbei 2003, [1] Acerbi 2004, [4] Bas-

sett, Koenker and Kordas 2004, and [6] Bertsimas, Lauprete and Samarov

2004). However, it is not clear how these approaches can accommodate

time varying moments. Furthermore, the fact that α = 1 implies risk

neutrality for returns below target, limits the economic plausibility of this

case. As shown by [5] Bawa (1975) and [10] Fishburn (1977), it is only for

α ≥ 2 that the (α, t) efficient set is a subset of third order stochastically

non-dominated portfolios (i.e., the set of portfolios chosen by individuals

with increasing, concave utility functions which also display decreasing

absolute risk aversion).

The paper is structured as follows. In the next section, we show how

the Asymmetric Least Squares estimator can be generalized in terms of

Penalized Least Squares, and how these relate to Fishburn’s (α, t) model.

In section 3, we derive the large sample properties of nonlinear projectiles

under possible misspecification. Sections 4 and 5 contain two empirical

applications. Section 4 proposes a model for conditional projectiles and

shows how they relate to standard GARCHmodels. We propose an autore-

gressive specification and estimate it on a sample of daily returns. Section
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5 suggests a computationally simple strategy to maximize investor’s ex-

pected utility as a function of portfolio weights. We first notice that (α, t)

model optimization is equivalent to maximize the projectile with respect to

the portfolio weights. Next, applying the implicit function theorem to the

first order conditions of the Penalized Least Squares problem, we derive

the analytical first and second derivatives of the projectile, which are sub-

sequently provided as input into a standard optimization algorithm. The

convexity of (α, t) model’s expected utility as a function of the weights

guarantees that any local maximum is also global, greatly simplifying the

corresponding optimization problem. Using monthly data from the thirty

stocks of the Dow Jones Industrial Average index, we illustrate how the

empirical distribution of the mean-risk optimal portfolio is characterized

by a significantly shorter left tail (and longer right tail) than that of the

mean-variance optimal portfolio. Section 6 concludes.

2 Penalized Least Squares

For a given sample {yt}Tt=1 of realizations from a random variable Y with

c.d.f. F (y), consider the estimator b̂(k, p, q) which minimizes the function

QT (b) ≡ T−1
TX
t=1

φkpq(yt − b) (1)
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over b for fixed values of k, p and q, where φkpq(·) is a convex loss function

of the form

φkpq(λ) = |λ|p + kI(λ < 0)|λ|q k ≥ 0 p, q ≥ 1 (2)

and I(A) denotes the indicator function for the event A. The loss functions

behind regression quantiles ([12] Koenker and Bassett 1978) and asymmet-

ric least squares ([17] Newey and Powell 1987) estimators are special cases

of this loss function. When p = q = 1, φk11(λ) is the regression quantile

loss function. When p = q = 2, φk22(λ) is the asymmetric least squares

loss function.1

Writing the loss function as in (2) highlights how both regression quan-

tiles and asymmetric least squares can be seen as a type of penalized

Lp-norm, whose penalty is represented by the term kI(λ < 0)|λ|q. The

penalty is associated only to negative values of the argument (positive val-

ues for τ > 0.5 - see footnote 1) and is proportional to a power function

of the argument. Ceteris paribus the higher the parameter k, the higher

the penalty and the more extreme the quantile or expectile associated to

1The loss function for regression quantiles and asymmetric least squares is typically

written as rτ (λ) ≡ |τ − I(λ < 0)| · |λ|s, s = 1, 2. Just set k = (1− 2τ)/τ for τ ∈ (0, 0.5)

and notice that the loss functions are identical (up to a factor of proportionality). The

case τ ∈ (0.5, 1) is covered by φ̃kpq(λ) = |λ|p+kI(λ > 0)|λ|q, where k ≥ 0 and p, q ≥ 1.
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it.

This motivates our definition of penalized least squares (PLS).

The PLS loss function is obtained by setting p = 2 in expression (2):

ρkq(λ) = λ2 + kI(λ < 0)|λ|q k ≥ 0 q ≥ 1 (3)

and the corresponding class of estimator m̂(k, q) is defined to minimize

over m

RT (m) ≡ T−1
TX
t=1

ρkq(yt −m) (4)

To determine the class of estimators generated by PLS, consider the

parameter m0(k, q) which minimizes the function E[ρkq(Y −m)] over m.

From the first order conditions of this minimization problem, m0(k, q) is

the solution to the equation

m0(k, q) = E[Y ]− 0.5kq
Z m0(k,q)

−∞
|m0(k, q)− y|q−1dF (y) (5)

Since q ≥ 1 and k ≥ 0, the second order derivative is always positive,

which guarantees that the solution to (5) is unique. Since m0(k, q) solves

a least squares problem, we will call it projectile, as originally suggested

by Gary Chamberlain (see footnote 3 in [17] Newey and Powell 1987).
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2.1 Relationship with the Mean-Risk Utility Model

Terms of the type σ(F ) ≡
R t
−∞ |t − y|αdF (y) like those that appear on

the right hand side of expression (5) have a long tradition in finance, as

they are used to define downside risks of asset portfolios characterized by

uncertain returns. They are special cases of [21] Stone’s (1973) generalized

risk measure and were employed by [10] Fishburn (1977) to develop a

mean-risk model of portfolio choice with risk associated with below-target

returns - referred to as an (α, t) model. This class of risk measures is

motivated by the observation that portfolio managers usually associate

risk with failure to attain a certain target return. t is the threshold with

respect to which deviations are measured, while α measures the relative

impact of small vs. large deviations.

[10] Fishburn (1977) (see his theorem 2) shows that when the (α, t)

model is congruent with the standard expected utility model, the von

Neumann-Morgenstern utility function can be written as

u(y) =

⎧⎪⎪⎨⎪⎪⎩
y if y > t

y − h(t− y)α if y ≤ t

(6)

where h is a positive constant. In this context α can be interpreted as

the parameter which describes the decision maker’s attitude toward risk.

Values of α greater than 1 imply risk aversion with regard to returns below
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target, α = 1 implies risk neutrality, and α < 1 is associated with risk

seeking behavior.

Note that (5) is just the expectation of u(y) as defined in (6), with

t = m0(k, q), α = q − 1 and h = 0.5kq. Therefore the projectile of a

portfolio return distribution can be interpreted as the expected utility of

an agent who wants to maximize expected returns and at the same time

tries to avoid returns below a desired threshold.

An appealing feature of the (α, t)model is its consistency with stochas-

tic dominance criteria. It is well known that mean-variance optimization

may result in portfolio allocations that are dominated in the second-order

stochastic dominance (SSD) sense. That is, there may exist portfolios

which are preferred to the mean-variance optimal one by all risk averse

agents. [5] Bawa (1975) argued for a rule even stricter than SSD for port-

folio selection, the third-order stochastic dominance (TSD). The reason is

that the TSD admissible set contains all those distributions (i.e., portfolio

allocations) which are selected by agents with increasing, risk averse util-

ity functions with positive third derivative. The restriction on the third

derivative is motivated by the fact that positive third derivatives are im-

plied by decreasing absolute risk aversion, a feature that seems consistent

with observed economic behavior. [10] Fishburn (1977) (see his theorem
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3) shows that the (α, t) efficient set is a subset of the first-order stochastic

dominance efficient set for any α ≥ 0, a subset of the SSD efficient set for

any α ≥ 1, and a subset of the TSD efficient set for any α ≥ 2, except for

distributions with equal mean and equal risk. Therefore, asset allocation

by (α, t) model will result in optimal portfolios that are not stochastically

dominated.

3 Large Sample Properties of Penalized Least

Squares Estimators

In this section we develop the asymptotic theory for nonlinear PLS esti-

mators under possible misspecification. In the light of the discussion in

the preceding section, we will limit ourselves to the case q ≥ 2, to which

corresponds a non risk seeking behavior of the optimizing agent.

Consider a sample of observations {yt}Tt=1 generated by the following

model:

yt = µkqyt + εkqt µkqεt = 0 (7)

where µkqεt is the (k, q)-projectile of ε
kq
t , defined as the solution of µ

kq
εt =

Et[ε
kq
t ]− 0.5kq

R µkqεt
−∞ |µ

kq
εt − ε|q−1dFt(ε), Ft(ε) is the c.d.f. of the error term

εkqt , conditional on all the past information Ωt, and Et[ε
kq
t ] ≡ E[εkqt |Ωt] is
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the conditional expectation. The conditional projectile is given by:

µkqyt = argmin
m

Et

£
ρkq(yt −m)

¤
(8)

where ρkq(λ) is defined in (3).

We will develop the large sample properties of projectiles under pos-

sible model misspecification. It is well-known that misspecification may

bias confidence intervals and invalidate hypothesis tests based on conven-

tional variance-covariance matrices (see, for instance, [22] White 1994). It

is therefore desirable to develop a theory for inference that is robust to it.

Denote with ft(β) ≡ f(Wt;βkq) the proposed projectile specification,

where Wt ∈ Ωt, β ∈ Rp, and we suppressed the subscripts k and q from

βkq for notational convenience. We give the following definition of cor-

rect model specification (see [11] Kim and White 2003 for an analogous

definition in the regression quantile context):

Definition 1 (Correct Specification of the Projectile Model) - A

conditional projectile model {ft(β) : Rht × B → R, β ∈ Rp, ht, p ∈ N, t =

1, 2, ...} is correctly specified for µkqyt , if and only if there exists a vector β0 ∈

Rp such that ft(β0) = µkqyt almost surely, for a given choice of explanatory

variables {Wt}Tt=1.

We impose the following projectile version of the orthogonality condi-
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tion, which allows for possible misspecification of the conditional projec-

tile:

AssumptionM (Misspecification) - There exists β∗ such that E[ψkq(ut)ft(β)] =

0, for all β ∈ B (a compact subset of Rp), where ut ≡ yt − ft(β
∗)and

ψkq(λ) ≡ −2λ+ kqI(λ < 0)|λ|q−1.

The standard projectile orthogonality condition would beEt[ψkq(ut)] =

0. The following theorem shows that assuming that Et[ψkq(ut)] = 0, which

is stronger than assumption M, is equivalent to correct model specification.

All the proofs are in Appendix B.

Theorem 2 (Correct Model Specification) - Et[ψkq(ut)] = 0 if and

only if the conditional projectile model is correctly specified.

Therefore it is possible under assumption M that the conditional pro-

jectile model may be misspecified in the sense of definition 1.

The following theorems establish consistency and asymptotic normality

of the PLS estimator, under possible misspecification.

Theorem 3 (Consistency) - Under assumptions M and C0-C6 in Ap-

pendix A and for any k ≥ 0, β̂T
p→ β∗, where β̂T = argmin

β
T−1

PT
t=1 ρkq(yt−

ft(β)).

To prove consistency we verify that the conditions of theorem 3.5 in
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[22] White (1994) are satisfied. Assumption C1 in Appendix A requires

that the proposed parameterization for the projectile is continuous in the

parameter space. Assumptions C2 and C3 are dominance conditions, while

assumption C5 is a standard identification condition.

Define:

wt(k, q) ≡ 2 + kq(q − 1)I(ut < 0)|ut|q−2 (9)

ZT ≡ E[T−1
TX
t=1

wt(k, q)∇βft(β
∗)∇0βft(β∗)] (10)

VT ≡ E[T−1
TX
t=1

ψkq(ut)
2∇βft(β

∗)∇0βft(β∗)] (11)

where ∇βft(β
∗) ≡ ∂

∂β
ft(β)|β=β∗ .

Theorem 4 (Asymptotic Normality) - If q ≥ 2, under the assump-

tions of theorem 3 and assumptions AN1-AN5 in Appendix A,
√
TV

−1/2
T ZT (β̂T−

β∗)
d→ N(0, I).

Although the PLS objective function in (3) is continuous and differen-

tiable, the presence of the indicator function implies that the first deriv-

ative is not differentiable. Therefore the asymptotic distribution cannot

be obtained via the typical Taylor expansion applied to the first order

conditions. We apply, instead, the techniques for nonsmooth objective

functions as described by [16] Newey and McFadden (1994), based on

stochastic equicontinuity.
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Note that when q = 2 and ft(β) is linear, the variance-covariance

matrix is identical to the one derived in theorem 3 of [17] Newey and

Powell (1987). If k = 0, we get the variance-covariance matrix of nonlinear

least squares, as in [23] White and Domowitz (1984).

Consistent estimates of the variance-covariance matrices can be ob-

tained by standard plug-in estimators:

Theorem 5 (Variance-Covariance Matrix Estimation) - Under the

assumptions of theorem 4,

V̂T
p−→ p limVT

ẐT
p−→ p limZT

where V̂T and ẐT are the empirical analogues of VT and ZT evaluated at

the estimated parameter β̂T .

4 Modeling Time-Varying Conditional Pro-

jectiles

A defining feature of daily financial returns is that their second moments

tend to be highly autocorrelated. Time-varying second moments have

been successfully captured by GARCH models of [8] Engle (1982) and [7]
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Bollerslev (1986). [9] Engle and Manganelli (2004) have shown that the

typical autocorrelation found in the GARCH variance characterizes also

the quantiles of financial return distributions. The intuition is that since

the quantile is linked to the variance of a distribution, it ought to share

similar empirical properties.

By the same token, since the projectile is associated with the lower

partial moments of the distribution, it is reasonable to expect it to exhibit

some degree of autocorrelation when estimated with daily asset returns.

To gain an insight on how to model conditional projectiles, it is worthwhile

to explore their relationship with the standard GARCH model.

Proposition 6 - Consider the following GARCH(1,1) model:

yt = σtεt εt v i.i.d.(0, 1) (12)

σ2t = γ0 + γ1y
2
t−1 + γ2σ

2
t−1

The corresponding (k, q)-projectile is given by:

ft(β) = ct[γ0 + γ1y
2
t−1 + γ2(ft−1/ct−1)

2]1/2

where ct ≡
R f̃t
−∞ |f̃t − ε|q−1dF (ε), f̃t is the (k̃t, q)-projectile of ε and k̃t ≡

kσq−2t . If q = 2 and/or if γ1 = γ2 = 0 (i.e. if there is no heteroscedastic-

ity), ct = ct−1 = c.

16



The above proposition shows that, since ct will be in general time

varying, there is no one to one relationship between the parameters of a

GARCHmodel and the parameters of the conditional projectile. However,

there is no a priori reason to define the DGP starting from a GARCH

model. One could define the DGP starting directly from the projectile

model. Motivated by the projectile derived in the above proposition, we

propose the following specification:

ft(β) = β0 + β1|yt−1|+ β2ft−1(β) (13)

Apart from neglecting the time varying ct, this specification could be de-

rived from a GARCH process where we model the standard deviation,

rather than the variance. Analogously to the Conditional Autoregressive

Value at Risk (CAViaR) model by [9] Engle andManganelli (2004), the au-

toregressive term β2ft−1(β) ensures that the projectile changes smoothly

over time. The idea is that the autocorrelation typical of second moments

is reflected in autocorrelated lower partial moments. The role of β1|yt−1|

is to link the time t projectile to past returns.

Other specifications allowing for asymmetries in the projectile reaction

to news are possible (see, for instance, the different models proposed by

[9] Engle and Manganelli 2004).

Similarly to the CAViaR, the projectile model is more general than
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the corresponding GARCH model, as it doesn’t require to impose a full

structure on the underlying distribution. Moreover, unlike CAViaR mod-

els, both the minimization problem and the estimation of the variance-

covariance matrix are much simpler to perform, since the loss function is

everywhere differentiable.

4.1 Empirical Application

We estimated model (13) on a time series of daily IBM log returns. The

price series was downloaded from Datastream and ranges from Novem-

ber 14, 1997 to 14 July, 2005, for a total of 2000 observations. We ini-

tialized each projectile with the unconditional projectile of the first 200

observations. We experimented with different initial conditions for the β

parameters using random numbers between 0 and 1. Tolerance levels for

function and parameter values were set to 10−4. We used the command

fminsearch in MATLAB as optimization algorithm, which is based on the

Nelder-Mead simplex. Convergence is fast and very robust to the choice

of initial conditions.

In table 1 we report parameter estimates and related standard errors

for different cases. We consider three degrees of risk aversion (q = 2, 3

and 4) and three values for the penalty k in the PLS loss function (3).
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k = 5 k = 10 k = 20

q = 2 q = 3 q = 4 q = 2 q = 3 q = 4 q = 2 q = 3 q = 4

β0 -0.01 -0.06 -0.08 -0.04 -0.09 -0.11 -0.06 -0.11 -0.14

s.e. (0.00) (0.12) (0.18) (0.01) (0.18) (0.18) (0.01) (0.27) (0.17)

β1 -0.02 -0.17 -0.28 -0.06 -0.23 -0.28 -0.09 -0.28 -0.27

s.e. (0.00) (0.20) (0.25) (0.01) (0.27) (0.21) (0.01) (0.34) (0.17)

β2 0.98 0.89 0.92 0.93 0.89 0.93 0.92 0.89 0.94

s.e. (0.00) (0.12) (0.09) (0.01) (0.13) (0.07) (0.01) (0.15) (0.05)

Table 1: Parameter estimates and standard errors for projectile with dif-

ferent degree of risk aversion q and different k.

The striking feature of these results is that the autoregressive coeffi-

cient β2 associated to the lagged values of the projectile in (13) hovers

around 0.90 for all estimated models. This indicates that conditional pro-

jectiles tend to be very persistent, reflecting the clustering of volatilities

typically found in financial data. This finding is consistent with the re-

sults from the large GARCH literature and with the more recent results

on conditional quantiles by [9] Engle and Manganelli (2004). For values

of q greater than 2, the coefficients β0 and β1 become insignificant, but

the autoregressive coefficient remains highly significant.
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Figure 1: Figure 1: Projectiles for different risk aversion parameters q and

k = 5. IBM daily returns.

In figure 1, we provide an illustration of the dynamic behaviour of the

conditional projectile for different degrees of risk aversion q and k = 5.

The plots resemble the typical GARCH variances and CAViaR quantiles.

The projectile tends to be very persistent, reacting to large realizations

of the previous day returns. Increasing the coefficient of risk aversion q

results as expected in a lower projectile.
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5 Asset Allocation

As explained in the introduction, the main drawback of [10] Fishburn’s

(1977) (α, t) model is that when dealing with lower partial moments of a

distribution, the associated portfolio optimization problem becomes com-

putationally intractable. In this section, we show how the asset allocation

problem associated to the projectile framework developed in this paper is

actually computationally trivial.

Consider a portfolio with n + 1 assets. Denote with a the n-vector

of weights associated to the first n assets entering a given portfolio, and

denote with yt(a) the portfolio return at time t, where the dependence on

the individual assets weights has been made explicit. Since all the weights

must sum to one, note that
Pn

i=1 ai = 1− an+1, where an+1 is the weight

associated to the (n+ 1)th asset of the portfolio.

As noted in section 2, the projectile gives the expected mean-risk utility

associated to a given portfolio a. Agents will choose the portfolio alloca-

tion a∗ that maximizes their expected utility. The portfolio allocation

problem can therefore be reformulated as follows:

max
a

µkqyt (a) (14)

where µkqyt has been defined in (7). A nice feature of projectiles is that
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they are convex functions of portfolio weights as shown in the following

theorem.

Theorem 7 (Convexity) - µkqyt (a) with k ≥ 0 and q ≥ 2 is convex with

respect to a.

Convexity greatly simplifies the numerical optimization problem, as it

guarantees that any local maximum is also global. Note that when in the

loss function (3) we set q = 2, the first order conditions are piecewise linear

(when modeling unconditional projectiles). Variants of this special case

can be framed as a linear programming problem and have been studied

by [18] Rockafellar and Uryasev (2000), [20] Ruszczynski and Vanderbei

(2003), [1] Acerbi (2004), [4] Bassett, Koenker and Kordas (2004), and [6]

Bertsimas, Lauprete and Samarov (2004).

To solve the optimization problem in (14), rewrite the projectile specifi-

cation as ft(a, β̂T (a)), to highlight its dependence on the portfolio weights.

Next, note that the methodology of [13] Manganelli (2004) allows one to

compute the analytical first and second derivatives of ft(a, β̂T (a)) w.r.t.

a, which can then be fed to a standard optimization algorithm.

The key insight is to recognize that the projectile is a function of

the portfolio weights not only through the portfolio returns that enter

its specification, but also through the estimated parameters, which are
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function of the portfolio returns and therefore also of the portfolio weights:

∇aft(a, β̂T (a)) = ∇aft(a, β̂T ) +∇aβ̂
0
T (a)∇βft(a, β̂T ) (15)

∇aa0ft(a, β̂T (a)) = ∇aa0ft(a, β̂T ) +∇aβ0ft(a, β̂T )∇a0β̂T (a) +

+∇a0vec
³
∇aβ̂

0
T (a)

´³
∇βft(a, β̂T )⊗ In

´
+

+∇aβ̂
0
T (a)∇βa0ft(a, β̂T ) (16)

where ∇aft(a, β̂T ) ≡ ∂
∂a
ft(a, β)|β=β̂T , ∇aβ0ft(a, β̂T ) ≡ ∂2

∂a∂β0ft(a, β)|β=β̂T ,

In is an (n,n) identity matrix and vec and ⊗ denote the vec and Kronecker

operator, respectively. To evaluate equations (15) and (16), it is necessary

to derive ∇aβ̂
0
T (a) and ∇a0vec

³
∇aβ̂

0
T (a)

´
, the other terms being easily

obtained. These derivatives can be computed by applying the implicit

function theorem to the first order conditions of the PLS maximization

problem. The first order conditions of the PLS maximization problem are:

ϕkq(a, β̂T (a)) ≡ T−1
TX
t=1

ψkq(yt − ft(β̂T ))∇βft(β̂T ) = 0 (17)

Application of the implicit function theorem as in theorem 1 of [13] Man-
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ganelli (2004) gives:2

∇aβ̂
0
T (a) = −[∇aϕ

0
kq(a, β̂T )][∇β0ϕkq(a, β̂T )]

−1 (18)

∇a0vec
³
∇aβ̂

0
T (a)

´
= −

³
[∇β0ϕkq(a, β̂T )]

−1 ⊗∇aβ̂
0
T (a)

´
∇a0vec[∇β0ϕkq(a, β̂T )]

−
³
[∇β0ϕkq(a, β̂T )]

−1 ⊗ In
´
∇a0vec[∇a0ϕkq(a, β̂T )] (19)

5.1 Empirical Application

We apply our methodology to monthly log returns of the 30 stocks of the

Dow Jones Industrial Average (DJIA) index, as of July 15, 2005. The

sample runs from January 1, 1987 to July 1, 2005, for a total of 223

observations.

To compare our results with standard mean-variance optimizations,

we model the projectile as a constant, i.e. ft(β) = β. This simplifies the

calculations of first and second derivatives considerably. Conceptually,

however, the same framework would work with time-varying conditional

projectiles as well.

When q > 2, applying the formulae for the first and second derivatives,

2Note that ϕkq(a, β̂T (a)) is not differentiable whenever yt = ft(β̂T ). However, the

points over which this condition is satisfied form a set of measure zero.
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we get:

∇aϕ
0
kq(a, β̂T ) = −T−1

TX
t=1

∇ayt(a)[2 + kq(q − 1)I(yt < β̂T )(20)

(β̂T − yt)
q−2]

∇β0ϕkq(a, β̂T ) = T−1
TX
t=1

[2 + kq(q − 1)I(yt < β̂T )(β̂T − yt)
q−2](21)

∇a0vec[∇a0ϕkq(a, β̂T )] = T−1
TX
t=1

[2 + kq(q − 1)(q − 2)I(yt < β̂T ) (22)

(β̂T − yt)
q−3]∇ayt(a)∇0ayt(a)

∇a0vec[∇β0ϕkq(a, β̂T )] = −T−1
TX
t=1

[2 + kq(q − 1)(q − 2)I(yt < β̂T ) (23)

(β̂T − yt)
q−3]∇ayt(a)

We computed the optimal portfolio allocation for two coefficients of

risk aversion, q = 2.5 and q = 4.5. The penalty weight k was set equal

to 10. Convergence is very fast and robust to different initial conditions.

This is not surprising, given the convexity result of theorem 7. In figure 2,

we report the cumulative distribution functions of the two optimal mean-

risk portfolios, together with the cumulative distribution functions of the

DJIA portfolio (using the weights as of July 15, 2005) and of the standard

optimal mean-variance portfolio. Summary statistics for the distributions

of the different portfolios are reported in table 2.
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Figure 2: Empirical c.d.f. of DJIA and different mean-risk optimal portfolios.

It is obvious from the figure that the optimal mean-risk portfolio man-

ages to reduce the occurrence of events in the left tail with respect to the

mean-variance optimal portfolios. Consistently with economic intuition,

higher risk aversion is associated to a shorter left tail. In the case of

q = 4.5 the maximum loss is limited to less than 6%. This result seems to

be particularly striking as the sample includes the crash of October 1987,

which resulted in a monthly loss of more than 26% for the DJIA portfolio.

The second nice feature of the mean-risk portfolios is that limited
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Minimum Maximum Mean Variance Skewness Kurtosis

DJIA -26.43 15.99 0.92 22.35 -0.95 8.02

M-V -17.11 13.87 1.09 13.71 -0.49 5.61

q=2.5 -10.37 18.12 1.30 19.70 0.50 3.40

q=4.5 -5.78 15.52 1.09 22.01 0.47 2.70

Table 2: Summary statistics for the different optimal portfolios and DJIA.

downside risk does not come at the expenses of upside opportunities. The

maximum return of the mean-variance portfolio is lower than the maxi-

mum return of the portfolio with risk aversion equal to 4.5 and consider-

ably lower than that for q = 2.5.

The average return for the mean-risk portfolios are both higher than

the historical average of the DJIA (the average return of the mean-variance

model is equal to that of the mean-risk with q = 4.5 by construction).

Not surprisingly, the variance is lowest for the mean-variance portfolio.

However, this comes at the expenses of negative skewness and much higher

kurtosis with respect to mean-risk portfolios.
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6 Conclusion

This paper developed an econometric framework to estimate the expected

utility of an agent who wants to maximize the trade off between expected

returns and downside risk of a portfolio. We showed how the estimation

problem can be cast in terms of penalized least squares, where the penalty

is associated to portfolio returns below a certain threshold. We derived

the large sample properties of the estimator, allowing for possible nonlin-

earities and misspecification of the model. We illustrated the usefulness

of this new class of estimators with two empirical applications. First, we

modeled the daily behavior of the estimator using an autoregressive spec-

ification, in the spirit of the GARCH models. We showed how the process

tends to be very persistent and characterized by high autoregressive coeffi-

cients, as typically found in the GARCH literature. Second, we proposed

a simple strategy to derive the optimal asset allocation associated to a

mean-downside risk expected utility. The results show that the empirical

c.d.f. of the mean-downside risk optimal portfolio tends to have much

shorter left tail and longer right tail than that associated to the standard

mean-variance model.
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7 Appendix A - Assumptions

Define ut ≡ yt − ft(β
∗) and δt(β) ≡ ft(β)− ft(β

∗).

Consistency Assumptions

C0. The observed data are a realization of a stochastic process X ≡

{Xt : Ω → Rv, v ∈ N, t = 1, 2, ...} on a complete probability space

(Ω, F, P ), where Ω = ×∞t=1Rv.

C1. ft(β) : Rht × B → R is such that is measurable-F for β ∈ B, a

compact subset of Rp, and is continuous in B for all ωt, the realizations

of a finite history of explanatory variables W t = (W 0
1, ...,W

0
t)
0.

C2. E|ut|q <∞, ∀t.

C3. E|ft(β)|q <∞ for each β ∈ B and for all t.

C4.
©
ρkq(ut − δt(β))

ª
obeys the uniform law of large numbers.

C5. For any ξ > 0, there exists υ > 0 and T0 ∈ N such that, for all

T > T0, min
||β−β∗||>ξ

T−1
PT

t=1E([δt(β)]
2) > υ.

Asymptotic Normality Assumptions

AN0. β∗ is an interior point of B.

AN1. ft(β) is twice differentiable for each β ∈ B. Moreover, for all β

and γ in a neighborhood of β∗ such that ||β − γ|| < d for d sufficiently

small and for all t:
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(i) ||∇βft(β)|| ≤ F1(Wt)

(ii) ||∇ββft(β)|| ≤ F2(Wt)

where F1(Wt) and F2(Wt) are some possibly stochastich functions of Wt,

such that E[F1(Wt)
q] <∞ and E[F1(Wt)

q−1F2(Wt)] <∞.

AN2. There exists some (possibly) stochastic function ofXt ≡ [Yt,W 0
t ]
0,

U1(Xt), such that for all t |ut| < U1(Xt), where E[U1(Xt)
q−2F1(Wt)

2] <∞

and E[U1(Xt)
q−1F2(Wt)] <∞.

AN3. {T−1
PT

t=1

£
ψkq(ut)∇ββft(β) + wt(k, q)∇βft(β)∇0βft(β)

¤
} satis-

fies the uniform law of large numbers, for β in a neighborhood of β∗,

where ψkq(λ) and wt(k, q) were defined in Assumption M and equation

(9), respectively.

AN4. The sequence {
√
T
PT

t=1 ψkq(ut)∇βft(β
∗)} obeys the central

limit theorem.
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8 Appendix B - Proofs of theorems in the

text

Proof of theorem 2 (Correct Model Specification) - Define ηt(β) ≡

ft(β)− µkqyt , so that ε
kq
t = ut + ηt(β

∗). Then:

Et[ψkq(ut)] = Et[−2ut + kqI(ut < 0)|ut|q−1]

= Et[−2(εkqt − ηt(β
∗)) + kqI(εkqt < ηt(β

∗))|ηt(β∗)− εkqt |q−1]

= Et[−2εkqt + kqI(εkqt < 0)|εkqt |q−1 +

+2ηt(β
∗)+ kq I(εkqt < ηt(β

∗))|ηt(β∗)− εkqt |q−1 − kqI(εkqt < 0)|εkqt |q−1]

Note that the term in the first row in the last equality is zero by (7). The

term in the second row will be always greater than 0 when ηt(β
∗) > 0

and less than 0 when ηt(β
∗) < 0 (this follows by the properties of the

integral). Therefore a necessary and sufficient condition for Et[ψkq(ut)] =

0 is ηt(β
∗) = 0, which is equivalent to assuming that the conditional

expectile model is correctly specified. ¥

Proof of theorem 3 (Consistency) - We verify that the conditions of

theorem 3.5 of [22] White (1994) are satisfied.

Assumption 2.1 in [22] White (1994) is assumption C0. Assumption

2.3 is also satisfied, given that ft(β) is continuous by assumption C1 and
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ρkq(yt − ft(β)) is also continuous in β.

Assumption 3.1(a) in [22]White (1994) requires to show thatE[ρkq(yt−

ft(β))] exists and is finite.

E[ρkq(yt − ft(β))] = E[ρkq(ut − δt(β))]

= E[(ut − δt(β))
2 + kI(ut < δt(β))|δt(β)− ut|q]

≤ E[|ut − δt(β)|2 + k|ut − δt(β)|q]

≤ 2[E|ut|2 +E|δt(β)|2] + k2q−1[E|ut|q +E|δt(β)|q]

because of the inequality E|X+Y |r ≤ cr[E|X|r+E|Y |r], where cr = 2r−1,

r ≥ 1 (see, e.g., Zellner, p.111, Handbook of Econometrics, Vol.1). The

result follows from assumptions C2 and C3.

Assumption 3.1(b) in [22] White (1994) (the continuity of E[ρkq(yt −

ft(β))] in B) follows from the continuity of ρkq(λ) in λ and the continuity

of ft(β) in β (assumption C1). Assumption 3.1(c) in [22] White (1994) is

simply C4.

It remains to verify Assumption 3.2 of theorem 3.5 in [22] White

(1994), that is that E[T−1
PT

t=1 ρkq(ut − δt(β))] has identifiably unique

minimizers β∗T , that is we need to show that E[T
−1PT

t=1 ρkq(ut−δt(β))]−

E[T−1
PT

t=1 ρkq(ut)] > 0 if min
||β−β∗||>ξ

T−1
PT

t=1E[δt(β)
2] > υ. Consider each
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element at time t:

E[ρkq(ut − δt(β))− ρkq(ut)] = E[(ut − δt(β))
2 + kI(ut < δt(β))|δt(β)− ut|q −

−u2t − kI(ut < 0)|ut|q]

= E[u2t + δt(β)
2 − 2δt(β)ut + kI(ut < δt(β))|δt(β)− ut|q −

−u2t − kI(ut < 0)|ut|q+ kq I(ut < 0)|ut|q−1δt(β)− kqI(ut < 0)|ut|q−1δt(β)]

Now note that by assumption M, E[{−2ut + kqI(ut < 0)|ut|q−1}δt(β)] =

E[ψkq(ut)(ft(β)− ft(β
∗))] = 0. Therefore:

E[ρkq(ut − δt(β))− ρkq(ut)] = E[δt(β)
2 + k{I(ut < δt(β))|δt(β)− ut|q −

−I(ut < 0)|ut|q− qI (ut < 0)|ut|q−1δt(β)}]

≡ E[δt(β)
2 + kAt]

If we show that At ≥ 0 ∀t, the result follows. We need to consider two

cases.

i) δt(β) > 0

At = [I(ut < 0) + I(0 ≤ ut ≤ δt(β))]|δt(β)− ut|q − I(ut < 0)[|ut|q + q|ut|q−1δt(β)]

≥ I(ut < 0)[|δt(β)− ut|q − |ut|q − q|ut|q−1δt(β)]

≡ I(ut < 0)Bt
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ii) δt(β) < 0

At = I(ut < δt(β))[|δt(β)− ut|q − |ut|q − q|ut|q−1δt(β)]−

− I(δt(β) ≤ ut ≤ 0)|ut|q−1[−ut + qδt(β)]

The last term is positive if −ut+qδt(β) < 0, which is true whenever q ≥ 1

and δt(β) ≤ ut ≤ 0. Therefore:

At ≥ I(ut < δt(β))[|δt(β)− ut|q − |ut|q − q|ut|q−1δt(β)]

≡ I(ut < δt(β))Bt

Showing that At ≥ 0 is therefore equivalent to showing that Bt ≥ 0

whenever ut < 0:

Bt = |ut|q[|− δt(β)/ut + 1|q − 1 + qδt(β)/ut]

≡ |ut|qCt

Ct is a function of the type f(a; q) = (a+1)q − (1 + aq), where q ≥ 1 and

−1 < a <∞ (this follows from the fact that ut < 0 and ut < δt(β) when

δt(β) < 0). Since f(a; q) is globally concave and achieves a minimum at

f(0; q) = 0, we have shown that Ct ≥ 0 =⇒ Bt ≥ 0 =⇒ At ≥ 0. Therefore

E[ρkq(ut − δt(β))− ρkq(ut)] ≥ E[δt(β)
2] ∀t and:

E[T−1
TX
t=1

ρkq(ut − δt(β))]−E[T−1
TX
t=1

ρkq(ut)] ≥ E[T−1
TX
t=1

δt(β)
2] > 0
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if min
||β−β∗||>ξ

T−1
PT

t=1E[δt(β)
2] > υ, by assumption C5. ¥

Proof of theorem 4 (Asymptotic Normality) - Since the PLS objec-

tive function is not twice differentiable, we need to resort to asymptotic

normality results for nonsmooth objective function. We show that the

conditions of theorems 7.2 and 7.3 of [16] Newey and McFadden (1994)

hold. Define the following:

g(xt;β) ≡ ψkq(yt − ft(β))∇βft(β) where xt ≡ (yt, ω0t)0

g0(β) ≡ E[g(xt;β)]

ĝT (β) ≡ T−1
TX
t=1

g(xt;β)

To apply theorem 7.2 of [16] Newey and McFadden (1994), we need to

check the following conditions:

1. g0(β
∗) = 0

2. r(xt;β) = ||g(xt;β) − g(xt;β
∗) −∆(xt)(β − β∗)||/||β − β∗|| → 0 as

β → β∗, where ∆(xt) is some function of xt.

3. E

"
sup

||β−β∗||<ε
r(xt;β)

#
<∞ for ε > 0

4. T−1
PT

t=1∆(xt)
p→ Z ≡ E [∆(xt)]

5. β∗ is an interior point of B.
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6.
√
T ĝT (β

∗)
d→ N(0, V )

If these conditions are satisfied, then theorems 7.2 and 7.3 of [16] Newey

and McFadden (1994) imply that
√
T (β̂T − β∗)

d→ N(0, Z−1V Z−1).

Let ∆(xt) ≡
£
ψkq(ut)∇ββft(β

∗) + wt(k, q)∇βft(β
∗)∇0βft(β∗)

¤
. Condi-

tions 4, 5 and 6 are automatically satisfied by assumptions AN3, AN0 and

AN4, respectively.

For condition 1, we first check that E|ψkq(ut)∇βft(β)| <∞ and then

apply the Lebesgue Dominated Convergence Theorem (LDCT).

E|ψkq(ut)∇βft(β)| = E|[−2ut + kqI(ut < 0)|ut|q−1]∇βft(β)|

≤ E[(2|ut|+ kq|ut|q−1)||∇βft(β)||]

≤ E[max[2, kq]|ut|q−1||∇βft(β)||]

≤ E[max[2, kq]U1(Xt)F1(Wt)||]

< ∞

Having found a dominating function for ψkq(ut)∇βft(β) with finite ex-

pected value, we can apply the LDCT:

E|ψkq(ut)∇βft(β
∗)| = ∂

∂β
E[ψkq(ut)ft(β)]|β=β∗

= 0

by assumption M.
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To establish condition 2, consider the components of r(xt;β):

g(xt;β)− g(xt;β
∗) ≡ ψkq(ut − δt(β))∇βft(β)− ψkq(ut)∇βft(β

∗)

= −2(ut − δt(β))∇βft(β) + kqI(ut < δt(β))|δt(β)− ut|q−1

+2ut∇βft(β
∗)− kqI(ut < 0)|ut|q−1∇βft(β

∗)

= −2ut(∇βft(β)−∇βft(β
∗)) + 2δt(β)∇βft(β)+

+ kq{I(ut < δt(β))|δt(β)− ut|q−1(∇βft(β)−∇βft(β
∗))+

+ [I(ut < δt(β))|δt(β)− ut|q−1 − I(ut < 0)|ut|q−1]∇βft(β
∗)}

= [−2ut + kqI(ut < δt(β))|δt(β)− ut|q−1]∇ββft(β̃)(β − β∗)+

+ 2∇βft(β)∇
0

βft(β̃)(β − β∗)+

+ (q − 1)kqI(ut < δt(β))|δt(β)− ut|q−2∇βft(β
∗)∇0

βft(β̃)(β − β∗)

where β̃ comes from the mean value theorem.

Substituting everything into r(xt, β), we get:

r(xt, β) ≤ ||[−2ut+kqI(ut < δt(β))|δt(β)−ut|q−1]∇ββft(β̃)−ψkq(ut)∇ββft(β
∗)||+

+ ||2∇βft(β)∇
0
βft(β̃)− 2∇βft(β

∗)∇0
βft(β

∗)||+

+ ||(q − 1)kqI(ut < δt(β))|δt(β)− ut|q−2∇βft(β
∗)∇0

βft(β̃)−

− (q − 1)kqI(ut < 0)|ut|q−2∇βft(β
∗)∇0

βft(β
∗)||
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≡ r1(β̃) + r2(β̃) + r3(β̃)

These functions are continuous in β and obviously converge to zero almost

surely as β → β∗.

We next prove condition 3. From the previous step we have:

sup
||β−β∗||<ε

r(xt;β) ≤ sup
||β−β∗||<ε

h
r1(β̃) + r2(β̃) + r3(β̃)

i
We check element by element. For r1(β̃), note first that if δt(β) < 0,

I(ut < δt(β))|δt(β)−ut|q−1 ≤ |ut|q−1 and if δt(β) > 0, I(ut < δt(β))|δt(β)−

ut|q−1 ≤ I(−δt(β) < ut < δt(β))|2δt(β)|q−1 + I(ut < −δt(β))|ut|q−1 ≤

|2δt(β)|q−1+|ut|q−1. Therefore, I(ut < δt(β))|δt(β)−ut|q−1 ≤ |2δt(β)|q−1+

|ut|q−1 = |2∇
0
βft(β̃)(β − β∗)|q−1 + |ut|q−1.

r1(β̃) ≤ 4|ut| · ||∇ββft(β)||+ kqεq−1||2∇βft(β)||q−1 · ||∇ββft(β)||+ 2kq|ut|q−1 · ||∇ββft(β)||

≤ 4U1(Xt)F2(Wt) + kq(2ε)q−1F1(Wt)
q−1F2(Wt) + 2kqU1(Xt)

q−1F2(Wt)

whose expectation is finite by assumptions AN1 and AN2.

sup
||β−β∗||<ε

r2(β̃) ≤ 4F1(Wt)
2

For r3(β̃), note that reasoning as before I(ut < δt(β))|δt(β)− ut|q−2 ≤

|2∇0

βft(β̃)(β − β∗)|q−2 + |ut|q−2.

r3(β̃) ≤ (q − 1)kq(2ε)q−2||∇βft(β)||q + 2(q − 1)kq|ut|q−2||∇βft(β)||2

≤ (q − 1)kq(2ε)q−2F1(Wt)
q + 2(q − 1)kqU1(Xt)

q−2F1(Wt)
2
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whose expectation is finite by assumptions AN1 and AN2.

To conclude the proof, note that

T−1
TX
t=1

ψkq(ut)∇ββft(β
∗)

p→ T−1
TX
t=1

E[ψkq(ut)∇ββft(β
∗)]

= T−1
TX
t=1

∂2

∂β∂β
0E[ψkq(ut)ft(β)]β=β∗

= 0

by the LDCT and assumption M. ¥

Proof of theorem 5 (Variance-Covariance Matrix Estimation) -

Define ṼT ≡ T−1
PT

t=1 ψkq(ut)
2∇βft(β

∗)∇0βft(β∗). It suffices to show that

V̂T − ṼT
p→ 0, asṼT − VT

p→ 0 is guaranteed by assumption AN4.

V̂T − ṼT ≡ T−1
TX
t=1

{ψkq(ût)
2∇βft(β̂)∇0βft(β̂)− ψkq(ut)

2∇βft(β
∗)∇0βft(β∗)}

= T−1
TX
t=1

{ψkq(ût)
2∇βft(β̂)[∇0βft(β̂)−∇0βft(β∗)] +

+ψkq(ût)
2[∇βft(β̂)−∇βft(β

∗)]∇0βft(β∗) +

+[ψkq(ût)
2 − ψkq(ut)

2]∇βft(β
∗)∇0βft(β∗)}

Consistency of β̂ guarantees that the expressions in the last three lines

converge to zero in probability. The proof for ẐT is similar.
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Proof of proposition 6 - The (k, q)-projectile of yt is

ft = −0.5kq
Z ft

−∞
|ft − y|q−1dF (y)

= −0.5σq−1t kq

Z ft/σt

−∞
|ft/σt − ε|q−1dF (ε)

Rearranging:

ft/σt = −0.5σq−2t kq

Z ft/σt

−∞
|ft/σt − ε|q−1dF (ε)

Note that ft/σt is the (k̃t, q)-projectile of ε, where k̃t ≡ σq−2t k. The result

follows from noting that k̃t is constant if q = 2 and/or if σt is constant,

and from the fact that ε is i.i.d. ¥

Proof of theorem 7 (Convexity) - Let y, y1 and y2 denote the returns

associated to portfolios a, a1 and a2, respectively, where a = λa1+(1−λ)a2

and 0 < λ < 1. Define also µ ≡ E[y − 0.5kqI(µ > y)|µ − y|q−1}] and

µi ≡ E[yi− 0.5kqI(µi > yi)|µi− yi|q−1], i = 1, 2. Finally, define x ≡ µ− y

and xi ≡ µi − yi, i = 1, 2.

We need to show that µ ≥ λµ1+(1−λ)µ2. Suppose, by contradiction,

that µ ≤ λµ1 + (1− λ)µ2. Then, noticing that −I(x > 0)|x|q−1 is convex

40



in x:

µ ≥ E[y − 0.5kqI(λµ1 + (1− λ)µ2 > y)|λµ1 + (1− λ)µ2 − y|q−1]

= E[y − 0.5kqI(λx1 + (1− λ)x2 > 0)|λx1 + (1− λ)x2|q−1]

≥ E[y − 0.5kq{λI(x1 > 0)|x1|q−1 + (1− λ)I(x2 > 0)|x2|q−1}]

= λE[y1 − 0.5kqλI(µ1 > y1)|µ1 − y1|q−1] + (1− λ)E[y2 − 0.5kqλI(µ2 > y2)|µ2 − y2|q−1]

= λµ1 + (1− λ)µ2

which contradicts the initial assumption. ¥
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