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Abstract

Many empirical studies of auctions show that prices of identical goods sold sequentially follow a
declining path. Declining prices have been viewed as an anomaly, because the theoretical models of
auctions predict that the price sequence should either be a martingale (with independent signals and no
informational externalities), or a submartingale (with affiliated signals). This paper shows that declining
prices, the afternoon effect, arise naturally when bidders are averse to price risk. A bidder is averse to
price risk if he prefers to win an object at a certain price, rather than at a random price with the same
expected value. When bidders have independent signals and there are no informational externalities,
only the effect of aversion to price risk is present and the price sequence is a supermartingale. When there
are informational externalities, even with independent signals, there is a countervailing, informational
effect, which pushes prices to raise along the path of a sequential auction.
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“Theoretical work on auctions will almost certainly have to remove the assumption of risk neu-
tral bidders if it is to explain the full range of interesting empirical results from real auctions.”
(Ashenfelter, 1989, p.31.)

1 Introduction

The classic theoretical models of sequential auctions of identical goods predict constant, or increasing,
average prices across rounds. More precisely, Milgrom and Weber (1982) showed that with independent
private values the price sequence is a martingale (the expected value of Pgy1, the price in round k + 1,
conditional on Py, the realized price in round k, is equal to Py), while with affiliated values the price
sequence is a submartingale (the expected value of Py conditional on Py is higher than Py).

There is a substantial body of empirical evidence that is at odds with the classic theory: prices most
frequently decline across rounds. The puzzle associated with this evidence has become known as the
afternoon effect (because after a morning auction, often the second round takes place in the afternoon),
or the declining price anomaly. Sequential auctions where prices have been shown to decline include
wine, Ashenfelter (1989), McAfee and Vincent (1993), Di Vittorio and Ginsburgh (1994); fish, Pezanis-
Christou (2001); flowers, van den Berg et al. (2001); mink pelts, Thurston (1997); livestock, Buccola
(1982); dairy cattle, Engelbrecht-Wiggans and Kahn (1992); gold jewelry, Chanel et al. (1996); china
from shipwrecks, Ginsburgh and van Ours (2001); stamps, Thiel and Petri (1990), Taylor (1991); Picasso
prints, Pesando and Shum (1996); art, Beggs and Graddy (1997); condominiums, Ashenfelter and Genesove
(1992), Vanderporten (1992a, 1992b); commercial real estate, Lusht (1994). Burns (1985), and Keser and
Olson (1996) present experimental evidence of declining prices. See also Ashenfelter and Graddy (2003),
for a general survey that focuses on art auctions.

In this paper, I propose a simple explanation of the afternoon effect: aversion to price risk. A bidder
is averse to price risk if he prefers to win an object at a certain price, rather than at a random price with
the same expected value.

The prediction that, with independent private values and risk neutral bidders the price sequence is a
martingale, can be interpreted as a manifestation of the law of one price. At first, optimal bidder behaviour
would seem to require that the law of one price holds generally (i.e., even with aversion to price risk). After
all, if the equilibrium price were known to be higher on average in a given round, shouldn’t bidders lower
their bids in that round?

It is easiest to explain the intuition for why aversion to price risk generates declining prices in the case
of a two-round, second-price auction with private values and unit-demand bidders. The price in the last
round will be determined by the second highest bid. The crucial observation is that in the first round each
bidder chooses his optimal bid assuming that he will win and will be the price setter; that is, he assumes
that his bid is tied with the highest bid of his opponents. This is because a small change in his bid only
matters when the bidder wins and is the price setter. The fundamental implication of this observation
is that in choosing his optimal bid, a bidder views the first-round price as certain (equal to his bid) and

the second-round price as a random variable (equal to the second highest, second-round bid). Optimality



requires that the bidder be indifferent between winning in the first or the second round. Aversion to price
risk then implies that the expected second round price (conditional on the first-round price) must be lower
than the first round price. The difference is the risk premium that the bidder must receive to be indifferent
between winning at a random, rather than a certain price.

The result that aversion to price risk generates a tendency for prices to decline, called an aversion to
price risk effect, and its intuition, is very general. It holds for auctions with more than two rounds, for
second-price, first-price, and English auctions. It also holds if there are informational externalities (i.e., if
values are not purely private), and if bidders have multi-unit demand.

Aversion to price risk is different from risk aversion, which had been informally proposed by Ashenfelter
(1989) as a possible explanation of declining prices. Models of risk aversion (e.g., Matthews, 1983, and
McAfee and Vincent, 1993) assume that a bidder has a monetary value for the object, so that risk aversion
is defined on the difference between the monetary value of the object and its price. Aversion to price risk,
on the contrary, is defined on price alone. It implies separability of a bidder’s payoff between utility from
winning an object and utility from the bidder’s monetary wealth (or disutility from paying the price).

McAfee and Vincent (1993) demonstrated that risk aversion is not a convincing explanation of the
afternoon effect. They studied a two-round, private-value, second-price auction, and showed that prices
decline only if bidders display increasing absolute risk aversion, which seems implausible. Under the more
plausible assumption of decreasing absolute risk-aversion, an equilibrium in pure strategies does not exist
and average prices need not decline.

To appreciate the difference between the concepts of risk aversion and aversion to price risk, it is useful
to revisit the familiar result that with a single object for sale and risk aversion, the average price is higher
in a first-price than in a second-price auction. It is simple to show that a similar result also holds when
bidders are averse to price risk. The intuition, however, is different and simpler. In a first-price auction,
the price is certain for the winning bidder; it equals his bid. In a second-price auction, on the contrary, the
price is a random variable. On average the price must be lower in order to compensate the bidder for the
price risk. (Appendix A shows that with aversion to price risk all standard auctions are payoff equivalent
for the bidders.) Thus, in effect, in a first-price auction a bidder buys insurance against price variations.
The intuition that is commonly given for why risk aversion raises the bid in a first price auction is that,
by bidding higher, a bidder buys insurance against the possibility of losing the auction (e.g., see Krishna,
2002, p.40). It is not immediate why this should be true; after all, the equilibrium probability of winning
the asset in the first-price and second-price auction is the same for any given bidder’s type.

There are other models in the literature that generate an afternoon effect. They include winners having
the option to buy additional units, Black and de Meza (1992); heterogeneity of objects, Engelbrecht-
Wiggans (1994), Bernhardt and Scoones (1994), Gale and Hausch (1994); ordering of the objects for sale
by declining value, Beggs and Graddy (1997); absentee bidders, Ginsburgh (1998); an unknown number of
objects for sale, Jeitschko (1999); asymmetry among bidders, Gale and Stegeman (2001), etc.

I view aversion to price risk as complementary to the other explanations given in the literature. The
explanation based on aversion to price risk has the advantage of applying very generally, without requiring

any additional modification of the classic model. This is an important advantage because, as the empirical



evidence suggests, declining prices have been found to prevail even with no buyers’ option to buy additional
objects, with identical objects, etc.

While declining prices are much more common, increasing prices have also been documented in the
empirical literature on sequential auctions. For example, they were found for library books by Deltas and
Kosmopolou (2001), watches by Chanel et al. (1996), wool by Jones et al. (1996), Israeli cable tv by
Gandal (1997), and Siberian timber by Donald et al. (1997).

A second, general contribution of this paper is to show that affiliated types are not needed to explain
increasing prices. Informational externalities alone, even with independent types, push prices to increase
across rounds. There are informational externalities (or interdependent types), if a bidder’s payoff from
winning an object directly depends on the types of the other bidders. To understand the intuition for
the effect of informational externalities, consider a two-round, second-price auction with risk-neutral, unit-
demand bidders. As I have already argued, a bidder must be indifferent between winning in the first and
in the second round, conditional on the event that he wins the first round and he is the price setter. Thus,
when bidders are risk neutral, the first-round price must be equal to the expected second-round price
conditional on this event, which is an underestimate of the expected second-round price conditional on the
first-round price. This is because the first-round winner will generally bid higher and have a higher signal
than the first-round price setter.

When bidders are averse to price risk and there are informational externalities, the paper shows how
to separate the aversion to price risk effect, which reduces prices from one round to the next, from the
informational effect, which increases prices from round to round. The paper also presents a calibrated
example that shows how the data from empirical studies can be reproduced for plausible values of an
aversion to price risk and an informational externality parameter.

Most of the paper studies the first-price and second-price sequential auctions with unit-demand bidders,
but in Section 8 I show that the results extend to English auctions and, to some extent, to bidders with
multi-unit demand.

The paper is organized as follows. Section 2 introduces the model. Section 3 characterizes the equilibria
of the first-price and second-price auction. One delicate issue is what information is revealed from round
to round. The natural candidate is to reveal the winning price in each round. However, the existence
of an equilibrium with increasing bidding functions in a second-price auction is potentially problematic
with this information policy, because the price setter in a round is a participant in the next round. I
show that with no informational externalities an increasing equilibrium exists, but it does not if there are
informational externalities. To study second-price auction with informational externalities, I assume that
only the winning bid is announced (Mezzetti et al., 2008, discuss this assumption in a model with affiliated
values and risk neutral bidders). Section 4 presents the afternoon effect when there are no informational
externalities. Section 5 looks at risk neutral bidders with informational externalities. Section 6 studies
the general model with aversion to price risk and informational externalities. It defines and discusses the
aversion to price risk effect and the informational effect. Section 7 presents a calibrated example and shows
that it fits the data from empirical studies. Section 8 discusses extensions of the model and the robustness

of the main results. In particular, it looks in detail at English auctions and bidders with multi-unit demand.



When discussing sequential English auctions, it is important to formulate a tractable model that allows
bidders not to reveal all the information in their hands during the first round. Section 9 concludes. Most

of the proofs and additional technical results are in the appendices.

2 The Model

There are K identical objects to be auctioned and N symmetric bidders, N > K. Each bidder has unit
demand. Bidder i observes the realization x; of a signal X;, a random variable with support [z, Z]. I assume
that the signals, or types, are i.i.d. random variables with density f and distribution F'. Let the random
variable X_; be the vector of signals of all bidders except i, with z_; a realized value of X_;. If ¢ wins an
object, the price he pays at the auction, P, is a random variable which depends, through the bids, on his
realized type x; and the signals of all other bidders X_;. Let p be a price realization. If a bidder does not
win an object, he pays nothing.

Let g be the probability of winning an object, G(p) a winning price distribution, and L = (¢, G(p)) a
compound lottery. Bidder ¢ has von-Neumann Morgenstern preferences over lotteries, which only depend
on the signal profile x € X = X; x X_; if ¢ wins the object. Thus, we can normalize the utility of
player ¢ to zero when he does not win an object. Moreover, bidder i’s preferences have an expected
utility representation U;(z,q, G(p)) = [ qui(z,p)dG(p), where u;(x,p), the utility of the certain outcome

of winning an object at price p, satisfies the following assumption.

A1. The function u;(z,p) is strictly decreasing in p and additively separable in z and p. For any
distribution G(p), let E[P] = [ pdG(p). It is u;(z, E[P]) > [ u;(z,p)dG(p).

If the inequality in A1 is strict for all G(p), we say that bidders are averse to price risk. If the inequality
holds as an equality for all G(p), then the model reduces to the classical case of risk neutral bidders. It is
immediate from A7 that there exist a function V and a convex function ¢, such that we can write bidder

i’s utility when he wins an object at a price p and the type profile is x = (z;,x_;) as:
ui(@,p) = V(zi,x—i) — £(p).

The first component, V(x;, z_;), is the utility bidder i receives from consuming one object when the type
profile is . The second component, ¢(p), is the loss, or disutility, from a payment p to the seller. If we
think of B(M — p) as the payoff, or benefit, from a money amount M — p, where M is the initial money
endowment, then —¢(p) = B(M — p).

The realized valuation of bidder i, V(x;, z_;), depends on the value z_; of the type of all other bidders.
I will make the additional assumptions that V(x;,x_;) is positive, smooth, the same for all bidders ¢,

symmetric in x;, j # ¢, and increasing in all its arguments with g;/? > 89‘:/", > 0. The latter assumption
i J

(which is commonly made when there are interdependent valuation, e.g., see Dasgupta Maskin, 2000)
guarantees the allocational efficiency of the equilibrium.
It is useful to distinguish between the case of no informational externalities, when the valuation function

of a bidder does not depend on the other bidders’ signals, V (x;, z_;) = z;, and the case with informational



externalities, in which V depends also on the signal realization x_;. In the literature, the case of no
informational externalities is referred to as private values.

Suppose that a bidder’s value V for the object is the sum of two independent random variables W; and
Z, and that W; has support [0, 1], while Z has support [100, 101]. Suppose further that bidder i observes
the value w; taken by the random variable W;, but not the value of Z. By defining the random variable
X; = W;+ EZ, we can think that each bidder observes the value of X;, with support [EZ, EZ + 1]; clearly,
there is a predominant common value component to a bidder’s valuation, even though bidders have no
private information about it. For this reason, I prefer to refer to V' = z; as the case of no informational
externalities, rather than private values. That bidders have no private information about the common
value component of their valuations is consistent with the common practice of auction houses, such as
Christie’s and Sotheby’s, to provide detailed expert estimates for each item at auction. When, on the
other hand, there is private information about the common value component of the items for sale, then
the appropriate model is one with informational externalities.

The loss function ¢ is the same for all bidders, strictly increasing with ¢(0) = 0, and convex, reflecting
aversion to price risk on the part of bidders. Let ¢ = £~! be the inverse of ¢ with respect to the realized
price p; ¢ is strictly increasing and concave. An example of a loss function which will be used in Section 7
is the constant relative price-risk aversion function ¢(p) = pll%; another example is the constant absolute
price-risk aversion function £(p;) = e*?.

In the literature on risk aversion in auctions, it is commonly assumed that bidders have an equivalent
monetary value for the object v(x;,z_;); risk aversion is captured by writing the payoff when winning
at price p as u(v(z;,z_;) —p), where u is a concave function. Most studies assume no informational
externalities: v(x;,z_;) = x;. As I pointed out in the introduction, McAfee and Vincent (1993) show that
such a model only generates decreasing prices if bidders have increasing risk aversion, and it is not very
tractable (a pure strategy equilibrium does not exist with decreasing absolute risk aversion).

Bidders that are averse to price risk do not have an equivalent monetary value for the good on sale,
but the good contributes additively to the utility of money. This is consistent, for example, with bidders
viewing the good for sale as an asset that gives a stream of future payoffs. According to this interpretation,
V (i, x_;) is the discounted future payoff, while ¢(p) is the current cost of acquiring the good at price p.
This interpretation can also incorporate the possibility that a winner may resell the object in the future,

so that the signal X; includes information about future market value.

3 Sequential Auctions: Equilibrium

In this section I will find the equilibrium bidding strategies in the sequential first-price and second-price
auctions, in which one object is sold in each of K successive rounds. In round k& < K of a sequential
auction, the bidding function of a remaining bidder depends not only on his type, but also on the common
history of announced prices and bids from previous rounds. I will start by assuming that at the end of each
round the bid of the winner is announced. In a first-price auction, this is equivalent to announcing the

selling price, the standard practice in real auctions. I will look for symmetric equilibria in which the bid of



a player is an increasing function of his type (everything else constant) in each round k. Thus, revealing
the winning bid is equivalent to revealing the signal of the winning bidder.

By assuming that the winning bid is what is announced at the end of each round in a sequential second
price auction, I guarantee that the same information is revealed as in a sequential first-price auction format.
On the other hand, if the bidding functions are increasing, revealing the price in a round of the sequential
second price auction amounts to revealing the type of the highest loser, a bidder who will be present in
the next round. This has potentially quite different informational implications than revealing the type
of the winner, which will not be present in future rounds (because of unit demand). I will show that in
the case of no informational externalities the equilibrium bidding functions are the same irrespectively of
whether the price or the winning bid are announced. I will also show, by way of an example, that with
informational externalities an increasing equilibrium of the sequential second-price auction does not exist
when the winning prices are announced.

The bidding functions of the sequential first-price and second-price auctions were first derived by
Milgrom and Weber (1982) for the case of risk neutral bidders.! The next three theorems, whose proofs
are in Appendix A, extend Milgrom and Weber’s results to the case of informational externalities and

aversion to price risk.

3.1 The Sequential First-Price Auction

In a sequential first-price auction, one object is sold in each of K rounds to the highest bidder at a price
equal to the highest bid.

)

Define the random variable Yj(n , an order statistic, as the j-th highest type of bidder out of n. Denote

the distribution and density function of Yj(n) as Fj(n) and f;n).

With a small abuse of notation, I will write bidder i’s valuation as the following random variable:
v (X'L? YI((N_1)7 o aYI(N_l)) =F |:V (X% X*’L) |XZ7 YI((N_1)7 o 7Y1 ] ’

Since I will look for an increasing equilibrium, and will assume that the winning prices are revealed, in
round k of a sequential first price auction the bid function will depend on the bidder’s type = and on the

types y1, ..., yp—1 of the winners in previous rounds.

Theorem 1 Along the equilibrium path of the symmetric equilibrium of the sequential first-price auction

with price (or winning bid) announcement, bidders follow the bidding functions
B s, o) = 0 (B [V (VO v 0 v ) Y <a <y =g L),
If there are no informational externalities, the bidding functions can be written as

BN Ypet,s ) = B () = & (E [Y[((Nfl)|Y,§N71) <z < Yk(ivfl)]) .

'Milgrom and Weber (1982) worked with affiliated types. As they say in the foreword added to the published version,

because of affiliation the proofs have to be considered in doubt; see Mezzetti et al. (2008), for some recent progress.



In the formula for 5‘191 it should be understood that YO(Nfl) =7, the top of the signal support. Observe

that Bfl is an increasing function of all its arguments when there are informational externalities, while
with no informational externalities Bg ! does not depend on the signals of the winners of previous rounds
(equivalently, it does not depend on the price history).

To understand the equilibrium bidding functions it is useful to view ¢ (ﬂgl(az; ...)) as the loss bid
associated with the price bid Bf L(x;...). In the last round, a bidder of type z conditions on the history of
past winning types yi, ..., yx—1. He submits a loss-bid equal to what he would value the object if he won
and had the same signal as his highest opponent. Thus, for example, with no informational externalities
his loss bid is equal to the highest expected value of his opponents, conditional on his remaining opponents
having lower values than him. This is the same loss bid that the bidder would make in a single-sale,
first-price auction. Bids in a round & before the last follow from the indifference condition that the loss-bid
in round k by a type x must be equal to the expected loss-bid in round k + 1 that a type x would make if
he made a bid certain to lose in round k and discovered that round k& winner has a type lower than x (see

equation (15) in Appendix A).

3.2 The Sequential Second-Price Auction

In the sequential second-price auction, in each round one object is sold to the highest bidder at a price
equal to the second highest bid. First, I will look at the case in which the winning bid is announced, as
in the case of a sequential first-price auction. Then I will analyze the case in which the winning price
is announced. In a sequential second-price auction, announcing the bids of winners is not equivalent to

announcing the winning prices.

Theorem 2 On the equilibrium path of the symmetric equilibrium of the sequential second-price auction

with winning bids announcements, the bidding functions are
B2 (g1 ) = 6 (B VO vy oY — e <y =g ).
If there are no informational externalities, the bidding functions can be written as
B (s g1, o) = BE2(@) = 6 (B [V Vv =a]).

The interpretation of the bid function parallels the one in the case of a sequential first-price auction,
with ¢ (,852(56; ...)) viewed as the loss bid associated with the price bid B7%(x;...). Given the history of the
past winning types, in the last round a bidder of type x submits a loss-bid equal to what he would value
the object if he won and were pivotal. With no informational externalities, this loss bid reduces to the
expected value of the object to the bidder. Bids in a round k before the last follow from the indifference
condition that, conditional on being pivotal in round k, a bidder must be indifferent between winning in
round k& or in round k + 1. (see equation (23) Appendix A).

Consider now the case in which the winning prices are announced after each bidding round. With no
informational externalities, the equilibrium bidding functions in the sequential second-price auction are

the same as when the winning bids are announced.



Theorem 3 When there are no informational externalities, on the equilibrium path of the symmetric
equilibrium of the sequential second-price auction with announcement of the winning prices, the bidding

functions can be written as
B2 (25 Yk 1y oy 42) = & (E [YI((N71)|YIC(N71) _ $]> '

This theorem can be understood as follows. Without informational externalities, equilibrium bids do
not depend on the past history of bids, no matter whether the winning bids, or the winning prices, are
announced. In both cases, in the last round it is a dominant strategy to place a loss-bid equal to the item’s
value. The bids in earlier rounds are then determined recursively, via the indifference condition (23).
History does not matter because in each round k& a bidder bids as if he were pivotal (i.e., as if Y,C(Nfl) =x).

When, on the other hand, there are informational externalities and the winning price is revealed in
each round, an equilibrium of the sequential second-price auction with an increasing bidding function does
not exist. The reason is simple: a bidder who, based on the history of prices, knows that he will lose in
round k, but will almost certainly win in round k£ + 1, has an incentive to deviate and make a very low
bid in round k. By doing so he will avoid being the price setter in round k. The price setter in round k
will be a bidder with a lower signal, and hence in round k + 1 all other bidders (including the future price
setter) will have lower estimates of an object’s conditional value and will make lower bids. As a result, the
deviating bidder will profit by winning at a lower price in round &k + 1. This is made clear by the following

simple example.

Example 1.

There are four bidders, three objects, and the common value of an object is V = x1 4+ x2 + x3 + x4.
Without loss of generality, let 1 > x9 > 3 > x4 (bidders, of course, only know their own signals). Suppose
there exists an increasing equilibrium. Then bidder 1 wins the first round and announcing the price reveals
To, the signal of bidder 2. Suppose z3 = xo — &, with ¢ “arbitrarily small”. At the beginning of the
second round, bidder 3 knows that if he bids according to the equilibrium strategy, then with probability
“arbitrarily close” to 1 he will be the price setter in round 2 and win an object in round 3. The price he
will pay in round 3 is the bid of bidder 4. Since this is the last round, it is a weakly dominant strategy for
bidder 4 to bid b = ¢ (E[X1|X1 > 2] + x2 + x3 + x4) (recall that x5 and z3 have been revealed by the price
announcements, but z; has not). Now consider a deviation by bidder 3 in round 2; suppose he bids zero.
Then the price setter in round 2 is bidder 4 and his signal is revealed. In round 3 bidder 4’s weakly dominant
bid is b = ¢ (E[X1]|X1 > x9] + 2 + 2x4) (since bidder 4 assumes he is pivotal; that is, he assumes z3 = x4).
After having deviated in round 2, in round 3 bidder 3’s weakly dominant strategy is to use a loss-bid equal
to the conditional expected value of the object; that is, he will bid ¢ (E[X1|X1 > 2] + 22 + x3 + x4). It
follows that by deviating bidder 3 will win in the third round and pay a price b which is less than the price
b he would pay if he followed the equilibrium strategy. Hence we have a contradiction; bidder 3 of type

r3 = x3 — € has a profitable deviation in round 2 from the supposed increasing equilibrium.

When there are informational externalities, bidders who are still in the auction update their expected

value of an object and their bids on the basis of the information revealed in previous rounds. In a second-



price auction the winning price contains information about the signal of a bidder who lost the current
round and will still be present in the next round. When the winning prices are revealed, by lowering its
bid such a bidder will lower the value estimates of his rivals and hence the price he has to pay when he

wins.

4 The Afternoon Effect

In this section I will show that declining prices (i.e., the afternoon effect) are a natural consequence of

aversion to price risk, when there are no informational externalities.

Theorem 4 When there are no informational externalities, the price sequences in a sequential first-price

and in a sequential second-price auction are a supermartingale.

Proof. The proofs for both cases follow the same logic. Note that if there are no informational externalities,
then announcing either the winning bids or prices has no direct effect on the bidding functions. Consider
first a sequential first-price auction.

Suppose type x of bidder ¢ wins auction k£ < K. Then it must be Yk(N_l)

follows that Po' = 831 (x) = ¢ (E [Y[((N71)|Y;§N71) <z < Yk(ivfl)]) and

<z <yp1 < ...<yp. It

PEL1BR ()]

E[PL|P] =B
= BB oY o= X <y =g,
B

=B [o (¢ (B Y <o = X <Y =,
<o (Bl (B0 ) Y <o =X <y =y, )
—o (B[ o= X <y =y, )

= 67 (2)

=P

where the inequality follows from Jensen’s inequality, given that ¢ is a concave function. This shows that
the price sequence in a sequential first-price auction is a supermartingale.
Consider now a sequential second-price auction. Suppose in round k the winner is the bidder with the

(N-1)

signal Y, , and bidder 7 of type x is the price setter; that is, PEQ = sz(m;yk_l, Y1) = 52(@ =

10) (E {Y[((N_l)|Y,§N_1) = x] ) In round k + 1, bidder i of type x wins the auction, and the price setter is



the bidder with the signal Yk(fl U 1t follows that

E[P4|P{?] = E[P67% (2)]
E [Bkﬂ k(iv1 Y ) Yk(ﬁ Y < a:}
2

(F(AEOL)) T =

<o (B[ (BLmE) WY = <)
o (s o)
zﬁf:p

Thus, the price sequence in a sequential second-price auction is also a supermartingale. In deriving the

N-1)

third equality I have used the independence of signals, which implies that conditioning on Yk( i

equivalent to condition on Yk(Nfl)

< xis
= z, when looking for the expected value of 5}, +1(Y,§ffl)). |

The intuition for the afternoon effect is essentially the same in a first-price and a second-price sequential
auction. In each round before the last, conditional on having the highest remaining signal and being the
price setter, a bidder must be indifferent between winning now and winning in the next round.? But if a
bidder is the price setter, then he knows the current price, while next round’s price is random. Because of
aversion to price risk, next round’s expected price must then be lower than the price now. The difference is
the risk premium the bidder must receive to be indifferent between the certain price now and the random
price in the next round.

To understand this intuition in more detail, consider round k of the second-price auction. Suppose type
x of bidder ¢ has lost all preceding auctions. Suppose also that in round k bidder x considers raising his
bid by a small amount ¢ above /3;32 (). This will only make a difference if, after the deviation, he wins in
round k, while he would have otherwise lost and won in round k£ + 1. For this to happen, it must be that
Yk(N_l) ~ g; that is, we must be in the event in which bidder ¢ with signal x is at the margin between
winning and losing in round k (i.e., he must be pivotal, his signal must be tied with the signal of another
bidder). Conditional on this event, the marginal cost of the deviation is the loss incurred in period k when

bidding according to the deviation,
(B () +e),

while the marginal benefit is the expected loss avoided in period k + 1,

N-1 N-1 N-1
BB I 2 X = e <y

Equating marginal cost and marginal benefit (and sending € to zero) gives the indifference condition:

(@) = B [8E I Y = X =2

’In a sequential first-price auction, if a bidder has the highest signal in round & and he bids according to the equilbrium

bidding function, then he is automatically the price setter. On the other hand in a sequential second-price auction, conditioning
on the highest-signal bidder also being the price setter amounts to requiring that his signal is tied with the signal of another
bidder (i.e., the bidder is pivotal).
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The indifference condition says that the certain loss when winning in period k at a price ,652(@ must be
the same as the expected loss when winning in period k + 1. Since bidders are averse to price risk, it must
then be the case that the expected price in round k + 1 is less than the price 37%(x) in round k. For the
marginal bidder to be indifferent between winning at a certain price now, or at an uncertain price in the
next round, it must be the case that the next round’s expected price (conditional on the current price) is
lower than the current price. Hence prices must decline from one period to the next.

Now consider a sequential first-price auction. Suppose bidder ¢ wins in round k if he bids as a type

Yk(N_l) <z < Yk(ivl_l). Bidder ¢ can also always bid so low so as to lose in round k.

With a losing bid, bidder 4 discovers the value of Yk(Nfl) (the signal of the winner when bidder 4 bids low).

Bidder ¢ can then win for sure in round k + 1 by bidding BE}FI(Y;N_I)) (i.e., by bidding as if his type

x; that is, suppose

were Y,C(Nfl) ). The indifference condition for sequential first-price auctions states that bidder ¢ must be

indifferent between winning in round k and in round k + 1:
N— N— N—
(8N @) = B[ (50 Y <0 < v ETY]

The left hand side is the certain loss associated with the period k price; the right hand side is the expected
loss associated with the random price in period k + 1. Thus the price sequence must also be decreasing in

a sequential first-price auction.

5 The Effect of Informational Externalities

In order to focus on the effect of informational externalities on the price sequence, it is best to look first
at the standard risk neutral model (i.e., the case when ¢ is the identity function). I will show that when
bidders are neutral with respect to price risk, and there are informational externalities, prices increase
along the equilibrium path of a sequential auction with bid announcements. It is a bit of a surprise that
this result, which applies to the standard model with risk neutral bidders and independent signals, does
not seem to have appeared in previous literature. An increasing price sequence has only been derived in

the model with affiliated signals by Milgrom and Weber (1982) (see also Mezzetti et al., 2008).

Theorem 5 In a sequential first-price and in a sequential second-price auction with announcement of the
winning bids, if bidders are risk neutral and there are informational externalities, then the price sequence

18 a submartingale.

Proof. The proof is along similar lines to the proof of Theorem 4. Consider first a sequential first-price

auction. Recall that ¢ and ¢ coincide with the identity function. Suppose type x of bidder ¢ wins auction

k < K. Then it must be Yk(N_l) <z <yp_1<..<uy:. It follows that

Plfl = fl(iﬁs Yk—1, s Y1)

N— N— N— N—
— B[V (& v ) Y e <y =y
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and

[ k+1| ] E[ k+1|/8k (75 yp— 1,..,y1)]
_E [ﬁk+1(Y(N Dz gty )V <o <y Y — g ]
>F [ﬁkH(Yk(N_l); Yk(N_l), Yk_1, ..,y1)|Yk(N_1) <z< Yk(ivl_l) = Yp_1, }
=BV (v v v ) Y <o <y =g,
= B (@ Y1, - Y1)
PSl

where the inequality follows from Bfil () being an increasing function of all its arguments and Yk(N_l) <z

Thus, the price sequence in a sequential first-price auction is a submartingale.

Now consider a sequential second-price auction. Suppose that in round k the winner is the bidder with

signal Yk(N_l), and bidder i of type z is the price setter; that is:
P 52('7; Yk—1, - '7y1) =F |:V(Y[((N_1)7Y[({N_1)7Y[({Jizl)7 )’Yk;(N_l) =z < Yk(ivl_l) = Yk—15---| -

In round k + 1, bidder ¢ of type x wins the auction, and the price setter is the bidder with signal Yk(ffl).

It follows that

k+1|5k (=5 yp—1, - ,yl)]

5%1(3]]551_1);Yk(N_l),yk—l,. )|Yk -1 <Xj=z< Y,C(N_l), }

E [PPh|P?] =

(N-1) y(N=1) y,(N-1

B[
E|
-1 N-1 -1 N—-1
> B [5k+1( kt1 )§Yk( )73/k717- )|Yk V< Xi=z= Yk( ),...}
E [V(YK Yy YR , )’Y V= X1=z< Y/.c(ivfl) = Yk-1, }

:5k (x;ykflw':yl)
S2
k .

Thus, the price sequence in a sequential second-price auction is also a submartingale. =

The conventional wisdom that with independent signals and risk neutral bidders the price sequence
is a martingale is only correct if there are no informational externality (i.e., in the common terminology,
values are private). With informational externalities, prices tend to increase from one round to the next.

To see why, consider a sequential second-price auction (the reasoning for a first-price auction is similar).
As we argued in the previous section, a bidder must be indifferent between winning in the current round
and winning in the next round, conditional on having the highest remaining signal and being the price
setter. With risk neutral bidders, this implies that the current price must be equal to the expected price
in the next round conditional on the event £ that the current winner has the same signal as the price
setter. With informational externalities, the next round expected price conditional on the event £ is an
underestimate of the next round expected price conditional on the current price. This is because the
current winner will generally have a higher signal than the current price setter, and the value of an object

directly depends in a positive way on the signals of all bidders.
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It is useful to stress that the intuition behind the result in Milgrom and Weber (1982) that the price
sequence is increasing when signals are affiliated random variables is similar to the intuition behind Theorem
5. With affiliated signals, the expected value of an object depends in a positive way on the signals of all
bidders, and it is also the case that the current price is equal to an underestimate of the price in the next

round (see Mezzetti et al., 2008, for a discussion).

6 Aversion to Price-Risk and Informational Externalities: Effect De-

composition

While aversion to price risk pushes prices to decline over time, informational externalities introduce a ten-
dency for prices to increase. If bidders are both averse to price risk and there are informational externalities,
it is possible to decompose the two countervailing effects on the price sequence.

Given a bid loss £*, since £ (p(£*)) = £*, we can think of ¢(¢*) as the implicit price associated with £*;
if a bidder pays a price ¢(£*), his loss is equal to £*.

Consider round &k + 1 of a sequential first-price auction, after the winners’ signal history =z, yx_1, ..., y1.
(The bidder with signal z is the price setter in round k.) The round k + 1 aversion to price risk effect is
defined as the difference between the expected price and the implicit price associated with the expected

loss in round k + 1, conditional on the signal history =, yx_1, ..., y1:

A£i1($7yk717 -'-791) =F [ﬂg}-l(yk(Nil)vma Yk—1, )‘Yk(Nil) S x S Yk(ivlil) = Yk—1, i|

—¢ (E [f (ﬁfh(Y;fN_l); T, Yk—1, --)) IYk(N_l) <z < Y,ffvfl) = Yk—1, D

If bidders are risk neutral, the expected loss and its associated implicit price are equal to the expected
price and A%ﬂ() = (0. When bidders are averse to price risk, Af}_l() < 0, because ¢ is a concave function;
the aversion to price risk effect is negative.

The informational externality effect is defined as the increase in the implicit price in round k + 1 due
to the winning bidder in round k having signal z > Yk(Nfl), rather than the same signal Yk(Nfl) as the

winner in round k + 1, conditional on the signal history x, yx_1, ..., y1:

I’?}»l('xvyk—lj "‘72/1) = ¢ (E |:£ (ﬁg}kl(Yk(N_l);xvyk—lv )) |Y]g(N_1) <z< Yk(ivl_l) = Yk-1, j|)

_4 <E [z (5&1(1@(“”; v g ..)) YD <o <y — g D .

If there are no informational externalities, bids do not depend on the signals of past winners and so the
implicit price in round k£ 4+ 1 does not depend on the signal of the winning bidder in round k; hence
1 ksil() = 0. If there are informational externalities I ,fil() > 0, because 5£}r1: is an increasing function of
all its variables; the informational externality effect is positive.

The aversion to price risk effect and the informational externality effect in a sequential second-price
auction are defined as in the case of a first-price auction, except that conditioning now is on the event that

in round k the winner is the bidder with signal Yk(Nfl), that bidder 7 of type z is the price setter, and that
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the previous rounds winners’ signals are yx_1, ..., y1.

N N-1 —1 N-1
Afil(x,ykfl, "'7y1) = |: k+1(Yk(+1 7 ( >Z/k 1 )| k+1 ) < X =z < Yk( )7 }
N-1) N-1 N-1 N-1
( |: ( k-‘rl k'(-|-1 Y( )7yk—17 )‘) |Yk;(+1 ) < Xl =z < Yk( )7 i|) .
N-1 N-1) N-1
I’?il(xayk—la . 7y1 ( |: ( k+1 k+1 7Y]€( )7yk’—1> )|) | k(+1 <Xp=z< Yk( )a ])

=0 (2 [¢ (B0 e, ) Y = 2]).

The next theorem, whose proof is in Appendix A, shows that in both sequential auctions the expected
price in round k 4+ 1, conditional on the price in round k, is equal to the sum of the price in round k, the

aversion to price risk effect, and the informational externality effect.

Theorem 6 Suppose the price setter in round k has signal x and the history of winners’ signals up to
round k — 1 s yg_1,...,y1. In the sequential first-price auction (j = 1) and the sequential second-price

auction (j = 2) with announcement of the winning bids we have:

Sj S S S
E |:P]gJ,J»1|Pk“7:| P ! +Ak 1(33 Yk—1s - Y1) +Iki1(33,yk—l,--~7y1)

7 A Calibrated Example

Can aversion to price risk explain the declining price sequences we observe in the data? What is the degree
of aversion to price risk that is needed? May prices decline even with informational externalities? This
section provides some answers to these questions. I will introduce a simple parametric example, and show
that its predictions match the data from a sample of empirical studies, for reasonable specifications of the
parameters.

The empirical reference points for the discussion in this section are the papers of Ashenfelter (1989)
and McAfee and Vincent (1993) on sequential (mostly two-round) auctions of identical bottles of wine sold
in equal lot sizes. Ashenfelter’s (1989) data set included auctions between August 1985 and December
1987 in four different location (Christies’s London and Chicago, Sotheby’s London and Buttersfield’s San
Francisco). McAfee and Vincent (1993) looked at auctions held at Christies’s in Chicago in 1987. They
both found evidence of declining prices; the price in the second auction was twice more likely to decrease

than to increas. The average price ratio P»/P; they found is displayed in Figure 7.

Mean Ratio P,/ Py
Ashenfelter (1989): Christies’s London .9943
Ashenfelter (1989): Sotheby’s London 9875
Ashenfelter (1989): Christies’s Chicago .9884
Ashenfelter (1989): Butterfield’s San Francisco 9663
McAfee and Vincent (1993): Christies’s Chicago .9922

Fig. 1: Price ratio in the data
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I will make the following simplifying assumptions to the model. The value of an object to bidder 7 is
zi+b3 0, xj, with b € [0,1]. If b = 0, there are no informational externalities. The random variables ;

are distributed on [0, 1] with distribution function F(x) = z%, with a > 0. The loss function is:

1+r

_ b

We can interpret r = pl”’ /¢ as a coefficient of relative price-risk aversion. The inverse of ¢ is
11
¢(z) = (L+7)THr 2747,

I will restrict attention to the second price auction and the case of two rounds, K = 2.

In Appendix B, I compute the bidding functions, the expected price in round 2 conditional on the
first-round price P, and the ratio of the conditional expected second-round price to the first-round price.

In all computations reported in this section, I will set » = 2, a commonly used value for relative risk
aversion in computational macroeconomics (e.g., see Ljungqvist and Sargent, 2000); it implies that a bidder
is willing to pay a price about 1% higher to avoid a 50-50 gamble of a 10% increase or a 10% decrease in
price. The results do not seem overly sensitive to the value of r.

If we first postulate that in the auctions in question there were no informational externalities, that is

b =0, then the price ratio is (see (28)):

ER|P] _ (a(N - 2) 7 (a (N —2) + 1)$. "
A (a(v —2) + &)

We can use (1) to graph the price ratio E [P2|P;] /P; as a function of A = a(N — 2).

E[P2P1]/PL |

0.9 1

o
o

A

Fig. 2: Price ratio with no informational externalities as a function of a(N — 2)

The average price ratio in the data in Figure 7 ranges from 0.9663 to 0.9943, which correspond to

values of A from 1.3903 to 3.9788. In most of the auctions considered the number of bidders was relatively
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small, typically well below 20. If we take N = 10, this gives values of a between 0.1738 and 0.4973 as those
consistent with the data.

E[P|Pi]

Suppose now that there are informational externalities, b > 0. In this case depends on the signal

. fha @ : . : B[P |P]
x of the first-round price setter. Appendix B reports the expected value of the price ratio E [T} .
With informational externalities, lower values of the parameter a are needed to match the data. Setting
r = 2 as before, N = 10, and a = 0.1 yields the relationship between the price ratio and the informational

externality parameter b shown in Figure 3.

E[E[P2,P1]/P1] 1 10
1.05 1
1.00 1
0.95 -

0.90

PR TR TRV N NI T R R R R R
L e B e e L
00 01 02 03 04 05 06 07 08 09 10

b

Fig. 3: Price ratio as a function of the informational externality parameter b

The range of the average price ratio in the data in Figure 7 correspond to values of the informational
externality parameter between 0.0827 and 0.1260. Prices may decline even if there are informational
externalities. In fact, the presence of both aversion to price risk and informational externalities could help
explaining why in some multiple round auctions prices increase between some rounds and decrease between

other rounds (e.g. see??).

8 Extensions

In this section, I show that the aversion to price risk effect is present even when bidders demand multiple
units, or the auction format is an oral ascending auction. While I do not prove it formally, if I allowed for

informational externalities, the informational externality effect would also be present in these extensions.

8.1 Multi-Unit Demand

New issues and serious complications arise in models with multi-unit demand, which are generally not very
tractable (e.g., see Milgrom, 2004). To keep the focus on the effect of aversion to price risk in a tractable
model, in this subsection I will extend Katzman’s (1999) model of a two-round, second-price auction with

no informational externalities.
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I will assume that each bidder extracts two values from the same distribution F. If xj is the highest
and x; the lowest value extracted, then bidder i obtains a payoff of x;, — ¢(py) if he only wins one object
in round k at price pg, and a payoff of zj, + z; — £(p1) — £(p2) if he wins two objects at prices p; and ps. In
Katzman (1999), ¢ is the identity function, and hence bidders are risk neutral.

The proof of the following theorem is in Appendix C.

Theorem 7 On the equilibrium path of the two-round, second-price auction with multi-unit demand and

no informational externalities, the bidding functions are
2N—2
52 (mwz\% > Y, )> = ¢(z1)

852 <xh7$l’$h < Y'1(2N_2)> = ¢(xp)

B (wn, @) = ¢ <E [%<2N_2)|Y1(2N_2) = th :

The auction is efficient, the bidder or bidders with the two highest marginal valuations win the objects.
In the second-round, the loss-bid is equal to the bidder’s value for the object, which is equal to z; if the
bidder won an object in the first round and to xj if he did not. In the first round, the loss-bid is equal to
the expected second highest value of a bidder’s opponents, conditional on the highest value of the bidder’s
opponents being equal to the bidder’s highest value. A bidder behaves as if he is only going to win an
object, and his bid is selected so as to make him indifferent between winning in the first or in the second
round.

Suppose that the first-round price setter is bidder ¢ of type (zp,x;); the bidder with the highest value
among bidder ¢’s opponents won the first round. There are two possible events. The first event is that
the first-round price setter, bidder i, wins the second round auction. In this case the expected second
round price is the expected bid associated with the second highest value of bidder i’s opponents; that is,
E ¢(Y'2(2N_2))|Y2(2N_2) < x|, which is equal to E [¢(Y2(2N_2))|Y1(2N_2) = :L'h], because of the indepen-
dence of signals. This first event has probability Pr{Y2(2) < a;h]Yl(2) > 1z}, the conditional probability
that the first-round winner has a marginal value for the second object lower than zj. The second event is
that the first-round winner also wins the second auction, and hence the first-round price setter also sets
the price in the second round; in this case the expected second round price is ¢(zp). This event happens
with probability Pr{YQ(Q) > xh|Y1(2) > xp}. It follows that, conditional on bidder i of type (xj, ;) being

the first-round price setter, the second round expected price is:

E[P|P) = E [¢ <Y2(2N_2)) VD = | Pr{v? < 2 [V{? > a1} + 6(a) Pr{Y® > 2|V > @)
(2)

Define the aversion to price-risk effect as:
A = {E[o ()M = o] <o (B[N <o ) R <o > )

_ { E [¢> (y2<2N—2>) vy, 2N = xh] — By(zn, xl)} Pr{Y,? < 2, [V{? > zp). (3)
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The aversion to price risk effect is the difference between the expected price and the implicit price associated
with the expected loss in round 2, conditional on the first-round price setter winning the second round
auction, multiplied by the probability that the first-round price-setter wins in the second round.

Define the multi-unit demand effect as:
M52 (xy) = [B(an) — By (wn )] Pr{Ys? > eV > 2} (4)

The multi-unit demand effect measures the effect on the price sequence of the same bidder winning both
rounds. It is the difference between the second-round price and the first-round price, conditional on the
first-round price-setter being the price setter also in the second round, multiplied by the probability that
the first-round and second-round price setters are the same bidder (i.e., the same bidder wins both first
and second round).

While the aversion to price risk effect is non-positive, the multi-unit demand effect is non-negative.?
As the next theorem shows, whether the price sequence in a two-round second-price auction with no
informational externalities is decreasing depends on whether the price-risk aversion effect dominates the

multi-unit demand effect (the proof is in Appendix C).

Theorem 8 Suppose that the price setter in the first round has signals (xp,x;). Then the expected second
round price in the two-round, second-price auction with multi-unit demand and no informational external-
1tes 18:

E [Py|Py] = Py + A5 (zp,) + M52 ()

Consider the example with F(z) = 2% and £(p) = p'*"/(1 + r) introduced in Section 7. Appendix
C computes the bidding functions, the expected price in round 2 and the conditional price ratio. Letting
r =2 and N = 10, as in Section 7, Fig. 4 graphs the expected price ratio as a function of a. The average
price ratio in the data in Figure 1 ranges from 0.9663 to 0.9943. This corresponds to values of a ranging
from 0.0728 to 0.1897. Aversion to price risk may generate declining prices even if bidders have multi-unit

demand.

3Katzman (1999) showed that with risk neutral bidders the price sequence is increasing.
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Fig. 4: Price ratio as a function of a

8.2 The English Auction

Sequential auctions are often run using an English, or oral ascending, format. The fundamental difference
between an English format and a sealed bid auction is that in the former information endogenously accrues
to bidders in the course of each round of play. The main issue with analyzing sequential English auctions
is to find a formal model that is tractable and captures the information flow during the auction. The most
commonly used model to study a static, single unit, English auction is the so-called Japanese version, in
which a price clock moves continuously and bidders can only decide when to quit. Once a bidder quits, he
cannot re-enter. When the second to last bidder quits, the clock stops and the last bidder standing wins
at the current clock price. The main virtue of such an auction format is its simplicity. In the case of no
informational externalities and risk neutral bidders, for example, it is a dominant strategy to quit when the
price reaches one’s value for the item. Using the Japanese format for sequential auctions is problematic.
As Milgrom and Weber (1982) first pointed out, the equilibrium is the same as in the static English auction
for multiple items. Consider for example the case of two objects, no informational externalities and risk
neutral bidders. In the first round, it is a dominant strategy for all bidders to drop out at their value for
the object if there are more than two bidders remaining, and to drop out immediately after the third to
last bidder has dropped out. Thus, the price in the first round is equal to the object’s value to the third
highest bidder. This is also the price that prevails in the second, and last, round. The price is the same in
all rounds; in fact, a sequential Japanese auction is essentially equivalent to a static, multi-unit, Japanese
auction. This is because the Japanese format forces all losing bidders to reveal their types during the first
round. At the time the first round price is determined, all that is needed to determine prices in all rounds
has been revelead. This is true independently of whether bidders are risk neutral or averse to price risk;
aversion to price risk cannot lead to decreasing prices because bidders face no price risk!

Such a counterintuitive conclusion is a by-product of the extreme nature of the Japanese format. In

practical ascending auctions, it is not the case that at the end of the first round all bidders in the room
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know the identity of all future winners and the types of all losing bidders. Bidders often stay silent at the
beginning and only start bidding towards the end of a round. Some bidders stay silent throughout a round,
and it is not at all clear what their values are. When bidders are allowed to decide how much information
to reveal in the course of bidding, the analysis can be unwieldy. In this subsection, I will introduce a format
of an ascending auction that is tractable, and allows bidders to hide their values during a round. The only
point I want to make is that the afternoon effect is still present, as long as bidders in the early rounds are
uncertain, at the time price is determined, about the valuation of some of their opponents (allowing for
the probability of entry of new bidders in the second round would serve the same purpose).

I will assume that there are only two rounds and that there are no informational externalities. Bidders
are averse to price risk and have unit demand. In each round of the auction, the auctioneer calls bidders
to increase the current price by a fixed increment A (I will let A go to zero). If one or more bidders raise
the price, then the bidder with the lowest label is selected as the new high bidder at the new price (the
tie breaking rule is not important). If no bidder raises the price, then the auctioneer makes a second call,
at the same price. If one or more bidders raises after the second call, then, as before, the bidder with the
lowest label becomes the new high bidder. If no bidder raises after the second call, then the round ends
and the current high bidder wins an object at the current price.

This sequential ascending auction format has an equilibrium in which only two bidders are initially
active (say bidder 1 and bidder 2), in the first round. When one of the two active bidders does not raise
the other active bidder’s offer, then all other bidders enter the bidding (raise the current price) if it is
profitable for them to do so. Such an equilibrium has declining prices between rounds. This is because in
the first round, when deciding to stop raising the price, the two initially active bidders are uncertain about
the other bidders’ valuations, and hence next round price. The uncertainty is due to all other bidders not
being active in the early stages of the first round of the auction. The intuition for the occurrence of an
afternoon effect is the same as in the case of a second-price auction. Bidders 1 and 2 are willing to pay a
premium to insure themselves against a future uncertain price.

The proof of the following theorem is in Appendix C.

Theorem 9 There is an equilibrium of the two-round, English auction, with no informational externalities,
in which: 1) In the second round, each remaining bidder i answers the first call by raising the price if and
only if he is not the current winner and the current price is below 55 (x;) = ¢(x;). 2) In the first round,
bidder i = 1,2 answers the first call and raises bidder j = 1,2, j # i, current winning price if and only if
the current price is below B (x;) = ¢ (E [YQ(N_D|Y1(N_1) = ach and no other bidder has yet entered the
bidding (i.e., ever raised the price). After a bidder different from 1 and 2 has entered the bidding for the
first time, then bidder i raises the current winning price if and only if he is not the current winner and
the current winning price is below Y (x;) = é(x;). 3) In the first round, bidder i # 1,2 does not enter
the bidding as long as bidders 1 and 2 are raising each other prices. If one of bidders 1,2 does not answer
the first-call to raise current price p — A, then bidder i answer the second call and raises if and only if
p < ¢(z;); after raising the price once, bidder i continues raising the price as long as he is not the current

winner and the current winning price is below ¢(x;).
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The winners of the auction are the two highest valuation bidders. There are two possible outcomes.
First, all bidders become active in the first round. In this case, the prices in the first and in the second
round are the same and equal to ¢(Y3(N)); the types of all losing bidders will become known by the end of
in the first round. This is the same outcome that would obtain in the equilibrium of the Japanese auction.
The second possible outcome is that only bidder 1 and bidder 2 are active in the first round. This can
happen only if they are the two highest valuation bidders. Without loss of generality, we can assume that
bidder 1 has the highest valuation. Then the first round price is Py = ¢ (E [YQ(N_1)|Y1(N_1) = :L‘2:| ) The
expected second round price, conditional on Py, is E [P|P] = E [(b (YQ(N_1)> |Y1(N_1) = :rg]; by Jensen’s
inequality, it is F [Pe|P1] < Pi. Since the second outcome will occur with strictly positive probability, we

have proved the following theorem.

Theorem 10 When there are no informational externalities, the price sequence of the two-round English

auction is a supermartingale.

9 Conclusions

The classic model of risk neutral bidders assumes additive separability in a bidder’s preferences over objects
and money. Aversion to price risk maintains additive separability, but postulates that a bidder prefers a
certain payment to an equivalent (on average) random price. One could also define aversion to quantity
risk. If g is the quantity of a good (or number of objects) won by the bidder, a bidder is averse to quantity
risk if he prefers a certain quantity rather than an equivalent random quantity. A bidder who is averse
to quantity risk has a valuation function V(g,x) which is concave in ¢ for all z. I haven’t pursued this
route, because it would not matter in explaining decreasing (or increasing) price sequences, but I suspect
that aversion to price risk plays a role in explaining the choice of lot sizes and the order of sales by an
auctioneer.

Additive separability of preferences plays an important role in this paper. It permits us to separate
aversion to price risk from aversion to quantity risk. It also allows us to postulate that there is no private
information about a bidder’s marginal utility of money. This assumption makes the model very tractable.
As I show in Lemma 11 in Appendix A, it implies that a bidder-payoff equivalence theorem holds. All
auction mechanisms with the same allocation rule and which give the same payoff to the lowest bidder
type are bidder-payoff equivalent. They are not revenue equivalent; revenue ranking results can be easily
derived.

Without additive separability, the effects due to aversion to price risk, aversion to quantity risk, and
private information interact. The interaction between (price and quantity) risk aversion and private in-
formation in a single-sale model is the focus of Maskin and Riley (1984). McAfee and Vincent (1993)
showed that sequential auctions without additive separability are not very tractable; equilibrium in their
two-round, second-price auction with no informational externalities is in mixed strategies.

Aversion to price risk yields a simple explanation of declining prices in sequential auctions. In any given

round, a small change in his own bid matters to a bidder only if it is, at the same time, the winning bid
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and the price setting bid. Thus, when his own bid matters, a bidder wins at a certain price, his own bid.
Optimality requires that there is no first order effect on the bidder’s payoff of a change in the bid. This
implies that the bidder is indifferent between winning in the current round or in the next round. Since next
round prince is random, in effect the bidder buys price insurance in the current round to protect himself
against future price randomness.

The paper also uncovers an informational externality effect. When there is no aversion to price risk,
but there are informational externalities, prices increase between rounds of sequential auctions. Again, the
explanation is simple. The current price setting bidder must be indifferent between winning in the current
or in the next round, assuming that he is also the current winner; that is, he must be indifferent between
the current price (which he sets) and his estimate of the next round price. Since he assumes that he is
also the current winner, the current price setter underestimates the signal of his highest opponent and true
winner of the current round. Because of informational externalities, this amounts to underestimating next
round price. Hence, on average next round price is higher than the current price.

Several empirical implications can be drawn from this paper. First, the more important a concern is
price risk for bidders, the more we should expect prices to decline between rounds. Thus, for example,
if there is a serious possibility that new bidders may enter in the next round, then price risk is more
severe and we should expect prices to decline more. Second, when informational externalities, or value
interdependencies, are not very important, but bidders are averse to price risk, then prices are likely
to decline. For example, if the auctioneer publishes all the information at his disposal, including value
estimates of the objects for sale, then inderdependencies are reduces and it is more likely that we see prices
decline, rather than increase between rounds. Third, when value interdependencies are very important,
more important than price risk, then we should expect prices to increase between rounds. Fourth, when
bidders have multi-unit demand, so, for example, if the same bidder wins multiple rounds, then it is more
likely that prices only decline moderately, or even increase, between rounds. Fifth, the less information
about bidders values transpires during a round, the more we should expect prices to decline. Thus, if each
round is an oral ascending auction, the larger the number of bidders that remain silent during the initial

rounds, the higher future price randomness, and hence the more likely are prices to decline between rounds.
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Appendix A

This appendix provides the proofs of Theorems 1, 2, 3 and 6, which have been omitted from the main body
of the paper. First, it is it is useful to derive a lemma showing that bidders’ payoffs are the same in every
auction having the same outcome function and yielding the same payoff to the lowest type of bidder.
Suppose that k objects have already been sold to the k highest type bidders, yi, ..., yx; suppose also
that the winners’types have been revealed. Consider a mechanism in which 71 (2', yn—1, ..., Yk+1) 18 @’s
probability of winning one of the remaing object and pr11(2’', yn_1, ..., Yg+1) is i’s payment when he behaves

as a type z’. Then, bidder i’s expected payoff when his type is =, but he behaves as if his type were 2’ is

U ro _ Yk YN-—-2 V ' ,
k:—‘y—l(a3 axaykv"wyl) - [ (manyla -~-ay1)77-z(~r yYN—1, -'-ayk—‘rl)_
z z

)

N-1
(i (@i, Yn=1, - Y41))] f (yn—1, ~--7yk+1|Y,€( = Yr)dyn—1.-- Y1,

where f(yn—_1,...,Yx+1|yr) is the density of the order statistics Yn_1, ..., Y41 conditional on Yy = yi. (Note
that by independence it is not necessary to condition on order statistics higher than Yj.)
Letting U} 1 (%5 Y, -, Y1) = Ug1(%; 25 yg, -, y1) be the expected payoff in equilibrium of type x, and

using a standard envelope argument yields

8UZ;+1($, Yky ooy yl)
oz (5)

Yk IN-2 9V Ty, YN—-15---5 Y1 N—-1
=/ / ( yaxl Y >7Tz'(90,yN—l,---,ka)f(yN—l,---,yk+1|Yk( )= y)dyn 1. dypa-
x x

In particular, if the mechanism is efficient, as the two sequential auctions studied in this paper, then (5)
becomes

aU]z-‘rl("B;yk7 "Jyl) /yk /min{x’yNZ} 8V(%?/N—1,--ay1)

_ )
ox oz

= yp)dYnN—1.-dYk41-

(6)

N—
f(yN717"7yk+1|Yk( !

In the case of no informational externalities equation (6) becomes:

8U]:+1(x; Yky -oes yl)

N-1
o = Fea (2" = ). (7)

Equation (5), combined with U}, (z;...) = u, yields the bidder-payoff equivalence lemma.

Lemma 11 Suppose k = 0,..., K — 1 objects have already been sold to the highest type bidders. Bidders’
payoffs are the same in any mechanism (w11, prr1) having the same outcome function w11 and yielding
the same payoff to the lowest type. Equation (5) (equation (6) if the mechanism is efficient) and the

boundary condition Uy (z;...) = u determine a bidder’s payoff.
We are now ready to prove Theorems 1-3

Proof of Theorem 1. Let ﬁfl(x;yk_l, ..,y1) be round k equilibrium bidding function. Recall that,

assuming that ﬂg lis increasing in z, on the equilibrium path the true types of the winning bidders are
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revealed. Suppose that if the winning bid in round & is higher than the highest equilibrium bid, then all
bidders believes that the winning bidder’s type is the same as the type of the previous round’s winner;
if the observed winning bid in round k is below the lowest equilibrium bid, then bidders believe that the
winner’s type is the lowest possible type.

Let U} (x;yk—1,...) be the expected payoff for a type = of bidder in the continuation equilibrium begin-
ning in round k (i.e., the payoff conditional on having lost all previous auctions and on the history up to

round k). In writing a bidder’s payoff, I will use the function vy, defined as follows:

Uk:(xvykv "'7?/1) =F V(Xla X*Z)’XZ =z, Yk(Nil) = Yk, "'7Y1(N71) =1 - (8)

Suppose that all the other bidders follow the equilibrium strategies, while bidder ¢ is considering deviating
in round k (only). First note that, given his beliefs, it is not profitable for bidder i to bid above the highest
possible bid of the other bidders BE Y(yr_1;-). Bidding below the lowest possible bid is equivalent to bidding
the lowest bid; in both cases winning is a zero probability event. Hence if there is a profitable deviation,
there is a profitable deviation with a bid in the range of possible bids. The payoff of bidder ¢ of type =
when he bids b = 551(2; Yk—1,-..) (i.e., he bids like a type z) in round k is:

Uk(2 5 g1, ) = / [on@, o) = 0B G DAY (Y =g dge (9)

z
N-1 N-1
+/ U1 (25 Yy Y1, ) )(yk\Yk(_l ):yk—l) dyp.
4
Differentiating with respect to z yields the first order condition

(5P DA (00 = )
dz

Uk(x7z7ykfla ) V1) ( ‘Y(ivl_l) = yk:fl) -

* - N-1
_UkJrl(x;Z?ykfla-w)fk b (Z|Yk(71 ) :yk_71> = 0.

(10)

Since on the equilibrium path it is < y;_1, and z =  must be optimal, we obtain the following necessary

condition for equilibrium:

) ) d (B85 @3y, NV EN T (2ly Y = gy
’Uk:(xvxaykflv )fk(;N Y (x‘Yk(ivl 2 = ykfl) - ( dx ( )> (11)

* N-1 N-1
— Ui (T2, Yp—1, -, ) ,§ ) <x\Yk(_1 ) = Z/kq) =0.

Observe that if the signal of the winner in round k£ < K is z, then in round k£ 4 1 bidder ¢ with signal

x wins with probability 1; hence, it is
Ui (@52, ype—1, -0 ) = v, 2, yp—1, ...) — E(th(l’; Ty Yk—1y---))- (12)
Since U (752, yx -1, --,) = 0, equation (12) also holds for k = K, provided we define
ﬁ}q{lﬂ(m; T, YK—1,...) = ¢ (v (x, 2, yx—1,...)) - (13)

Using (12), equation (11) can be written as

- d (0B @ DESY (2T = s ))

E(ﬁf}rl(ﬂf;ﬂ?,yk—h--'))f(]v Y (x\yk(ivfl) = Yk-1 e =0. (14)
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Integrating (14) we obtain

5D (30 = g )
D (a0 = )

E (B0 v g, 0) Y <o <Y =]

B (@Y1, v1)) = | (B (@ T Y1, s 1)) dz (15)

T~

By (13), for k = K, this yields
(B iy, ) = E VOV v g, < e < v

Working backwards, (15) yields

B @i eor,-) = B [V D vy oy <o < v =y,

and hence on the equilibrium path the bidding function must satisfy

551(1’; Yk—15 -5 yl) = QZS (E [V(Y[((N_1)7 Y[((N_1)7 Y]((Jizl)a o Y]g(N_l)7 Yk—1, )|Y]€(N_1) <z < Yk(ivl_l)]) : (16)

Note from (16) that if values are private V(YI((Nfl), YI((Nfl), Y}ﬁ;l), o) = YI((Nfl), and Bgl is indepen-
dent of y1, ..., Yp_1-

It remains to show that if all bidders follow the equilibrium bidding strategy in the rounds after k, and
if in round k all other bidders follow the bidding strategy Bf ! defined in (16), then it is also optimal for
bidder i to follow it. Using (11) to replace the second term on the left hand side of equation (10) we obtain

oU,

Oz = [Uk(l’, 2y Yk—1, ) - ’Uk(Z, 2y Yk—1, )] f]iN_l) (Z|Yk(iv1_1) = yk—l) (17)

* * N— N—
+ (Ui (25 2, Y1, ) — U g (@5 2, Yot -, )| N (z|Yk(71 - yk—l) :

Since vy, is increasing in z and U, = 0, for kK = K the sign of % is the same as © — z; hence z = z is
optimal.

Now suppose k < K; take first the case z < z. Note that

U];k+1(x; 2y Yk—15 -+ ) = ,Uk($7 2y Yk—1, ) - E(ﬁ]g}-l(zv 2y Yk—1, ))7

because in this case bidder ¢ wins for sure in round &, and bids Bf}rl(min{:c, 2} 2, Yk—1, o) = 6fi1(z; 2y Y1y o)
It follows that % = 0 for z <z and bidder ¢ has no incentive to bid less than the equilibrium strategy in
round k.

Now suppose that z > 2. By Lemma 11, equation (6), we have

oUp (T3 2, Yk—1, -, Y1) z /min{:fc,yzvz} OV (&, YN—1, .-, y1)

f(nyh "7yk+1|Yk(N71) = Zk)dnyl"dyk—&-l

S~

ox : Jz Ox
= in{zyn 2} gy (2, gy, .., _
< / - ( ygxl yl)f(yN—h --,yk+1|Y;§N Y= ) dyn 1. dypia
72 82}; Ty Yk4+152y Yk—15 - N— N— N
= /m +1( 5; : )f;EH 1)(yk+1lYk( b= z,Yk(_l) = Yk—1, ) dYk+1
Ovg (T, 2, Yg—1, ---)
= . 18
D (18)
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Integrating between x and z, it follows that

U])ckJrl(z; 2y Yk—1, --7) - Ul:(+1($ﬂ 2y Yk—1, “’) < Uk(zazayk—lv ) - Uk(xwzayk—l’ )7

and hence that 88% < 0 for z > x; bidder 7 has no incentive to bid more than the equilibrium strategy in

round k. This concludes the proof of the theorem. ]

Proof of Theorem 2. Let ,6’?2(33;%_1, ..,y1) be round k equilibrium bidding function. Suppose that if
the winning bid in round k is higher than the highest equilibrium bid, then all bidders believe that the
winning bidder’s type is the same as the type of the previous round’s winner; if the observed winning bid
in round k is below the lowest equilibrium bid, then bidders believe that the winner’s type is the lowest
possible type.

Let U} (x;yk—1,...) be the expected payoff for a type x of bidder at the beginning of round k. Suppose
that all the other bidders follow the equilibrium strategies, while bidder ¢ is considering deviating in round
k. As for the case of a sequential first-price auction, if there is a profitable deviation, there is a profitable
deviation with a bid in the range of possible bids. Recalling (8), the payoff of bidder i of type = when he
bids b = 652(2; Yk—1,-..) (i.e., he bids like a type z) in auction k can be written as:

Ur(z5 2 Yk-1,..) = /Z [0 (2, Yo, ) — LB (Yns Yr1,s ))] ( \Y(N = ykq) dyy

+ /I Uiy (23 91 k1, ) fN Y (yle;fJ,Vfl) = yk—1> dy.
Differentiating with reszpect to z yields the first order condition
[on(, 21, ) — LB g, D] (Y =) (19)
—Upp1 (52, Yp—1, - )f;gN_l) (Z|Yk(ivl_1) = ykﬂ) =0.

Since on the equilibrium path z = x must be optimal, the following is a necessary condition for equilibrium:

Ok (@, 2, Yp—1, ) — LB (5 k-1, ) — Upyr (52, g1, -, ) = O. (20)
If k = K, then U} (%;-) = 0, and (20) yields that on the equilibrium path the bidding function must
satisfy

52(:1: YK—1,-- '7y1) = ¢(UK(337$7yK—17 7y1)) (21)

—o (B [V vy Y e < v =y, ).

If the signal of the winner in round k < K is z, then in round k£ + 1 bidder ¢ with signal = wins with
probability 1; hence, it is

U]:+1($§$ayk—17 "7) = Uk(%%ﬂk—h ) - / E(ﬁlf—%—l(yk+1;$7yk—1, ))f]f;]_:_];l) (yk+1|Yk;(N71) = I) . (22)

(By appropriately defining B}g(2+1(‘)7 equation (22) also holds for k£ = K.) Thus (20) can be written as
52 _ [ s . (N=1) (N=1) _
LB (w5 yk—1,-)) = | LBri1 (Y15, Yb—15 ) frps (Z/k+1|Y;.C = 90) (23)

N-1) (N1 N—-1 N_
|: (6k+1( k(+1 )7Yk( )a))’Yk( ) =z < Yk(—l 2 = ykflw--} .
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Recalling (21) and working backwards we obtain

(B (w5, ) = B [V Dy v Y — e <y =g

Thus, we have shown that on the equilibrium path the bidding function must satisfy

B2 sy, o) = 6 (B [V v v 0 Oy e <y = L) ()
It only remains to show that if all bidders follow the equilibrium bidding strategy in the rounds after k,
and if in round k all other bidders follow the bidding strategy ﬁ? defined in (24), then it is also optimal
for bidder i to follow it. Using (20) to replace the second term on the left hand side of equation (19) we

obtain

oU _ _
= = [Uk($7z7yk:—17 ) - ’Uk(Z, 2y Yk—1, )} f]gN D <Z|Y]€(£Vl Y = yk—l) (25)

0z
% " N—1 N—1
+ Ui (22,901, ) — U1 (52, k=1, .- | f,i ) <Z|Yk(71 ) = yk—l) :
Consider k = K since vy, is increasing in x and Uf, ; = 0, the sign of %LZK is the same as x — z; hence

z = x is optimal.

Now suppose k < K; take first the case z < z. Note that
z
N-1 N-1
U]z(+1(m; ZyYk—1, "7) = Uk(mazayk—lv ) - / Z(ﬁf?kl(yk-‘rl;zayk—lv ))f]g+1 ) (yk-l-l‘yk( ) = Z) )
x

because in this case bidder 7 wins for sure in round k. It follows that 88% = 0 for z < z and bidder 7 has
no incentive to bid less than the equilibrium strategy in round k.
Now take the case z > x. As shown in (18), by Lemma 11, equation (6), we have

OUg (232, Yk—1, Y1) Ovg(w, 2, Yp—1, -..)
< .
ox oz

Integrating between x and z, it follows that

’Uk(ZaZ,yk—l, ) - vk(xvzayk—lv ) > Ul:—‘rl(z; ZyYk—1, "7) - U:-}-l(m;zayk—la "7))

and hence that aa% < 0 for z > x; bidder ¢ has no incentive to bid more than the equilibrium strategy in

round k. This concludes the proof of the theorem. ]

Proof of Theorem 3. As in a static second-price auction, it is clear that in round K bidding according
to the equilibrium strategy is a weakly dominant strategy; a bidder wins if and only if he obtains a positive
payoff and the price he pays does not depend on his bid.

Now consider round k& < K; suppose that all the other bidders follow their equilibrium strategies, as
described in the theorem, while bidder ¢ is considering deviating. Suppose first that bidder ¢ of type « is
the price setter in round k — 1 and hence the bidder with the k-th highest signal (this implies that the k-th
highest signal among his N — 1 opponents is less than, or equal to, ). Note first that bidding as a type
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z > x yields the same payoff as bidding as a type = (he wins for sure). If he deviates in round k (only)

and bids as if he were a type z < z, he either wins in round k&, or in round & + 1; he obtains a payoff

o /:E [Y[((Nfl)wk(zvfl) _ y] f]ngl) (yIYk(Nfl) < m) dy
- /: /myE [YlgNil)|Yk(f171) _ t} flgffl) (t\Yk(Nfl) _ y> dtf]gNA) <y|Yk(N—1) < x) dy.
Differentiating with respect to z yields
_rly ‘Y(Nl }(N1<‘YN1)S>

N N N-— N— N—
/ YOy = t} Y <t]Yk( D _ z> dtf{N Y (szk( D < :c) :

which is equal to zero for all values of z. It follows that type x has no incentive to deviate in round k.

Now consider a type x < yi, the price setter in round k£ — 1. If in round £ he bids as if he were a type
z <y, then he loses and obtains the same (expected, future) payoff independently of his bid. It follows
that he may as well bid as a type x; doing so gives him the (equilibrium) payoff

{o- B <oy ® D =y ber [V <oy ™Y =y, (26)

where Pr [Y[((N_l) < a:\Yk(N_l) = yk} is the probability that Y[((N_l) < x conditional on Yk(N_l) = yg. If
type z bids in round k as if he were a type z = y;, then he ties with the round k winner and he may as
well raise his bid and win for sure, or lower his bid and lose for sure. If he bids above the bid of the y;

type, so that he wins for sure, type x obtains a payoff

z— B [y =y

- {:c B [Y(N_1)|YI({N_1) <z, NV = yk} } Pr [Yf({N_l) < 2|y VY = yk}
+ {a: ~E [Y[((N DiyWV=1 > g y V-1 = yk} } Pr {Y}(N*” > 2|y VY = yk]

<{33—E[1(< Dy VY < vV )_yk}}Pr{YK <:B\Yk(_):yk}.

It follows from (26) that it is not profitable for a bidder of type z to deviate and bid more than a type yy.
This concludes the proof of the theorem. |

Proof of Theorem 6. Consider a sequential first-price auction, and suppose that the history of the
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winners’ signals up to round k is x, yg_1, ..., y1. Then we have:

E [P P]
=K [Pk+1‘6 (x‘ykfla '“ayl)]
=F |81 (
(E ( o Y(N ST, Yk—1, )) \Yk(Nfl) <z< Yk(ivfl) = Yrp_1, D + Afil(x,yk_l, ey Y1)
(E <5k+1( 1);Y;€(N_1),yk—1, --)) |Y;§N_1) <z< Yk(ivl_l) = Yk—1, ])
+ AR (@, Yhets oo 1) + T2 (@, Y1, - 1)
—o (v (v Ty Y <o <Y =)

Yk( ST, Yk 1,.)|Y(N 1 <m<Y( )—yk_l,..}

+A]§i1(mayk—1>"'vy1) +Ilfil(l‘ayk—1a"'ay1)
= Bgl(l‘ Yk—1, "7y1) + Agil(‘r?yk—la "'7?/1) + Illel(mvyk—lv “-7y1)
= P+ ARL (2, gty o 1) + Tty (T, Y1y oo Y1)

Now consider a sequential second-price auction. Suppose that in round k the winner is the bidder with

signal Yk(Nfl), and bidder ¢ of type x is the price setter, while the history of the previous rounds winners’

signals is yg_1, ..., y1. We have

[ k—i—l’ ]
=F [Pk+1|ﬁ]§2($'yk:—la 7y1)i|

= B[00,
(E ( k+1 Yk(JJrvl Yy Y( 1)72/1:—1; )|) ’Yk(N_l) <Xp=z< Yk(N_l)w'D + Agil(xayk—la Y1)
= (E ( ra ( lc(ivl Y, Y( )7yk—17~)|) ’Y QJD
+ AP (@ Yty oY1) + T2 (2 Y1, ooy Y1)
o (B VO YD,y e <y )

N-1
k+1 a k ))yk—lv")|ylg(+ b < Xl x < Yk( )7 }

+A1§zl($ Yk—1s Y1) +II§E1($ayk71,---,y1)
52(95 Yk—1,-- 73/1)+Ak (T, Y1, - -73/1)+Il§21(33ayk717---73/1)

= PP2 4+ A2 (2, Y1, oo 1) F LE20(T Y1y e Y1)

Appendix B

In this appendix, I will compute the bidding functions and price ratios for the example discussed in Section
7.

Recalling that
B(z) = (L+ 7)™ 257,
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we can use Theorem 2 to calculate the bidding functions in the sequential second price auction.

They are:

52 1

1
1+r
5 (ziy1) = (1 +r)Ter <by1+ <1+b+(N—3)ailb> x) :

5P =t (A (e v ) ) )

The expected price in round 2, conditional on the first-round price P; is:

E[P|P = 3(z)]

1— a+1 _ 1+r _
(b a I+<1+b+(N—3) ilb>y2(N ”) N 1’9:]
a

a+1 1—2z¢

T 1 — gotl Tr a(N-2)—1
:(1+r)1+1r/ <baillxma+<1+b+(N—3) b>z> a(N -2 d»
) _

1 1 — gpatl 11?
=(1+r)1ira:1+1r/ (b g $+<1+b+(N—3) a b)z> a(N — 2)z0N-2-1g;
0

:(1+r)$E

a+1x—gotl a+1

It follows that the ratio of the conditional expected second-round price to the first-round price is:

ERp] o (batr s+ (1+b+ (V= 3)357b) 2) TV — 2)5a-2)1g; -
= 1
. (St +o (14 (N =2)2%)) ™
In the case of no informational externalities, that is b = 0, this becomes:
ERP] _ [y 2T a(N — 2)2¢N-2)-1g, _ (a(V - 2))7 (a(N - 2) + )T | (28)

A ()T (o274 1)

If there are informational externalities, b > 0, E[PP%JPI} depends on the signal x of the first-round price

setter. Since x is the value of the second order statistic out of N draws, the expected value of the price
ratio is

E PP
e
1 fl (biﬂ + (1 + 2 (14 (N - 2)a)> z) w a(N —2)z0(N=2)~14
/ 0 a+1 g—gxatl a+1 1 N(N _ 1)@ (1 _ $a) wa(N 1)_1d:(}
0

(st + o (1 WV =2)3%)) ™

Appendix C

In this appendix I prove the theorems for the multi-unit and English auction presented in Section 8. 1

also compute the bidding functions, the expected price in round 2 and the conditional price ratio for a
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multi-unit version of the example with F'(z) = 2% and £(p) = p'™" /(1 + r) introduced in Section 7. I start
with the multi-unit demand, sequential, second-price auction.

Proof of Theorem 7. In the second round, it is a weakly dominant strategy to submit a loss-bid equal to
the object’s value. Hence £(852(-)) is equal to z; if the bidder won the first round, and to z;, if the bidder
lost.

Consider the first round. Suppose all other bidders bid according to the equilibrium bid functions in
both periods. Note that the first-round bid function only depends on a bidder’s high value. Hence, any
profitable first-round deviation of bidder i of type xp,x; can be described as bidding as if his high value
were z rather than x,. The payoff from such a bid when z > x; is:

Ui(z; xp, x1) = /xl [z, + 21 — £(BY%(y1, ) — y1] fl(zN_Q) (y1) dy1 + /Z [z, — (B (11, )] fl(ZN_Q) (y1) dys

k)

/ [z, — Yo f N-2) <y2\Y1(2N_2) = yl) dy2f1(2N_2) (y1) dyr.

Recall that ¢ (ﬂfQ(z, )) =F [YQ(QN_2)|Y1(2N_2) = z] . Hence, differentiating U (z; zp, ;) with respect to z
yields:

<ﬂ?h —U(B7%(2,-)) — /wh [on — yol s 2 (y2|Y1(2N72) = Z) dy2> N (2)

Th

— </ (o — o] VD (v V-2 _ Z) dyo _/ (o — o] fEN (y2|Y1(2N—2) _ Z) dy2> £
z z

= </ [fUh - yz]fz(QN_Q) <y2\Y1(2N_2) = Z) dy2> f1(2N_2) (Z) )
Th

which is negative if z > z;, and zero if z < xj. Hence bidding as if z = z}, (i.e., according to the equilibrium

8

A [

bidding function) is optimal (among all z > x;). It remains to be shown that bidder i does not want to
bid as if his high value is z < x;.
Bidder i’s payoff from bidding as if his high type is z < z; is:

Ui(z;zp, @) = / [z, + 2 — 0B (1, ) — ] f CN=2) (1) dyy

T xTh
[ =l (VY = ) £ ) i

Differentiating with respect to z yields:

Th
<$h +ay — 0Bz, ) — / [z), — yz]fg(QNfz) (yzlyl(zNﬂ) = z) dy2> f1(2N72) (2) = xy 1(2N*2) (2),

which is positive. Hence bidding as if z < x; is never optimal. ]
Proof of Theorem 8. By (2), (3), and (4) we have that conditional on bidder i of type (zp,x;) being
the first-round price setter, the second round expected price is:

E[Py|Py]

— P Y(2) Y(Q) ASQ P Y(Q) Y(z) MSZ

= Br(an, ) Pr{Yy™ <ap|¥7™ > ap} + A3%(an) + Br(wn, 21) Pr{Yy™ > an|Y1™ > @n} + My™(xp)

= B1(@n, 1) + A3%(z1) + My> ()

= P+ A5%(xp) + M3? ()
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Now consider the example with F'(z) = 2% and ¢(p) = p'™ /(1 + r). We have

Bylamzlzn, > YD) = (14T (o)
Bo(zh, m|zn, < Y1(2N_2)) =(1+r7) T ($h>1iT

1
1 a(2N - 3) T+
= 1 1+7r S A
Prlan, @) = (1 +7) (a(2N—3)+1xh>
The expected price in the last round, round 2, conditional on the first-round price P is:

E o (V) PV = | Pe(yf® < an Vi > and + o(en) PrYS? > wn v > wn}

1 T
Pr{Yy? < 2, [V{? > ) = / /0 2f(x)f(y)

E [Py|Py = By(zh, 71)]

Note:

dxdy = _2F(@n)

1
1—F2(a:h) N 1+F(:Eh)

1
B L (2N-2)\ T |y, (2N-2) _ 2F (zp,) 2 1= F(p)
=(1+nr)T FE [(YQ > Y, < :Eh:| T Fla) Flan) + (1 + )T () T ———=

1+ F(zp)
I R v AR
=(14r)t+ / z+ra(3N — 3 2 T o)
(1+7) { 0 ( ) 22BN L+ Flzy) " L+ Flan)
1
=(1 —I—’r’)ﬁ x, "

b 2F(zp) 11— F(xp)
2T (3N — 3)202N=3)-14, }
{/o ( ) 1+ F(zp) 14 F(xn)
It follows that the ratio of the conditional expected second-round price to the first-round price is:

1 1 a9y 2@ 1—x@
E[R|P] Jy 2T a(2N — 3)z9CN 3) 1dzlf£7l + 1+§§
Py ( a(2N—-3) )1+1r
a@N=3)+1
2z, 1 1—z¢
B (a(?N —3)+ 1) w (a(2N =3)) 3 + (a(?N -3)+ m) Treh
a(2N - 3) (a(2N ~3)+ ﬁ)

1 1—a¢
_ (a(2N —3)+ 1\ (02N = 3) + r5
B a(2N —3)

(a2N —3) + 1)

The expected value of the price ratio is

Py

S

(a(2N —3) + 1)ﬁ (a(?N -3+ = 01 L N(N = 1)2az27! (1 - 22) mZG(N_Q)dx>

(a(2N = 3))77 (a2N - 3) + 1)
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Now consider the sequential English auction.
Proof of Theorem 9. In the second round, when bidder ¢ is not the current winner and the current
loss-bid is below ¢’ valuation of the object, it is a weakly dominant strategy for bidder i to raise the price.
Thus, we only need to show that the first round strategies are optimal.

Consider bidder ¢, ¢ # 1, 2. If all other bidders follow their equilibrium strategies, then in the first round
bidder i cannot profitably deviate from his equilibrium strategy. On the equilibrium path, such a bidder
only wins if his valuation x; is one of the two highest, and when he wins (independently of the round) he

N—1 . ..
). There is no deviation

pays a price equal to ¢ <Y2(N_1)) and makes a (positive) profit equal to x; — YQ(
which would ever make bidder 7 either win at a lower price, or win and make a positive profit when he is
not one of the two highest valuation bidders.

Now consider bidder ¢ = 1,2. Without loss of generality, let ¢ = 1. An argument similar to the one in
the previous paragraph shows that there is no profitable deviation for bidder 1 once one of the bidders
j # 1,2 has entered the bidding. It only remains to show that, before such an entry, bidder 1 of type z; will
stop raising the price when it reaches the level S (z1) = ¢ (E [YQ(N71)|Y1(N71) = :1:1D ; that is, bidder 1
does not want to bid as if his type were z # 1. Consider first the option of dropping out (temporarily) at
a price P = B¥5(2) < p¥%5(x1), and then resuming the bidding till the price reaches ¢ (z1) if a bidder j # 2
enters. Let Uy(z1; 1) be the payoff of type z1 of bidder 1 if he follows his equilibrium strategy, raising the
price above P, and let Uy (z;x1) be the payoff if he deviates and drops out (temporarily) at price P. The
only difference in the payoffs from the two strategies is in the event that bidder 2’s type x5 is less than z1,
but higher than all other bidders’ types. In such a case, bidder 1 wins in the first round at a price 61EE(1‘2)
if he follows the equilibrium strategy, while he wins at a price ¢(Y1(N_2)) if he deviates. Thus,

Ui(z1;21) — Ur(z;21)
= /Il [E [Y1(N_2)‘Y1(N_2) = 332] — ¢ (5{313(372))] foa) dzs

1—-F(z)
= /:1 [E |:}/2(N—1)‘Y1(N_1) = 3:2] —/ (B{EE(QJQ))] 1{(11;2()2)de —0,

and the deviation is not profitable.

Now consider the option of dropping out (temporarily) at a price P = 8%.(2) > B¥4(x1). The only
difference in the payoffs from following the equilibrium strategy (dropping out at price fi5(z1)) and
deviating is in the event that bidder 2’s type x2 is the highest of all bidders’ types, including z1, but it is
less than z. In such a case, bidder 1 wins in the first round at a price 575 (z2) if he deviates. He wins at a

price ¢(Y1(N_2)) when Yl(N_2) < a1 if he follows the equilibrium strategy. Since for zo > x7 it is

[z — ¢ (5{3]5(332))] FN=2(3) = [561 _E [YQ(N—l)‘Yl(N—l) _ m” FN=2(z)
= [0 - B < || PV R

< {m -FE [Y1(N_2)|Y1(N_2) < 961” FN72(zy),

the deviation is not profitable. ]
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