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Introduction

Samuelson (1938) proposed the theory of revealed preference as a
new, entirely behavioral foundation for the analysis of the competi-
tive consumer. He opened a new field of investigation by asking which
conditions the consumer’s observed behavior should satisfy to be ra-
tionalized, i.e. interpreted as the outcome of the maximization of a
preference relation. He also provided a first, partial answer in terms of
the Weak Axiom of Revealed Preference, WARP. The theory was fur-
ther developed by Houthakker (1950), who identified the Strong Axiom
of Revealed Preference, SARP, as a necessary and sufficient condition
for rationalization.

Richter (1966) observed that Samuelson’s and Houthakker’s ideas
were relevant for any problem of choice, much beyond the case of a
consumer choosing consumption bundles at given, fixed prices. He de-
veloped an abstract version of the theory, allowing for ‘budget sets’
which are just non empty subsets of a given universal set of possible
choices. In his Theorem 1 he proved that (a suitably generalized ver-
sion of) the SARP is necessary and sufficient for the existence of a
rationalizing preference, even in this extremely general setting. The
proof is non constructive, using Zorn’s Lemma.

Almost at the same time, Afriat (1967) developed revealed preference
theory in a completely different direction. In the original context of
the competitive consumer, he emphasized the operational aspects of
the theory. He took as data a finite number of observations, each one
consisting of the chosen bundle of goods and the prevailing prices, and
proved that, if these data satisfy the SARP, a rationalizing utility can
explicitly be constructed by elementary linear programming techniques.

Afriat’s method has subsequently been expanded and refined, no-
tably by Diewert (1973), Varian (1982) and most recently Fostel, Scarf
and Todd (2004). All these contributions deal with the case of linear,
competitive budgets, and remain firmly in Afriat’s constructive, finite
observations setting.

Another important theoretical development, which can also be as-
cribed to the line of research initiated by Afriat, is the approximation
theory of Mas Colell (1978). He asks whether increasing in a regular
way the number of observations one can fully identify the underlying
preference of the consumer. Again for the case of linear competitive
budgets, Mas Colell identifies conditions for a positive answer.

Samuelson’s original ideas have thus been pursued in two quite dif-
ferent directions: Richter’s very general, non constructive existence
results, and, for the special case of competitive linear budgets, Afriat’s
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constructive approach, supplemented by Mas Colell’s analysis of unique-
ness and approximation.

Our contribution in this paper is to identify a class of choice problems
which is much more general than the competitive consumer’s and still
retains sufficient structure to allow us to recover the exact analog of
Afriat’s and Mas Colell’s results. We develop each of these extensions
in the next two sections of the paper.

Our choice space is the positive orthant of some euclidean space,
and we allow as admissible budgets all subsets of the choice space that
can be obtained as the comprehensive closure of a compact set. Every
budget in this class admits a description by means of an increasing
continuous function (Lemma 1), and this allows us to obtain the analog
of the Afriat’s inequalities (Proposition 1).

Our class of budgets includes those considered by Matzkin (1991)
and Chavas and Cox (1993), the only two papers, to the best of our
knowledge, providing constructive rationalizations for the case of pos-
sibly non linear budgets. In both papers, the authors impose convexity
assumptions, and in Proposition 2 (and the discussion thereof) we il-
lustrate how our approach improves on their results.

Propositions 3 and 4 in the second section, on identification and
approximation, are the analog in our setting of Mas Colell’s results.

Besides its theoretical interest, the extension of Afriat’s theory to our
class of budgets may be relevant for applications. As an illustration, in
the last section of the paper we use it to derive a set of testable implica-
tions of Nash behavior for a broad class of market games (Proposition
5).

1. Existence of a Rationalization

Consider an individual choosing consumption bundles in RL
+. A con-

sumption experiment is a finite collection (xk, Bk)k=1,...n, where xk ∈ Bk

and Bk ⊂ RL
+. The interpretation is that xk is the observed choice of the

individual when she has access to the set of consumption bundles Bk.
We consider sets of alternatives of the form Bk = {x ∈ RL

+ | gk(x) ≤ 0}
with gk : X → R an increasing, continuous function and gk(xk) = 0,
for all k = 1, . . . n.

Let B′ ⊂ RL be closed, compactly generated1, comprehensive2 and such
that 0 ∈ Int(B′). We will show that our admissible sets of alternatives
include all the sets obtained as B = B′∩RL

+, where B′ has the previous

1∃ K ⊂ RL, compact, such that x ∈ B′ implies ∃ y ∈ K ∩B′, x ≤ y.
2∀ y ∈ RL, if ∃ x ∈ B′, y ≤ x, then y ∈ B′.
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properties. The upper boundary of B is b(B) = {x ∈ B | y � x ⇒ y 6∈
B}. For any x ∈ RL

+, let γB(x) = inf{λ > 0 | x ∈ λB}. When B is a
convex set, the function γB is known in convex analysis as the gauge of
B (see e.g. Rockafellar (1972)). The following Lemma can be proved
by standard arguments.

Lemma 1. Let B = B′ ∩ RL
+, with B′ ⊂ RL

+ closed, compactly gener-
ated, comprehensive and such that 0 ∈ Int(B′).

(1) γB : RL
+ → R is homogeneous of degree one: for any k > 0, and

x ∈ RL
+, γB(kx) = kγB(x)

(2) γB : RL
+ → R is a continuous function

(3) γB : RL
+ → R is increasing: for any x, y ∈ RL

+, y >> x implies
γB(y) > γB(x)

(4) B = {x ∈ RL
+ | γB(x) ≤ 1}, and

(5) b(B) = {x ∈ RL
+ | γB(x) = 1}

Letting g(x) = γB(x)− 1, B = {x ∈ RL
+ | g(x) ≤ 0}.

1.1. Afriat’s inequalities. Fix a consumption experiment (xk, Bk)k=1,...n.
We say that the function v : X → R rationalizes the experiment if, for
all k, gk(x) ≤ 0 implies v(x) ≤ v(xk). We say that xk is revealed pre-
ferred to xj, xkRxj, if gk(xj) ≤ gk(xk) = 0. Let H be the transitive
closure of the relation R. The standard competitive case corresponds
to gk(xj) = pk(xj − xk), where pk is the price vector. The following
Axiom is a variation of the SARP introduced by Varian (1982), in the
linear case, to deal with the possibility of indifference.

Definition (GARP): the experiment (xk, Bk)k=1,...n satisfies GARP
if, for any k, j, xkHxj implies gj(xk) ≥ 0.

It is convenient to express GARP as a condition on the elements of
a square matrix. To each consumption experiment (xk, Bk)k=1,...n, we
associate an (n× n) matrix A with elements akj = gk(xj).

Definition (Cyclical Consistency): a square matrix A of dimension
n is cyclically consistent if for every chain {k, j, l, . . .m} ⊂ {1, . . . n},
akj ≤ 0, ajl ≤ 0, . . . amk ≤ 0 implies that all terms are zero.

An experiment satisfies GARP if and only if the associated matrix
A is cyclically consistent. Suppose A is cyclically consistent, and let
xkHxm. This means that there are indices {j, l, . . . h} such that akj ≤
0, ajl ≤ 0, . . . ahm ≤ 0. If gm(xk) < 0, {k, j, l, . . . h, m} would be a
chain satisfying the premise in the definition of cyclical consistency.
But then amk = gm(xk) = 0 would lead to a contradiction. Thus we
must have gm(xk) ≥ 0, i.e. GARP holds. In the other direction, let the
experiment satisfy GARP, contruct the associated matrix A and take a
chain {k, j, l, . . . h, m} satisfying the premise of the definition of cyclical
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consistency. For any two adjacent elements in the chain, say (j, l), by
going through the chain we have xlHxj. Applying GARP, it must be
that gj(xl) = ajl ≥ 0, so that ajl = 0. This is true for any couple of
adjacent elements in the chain, i.e. Cyclical Consistency holds.

Lemma 2. If a square matrix A of dimension n is cyclically consistent,
there exist numbers (vk, λk)k=1,...n, λk > 0, such that, for all k, j =
1, . . . n,

vj ≤ vk + λkakj

Proof: See Fostel, Scarf and Todd (2004), sections 2 and 3. 2

We are now able to state our generalization of Afriat’s Theorem.

Proposition 1. Let Bk = {x ∈ RL
+ | gk(x) ≤ 0} with gk : RL

+ → R an
increasing, continuous function and gk(xk) = 0, for k = 1, . . . n. The
following conditions are equivalent:

(1) there exists a locally non satiated, continuous utility function v
rationalizing the experiment (xk, Bk)k=1,...n

(2) the experiment (xk, Bk)k=1,...n satisfies GARP

(3) there exist numbers (vk, λk)k=1,...n, λk > 0, such that, for all
k, j = 1, . . . n,

vj ≤ vk + λkgk(xj)

Proof:

(1) → (2): Let xkHxj: there exist indices (g, . . .m) such that
xkRxgR . . .RxmRxj. We want to show that gj(xk) ≥ 0. Using the
definition of R, gk(xg) ≤ 0, . . ., gm(xj) ≤ 0. If v rationalizes the ex-
periment, we must have v(xk) ≥ v(xg) ≥ . . . v(xm) ≥ v(xj), implying
v(xk) ≥ v(xj). If gj(xk) < 0, by the local non satiation of v and
the continuity of gj we could find x ∈ X such that gj(x) < 0 and
v(x) > v(xk) ≥ v(xj), contradicting the fact that v rationalizes the
experiment.

(2) → (3): construct the matrix A associated with the experiment.
By (2), A is cyclically consistent. Then use Lemma 2.

(3) → (1): Let v(x) = mink{vk +λkgk(x)}. The function v is increas-
ing and continuous on RL

+. To show that it rationalizes the data, notice
first that, for all j, v(xj) = mink{vk +λkgk(xj)} = vj, using the Afriat’s
inequalities in (3) and the fact that gj(xj) = 0. Then, if we consider x
such that gj(x) ≤ 0 we have v(x) ≤ vj + λjgj(x) ≤ vj = v(xj). 2
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In the competitive setting originally considered by Afriat, the in-
equalities in (3) take the form:

vj ≤ vk + λkpk(xj − xk)

This corresponds to choosing akj = pk(xj − xk) in Lemma 2, as ex-
plicitly done in Fostel et al. (2004). As it is clear from the discussion
preceding Lemma 2, if the experiment satisfies GARP, the existence of
the numbers (vk, λk)k=1,...n follows for any matrix A having the prop-
erty that akj ≤ 0 if xk is revealed preferred to xj. Our contribution is
to notice that, in the general setting that we consider, one can choose
akj = gk(xj), and still obtain, in the last step of the proof, an explicit
utility function defined on the entire consumption set.

1.2. Testing concavity. Consider now consumption experiments in
which Bk = {x ∈ RL

+ | fk(x) ≤ 0} with fk(xk) = 0 where fk : RL
+ → R

is not only increasing and continuous, but also quasi - convex and
differentiable at xk, for all k = 1, . . . n. In this case, the gradient
∇fk(xk) identifies the unique supporting hyperplane of Bk at xk.

For each (xk, Bk), let Ck = {x ∈ RL
+ | ∇fk(xk)(x − xk) ≤ 0}. If we

let gk(x) = ∇fk(xk)(x− xk), we can apply our definitions of R, H and
GARP to the ‘linearized’ experiment (xk, Ck)k=1,...n.

Proposition 2. Let Bk = {x ∈ RL
+ | fk(x) ≤ 0} with fk(xk) = 0 where

fk : RL
+ → R is increasing, continuous, quasi - convex and differentiable

at xk, for k = 1, . . . n. The following conditions are equivalent:

1’) there exists a locally non satiated, continuous and concave util-
ity function v rationalizing the experiment (xk, Bk)k=1,...n

2’) the ‘linearized’ experiment (xk, Ck)k=1,...n associated with (xk, Bk)k=1,...n

satisfies GARP

3’) there exist positive numbers (vk, λk)k=1,...n, λk > 0, such that,
for all k, j = 1, . . . n,

vj ≤ vk + λk∇fk(xk)(xj − xk)

Proof:

(1′) → (2′): Define R and H in terms of the linearized experiment
(xk, Ck)k=1,...n. Let xkHxj: there exists indices (g, . . .m) such that
xkRxgR . . .RxmRxj. From the definition of R, ∇fk(xk)(xg − xk) ≤ 0,
. . ., ∇fm(xm)(xj − xm) ≤ 0.

If v : RL
+ → R is a locally non satiated, continuous, concave utility

function rationalizing the (non linearized ) experiment (xk, Bk)k=1,...n,
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each observation xk is a maximizer of v on the convex set Bk = {x ∈
RL

+ | fk(x) ≤ 0} and we have:

v(x) ≤ v(xk) + αk∇fk(xk)(x− xk)

with αk > 0 (using local non satiation). If xkHxj we then have v(xk) ≥
v(xg),≥ . . . v(xm) ≥ v(xj), and thus v(xk) ≥ v(xj). We need to show
that ∇fj(xj)(xk − xj) ≥ 0. If this was not the case, by local non
satiation we could find x such that ∇fj(xj)(x − xj) < 0 and v(x) >
v(xj), contradicting the fact that v is a concave function rationalizing
the experiment.

(2′) → (3′): construct the matrix A associated with the linearized
experiment (xk, Ck)k=1,...n. By (2′), A is cyclically consistent. Then use
Lemma 2.

(3′) → (1′): Let v(x) = mink{vk + λk∇fk(xk)(x − xk)}. The func-
tion v is increasing and continuous on RL

+. It is also concave, as the
minimum of finitely many linear functions. To show that it rational-
izes the data, notice first that, for all j, v(xj) = vj, using the Afriat’s
inequalities in (3′). Then, if we consider x such that fj(x) ≤ 0 we have
v(x) ≤ vj + λj∇fj(xj)(x− xj) ≤ vj = v(xj), where the first inequality
follows from the definition of v, the second from the quasi - convexity
of fj, fj(x) ≤ 0 and the fact that, in the experiment, fj(xj) = 0. 2

If the experiment satisfies the premise of Proposition 2, we may
consider two sets of testable conditions: those in 2′), and the ‘non-
linearized’ ones, 2). If the experiment satisfies 2) but not 2′) a ra-
tionalization is possible, but preferences cannot be represented by a
concave utility function.

1.3. Comparison with previous results. Matzkin (1991) explicitly
deals with nonlinear choice sets. She proves that the existence of a
strictly concave rationalization is equivalent to the strong axiom of
revealed preference when every choice (x, B) is either co-convex (i.e.,
B as in Lemma 1 and Bc ∩ RL

+ convex) or supportable (i.e., B as in
Lemma 1, convex and supported by a unique hyperplane at x). Our
main result, Proposition 1, does not require any additional assumption
besides those in Lemma 1. On the other hand, the utility function that
we construct from Afriat’s inequalities need not be concave.

The first two statements of Proposition 2 above are similar to Matzkin’s
Theorem 2. Our approach, which exploits the representation of budget
sets by means of the g functions, allows us to derive an exact analog
of Afriat’s inequalities, leading to a much easier construction of the
concave utility function rationalizing the data.
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To complete the comparison, in the co-convex case our construc-
tion immediately yields a concave rationalization of the data. If B
is co-convex, the function γB : RL

+ → R is concave. Then, if we let
g(x) = γB(x)− 1 for all x ∈ RL

+, the rationalization obtained in (3) of
Proposition 1 is concave as a minimum of concave functions. This is
essentially Matzkin’s Theorem 1.

Independently of Matzkin (1991), Chavas and Cox (1993) allow the
consumer to face finitely many nonlinear budget constraints. They
impose restrictions in order to convert the consumer’s underlying op-
timization problem into a saddle-point problem. They do not for-
mulate any axiom of revealed preference but express necessary and
sufficient conditions for rationalization as explicit generalized Afriat’s
inequalities. Our Proposition 1 is more general: the budget sets con-
sidered above can clearly accommodate multiple constraints, but our
result does not require any convexity assumption, like Chavas and Cox
(1993)’s assumption 2. At the same time our proof is much more direct.

2. Uniqueness and Approximation

In the theory of revealed preferences, besides the question of the
existence of a rationalization, it is interesting to investigate the issue
of uniqueness: can we fully identify the preferences of an individual
by observing his behavior? The question has to be made precise. We
cannot hope to identify preferences over a non finite choice set from
observation of finitely many choices. Also, if we allow the individual to
be indifferent among elements of a given set of alternatives, we must be
able to observe all of his preferred choices at that set of alternative, not
just one. The spirit of the exercise is thus quite different from the ‘fi-
nite observation’ methodology we followed until now. Nevertheless the
question has been investigated for the case of the classical competitive
consumer, facing linear budgets (see Mas Colell (1977), (1978)), and,
not surprisingly, in our much larger class of possible budgets, things are
simpler. In this section, we take the strictly positive orthant X = RL

++

as our consumption set.

The main idea is that if we restrict attention to monotonic prefer-
ences, we can always simulate a choice between any pair of alternatives
y, z ∈ X by proposing to the individual the budget

By,z = {x ∈ X | x ≤ y} ∪ {x ∈ X | x ≤ z}

To state the observation more precisely, let B be the set of all budgets
obtained as the intersection B′ ∩ X with B′ ⊂ RL closed, compactly
generated, comprehensive and such that 0 ∈ Int(B′). Let h : B → X
be the individual choice correspondence, with h(B) ⊂ B, h(B) 6= ∅ for
all B ∈ B.



AFRIAT’S THEOREM FOR GENERAL BUDGETS 9

For a given individual choice correspondence h, we say that x is
revealed preferred to y, and we write xR(h)y, iff there exists B ∈ B
such that x, y ∈ B and x ∈ h(B). We may also define the relation
P (h) as xP (h)y iff there exists B ∈ B such that x, y ∈ B , x ∈ h(B),
y 6∈ h(B). The weak axiom of revealed preference can then be stated
as follows

Definition (WARP): the individual choice correspondence satisfies
WARP if [xR(h)y] =⇒ [¬yP (h)x].

We also introduce an additional condition which is natural, given
our restriction to monotonic preferences

Definition (Monotonic choice): the individual choice correspon-
dence is monotonic if, for all B ∈ B, [x ∈ h(B), y > x] =⇒ [y 6∈ B].

A preference relation < is a reflexive, complete, transitive binary
relation on X. < is monotonic if x >> y implies x � y, i.e. x < y
and ¬y < x. < is upper semicontinuous if ∀x ∈ X the set < (x) =
{y ∈ X | y < x} is closed in X. We say that a preference relation <
generates the individual choice correspondence h on B if, for all B ∈ B,
h(B) = {x ∈ B | [y ∈ B] =⇒ x < y}. This is stronger than simply
requiring that < rationalizes h, which corresponds to the inclusion ⊂.

The following Proposition should be compared with Theorem 2′ of
Mas-Colell (1977). In our setting, given the large class of admissible
budget sets, both the statement and the proof are simpler. Our result
is actually closer to Arrow (1959), which requires that the class of
admissible budgets contains all finite sets of up to three alternatives.

Proposition 3. If the individual choice correspondence h is monotonic
and satisfies WARP, R(h) is the unique preference which generates it.

Proof:

R(h) is complete because for any y, z ∈ X, By,z ∈ B.

To show that R(h) is transitive, let xR(h)y, yR(h)z, i.e., there exists
B ∈ B such that x, y ∈ B and x ∈ h(B), and B′ ∈ B such that y, z ∈ B′

and y ∈ h(B′). Take now Bx,y,z ∈ B, defined in the obvious way. We
have to show that x ∈ h(Bx,y,z). Because h is monotonic, at least one
of the three elements x, y, z must belong to h(Bx,y,z). If it is x, we are
done. If on the other hand y ∈ h(Bx,y,z), then by WARP we should
also have x ∈ h(Bx,y,z), and similarly if z ∈ h(Bx,y,z).

R(h) generates h on B. We have to show that for all B ∈ B, h(B) =
{x ∈ B | [y ∈ B] =⇒ xR(h)y}. Let x be an element of the set on
the right hand side. If x 6∈ h(B), then there exists y ∈ B, x 6= y,
y ∈ h(B), i.e. yP (h)x, contradicting WARP. In the other direction,
take x ∈ h(B). If y ∈ B, then by definition of R(h) xR(h)y, i.e. x
belongs to the right hand side.
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To show uniqueness, assume there exists < generating h, i.e. for any
B ∈ B h(B) = {x ∈ B | [y ∈ B] =⇒ x < y}. Clearly, for any
couple of bundles (z, z′), if zR(h)z′ then z < z′. In the other direction,
if z < z′, by monotonicity it must be that z ∈ {x ∈ Bz,z′ | [y ∈
Bz,z′ ] =⇒ x < y} = h(Bz,z′), implying zR(h)z′. 2

The uniqueness result in this proposition depends on the fact that we
know the full choice correspondence: in the very last step of the proof
we used the inclusion {x ∈ Bz,z′ | [y ∈ Bz,z′ ] =⇒ x < y} ⊂ h(Bz,z′).
It would not be enough to require that the observed choice h(Bz,z′)
be an element of the set of preferred bundles. Indeed, an individual
indifferent between z and z′ could always choose z′ when confronted
with Bz,z′ and there would be no hope to fully identify her preferences.

Even under this stronger requirement, it is interesting to investigate
to what extent one can reconcile this approach with the one of the
previous section, in which only finitely many budgets are included in
each experiment. This is the question of approximation, first raised,
for the case of the competitive consumer, by Mas-Colell (1978).

Following his approach, we consider a sequence of finite experiments
which becomes richer and richer at every step, and which ‘tends’ to the
whole of B. Let K(X) be the set of all non empty compact subsets of
X. Endowed with the Hausdorff metric, K(X) is a separable metric
space (See e.g. Aliprantis and Border (2000) chapter 3 for definitions
and results, especially 3.76 and 3.77, p. 115). B ⊂ K(X) inherits these
properties. Let Cn be a collection of n elements of B, and consider an
increasing sequence of collection of sets C1 ⊂ C2 ⊂ . . . Cn−1 ⊂ Cn . . .
such that their union is dense in B: ∪nCn = B. For each collection Cn,
letRn be the set of upper semicontinuous, monotonic preferences which
generate h on Cn. We obtain a decreasing sequence . . . ,Rn ⊃ Rn+1, . . ..

Proposition 4. If the individual choice correspondence h : B → X has
closed values, is monotonic and upper hemi-continuous, and satisfies
WARP, then ∩nRn = {R(h)}.

Proof:

We first show that R(h) ∈ ∩nRn.

As shown in the proof of Proposition 3, R(h) generates h on B.
R(h) is monotonic. Let z >> y. We have to show that zR(h)y and
¬yR(h)z. Take Bz = {x ∈ X | x ≤ z}. Clearly, y, z ∈ Bz. If
z 6∈ h(Bz), ∃x ≤ z x ∈ h(Bz), contradicting the monotonicity of h;
thus z ∈ h(Bz) and zR(h)y. If we also had yR(h)z, we would have
that for all B with (z, y) ∈ B, if z ∈ h(B) then y ∈ h(B). Again, for
B = Bz this would contradict the monotonicity of h.



AFRIAT’S THEOREM FOR GENERAL BUDGETS 11

R(h) is upper semicontinuous. We have to show that, ∀x ∈ X, the
set R(h)(x) = {y ∈ X | yR(h)x} is closed. Take a sequence (yn)n≥1

converging to y, such that ∀n ynR(h)x. That is, ∀n ∃Bn ∈ B such
that yn, x ∈ Bn and yn ∈ h(Bn). If we consider Byn,x, by monotonicity
of h and WARP yn ∈ h(Byn,x), ∀n. The sequence of sets (Byn,x)n≥1

converges in the Hausdorff metric to By,x, and, by u.h.c. of h, y ∈
h(By,x).

It remains to show that there is no other element in ∩nRn.

Suppose there exists <∈ ∩nRn, <6= R(h). Then we can find x, y ∈ X
such that x < y and x ∈ R(h)(y)c. By u.s.c. of R(h), R(h)(y)c is an
open set. By monotonicity of <, we can take x, y ∈ X such that x � y
and x ∈ R(h)(y)c.

Using again the u.s.c. and monotonicity of both < and R(h) we can
actually claim more. There exists η > 0 such that, if we define

xα = x + (1− α)η1

yβ = y + (1− β)η1

then, for all α ∈ [0, 1] and all β ∈ [0, 1],

yβ 6∈< (xα)

xα 6∈ R(h)(yβ).

Fix now α = β = 1
2
. To simplify notation, let us denote the ‘corner’

budget Bx 1
2

,y 1
2

simply by B̂. For any ε > 0, consider the open set

around B̂ defined by

Oε = {F ∈ B | H(F, B̂) < ε}
where H is the Hausdorff distance. We claim that, for any ε < η

3
, if

F ∈ Oε, then x ∈ F and y ∈ F . Indeed, if e.g. x did not belong to
F , then, by comprehensiveness of F , none of the points y ≥ x would
be in F . But the closest point z to x 1

2
for which it is not the case that

z ≥ x is at distance at least η
2

from x 1
2

. Clearly, ε < η
3

< η
2

and the

argument above contradicts the fact that F ∈ Oε.

Observe now that, again for ε < η
3
, by a similar argument, if F ∈ Oε,

then F ⊂ Bx0,y0 . Then, by monotonicity of R(h), if b ∈ F then either
x0R(h)b or y0R(h)b. If x0R(h)b, then it cannot be that bR(h)y, because
this would imply x0R(h)y, which is false by construction. Remember
that y ∈ F , so that , if we define V = [R(h)(y) ∩ By0 ], we must have
h(F ) ⊂ V .

Using now the fact that ∪nCn is dense in B, there exist n and B ∈
Cn such that B ∈ Oε. Then, by our argument above we can find
b ∈ h(B) ⊂ V . From the fact that x ∈ B, and that < generates



AFRIAT’S THEOREM FOR GENERAL BUDGETS 12

h on Cn, this implies b < x. Finally, from b ∈ V , y0 ≥ b, and by
monotonicity and u.s.c. of <, y0 < b. We therefore obtain y0 < x, a
contradiction. 2

3. Application: Market Games

Given a standard exchange economy, a market mechanism consists
of a set of strategies (bids, offers, etc.) for every agent and an outcome
function that maps strategy profiles into allocations of commodities.
Fixing the strategies of the others, each player generates a set of con-
sumption bundles as she varies her strategy. The individual problem
can thus be expressed as the maximization of the player’s preferences
over a ‘budget set’. Typically, the strategy chosen by a player has
some influence on the ‘terms of trade’, and we should not expect the
frontier of the budget set to be linear. Strategic market interactions
are thus a natural setting for the application of our generalization of
Afriat’s theory. We show that, for a broad class of market mecha-
nisms axiomatized by Dubey and Sahi (2003), individual ‘budget sets’
are exactly of the form covered by our Lemma 1. As an immediate
corollary of Proposition 1 we obtain a set of testable restrictions which
are necessary and sufficient to interpret the observed choices as Nash
equilibrium outcomes.

Consider an economy composed by a finite group of individuals i ∈
{1, · · · , I}. Commodities are l ∈ {1, · · ·L}. The initial endowment
of commodities of inidividual i is ei ∈ RL

++, and we denote her final
consumption by xi ∈ RL

+. Traders bring goods to the market, and
the market generates a vector of prices and an allocation of goods.
Each good may be brought to one or more markets, and an action
for an individual is a vector ai ∈ RS

+. For example if there are two
commodities and each can be brought to two markets, S = 4. We
can obtain the total amount of the L commodities needed to carry out
action ai by means of a ‘summing-up’ matrix M of dimension L × S:
Mai ∈ RL

+. The market mechanism specifies a price vector p ∈ P =
RL

++ and an allocation (xi ∈ RL
+)i∈I as a result of the individual actions.

We do not require the mechanism to be defined if the total quantity of
any good brought to any market is zero. Let A = {a ∈ RSI

+ |
∑

i a
i >>

0}. A market mechanism is then a collection of functions p : A → P ,
ri : A → RL

+ such that

Exact Feasibility : For all a ∈ A,
∑

i r
i(a) =

∑
i Mai

Budget Balance: For all a ∈ A, and all i ∈ I, p(a)ri(a) = p(a)Mai
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Dubey and Sahi show that if a mechanism satisfies natural properties
of Aggregation, Invariance and Price Mediation, one can equivalently
represent it by means of price and allocation functions, p : RS

++ → P
and z : RS

+ × P → RL
+. Prices only depend on the aggregate quantity

ā =
∑

i a
i, and ri(a) = z(ai, p(ā)) .

The mechanism, as defined by the two functions (p, z), is anonymous:
the action set is the same for all individuals, RS

+. When applying a
mechanisms to a particular economy, we may impose individual feasi-
bility: the total quantity of a commodity delivered by an individual
cannot exceed her initial endowment. The action set of individual i is
then Ai = {ai ∈ RS

+ | Mai ≤ ei}. From now on, let us then define a
mechanism for our economy as Γ = {(Ai)i∈I , (p, z)}. The subset of in-
dividually feasible actions over which the maps (p, z) are defined is A =
{a ∈ ×Ai |

∑
i a

i >> 0}. At a profile of choices a ∈ A, the final bundle
obtained by individual i is xi(ai, a−i) = ei−Mai+z(ai, p(ai+

∑
j 6=i a

j)).

For given choices of the other individuals with
∑

j 6=i a
j >> 0, the set

of attainable consumption bundles of individual i is:

Bi(a−i) = {xi ∈ RL
+ | ∃ai ∈ Ais.t.xi ≤ xi(ai, a−i)}

By feasibility, the set Bi(a−i) is bounded. By budget balance, the fact
that prices are strictly positive, and that ei >> 0, it contains 0 in its
interior. If the function xi(·, a−i) : Ai → RL

+ is continuous, the set is
closed. As in Lemma 1 one could define continuous increasing functions
gi(·; a−i) : RL

+ → R such that

Bi(a−i) = {xi ∈ RL
+ | gi(xi; a−i) ≤ 0}

A market mechanism Γ = {I, (Ai)i∈I , (p, z)}, and a collection of util-
ity functions, vi : RL

+ → R, i ∈ I define a market game {I, (vi)i∈I , Γ}
in which the strategy set of individual i is Ai, and her utility3 at the
profile a ∈ ×iA

i is vi[xi(ai, a−i)]. An active profile of strategies is
a ∈ ×iA

i with
∑

j 6=i a
j >> 0 for all i ∈ I. An active Nash equilibrium

of {I, (vi)i∈I , Γ} is an active profile such that, for all i ∈ I, and for all
b ∈ Ai,

vi[xi(b, a−i)] ≤ vi[xi(ai, a−i)]

Equivalently, it is an active profile of strategies a ∈ ×iA
i such that,

for all i ∈ I, and for all xi ∈ Bi(a−i), vi[xi] ≤ vi[xi(a)].

3To define utilities for the market game, we need to extend the market mechanism
to the whole of ×iA

i. This has been done in the literature for different subclasses of
mechanisms, at the cost of introducing discontinuities (see e.g. Shapley (1976)). In
our setting, we can always avoid the discontinuity by retaining only the observations
corresponding to active profiles, as done here.
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3.1. Rationalization. An experiment is a collection of observations
of strategies chosen by a fixed set of individuals. We allow the obser-
vations to come from different market mechanisms. An experiment is
thus a collection (ak, Γk)k=1,...n where all the market mechanisms have
the same set of individuals I and, for each k, ak ∈ Ak is an active
profile.

We say that the collection of utility functions (vi : RL
+ → R)i∈I

rationalizes the experiment (ak, Γk)k=1,...n if, for all k, ak is a Nash
equilibrium of the market game {I, (vi)i∈I , Γk}.

Given an experiment (ak, Γk)k=1,...n, we can construct data on the
trades of individuals and on their budget sets:

xi
k = ei

k −Mka
i
k + zk(a

i
k, pk(āk))

Bi
k = {xi ∈ RL

+ | ∃ai ∈ Ai
ks.t.x

i ≤ ei
k −Mka

i
k + zk(a

i, pk(a
i +

∑
j 6=i a

j
k))}

= {xi ∈ RL | gi
k(x

i) ≤ 0}.

The expression of Bi
k in terms of the function gi

k introduces an ele-
ment of arbitrariness, but the set Bi

k is fully determined by observable
entities.

With this notation, ak is a Nash equilibrium of the market game
{I, (vi)i∈I , Γk} if and only if for each individual i ∈ I, x ∈ Bi

k implies
vi[x] ≤ vi[x

i
k].

For a given experiment (ak, Γk)k=1,...n, we say that xi
k is revealed

preferred by i to xi
j, xi

kR
ixi

j, if gi
k(x

i
j) ≤ gi

k(x
i
k) = 0. Let H i be the

transitive closure of the relation Ri.

The experiment (ak, Γk)k=1,...n satisfies GARP if, for all i ∈ I, and
any k, j, xi

kH
ixi

j implies gi
j(x

i
k) ≥ 0.

Proposition 5. The following conditions are equivalent:

(1) there exists a collection of locally non satiated, continuous util-
ity functions (vi)i∈I rationalizing the experiment (ak, Γk)k=1,...n

(2) the experiment (ak, Γk)k=1,...n satisfies GARP

(3) there exist numbers ((vi
k, λ

i
k)k=1,...n)i∈I , λi

k > 0, such that, for
all i ∈ I and all k, j = 1, . . . n,

vi
j ≤ vi

k + λi
kg

i
k(x

i
j)

This characterization obviously relies on the availability of individ-
ual consumption data (as opposed to aggregate ones). On the other
hand, we just require the observation of the effective choices of the
players as the rules of the game and/or the initial endowments vary.
Our result thus differs significantly from those obtained by Sprumont
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(2000) for abstract interactive decision problems, which require the ob-
servation of a full joint choice function (i.e., the players’ behavior for
every conceivable subset of possible strategic choices).

3.2. Testing market power. If the price generated by the market
mechanism is not sensitive to changes in the strategy of a individual i,
Budget Balance implies that the individual is only able to move his net
trades, z(ai, p(ā))−Mai = x(ai, a−i)−ei in the linear space orthogonal
to p(ā). A price taking consumer will choose consumption to maximize
his utility on the budget

Ci(a−i) = {xi ∈ RL
+ | p(ā)(xi − ei) ≤ 0}

In an experiment (ak, Γk)k=1,...n, we can construct competitive budget
sets:

Ci
k = {xi ∈ RL

+ | pk(āk)(x
i − ei

k) ≤ 0}
= {xi ∈ RL

+ | f i
k(x

i) ≤ 0}.
with f i

k(x) = pk(āk)(x− ei
k), and define GARP in terms of these bud-

gets. If an individual satisfies GARP in terms of the non linear budgets,
i.e. 2) of Proposition 4, but fails GARP in terms of the competitive
budgets (Ci)k=1,...n, we may take this as evidence of a rational individ-
ual who perceives his market power.
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