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Abstract

Execution of complex cognitive tasks is often analyzed as an exercise of infor-

mation acquisition and belief updating. We challenge this view in the context of a

non-incremental task, namely, the knapsack problem. First, we provide a theoret-

ical argument why Bayesian updating makes little sense in this context. Second,

we provide experimental evidence against the Bayesian approach by comparing

the quality of problem solving under two treatments: prizes; markets. We find

that Bayesian theory cannot make sense of the data: both systems work equally

well, while trading is abundant in the market setup and prices are informative but

noisy. The experimental data provide suggestions for a new theory of discovery of

solutions in non-incremental tasks.
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1 Introduction

In the standard economic model, whatever is not known is treated as a random variable

over which one holds a prior belief. Learning and discovery are modeled as an application

of Bayes’ law to construct a posterior.1 Though this may be close to how we think when

we try to guess the number of coins in a large closed jar, it is not very descriptive

of how Picasso thought of “Guernica”. Here we explore this latter form of discovery.

We run experiments with this purpose, and also to demonstrate that consideration of

the characteristics of the discovery problem at hand, matters in economically relevant

situations.

The creation of a piece of art like Guernica is not readily achieved in the laboratory.

This is why we resort to a cognitive task that captures the features of discovery that

we care about – mainly, that it cannot readily be translated into Bayesian learning.

The cognitive task we consider is the knapsack problem. An instance of the knapsack

problem is given by a set of indivisible objects defined by a value and a weight parameter.

The objective is to find the combination of objects that produces the largest sum of their

values, given that the sum of their weights is within a given limit. The knapsack problem

suits our objective because it is non-incremental and hard (we will return to these ideas

below). We show that, as an implication of non-incrementality, the Bayesian paradigm

does not provide a reasonable model of the search for a solution in an instance of the

knapsack problem.

Our experiment then serves two purposes. First, it demonstrates that it is relevant

to Economics that discovery may be non-incremental and, thus, existing models do

not address the implications of this notion. Second, it points out in what ways non-

incrementality differs from traditional approaches, thus opening the path for further

experimental and theoretical exploration of the topic.

1Examples include probabilistic learning in markets (Grossman [1977]); or how individuals learn their
own productivity (Jovanovic [1979]). A reduced form of this approach is common in the literature on
Intellectual Discovery (see Arrow [62], and Gallini and Scotchmer [2002] for a survey). Commentary
and a brief review of the classical study of technological change is given in Arrow [1994].
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In our experiment we look at how institutions interact with the task of solving an

instance of the knapsack problem. We consider two institutions which we refer to as

treatments; a prize and a market treatment. For traditional, Bayesian problems, where

discovery is treated as updating of information, the market treatment provides very little

incentive for discovery (see, e.g., Grossman and Stiglitz [1980]). On the other hand, we

calibrate the two treatments in such a way that the prize to one participant in the prize

treatment equals what we pay to the market as a whole in the market treatment, thus

providing a large individual incentive conducive to discovery. We find that markets do

very well, according to whether somebody finds the solution, and how many persons find

it. We are also able to relate the performance of markets with the trading behavior of

participants and the pricing of securities.

The feature of the knapsack problem we care most about is non-incrementality. This

means that many instances cannot be divided into a small number of parts that can

easily be computed, finding the solution of the entire instance through computation of

these parts. The knapsack problem is also hard; even though many instances can be

solved using heuristics, it is typically not possible to determine before the problem has

been solved, what heuristic will work for the instance at hand. Known exact solution

algorithms that will always work, are laborious and the time they take rapidly increases

with the size of the instance. Both features relate to the fact that no polynomial time

algorithm has been found to solve every instance of the knapsack problem.2 This feature

is used in Section 2.3 to show that Bayesian updating is not reasonable in our setting.

Loosely speaking, the argument is that in hard-enough instances of the knapsack prob-

lem, failure to compute the solution stems partly from the size of the set of possible

solutions. This implies that if a subject were not able to compute the optimal solution,

then he would also not be able to make any useful updating of his beliefs over the set

2There are other problems that satisfy these properties. We choose the knapsack problem because
it is well suited for implementing the market treatment. One example of a non-incremental problem is
that of finding the “right” linear regression, as pointed out in Aragones et al. [2005]. The findings in
this work are also a good example of how intellectual discovery or learning has incremental (running
the regression) as well as non-incremental (deciding what regression to run) parts. For an extensive
discussion on the incremental and non-incremental features of research and science, see Kuhn [1962]
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of possible solutions. Thus, instances of knapsack problems can be constructed such

that either there will be no uncertainty (if subjects can compute the solution fast) or

subjects will not be able to compute the solution, but the Bayesian paradigm is then

also inadequate.

The fact that the knapsack problem is non-incremental affects the possibility of co-

ordination and decentralized computation in the markets we implement. In particular,

assigning to different participants the task of finding the value of one security leads to

no gain at all in the ease of computation. This is so because our securities correspond

to objects in the knapsack problem, each paying a positive dividend only if the corre-

sponding object belongs to the value-maximizing knapsack. This splits up the instance

in a very small number of pieces, in which case non-incrementality implies that each

piece must be hard to compute (this depends on the instance, as we already remarked).

In fact, for the instances we use, for all objects, the problem of determining whether

an object belongs to the optimal knapsack or not, is equivalent to finding the optimal

knapsack. Thus, even though the securities in the market provide a language that may

serve to coordinate decentralized computation of the solution, they do not correspond

to tasks for decentralization. It is important to note that distributed computation is not

the only possible source of gains from interaction among individuals confronted with a

cognitive task. This is suggested by literature in Psychology. For example Maciejovsky

and Budescu [2005] reports an extensive experiment on learning in groups, where they

find that groups are able to correct individual biases (mistakes) even when groups are

composed only of individuals who display these biases when alone.3

Within the Bayesian, information aggregation framework, the securities in our market

treatment are expected to lead to poor communication and aggregation. This is so

because they do not allow for the expression of conditional beliefs like, for example,

“conditional on object A being in the optimal knapsack, object C has probability 0.3

3The gains or losses from interaction have also been explored in Economics. Blinder and Morgan
[2005] report that groups make better decisions than individuals conditional on equal amounts of in-
formation, while Cox and Haynes [2006] finds that groups fall victim to the winner’s curse in auctions
more often than individuals.
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of also being there”. Ledyard [2005] shows that this absence significantly decreases the

informational quality of the market posterior. In a similar setup, Plott and Sunder [1988]

shows that a complete set of contingent securities yields better information aggregation

than a single security with multiple payoff levels.4 We thus reiterate that our market

treatment is not an attempt to implement the most efficient mechanism for information

aggregation, but rather a tool to understand non-incremental discovery within the frame

of economic institutions.

This paper points out that the description of intellectual discovery is relevant to our

understanding of incentives to foster it. It also points out that cognition and computa-

tion may be the driving forces of trading and pricing behavior in complex information

aggregation setups (e.g., Ledyard [2005]). As noted before, we also wish to better un-

derstand non-incremental discovery. To this avail, we construct two ad-hoc measures of

difficulty of an instance, design our instances to have a range of difficulties according to

these measures, and look for correlation between experimental results and the measures

we propose. We find that the difficulty of the approximation algorithm – within a narrow

class – that exactly solves an instance, is a good predictor of the number of individuals

that solve the instance. In Section 2.2 we explain the two measures we propose and

discuss why our results are surprising.

The remainder of the paper is organized as follows: In Section 2 we extensively

describe the knapsack problem. In Subsection 2.3 we present an illuminating result

about the knapsack problem being outside the scope of Bayesian updating. Section 3

presents and discusses the experimental design, with its different treatments. Section

4 presents the results. Results and future research are discussed in Section 5, which

concludes.

4We say “similar” because the single security in Plott and Sunder [1988] is more akin to, for example,
having only one security paying the value of the optimal knapsack in our setup.
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2 The Knapsack Problem

The Knapsack Problem represents the model of intellectual discovery we wish to deal

with. In this section we will carefully define the knapsack problem and some of its

properties.

An instance of the knapsack problem is defined by a set N , containing n objects

(we will refer to n as the size of the instance of the knapsack problem) with values

v = (v1, . . . , vn), and weights w = (w1, . . . , wn); and a weight limit c. In the knapsack

problem, the objective is to find the subset of N that yields the maximal sum of object

values, given that the sum of weights does not exceed c. We will call this subset the

optimal knapsack. The above objective can be stated mathematically as:

max
n∑

j=1

vjθj

s.t.
n∑

j=1

wjθj ≤ c

θj ∈ {0, 1}.

An intuitive but incorrect approach to solving the knapsack problem is the greedy

algorithm. According to this algorithm, the object with highest value to weight ratio,
vj

wj

(the most efficient object) is added first, followed by the object with the second highest

value to weight ratio, and so on, until the weight limit is hit. This procedure can yield

an arbitrarily bad approximation to the true solution (measured in terms of the value of

the knapsack).

There are no known simple algorithms that will solve every instance of the knapsack
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problem. On the other hand, the related linear programming problem,

max
n∑

j=1

vjθj

s.t.
n∑

j=1

wjθj ≤ c

θj ∈ [0, 1],

has a straightforward solution, established by Dantzig [1957] that can always be found

in linear time in the size of the instance. The solution of the above linear program is

found by first applying the greedy algorithm. The first object that is left out according

to the greedy algorithm, is then split so to fill the remainder weight.5

The following example serves to fixate notation and illustrate the working of the

greedy algorithm:

Example 1 Here is an instance of the knapsack problem:

v =




5

7

11

20




, w =




1

2

3

6




, c = 7. (1)

There are four objects (n = 4), their values are in v, and their weights in w, the weight

limit is c = 7.

Use of the greedy algorithm yields the following solution for the instance we consider

here:

θ̂ = (1, 1, 1, 0) .

Knapsack θ̂ contains the first three objects, has a total weight of 6, and a total value of

23. However, θ̂ is not the optimal knapsack, which illustrates that the greedy algorithm

5There are many references for more on the knapsack problem, its variants, bounds, and exact and
approximate algorithms. Two excellent guides are Kellerer et al. [2004] and Martello and Toth [1990].
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is not a correct solution method. Instead, the optimal knapsack is given by

θ∗ = (1, 0, 0, 1) ,

containing objects 1 and 4, and with a total weight of 7, and a total value of 25.

2.1 NP-Completeness of the Knapsack Problem

A problem is said to be solvable in polynomial time if there exists an algorithm that

solves every instance in a running time that is bounded above by a polynomial function

of the instance size, n. A problem Q is NP-complete (NPC) if it is NP and NP-hard.

The former means that a proposed solution to Q can be verified in polynomial time,

and the latter means that every problem in the class NP can be transformed into Q in

polynomial time. No algorithm running in polynomial time in the instance size is known

for any problem in the NPC class. If such an algorithm were found for one problem in

NPC, then this would immediately establish that all problems in NPC belong to P , the

set of problems that can be solved in polynomial time.

To us it is most relevant that no polynomial-time algorithm is known for the knapsack

problem. This means that no fast (clever) algorithm can be used to solve every instance.

In particular, if a participant in our experiment solves one instance, this does not mean

that he has learned to solve the problem and will henceforth face no more difficulties.6

However, it does not mean that every instance of the knapsack problem is difficult. First,

if the instance is sufficiently small, the crudest exact solution algorithm will still solve it in

a fairly small number of computations (e.g., the largest instance used in our experiment

has 12 objects, which implies that the value of only 4096 knapsacks must be computed

and compared to find the solution). Second, and more important, certain instances can

6One implication of this is that the periods in our experiment are independent instances of discovery,
in the sense that having solved one instance does not guarantee a participant will solve every other
instance. Still, participants’ skills may improve. For example, a participant that starts by using the
greedy algorithm, will quickly learn it is not a very good approach, or the clumsy exact algorithm that
explores every possible knapsack may be replaced with a more efficient branch-and-bound algorithm.
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be exactly solved with fast approximate algorithms, e.g. the greedy algorithm. This is

the subject of the next subsection.

2.2 Measures of Difficulty of Instances

There is no straightforward measure of the difficulty of an instance of the knapsack

problem. For example, even though in the worst case an instance of size n + 1 may take

twice as much time as one of size n, this pattern needn’t be satisfied by two arbitrary

instances of size n + 1 and n, respectively. We propose two measures of difficulty, and

revisit them when we present our choice of instances for the experiments we ran.

A first intuitive measure is a parameter of input size. It is the product of the base-

two logarithm of the knapsack capacity times the size of the instance. The base-two

logarithm of the knapsack capacity is a proxy for the binary representation of the instance

parameters, which in turn represents the amount of storage and information necessary

in each step of computation. This is then multiplied by the size (the number of objects)

of the instance. In this measure, two instances with equal capacity and size are equally

difficult. We propose a second measure which captures less obvious characteristics of an

instance.

This second measure relates to the question of heuristic solvability of an instance.7 A

simple approximation algorithm for the knapsack problem may solve an instance exactly.

For a class of approximation algorithms described below, we will consider an instance

that can be exactly solved with an approximation algorithm in this class to be easier

than another instance that cannot be exactly solved with it.

The simplest approximation algorithm for the knapsack problem is the greedy pro-

cedure, which consists of filling the knapsack in efficiency order - i.e. starting with the

objects that have a higher vi

wi
ratio - until the weight limit is reached. This heuristic is

part of a family of approximation algorithms known as the Sahni approximation scheme

(Sahni [1975]).8 The Sahni scheme is parameterized by a number k, referring to the

7We use the terms heuristic and approximation algorithm interchangeably.
8Approximation schemes have more desirable properties than approximation algorithms. In the case
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specific algorithm, which we will call a Sahni algorithm of size k.

A Sahni algorithm of size k looks at all subsets of N (the set of all objects that are

considered to enter the knapsack) of cardinality k or less. For each subset, it computes

the residual weight in the knapsack after subtracting the weight of the subset, and fills

this residual with the remaining objects using the greedy procedure (if no set of k objects

fits in the knapsack, then the exact optimal solution is found by the algorithm). The

value of all knapsacks constructed in this way is compared, and the one with highest

value becomes the approximate solution given by the algorithm. Clearly, the greedy

algorithm is a Sahni algorithm of size 0. The Sahni algorithm of size 1 uses the greedy

algorithm for every subset of size n − 1 (there are n such subsets) to fill the capacity

that remains after isolating one object. Though the complexity of the greedy algorithm

it runs is smaller, it has to run it n times. The complexity added is thus of order n. This

is the case for every increase from k to k + 1. Although a Sahni algorithm of size k is

not as straightforward as the greedy algorithm, it is still a very simple heuristic.

Definition 1 We say that an instance has Sahni-difficulty level k if it can be exactly

solved with a Sahni algorithm of size k, but not with a Sahni algorithm of size k−1. The

higher the k associated to an instance, the harder the instance.

While specific instances can be solved using simple heuristics, it is impossible to

determine a-priori what simple heuristic to use. Given an instance, if one knew a-priori

what Sahni algorithm to use in order to find the solution, then the Sahni-k would be a

precise measure of difficulty. However, only after the instance has been solved can one

know what Sahni algorithm to use. Thus, there is no reason to believe that Sahni-k will

be a good predictor of whether a person can solve an instance or not.

In Table 2 we return to the two measures of difficulty and apply them to the instances

used in our experimental sessions.

of the Sahni scheme, different algorithms from the family can be chosen depending on the desired
performance level.
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2.3 The Knapsack Problem: A Hard Problem

We wish to draw a parallel between non-incremental intellectual discovery and finding

the solution to a hard problem. The knapsack problem allows for instances that are hard

according to our criterion because of the following properties:

1. There is a parameter (in our case the size, n), such that an increase of this pa-

rameter by 1 unit can in some instances increase the computational complexity of

finding the exact solution by an order of magnitude. This allows us to construct

problems that are very hard.

2. It is not possible to establish a-priori what approximation algorithm may solve the

instance exactly or with a fixed precision. It is also not possible to split the problem

in a small number of easy parts such that solving each of these parts separately

will give the right answer.

The above two properties make the problem non-incremental. Additionally, the knap-

sack problem satisfies the following property, which allows us to prove the main result

of this section:

3. When n is increased by 1 unit, the complexity of computation of the value function

of the instance at each point in the solution space does not increase very much.

When it comes to identifying a hard problem, we just care that we can find an

instance of the knapsack problem which is hard enough for our purposes and which

satisfies property 3. This contrasts the worst-case analysis that was mentioned in Section

2.1, and which is often used in computer science.

The reason we care about properties 1, 2, and 3 is that these properties allow us

to make a clear-cut distinction between our setup and rational-expectations models. In

rough strokes, a problem that satisfies properties 1, 2, and 3, will either be easy enough

to be computable by agents, or it will be too hard to be computable. In the latter case,

it will also be too hard to update any prior belief over the solution set. Hence, in our
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model, there is either no uncertainty, or agents cannot possibly update any prior over

the solution set, so that any model involving updating of beliefs cannot be the right one

to model this situation. This provides the basis for testing the hypothesis of whether we

posed “hard enough instances” of the knapsack problem to our subjects. We now make

our argument precise.

Take the following simple Bayesian model to describe solving the knapsack problem

as a situation with uncertainty in which agents get new signals and are required to update

their beliefs over how likely each point in the solution set is to be the optimum. Call

this model the Uncertainty model.

Let Θ(n) be the set of possible solutions of an instance of the knapsack problem

with n objects. Thus, Θ(n) is in the case of the knapsack problem the set 2n. Each

agent i ∈ I (I is some non-empty index set) has a prior belief Bi over Θ(n) describing

for each θ ∈ Θ(n) how likely it is that θ is the solution to the specific instance of the

problem. Assume that Bi(θ) > 0, ∀θ ∈ Θ(N). This is a sensible assumption since

the complexity of the problem is on one hand determined by the number of possible

solutions, so that points with 0 probability do not add any complexity.9 Now assume

that i observes a realization of a random variable σ ∈ {0, 1}, and there is an updating

mapping Bi(θ | σ) : {0, 1} × Bi(θ) → [0, 1], specifying how the probability of each state

changes depending on the realization of σ. We assume that this updating does not reduce

the complexity of the problem by an order of magnitude. If this were not the case, and

if we want to think of σ as some accessible and simple device available to the agent,

then he could just use n such devices and figure out the precise solution in polynomial

time. That such a scheme is not readily available to the agent is therefore an assumption

consistent with the problem being NP .

9This assumption is additionally justified as follows. For example, if all objects have a small wj and
the weight limit is large, one expects an individual to immediately rule out all knapsacks with only one
object. One should think of this as a signal, as this can only be established once an agent is presented
with the instance; the updated distribution gives probability zero to all knapsacks with only one object.
This signal satisfies the assumption we make about signals. The assumption on prior belief can also be
replaced with the alternative assumption that the support of Bi (θ) be of cardinality larger than 2n−1,
or in fact with any cardinality that is exponential in n.
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Finally, we assume that the complexity of computation of the updated probability

Bi(θ | σ) is of the same order of magnitude as the computation of the value function V (.)

of the instance of the problem at each θ. This assumption is sensible precisely because of

1-3. Namely, suppose that we increase n by 1 unit to n′. Then the set Θ(n′) increases in

size by a factor of 2 relative to Θ(n), or an order of magnitude. However, computing V (θ)

either remains unchanged in complexity for θ ∈ Θ(n) ∩ Θ(n′), or it at most increases

by an additive constant for θ ∈ Θ(n′) \ Θ(n).10 Formally, for each θ ∈ Θ(n) denote

by ηi,B(θ, n, σ) the number of operations needed to compute Bi(θ | σ), and denote by

ηV (θ, n) the number of operations needed to compute V (ω, n). To avoid any confusion

with computer science, we state our assumption as follows:11

ηi,B(θ, n, σ)

ηV (θ, n)
≥ m > 0,∀θ, ∀n ≤ n̄ < ∞.

Here, m is a positive constant, close to 1, and n̄ is some potentially very large constant.

It is clear that we can restrict ourselves to finite problems, as when n̄ is for instance 2

billions, the solution set of the knapsack problem with so many objects is much larger

than the number of atoms in the universe, and there is clearly no sense in theorizing

about problems that complex.

To make things more concrete and directly related to our problem, think of σ as a

comparison of the values of two different knapsacks. Such a σ is a very natural one, and

it clearly satisfies the above assumptions.

Proposition 2 In the Uncertainty Model, assume that m ≥ 1. Then, if agent i is

unable to compute the solution to the instance of the knapsack problem, θ∗ ∈ Θ(n), then

it is also for i impossible to compute Bi(. | σ).

10Computing the value of the knapsack is just adding up the values of all the objects, and adding all
the weights to verify that the weight limit is not surpassed. Clearly, if we have one new object there
is at most one new weight and one new value to add, so that computational complexity can at most
increase by 2 operations. Moreover, even at most points θ ∈ Θ(n′) \Θ(n) computing the value doesn’t
increase in complexity at all.

11We could state our assumption in computer-science language as ηV (θ, n) = O (ηi,B(θ, n, σ)), but
such a statement is one of asymptotic properties where n becomes large. Our statement describes the
situation for finite n.
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Proof. The proof is obvious: if i were able to compute Bi(θ | σ), for all θ ∈ Θ(n), then

he could have just as well computed V (θ) at each θ ∈ Θ(N) in the first place, and then

keeping always track of just the maximal θ he would find the precise solution θ∗ so that

there could be no uncertainty.

We comment that m ≥ 1 is just a convenient device to make our statement particularly

simple, and the mapping Bi(. | σ) is abstract and might be very complex anyway. Even

if m were equal to 1
n
,12 a similar statement would apply: the only difference is that then,

if the agent were unable to compute the solution for a specific n, he surely would be

unable to compute the posterior when n is increased by 1 unit.

3 Experimental Design

The instruction sets can be found by visiting the following web pages (which were part

of the web site that was used in the experiments):

http://clef.caltech.edu/exp/eTradeLab13a/instructions.html and

http://clef.caltech.edu/exp/knapsack

The first web-page corresponds to the original experiment, of which we ran four sessions.

We will refer to this setup as setup ω. The second web-page corresponds to the version

with equal time for both treatments and a variation in the prize setup that is explained

below. We will call this setup, setup ν.

3.1 Timing of an Experimental Session

In an experimental session, a group of participants are asked to solve several instances of

the knapsack problem, cast in terms of shipping problems. All instances have a unique

12This is the worst things could possibly go for us, as the complexity of computing Bi(. | σ; n) is at
least a constant and the complexity of computing V (θ, n) is at most of the order n. The constant in the
numerator is 1 because all values of the parameters in an instance have the same base-two log.
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solution. Each experimental session is divided in ten periods, P = 1,...,10. Periods 1

and 2 are practice periods; the remaining ones (3 to 10) are earnings periods. The

explanation that follows applies to both setups – ω and ν – except when specified.

In setup ω, prizes, security prices, cash, and period earnings are expressed in a

fictitious currency called Franc (F ), with an exchange rate of F1 = $0.01. In setup

ν, the dollar value of all parameters is preserved, but expressed in dollars. In both

setups, earnings from practice periods do not count towards total experiment payoffs.

Earnings from earnings periods are accumulated, converted to dollars at a pre-announced

exchange rate, and a $5 sign-up reward is added. In each earnings period, participants

are given an instance of the knapsack problem and a specific payment rule. Under the

Market treatment, participants are paid based on their final holdings of securities whose

dividends depend on the optimal solution, as well as their final cash position. Under

the Prize treatment, they are paid directly for solving the instance of the knapsack

problem. All odd-numbered earnings periods are Market periods; all even-numbered

earnings periods are Prize periods.

At the beginning of a period, participants receive a sheet of paper with a full de-

scription of an instance of the knapsack problem and an area to mark their proposed

solution to the problem. This sheet will be referred to as Answer Sheet (see Shipping

Problem Presentation in the Instructions Sets). Answer Sheets are collected at the end

of a Prize period; in a Market period, the sheets are collected 30 seconds before the end.

In other words, the Answer Sheets are handed in by participants, before security payoffs

are revealed, and hence, before the optimal solution, which is implicit in the security

payoffs, becomes known.

An entire experimental session lasts approximately 2 1/2 hours, including one half

hour for instructions. In setup ω, each prize period lasts up to 7 minutes, and each market

period lasts 15 minutes. In setup ν, each period lasts 10 minutes, for both treatments.
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3.2 Knapsack Instances

Table 1 lists the instances of the knapsack that were used in the experiment. There

are eight different instances; four have n (number of items) equal to 10, and four have

n = 12.

In each experimental session, two different instances of size n = 10 are assigned under

the Market treatment, and two different ones are assigned under the Prize treatment.

Analogously for instances of size 12. To ensure that all instances are solved under both

setups, we run two types of sessions. In experimental sessions of type a, instances I, V,

VII, and VIII (see Table 1) are solved under the Market treatment; while instances II,

III, IV, and VI are solved under the Prize treatment. In experimental sessions of type

b, this organization is reversed: an instance that is solved under the Market treatment

in type a is solved under the Prize treatment in type b, and vice versa.

3.3 Market Treatment

In the Market treatment, participants are paid through securities. There are as many

securities as there are items in the knapsack instance. Each security corresponds to an

item. At the end of the period, a security pays $1 if the corresponding object is in the

optimal knapsack; otherwise the security pays nothing.

Participants start with an initial endowment of 5 units of each security, and $4 cash

(this is expressed as F400 in setup ω). To provide liquidity, participants are endowed

with more securities than the desired average payoff; this is why a “loan repayment”

is subtracted from total period earnings. In type a experiments the loan repayment is

$23.75; in type b experiments the loan repayment is $32.50. Because of the loan, partic-

ipants may lose money. Losses are subtracted from cumulative earnings. If cumulative

earnings are negative, the participant is paid only the sign-up reward of $5, plus earnings

from prize periods.

In setup ω, trading is done through a continuous electronic open book system called

eTradeLab. Details of this trading interface can be found in the instructions (see afore-
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Problem & Objects
capacity A B C D E F G H I J K L

I
p 500 350 505 505 640 435 465 50 220 170
w 750 406 564 595 803 489 641 177 330 252

c = 1900 θ∗ 0 0 1 1 0 1 0 0 0 1

II
p 300 350 400 450 47 20 8 70 5 5
w 205 252 352 447 114 50 28 251 19 20

c = 1044 θ∗ 1 0 1 1 0 0 0 0 1 1

III
p 15 14 3 3 10 9 28 28 31 25 24 1
w 129 144 77 77 66 60 184 184 229 184 219 72

c = 850 θ∗ 0 0 0 0 1 0 1 1 1 1 0 0

IV
p 37 72 106 32 45 71 23 44 85 62
w 50 820 700 46 220 530 107 180 435 360

c = 1500 θ∗ 1 0 0 1 1 0 1 1 1 1

V
p 2 3 4 5 6 9 8 7 6 5 8 9
w 3 4 6 3 5 13 6 9 2 4 7 7

c = 14 θ∗ 0 0 0 1 1 0 0 0 1 1 0 0

VI
p 107 35 120 206 88 34 28 110 88 101 74 53
w 599 196 670 1204 502 202 145 600 453 601 404 299

c = 3800 θ∗ 1 1 0 0 1 0 1 1 1 1 1 1

VII
p 201 84 113 303 227 251 129 147 86 127 144 167
w 192 80 106 288 212 240 121 140 82 120 137 160

c = 1300 θ∗ 1 0 1 1 1 0 0 1 1 1 0 1

VIII
p 31 141 46 30 74 105 119 160 59 71
w 21 97 32 21 52 75 86 116 43 54

c = 265 θ∗ 0 1 0 0 1 0 0 1 0 0

Table 1: Instances of the knapsack problem used in experimental sessions. Objects
had common names, not letters. The letters used in the table stand for: A=Anderson,
B=Brown, C=Cole, D=Darwin, E=Evans, F=Foster, G=Green, H=Hamilton, I=Ives,
J=Jensen, K=Keaton, L=Lee.
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mentioned web-page). The system tracks all offers (bids, asks) and transactions, time

stamped to the second.

In setup ν, an identical market mechanism is used for trading. However, the interface

is different, and orders are submitted by “clicking” on price labels, instead of manually

entering a price and quantity. The software for this setup is jMarkets, and is further

described in the experiment instructions for setup ν.

While Answer Sheets are collected 30 seconds before the end of the period (i.e.,

before security payoffs are revealed), participants are not paid depending on their marks

on these sheets. Participant earnings for Market periods come exclusively from trading

and from the final payoffs of the securities.

3.4 Prize Treatment

The prize treatment in setup ω is substantially different from that in setup ν. We describe

them separately, under the names prize treatment ω and prize treatment ν, respectively.

Prize treatment ω

At any moment during a Prize period, a participant can submit his/her Answer Sheet

with the proposed solution by raising his/her hand. The experimenter then checks the

marks on the Answer Sheet and announces a winner if the solution is correct. The period

ends when all participants have submitted their Answer Sheets, or the time limit has been

reached (recall that the time limit is 7 minutes), whichever occurs first. Participants do

not get a second chance: once an Answer Sheet is turned in, participants cannot change

it. The Prize is set at F6, 600, i.e., $66. Ties are resolved by dividing the Prize equally

among the winners.

Prize treatment ν

All participants are in constant live communication with the experimenter, through a

chat program called Skype. A username and password are assigned to each partici-

pant for the duration of the experiment. These are secret, to ensure that participants

communicate only with the experimenter. Participants have one opportunity to submit
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Input Size Proxy (n log2 c)

40− 50 80− 90 100− 120 120− 130 140− 150
0 IV

Sahni-
difficulty
level

1 V I
2 VIII III
3 II VI
6 VII

Table 2: Difficulty of Knapsack Problem instances used in experiments. The difficulty is
measured by the proxy of input size (columns) and the Sahni difficulty level described
in Section 2.2.

their proposed solution to the instance at hand. The submission is made over the chat

program, using a code of ones and zeros, to indicate objects that are in and objects

that are not in the optimal knapsack according to their proposed solution. Participants

have a time limit of 10 minutes to make submissions. After these 10 minutes elapse, all

answer sheets are picked up, after which the correct answer is announced together with

the time stamp of the winning submission. The winner is the first participant to submit

the correct solution. Unlike in setup ω, in prize treatment ν, the fact that there is a

winner is not revealed until the end of the period.

Note that in both setups the Prize is approximately the same as the aggregate pay-

ment in Market periods (security dividends and cash, minus loans). Notice the difference

between a Prize period and a Market period: in a Prize period, only the winner(s) is

(are) paid; in a Market period, everyone is paid, through securities and cash.

3.5 Discussion of Experimental Design

3.5.1 Difficulty of Knapsack Problem Instances

The instances we consider have different levels of difficulty according to the two measures

given in Subsection 2.2. In Table 2 below, the rows correspond to Sahni difficulty levels,

k, while the columns correspond to the described parameter of input size. In Table

2, the Northwest corner corresponds to lower complexity. Complexity increases in the

Southeast direction.
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3.5.2 All-or-nothing Problem

One property of the knapsack problem is that a knapsack that is close to optimal – say,

the feasible knapsack with the second-highest value – need not look in any way similar to

the optimal knapsack. The latter may be composed of an entirely different set of objects.

We want to preserve this property in our experimental treatments. It is to this avail that

compensation is never tied to the value of the knapsack that a participant proposes as

the optimal knapsack.

It is obvious that compensation in the prize treatment is given only for the exact

solution of the problem. We wish to emphasize that this is also the case in the market

treatment. Only securities corresponding to objects that belong to the optimal knapsack

pay positive dividends. For example, if the knapsack with the second-highest value has

an entirely different composition from the optimal knapsack, a participant betting on

the objects composing the former will make negative earnings. In Section ?? we further

discuss the payoff structure in our experiment.

3.5.3 Securities Do Not Split the Problem

As discussed in Section 2.3, instances of the knapsack problem satisfy property 2, i.e., the

solution cannot be found by splitting the problem in a small number of easily-solvable

parts. In particular, computing whether an object belongs to the optimal knapsack or

not is as hard as solving the instance.13 Therefore, computation of the solution cannot

be decentralized in an obvious fashion by each subject focusing on a specific object.

One example of how the process of finding the solution to an instance can be dis-

tributed, is by splitting the set of all knapsacks in groups for comparison. Each person

gets a fraction of all knapsacks to make value comparisons. The most valuable feasi-

13There are exceptions, corresponding to cases where it is obvious if a certain object belongs or not to
the optimal knapsack. For example, if one object weighs more than the sum of all remaining objects and
its value is below the maximum value of the remaining objects, then this object clearly does not belong
to the optimal knapsack. This cannot be extended to sets of more than one object - if a pair weighs
more than the sum of the remainder and has a lower value than the maximal object in the remainder,
this does not mean that both objects in the pair are not in the optimal knapsack. We make sure that
none of the instances we consider falls in the class where the above described exception applies.
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ble knapsack of each group is then compared to the winner of other groups, and the

most valuable feasible knapsack can thus be found.14 It is not clear how this form of

distribution can be encoded in the securities in the market treatment.

The securities in the market are the minimal set of securities necessary to express

the solution of every instance. They provide a binary code to represent the solution,

and may serve as a language to transmit it. However, the securities do not distribute or

simplify the problem in any way.

4 Results

We report results from four ω experimental sessions and two ν sessions. Sessions are

identified by the date when they were run (yymmdd), the setup (ω or ν), and the ex-

periment type (a or b). Our six sessions are: ω040809a, ω040929b, ω041202a, ω041215b,

ν061112a, and ν061116b. All sessions were run in the Social Sciences Experimental Labo-

ratory at Caltech, with Caltech students (undergraduate, graduate, and summer visiting

students). Session ω040929b had seventeen participants, session ν061112a had 14, and

session ν061116b had sixteen participants; all other sessions had fifteen participants. In

sessions of setup ω, the seven-minute time limit for Prize periods was never binding:

participants always turned in their answer sheets early. Total earnings before sign-up

reward fluctuated between $0 and $163. Mean payment amounted to $31; the median

payment was $20.

Our results are taken from two sources. We have all the information on trades and

prices that is collected during market periods, plus we have the answer sheets of all

participants for both treatments. These answer sheets are returned to the experimenter

for no compensation. Participants are told at the beginning of the earning periods

that they must give the answer sheets back to the experimenter, but their answers are

completely irrelevant for payment, and participants understand this. Still, we are able

14If such an assignment of groups of knapsacks to subjects were exogenously given by a social planner,
then this would be the team problem studied by Marschak and Radner [1972].

21



to collect many answer sheets that are carefully filled out.15 The number of answer

sheets discarded because they are blank or incomprehensible is small, and similar across

treatments for setup ω. For setup ν, the number of discarded answer sheets in the prize

treatment is very small (approximately 3% of all answer sheets) while the number of

discarded sheets (mainly because they are left blank) in the market treatment is large

(approximately 30% of all answer sheets).

Result Zero: Instances are Hard. Before we move on to analyze the performance

of markets vis-a-vis the prize treatment, we make the point that instances are hard

enough, as defined in Section 2.3. Proposition 2 says that it is only sensible to use

Bayesian updating and thus the standard information aggregation paradigm, if instances

are easy enough. If problems are easy enough, prices must immediately collapse to one

or zero, depending on whether the object belongs or not to the optimal knapsack.

Direct evidence that problems are hard enough is the fact that only a fraction of

participants solve them in both treatments. This is true for all instances (see Table 3).

Indirect evidence is the fact that prices never collapse to zero or one.

We can thus pursue our objective of understanding intellectual discovery outside the

Bayesian learning framework. We present results from each setup in a separate section.

The data for both setups demonstrate that markets do generate the solution to the

instances of the knapsack problem, that trade is abundant and prices are informative.

Results from setup ω show a very strong correlation between the Sahni difficulty ranking

of an instance and the number of participants that solve it. This result disappears in

setup ν.

15Answer sheets are not always easy to comprehend, in which case we discard them. One example
of behavior that leads us to think that answer sheets are carefully filled out is that as we pick up the
answers, they often take two or three extra seconds to make sure they hand us the answer they desire.
Another example is that answer sheets often have several iterated answers that are scratched, with an
arrow or marker pointing to the “surviving” answer.
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Instance

I II III IV V VI VII VIII

Percentage
correct answersa

Market 20.00 3.13 31.25 62.5 60.00 15.63 0.00 26.67

Prize 18.75 10.00 20.00 33.33 34.38 3.33 0.00 12.50

Rrw
Market 56.9 22.1 75.0 194.9 154.7 51.9 28.7 28.9

Prize 55.0 33.3 53.3 166.7 50.7 43.7 26.0 27.6
a Percentage of total number of participants that marked the correct answer on their answer sheets.

Table 3: Summary of data from participants’ answer sheets for setup ω.

4.1 Market Performance

Every instance that is solved under the prize treatment is also solved under the market

treatment.

Table 3 shows the fraction of participants that find the correct solution for every

instance of the knapsack problem in setup ω. Results are split according to the treatment.

There is a big variance across instances in the number of correct solutions and instances

that are more frequently solved under the market treatment are also more frequently

solved under the prize treatment. Table 3 shows that all instances except instance V II

are solved by a significant fraction of participants in both treatments. Table 4 shows

the fraction of correct solutions for each instance in setup ν. Percentages are taken

with respect to the total number of participants, without adjusting for discarded answer

sheets. It is no longer the case that there are more correct answers under the market

treatment than under the prize treatment. Still, the solution is always found in the

market.

Figures 1 to 4 display the fraction of correct solutions and the number of choices

of each object (correctly or incorrectly chosen) taken from participants’ answer sheets.

Results for setup ν are in Figures 5 to 8. This is simply a graphical representation of the

results in 3. It is also interesting to notice in these plots that whenever a large proportion

of participants agrees about an object being in the optimal knapsack, this object truly

is. Participants are not misled in the markets.
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Instance

I II III IV V VI VII VIII

Percentage
correct answersa

Market 50.00 18.75 6.25 25.00 35.71 6.25 7.14 21.43

Prize 18.75 28.57 64.29 57.14 25.00 14.29 0.00 12.5
a Percentage of total number of participants that marked the correct answer on their answer sheets.

Table 4: Summary of data from participants’ answer sheets for setup ν.
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Experiment
Setup ω Setup ν

040809a 040929b 041202a 041215b 061112a 061116b

Average per
person per

period

Asks 6.97 5.38 7.68 5.3 24 22
(5.1) (3.6) (4.4) (4) (22.1) (22.2)

Bids 6.28 5.15 6.07 5.03 16.6 20.6
(3.7) (2.9) (4.2) (3.7) (13.9) (27)

Trades 5.43 4.19 5.63 4.07 10.6 7.9
(3.8) (3.5) (3.2) (2.7) (8.4) (6.8)

Volume 11.07 8.79 12.6 12.88 - -
(8.5) (6.9) (7.8) (9.2)

Average per
asset per period

Asks 8.71 7.62 9.6 6.62 31.7 32
(4.1) (3.6) (4.8) (3.9) (25) (17.8)

Bids 7.85 7.29 6.07 6.29 21.1 30
(5.3) (3.9) (4.2) (3.7) (9) (13.2)

Trades 6.79 5.94 7.04 5.08 13.5 11.5
(3.8) (4.0) (3.2) (3.8) (7) (7.5)

Volume 13.83 12.46 15.75 16.1 - -
(9.9) (9.0) (9.8) (11.9)

Totals

Asks 418 366 461 318 1397 1411
Bids 377 350 364 302 928 1321

Trades 326 285 338 244 594 505
Volume 664 598 756 773 - -

Table 5: Summaries of trade and bidding activity. In setup ν all trades involve only one
unit, so volume equals number of trades.

How does the market do what it does? It could be the case that participants in the

market treatment just sat down and tried as hard as in the prize treatment to solve the

instance, completely disregarding the market. This is not the case, as attested by the

following two results:

Market Result One: Trade and Bidding are Abundant.

Table 5 lists offer and trade statistics. Per-person-and-per-period averages are displayed,

as well as per-asset-and-per-period averages. Standard errors are in parentheses. Across

all Market periods in all sessions, a large number of offers and trades are recorded.

Table 6 splits statistics across IN and OUT securities. “IN” securities correspond to

items that are in the optimal knapsack; “OUT” securities correspond to items that are

not in the optimal knapsack. Table 7 displays trading activity per instance. In setup ω,
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Experiment
Setup ω Setup ν

040809a 040929b 041202a 041215b 061112a 061116b

Trade
volume

IN 15.4 10.7 17.3 12.5 10.3 8.5
OUT 14.9 17.7 17.12 24.9 16 15.8

Asks
IN 7.9 6.0 9.5 5.3 13.4 22.3
OUT 10.7 11.7 11.2 10.1 45.7 46.17

Bids
IN 10.9 8.0 9.8 6.3 25 31.6
OUT 6.8 7.9 7.1 7.7 18 27.8

Table 6: Volume of trade and number of bids and asks, for IN and OUT securities.

each instance is solved under the Market treatment in two experimental sessions, which

we refer to as Sessions One and Two. Since the number of items, and hence, securities,

differs across instances, Table 7 also reports per-security averages across both Sessions.

Differences in the number of trades and orders are evident across instances, and

across securities (IN vs. OUT securities). We can only speculate about the reason of

these differences. That is the matter of Section 5. It also catches the eye that the number

of bids and asks is much larger in setup ν. This may be driven by the use of the simpler

trading interface of jMarkets.

Market Result Two: Prices are Noisy but Informative.

For all but one instance, the distribution of prices of IN securities first order stochas-

tically dominate the distribution of prices of OUT securities. Transaction prices reveal

information about the optimal solution, but very noisily. The one instance where this

dominance relation is not found, is instance V II, for which nobody finds the solution.

First order stochastic dominance in this context means that the probability that the

price of an IN security is larger than the price of an OUT security is at least 0.5. Figure

9 shows the empirical distribution functions for prices of IN and OUT securities in every

instance. in setup ω. For setup ν we show the histograms of prices of IN and OUT

securities for every instance. In this setup, the variety in prices was small, thus making

the construction of an empirical cdf a pointless exercise. The histograms do display the
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Instance

I II III IV V VI VII VIII

Session One 84 82 81 57 88 65 74 80
Session Two 78 75 57 59 69 53 87 104

n 10 10 12 10 12 12 12 10
average, per asset (ω) 8.1 7.85 5.75 5.8 6.54 4.92 6.71 9.2

Setup ν 135 138 140 142 171 87 115 175

Table 7: Number of trades for each instance of the knapsack problem.

same stochastic dominance feature that is obvious in the empirical cdf figures. Moreover,

if we disregard the low price diversity and construct empirical cdfs with these data, we

obtain a clear first order stochastic dominance of prices of IN securities, even for instance

VII!.

There is clear evidence that participants do interact in the market. There is the

potential for communication, and prices are an effective language since securities are

differentiable based on their prices.

Finally, we report two more characteristics of our experimental markets which might

carry some information, but are harder to interpret.

• Prices are Low. In setup ω, the median price is $0.5, while the average price

is $0.48. Average and median prices of IN and OUT securities lie slightly above

and below $0.5, respectively. Both the median and the average become even lower

when we add data from setup ν sessions.

• Excess Supply of OUT Securities. For every trade, we know whether it was

the result of a buyer’s submission of a market order (an order that takes an offer

that is already waiting in the book and transforms it into a trade), or of a seller’s

submission of a market order. Among trades that are the result of a buyer’s

market order, a significantly higher number correspond to OUT securities than

to IN securities. Also, most trades of OUT securities are the result of a buyer’s

market order. The reverse is not true for IN securities.
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Figure 9: Empirical Cumulative Density Functions for prices of IN and OUT securities.
Instances solved under the Market setup in experiment type a have a different color
scheme than those solved under the Market setup in experiment type b.
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4.2 Sahni-k is a good measure of difficulty

If we consider only setup ω, in both treatments, Sahni-k difficulty is a good predictor of

the number of correct answers for an instance. We propose and describe this measure

in Section 2.2. Here we summarize the ranking of instances that follows from using this

measure:

IV ≺ V ∼ I ≺ V III ∼ III ≺ II ∼ V I ≺ V II,

where ≺ indicates that an instance is “easier”, and ∼ indicates that two instances are

not ranked, according to the Sahni-k difficulty measure.

From Table 3 we get the following ordering of instances in the market:

ĨIV > ĨV > ĨIII > ĨV III > ĨI > ĨV I > ĨII > ĨV II ,

where Ĩs denotes the fraction of participants that solve instance s correctly. Instances in

the prize treatment rank very similarly,

ĨV > ĨIV > ĨIII > ĨI > ĨV III > ĨII > ĨV I > ĨV II .

In both cases the ranking agrees with the Sahni-k ranking for all instances except

instance I, which is “harder” in the experiment than predicted by our difficulty measure.

The clear correlation we just mentioned, disappears in setup ν. However, we argue

that this is mainly caused by the fact that participants in one of the two sessions of

this setup, outperformed participants in the other session, for every instance. This

heterogeneity between groups changes the relative ranking of instances that were solved

in the market in one session versus those solved in the other session (analogously for

instances solved in the prize). To see that this is indeed the case, notice that the ranking

within a session and treatment (e.g., the instances solved under the market treatment

in session ν061112a) displays the strong correlation with Sahni difficulty that was noted

for setup ω.
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5 Conclusion

We create in the laboratory a situation that emulates intellectual discovery with the

property that it cannot be reasonably modeled as Bayesian learning. The results point

out that this property may be relevant since in a market for discovery we find that: the

discovery is made, trading activity is abundant, and prices are informative but noisy.

To exactly what extent these results are driven by the non-incrementality feature of

the cognitive task we use to represent discovery, must still be determined. We set the

ground for the formulation of hypotheses that can be tested with further experiments.

In particular, the market treatment may deliver the results it does for several different

reasons, which may actually interact. We mention three reasons that are worthy of and

prone to further experimental study. First, it may be that participants find a code to

coordinate on decentralized computation of the solution. Second, it may be that markets

provide a “check”, where participants try to corroborate whether the algorithm they are

using for computation is right or wrong. Third, the markets do provide a way to reduce

the risk that comes from attempting to guess the solution on a hunch (heuristic). This

may make participants more willing to express their hunches, by means of which prices

become informative. This reason may interact with one or both of the previous reasons.

It can be studied further by changing the payoff in the market to incorporate the risk

of being paid only if one is entirely correct (e.g., have securities pay dividends only if

someone finds the solution, or pay per optimal solution held in the final portfolio, not

per security).

We have given most thought to the pursuit of the first reason mentioned above.

One check of the idea that participants manage to distribute computation is to ver-

ify if markets do better in a setup where coordination is easier, while the task is still

computationally difficult. Another option is to move away from the cognitive task and

instead set up an environment where the selective acquisition of information by differ-

ent participants may benefit from coordination. In this purely informational framework,

will coordination ensue even when it is very difficult to encode (as is the case in our
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experiment)?

Another contribution of this paper is to bridge a connection between certain notions

of computer science and economic decisions where incentives matter. The description

of non-incrementality of a problem in terms of solution algorithms, and the predictive

power of the Sahni difficulty measure indicate that there is a bridge. In particular, it

is our belief that the theory of intellectual discovery can gain much from the models of

individual cognition that are inferred from the study of algorithms.
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