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Abstract

There has been considerable investment in Open Source software pro-
jects, notably the Linux operating system, in the last years by competing
firms who could have free-ridden on the others’ efforts. We identify two
characteristics —industry competitivity and input common usefuleness—
which explain the phenomenon and point to open source production possibilities
outside the software sector.
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1 Introduction

The cover story of Business Week, 31 January 2005 on the Linux computer
operating system reports how “otherwise fierce competitors –think IBM and
Hewlett-Packard– are demonstrating that they can benefit from embracing the
open source philosophy of sharing work” (p.64). To economists it is a surprising
story. Indeed the exciting thing about Open Source (OS) is that, as hackers
like to put it, “Each contributes a brick and each gets back a complete house in
return” (Ganesh Prasad 2001, [12]); problem is that the OS house is yours even
if you do not spare your brick —only a little smaller. So why bother at all? But
of course if no-one puts his brick there is no house to share. The purpose of this
paper is to derive conditions under which this free-riding problem is overcome
—to be precise: once the first brick is there—, for software as well as for other
non-digital goods.

The idea we develop starts close to Linus Torvalds’ explanation of the Open
Source Software success: “Much software will be developed this way. It’s
especially good for infrastructure —stuff that affects everybody” (ib.). We build
on this stuff-that-affects-everybody aspect, which is in principle not confined to
software. From the story we abstract the fact that Linux is a widely shared
input, whose improvements raise the productivity of other process-specific inputs
with which it is combined and the profitability of all the firms involved. It may
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apply to any machine that many firms use in their production lines; or of things
like brakes, used by producers of trucks, cars, motorcycles, trains, airplanes.

What we show is that if this productivity-enhancing effect is strong enough
and the industry is sufficiently competitive, research on the common input under
a General Public Licence (the licence that underlies the OS production mode)
is not only non-zero, but more intense than under a proprietary monopolistic
licence. This is after all what has been happening for the last few years in the
Linux–versus–Windows confrontation.

An argument hinting at the plausibility of the result runs as follows: given
non-rivalry of research output, both in the OS and monopolist production
environment each one enjoys n times what he produces (where n are the firms
contributing to OS or the monopolist’s customers), the monopolist because he
sells the same thing n times; therefore the latter’s research investment must be
of the same order of magnitude as the total investment in OS mode; on the
other hand, in OS mode firms get research output at cost price, while with the
monopolist around they pass a mark-up to him; this may make the difference
in favor of OS.

More subtle is the fact that for this effect to emerge, competition among the
firms involved must be strong enough. Stronger competition induces competitors
to invest more in the common input because it raises the stake the innovator
stands to win; and ex ante each one is more likely to be a winner if the
probability that someone innovates increases; but this increase is exactly what
higher common investment induces. Finally, competition leads to invest more
than an outside monopolist because the stronger it is, the less competitors can
afford to pay monopolistic rents, so the more inelastic their demand becomes,
and the less the monopolist will produce.

Recent literature on Open Source focuses on rationalizing the programmers’
contributions to OS Software. Notably Lerner-Tirole [10] indicate the signaling
motive as a possible explanation, the signal being one of professional ability; this
may be more appropriate to the early days of OS than to what constitutes today
the main contributive source of OS software projects, namely funding by large
corporations (see the quoted issue of Business Week or visit the chronologically
first and last important OS web sites, gnu.org and osdl.org). 1 Closer to our
point of view is the user-value explanation (where users may be firms). User
value has certainly been decisive for the major open source projects (like Apache
and Linux itself, see e.g. Lerner–Tirole [10]); and also outside the software
industry the relevance of user-driven product development is widely recognized,
see most notably von Hippel ([17]–[19]). The present paper points in effect to
collective-user value.

Formally, we study two-stage models where firms pursue cost-reducing research
in the first and engage in Hotelling price competition in the second stage. So the
paper is linked to the literature on R&D spillovers, cartels and joint ventures,
where the general structure of the models studied is the same as ours, with

1There are too many ‘gates’ to the open source community on the web to refer to a few
for background information. A readily available note is Modica [11].
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research conducted in the first stage and product competition in the second. In
this line of research, the early results of Spence [14], Katz [8], d’Aspremont–
Jacquemin [6], Kamien–Muller–Zang [7] (the last two interestingly compared
by Amir [2]) and Suzumura [15] have been significantly extended by Amir et
al. [3]. The essential difference in our setting lies in the structure of R&D
expenses: in the cited literature a fraction of all of a firm’s R&D results spill
over to the others; our firms on the other hand may conduct private research
on firm-specific inputs, whose results remain private, and at the same time, as
an independent choice, they may contribute to research on shared inputs whose
results are common property. This separation is what creates the obvious free-
rider problem in the common-research dimension which we address in the paper.
2

The next section contains our results: after introducing analysis in 2.1, we
make a first point in 2.2 (Result 2, page 8) in a simple duopoly-versus-monopoly
setting; the main result of the paper is presented in 2.3 (Result 4, page 14), and
section 3 concludes.

2 Models and Results

2.1 Outline

We study subgame perfect equilibria of two-stage games. Going backwards, in
the second stage there is price competition among either two or n price-setting
firms i in spatial models à la Hotelling: when there are two firms they are
located at the extreme points of a unit-length segment; when there are n they
are evenly located along a unit-length circle. They produce a good at unit cost
ci, which is sold to a unit mass of consumers who buy a unit each from the firm
which they find more convenient on the basis of the firms’ selling prices pi and
of their unit transportation cost t > 0. It is exactly as in Tirole [16] ch.7, except
that we allow for ci 6= cj (as in Aghion–Schankerman [1]).

In the first stage, on which present attention is focused, firms invest to
pursue a cost-reducing innovation which would increase profits in stage two.
The firms’ production technology is not formally specified, but it is thought of
as involving two types of inputs: firm-specific and shared ones. We then model
research as consisting of two types of efforts, directed at the two types of inputs
and resulting in two numerical indexes, xi and zi respectively, which may be
interpreted as quality, or quantity of services; these influence the probability of
cost reduction. Firm-specific xi is always assumed to be produced at constant,
unit marginal cost; the larger scale on which research on the common input
takes place may determine on the other hand convex production costs c(zi).

2Cozzi [5] addresses the free-riding problem with non-rival goods such as research results
in a growth model, but in a different setup: he has nonatomic firms, so the effect of
individual firms’ contributions is always null, and to escape free-riding a detection-punishment
mechanism is in place; given detection, punishment takes the form of excluding the deviator
from joint results. This is by definition impossible under GPL.
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We are interested in the consequences of imposing a General Public Licence
(GPL) on the common input. The GPL imposes first not to impose the restrictions
of use, modification and distribution of the usual proprietary licenses; and
second, cleverly, to release the modified good under GPL in turn. 3 The good
released under a GPL is (and always be) ‘Open Source’. In our setting, GPL
makes the fruits of research on the common input a public good: non-rival,
non-excludable. Individual efforts add up, and all enjoy the cumulative result.
The problem with investing in the common input becomes that by not investing
at all a firm can still appropriate the result of the others’ efforts. The present
paper addresses this free-riding problem.

The presumption underlying our results is that increased productivity of
the shared GPL’d inputs, while not giving a relative advantage to any single
firm (any one’s effort increases the chances of competitors as well as its own),
still determines some advantage to the family of firms as a whole, i.e. to the
average firm. We typically find that if the latter effect is strong enough, then
research effort is higher with Open Source than without. Result is not totally
unsurprising because with relatively large production the free-riding problem
should become severe.

We consider two non-open-source production systems: the first is a one-firm
world, where the public good becomes perforce a private good; in the other
the common input is provided by an external patent-protected monopolist, who
sells it to the firms for profit and is the only one who can conduct research
on its product. Comparison of the latter with Open Source is more like the
Linux-versus-Window situation.

2.2 The Linear City: Duopoly Versus Monopoly

Here we make our point (Result 2) in the simplest possible setting, contrasting
a duopoly against a monopoly. It is simple because in the latter case by
construction there is only one possible institutional setting (since there is no
input or knowledge to share).

Duopoly with GPL’d Common Input. In the linear city [0, 1] there are
two firms, firm 1 at 0 and firm 2 at 1. In the first stage players take into account
the equilibrium continuation they anticipate for the second stage; so we begin
with the latter.

Second Stage. We compute equilibrium profits when unit production costs
are C = (c1, c2). Prices, which are the firms’ moves for this stage, are p =
(p1, p2). Recall from standard model that product differentiation is embedded in
transportation cost t, so strength of competition is dually measured by 1/t. We
assume t being not so high as to leave some consumers unserved in equilibrium;
then demandsDi at p are determined by the consumer who is indifferent between

3The GPL is at http://www.gnu.org/licenses/gpl.html. It is currently undergoing a
revision process, details at http://gplv3.fsf.org/.
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the two firms (cfr. Tirole [16] pp. 98, 279), yielding

Di(p) =
1
2
− pi − pj

2t
=
pj − pi + t

2t
;

profits πi(p, C) = (pi − ci) ·Di are then

πi(p, C) = (pi − ci)
pj − pi + t

2t
. (1)

In equilibrium it must be ∂πi/∂pi = 0 for all i, that is 2pi = pj + ci + t for
i 6= j = 1, 2; so equilibrium p satisfies

2p1 − c1 = p2 + t

2p2 − c2 = p1 + t,

whose solution is
pi =

2ci + cj
3

+ t, i 6= j = 1, 2.

Since pi − ci = t + (cj − ci)/3 and pj − pi = (cj − ci)/3, from (1) equilibrium
profits are

πi(C) =
(cj − ci

3
+ t

) (cj − ci
6t

+
1
2

)
=

(cj − ci)2

18t
+
cj − ci

3
+
t

2
.

(2)

First Stage. Here firms invest to increase the probability of an innovation which
starting from a symmetric situation c1 = c2 = c gives the innovator a cost
advantage of δc, bringing down his cost from c to (1− δ)c < c. We rule out the
possibility that both firms innovate.

Let xi and zi denote research output respectively for firm-specific input
and GPL’d common input. We assume that the probability that i innovates is
influenced by individual xi and cumulative Z ≡ zi + zj (public good aspect);
and that the latter also increases the probability that someone innovates (cake-
increasing effect). More precisely, we take the probability qi that i innovates as
given by

qi = (1− η)
xi

X
+ η

xi

X
f(Z) (3)

where X = x1 + x2, f is concave, increasing from f(0) ∈ [0, 1] to 1 as Z
goes from zero to infinity; η ∈ [0, 1] is the parameter reflecting the influence
of the productivity of the common input on innovation probability q1 + q2 =
1− η + ηf(Z), because

∂

∂η

∂(q1 + q2)
∂Z

= f ′(Z) > 0 .

5



Note that as mentioned before an increase in zi also raises qj . 4 5

Moves for firm i in this stage are pairs si = (xi, zi); the profile will be denoted
by s = (x, z), where x = (x1, x2), z = (z1, z2). Of course the probability qi above
is a qi(s). Consider firm i: with probability qi it will be the innovator and will
have a cost advantage of δc; with probability qj the innovator is j and i will bear
a cost disadvantage of the same amount; with probability 1−q1−q2 no-one will
innovate and both will have cost c. By perfectness firms choose moves taking
second stage profits as given by (2), which in the three events above become
respectively (w, l, d for win, lose and draw)

πw ≡ (δc)2

18t
+
δc

3
+
t

2
, πl ≡ (δc)2

18t
− δc

3
+
t

2
, πd ≡ t

2
.

We shall always assume unitary research costs for the private input. In the
present (sub)section we assume the same also for the shared input, for simplicity.
Then firm i’s payoff ui in the first stage is given by

ui(s) = qiπ
w + qjπ

l + (1− qi − qj)πd − xi − zi

=
t

2
+ (qi + qj)

(δc)2

18t
+ (qi − qj)

δc

3
− xi − zi

=
t

2
+
δc

3
(
1− η + ηf(Z)

)[δc
6t

+
xi − xj

X

]
− xi − zi.

(4)

In this expression it is clear how competition ‘raises stakes’ as we said
in introduction (from the t in denominator), and how it moreover enhances
importance of Z:

∂

∂(1/t)
∂ui

∂Z
= ηf ′(Z)

(δc)2

18
> 0 ,

in fact clearly ∂ui/∂Z goes to infinity with 1/t.
Partial derivatives of ui with respect to xi and zi are

∂ui

∂xi
=

δc

3
(
1− η + ηf(Z)

) 2xj

X2
− 1

∂ui

∂zi
=

δc

3
η f ′(Z)

[δc
6t

+
xi − xj

X

]
− 1;

4The idea of a probability of winning based on the fraction of invested resources has its
roots in the literature on rent–seeking games, see Baye–Hoppe [4]. We add η and f(Z).

5(Model Structure) In the models we present innovation lowers cost, and investment in
research raises the probability of innovation (equations (3) and (13)). A plausible alternative
to this reduced form would be research directly influencing costs. On the other hand, with price
competition on the second stage profits depend on cost differences, and these are unaffected by
lowering each term as a result of common research. So equilibrium would have null investment
in common input. This is not due to the form of competition in the second stage: if one
models the latter as a Cournot game, profits depend negatively on own cost and positively
on competitors’ costs; investing in common input would then be dominated by investment
in private input because the latter lowers own cost without lowering others’ costs; and again
equilibrium would have zero common-input investment. Therefore these alternative models
run against the empirical evidence showing positive expenditure on research on GLP’d inputs
(such as Linux, see www.osdl.org).
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equating these to zero and summing over i we arrive at equilibrium relations:
X = (δc/3)

[
1−η+ηf(Z)

]
from the first set; and from the partials with respect

to zi one obtains

(δc)2

18
1
t
η =

1
f ′(Z)

. (5)

Since the right member increases with Z (by concavity of f), this relation gives
some comparative statics in the total research effort Z devoted to the open
source common input which seem worth reporting (inspect ∂ui/∂zi above for
the first two statements):

Result 1 (OS in Linear city). Assuming finite f ′(0) and fixing t, for η small
enough Z = 0 (and X is proportional to δc). Fixing η, for t small enough
(strong competition) Z > 0. When Z > 0 it increases with the common benefit
index η, with strength of competition 1/t, and with cost reduction δ.

The only non-obvious result here is the one concerning competition, and the
intuition for this was anticipated in the introduction: competition raises the
stake for the winner. At this point we see clearly how it works: it is the q1 + q2
term in equation (4).

The One-Firm City With a single firm it does not matter whether the unit-
length city is linear or circular; we continue with the unit interval, monopolist
located in the middle (the location she would choose).

Start as usual from the price-setting (second) stage. Denoting by x for a
moment the position on the segment, consumer at x with reservation utility
R > c is willing to buy if p+ t

∣∣x− 1
2

∣∣ ≤ R; so demand at p is 2(R−p)/t, half on
each side; but this as long as 2(R − p)/t ≤ 1, for otherwise demand is 1. That
is, monopolist’s demand D(p) is given by

D(p) = min
{
2
R− p

t
, 1

}
.

Monopolist’s problem is to maximize profits, maxp(p − c)D(p). If the p which
solves the unrestricted problem

max
p

2(p− c)
R− p

t

is such that D(p) ≤ 1, then that p is the solution to the original problem;
otherwise optimal price is the lowest such that D(p) ≤ 1. The unrestricted
optimum price is easily seen to be p = (R+ c)/2, so D(p) ≤ 1 reads

R− c

t
≤ 1 . (6)

If this is satisfied —competition 1/t weak enough— then (R+c)/2 is the optimal
price, and resulting profits are π(c) = 2(p− c)(R− p)/t = (R− c)2/2t; if on the
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other hand equation (6) fails, then monopolist will set the p at which D(p) = 1,
i.e. 2(R−p)/t = 1, or p = R−t/2, with profits π(c) = R−c−t/2. Recapitulating,
second stage equilibrium profits for the monopolist are

π(c) =

{
(R−c)2

2t if R−c
t ≤ 1

R− c− t
2 otherwise .

(7)

We turn to investment (first) stage. Innovation probability (3) is independent
of xi now, for xi/X = 1 for any xi; omitting useless subscripts, we then have

q(z) = 1− η + ηf(z) .

The monopolist has no reason to set x > 0, and his problem becomes

max
z

(1− q(z))π(c) + q(z)π((1− δ)c)− z.6 (8)

Now notice that if (6) fails for c it fails for any c′ < c; we shall neglect the
case where it holds for c but fails for (1− δ)c; we thus consider the two typical
cases, (i) weak competition with (6) valid (for c and (1 − δ)c), and (ii) strong
competition with (6) failing.

After plugging first and second line of (7) into (8) in turn, one finds the
following optimality conditions:

δc (2(R− c) + δc)
2

η

t
=

1
f ′(z)

if
R− c

t
≤ 1

δc η =
1

f ′(z)
otherwise .

(9)

Comparison of this with (5) yields the linear city comparison we were after:

Result 2 (Linear city, OS versus Monopoly). If competition (as measured by
1/t) is strong enough, then research on open source common input Z is larger
than the z provided by a monopolist. For weak enough competition the opposite
occurs.

In this case what happens is that for small enough t the monopolist’s marginal
gain from z is independent of t, while the innovating competitor gains more the
smaller is t.

2.3 The Circular City

Here we present the main result of the paper (Result 4), which concerns comparison
of two alternative institutional settings: one with n competing firms with GPL’d
common input, the other with the same firms but where research on common
input is provided by an external patented monopolist.

6Notation is slightly imprecise: here c and (1− δ)c are specific cost values, in (7) c denotes
a variable —apologies.
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Circular City with GPL’d Common Input. The n firms are evenly located
around the circle, and in second-stage price competition a fraction ql will have
low cost, the rest will have high cost. The relative proportions will be endogenously
determined by research investments in the first-stage of the game.

Second Stage. At this stage ql is given, and i’s competitors i − 1 and i + 1
look the same to her. Denoting by Ep−i their common expected price, firm i’s
demand is derived as in Tirole [16] ch.7:

Di(pi,Ep−i) =
Ep−i − pi + t/n

t
; (10)

so firm i, with production cost ci, solves

max
pi

(pi − ci)
Ep−i − pi + t/n

t
;

equating derivative to zero one obtains pi =
(
Ep−i + ci + t/n

)
/2. We consider

price-symmetric equilibrium, where Ep−i = Epi ≡ Ep; since Eci = Ec, by taking
expectations in the pi equation one gets Ep = Ec + t/n; and substituting this
for Ep−i gives

pi =
Ec+ ci

2
+
t

n
. (11)

In our context ci ∈ {cl, ch} for all i (they will be ch = c, cl = (1− δ)c), with
relative proportions q = (ql, qh), qh = 1 − ql. Letting ∆c = ch − cl, we now
compute (second-stage) equilibrium profits, which will depend on the cost vector
C and on q. Since (ch + Ec)/2 = ch − ql∆c/2 and (cl + Ec)/2 = cl + qh∆c/2,
from (11) one has, assuming symmetry within groups,

pl = cl +
t

n
+ qh

∆c
2
, ph = ch +

t

n
− ql

∆c
2

;

so ph − pl = ∆c/2; on the other hand ph − Ep = ql(ph − pl) and Ep − pl =
qh(ph − pl); therefore from (10) equilibrium demands are

Dl =
1
n

+
qh∆c

2t
, Dh =

1
n
− ql∆c

2t
;

hence from πi ≡ (pi − ci)Di, equilibrium profits are given by

πl(∆c, q) = t

(
1
n

+ qh
∆c
2t

)2

, πh(∆c, q) = t

(
1
n
− ql

∆c
2t

)2

(12)

where we have made explicit that they depend on C only through ∆c.

First Stage. As before, moves in this stage are pairs (xi, zi), and innovation
reduces production cost from c to (1−δ)c —so in our current notation ∆c = δc.
Firm i invests to influence the probability of being low-cost in stage two.

We assume that assignment of positions occur after stage 1, so that at that
stage firm i does not know her neighbors’ type (high or low cost). Hence she
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views stage 2 as a price-competition game as the one we have described above,
with payoffs given by equation (12) (with ∆c = δc).

The probability qi that firm i will be low-cost depends on her research
investments. As before we denote sums by capitals: X =

∑
i xi, Z =

∑
i zi;

and for qi we take the following specification:

qi = n
xi

X

(
1− η + ηf(Z)

)
. (13)

This is analogous to (3) of page 5: xi is divided by the average X/n instead
of X because here qi denotes the probability that i is among the innovators,
not the innovator. Again the relevant variables are individual investment on
firm-specific input xi and cumulative investment in shared open-source input
Z; and again qi depends on the profile of moves, which will be denoted by
s = (x, z), x = (xi), z = (zi). From now on we shall assume f(0) < 1/2.

Given qi, i = 1, . . . , n, the fraction of low cost firms will be their average:

ql = ql(Z) = n−1
∑

i
qi = 1− η + η f(Z) ,

and qh = 1 − ql; expected number of low-cost firms will be
∑

i qi = nql. Note
that qi > ql iff xi/X > 1/n.

Here ql is the analogous of innovation probability in the linear city, indeed
it has the same expression; and the same is the role of η: ∂

∂η
∂ql

∂Z > 0.
In principle it may be qi 6∈ [0, 1]; we are thinking of firm i as small enough,

so that xi cannot be too far from X/n in the relevant range, and the problem
does not bite. Assuming now zi-production costs c(zi) convex with c′(0) = 0,
first-stage payoffs are then

ui(s) = qi(s)πl + (1− qi(s))πh − xi − c(zi) , (14)

where qi and second-stage profits are given by equations (13) and (12). After a
little algebra, letting α = δc/2t and ψi = nxi/X one obtains

ui(s) = t

[
1
n2

+
2α
n
ql(ψi − 1) + α2

(
ψiql − q2l (2ψi − 1)

)]
− xi − zi .

Here again competition has the same roles as in the linear city case: the
raising stakes effect is clear by inspection, and it will be ∂

∂(1/t)
∂ui

∂Z > 0 in
symmetric equilibrium (because ql < 1/2 in equilibrium).

Setting partial derivatives of ui with respect to zi equal to zero gives, recalling
that ∂ql/∂zi = ηf ′(Z),

2c′(zi)
δcηf ′

=
2
n

(ψi − 1) + α
(
ψi − 2(2ψi − 1)ql

)
;

and since
∑

i ψi = n, by summing over i one obtains (after re-substituting for
α and ψi and rearranging) the equilibrium condition

ηf ′

t

(δc)2

4
[
2η(1− f)− 1

]
=

∑
i c

′(zi)
n

.
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Since FOC is really ∂ui/∂zi ≤ 0, we see that if η is small enough 2η(1−f)−1 < 0,
whence optimal zi = 0 for all i and therefore Z = 0. On the other hand,
concentrating on symmetric equilibrium in the xi ’s, the assumption f(0) < 1/2
ensures that for η not too small ∂ui/∂zi > 0 at Z = 0, so FOC holds with
equality and the above equilibrium condition may be written as

(δc)2

4
η

t
=

n−1
∑

i c
′(zi)

f ′(Z) (2η(1− f(Z))− 1)
. (15)

Notice why f(0) < 1/2 is needed: if not, even for η = 1 it would be Z = 0.
For comparative statics we note that in xi–symmetric equilibrium the numerator
on the right is c′(n−1Z), so again the right hand side of this expression is
increasing in Z; this gives the following (easily checked by inspection):

Result 3. Assume f(0) < 1/2 and c(·) convex with c′(0) = 0, and consider xi–
symmetric equilibria. Then for η less than some η0 one has Z = 0; otherwise,
for competition 1/t strong enough it is positive and increasing in n, η, 1/t, and
δ.

The last part of comparative statics is as in Proposition 1, while the first
part is somewhat weaker: for η small enough Z = 0 regardless of t, because of
the extra term 2η(1− f(Z))− 1. The reason is that here a firm cannot ‘win’: it
can only be in a set of winners; and by increasing zi firm i raises the probability
of being there, but at the same time makes this set larger. On the other hand
notice the positive dependence of Z upon the size of the market, an effect which
could not emerge with the number of firms fixed at two.

Circular City with Outside Monopolist. We now study the n+ 1–player
model where besides the n firms around the circle there is a monopolist, player 0,
who sells the services denoted by z throughout the paper to the n competitors.
Non-rivalry is a physical characteristic of research output, but non-excludability
is not —it may often be eliminated by law. Thinking of software for example,
Windows and Linux are both operating systems, both non-rival in nature, but
one is made excludable by a proprietary licence, the other is a public good by
GPL. We now model the proprietary system, then compare it with the GPL
model of last paragraph.

For the n competitors i = 1, . . . , n, stage two (price competition) is still as
in the previous case, with profits depending on ∆c and q given by (12). But
there are two changes in the first stage. The first is in qi(s), the probability with
which i will be low-cost in stage two (cfr. (13)): it is now no longer cumulative
Z which enters the formula, but just the amount zi which firm i acquires from
the monopolist; in other words we now have

qi = n
xi

X

(
1− η + ηf(zi)

)
, (16)

and as a consequence, ql = n−1
∑

i qi is now given by

ql =
∑

i

xi

X

(
1− η + ηf(zi)

)
. (17)

11



We will actually end up considering the η = 1 to simplify arguments, because we
already know that for small η open source does not work well anyway; but for the
moment we keep it explicit to facilitate comparison with previous expressions.

The second difference is that firm i no longer produces zi, but buys it at
the price p the monopolist sets. Thus firm i’s first-stage payoff is (cfr. (14) for
comparison)

ui(s) = qi(s)πl + (1− qi)πh − xi − pzi , (18)

where now qi is to be read from equation (16) above. Using notation ψi and
α from page 10, and also letting µi = 1 − η + ηf(zi) (so that qi = ψi µi),
substitution from (12) now leads to the following expression for ui(s):

ui(s) = t

[
1
n2

+
2α
n

(
ψiµi − ql

)
+ α2

(
ψiµi(1− 2ql) + q2l

)]
− xi − pzi .

The FOC with respect to zi gives, fixing the other firms’ investments z−i, price
p as function of zi, whose inverse is firm i’s demand of zi at price p. We
then set ∂ui/∂zi = 0; since µ′(zi) = ηf ′(zi) and ∂ql/∂zi = n−1ψiηf

′(zi), after
substituting for α = δc/2t this yields

p = ψiηf
′(zi)

[
(δc)2

4t

(
1− 2ql(zi, z−i)

n− 1
n

− 2
ψiµi(zi)

n

)
+ δc

n− 1
n2

]
. (19)

We check here that the above FOC is sufficient for a maximum of ui; one has
in fact

1
ψi

∂2ui

∂z2
i

= µ′′i [·]− µ′i
(δc)2

2nt

(
(n− 1)q′l + ψiµ

′
i

)
, (20)

where the bracketed expression is the one of (19), positive whenever (19) holds;
our assertion then follows by recalling that µ′i and q′l are positive while µ′′i is
negative. Next, let ζ̃i(p; z−i) be the inverse of the function defined in (19), and
the profile (ζi)(p) be a fixed point of the map (ζ̃i)(p) (which exists because the
zi’s can be uniformly bounded above in searching for an equilibrium).

We now turn to the monopolist. Given the non-rivalry of his product,
whatever he produces for one firm can be re-used for all n. Since in principle
the various firms may demand different amounts of the monopolist’s service, he
will have to produce the highest required; but with that he is able to serve the
whole market. In other words, he produces maxi zi and sells

∑
i zi. We continue

to assume convex z-production costs c(z) here. Thus the monopolist’s problem
is the following:

max
p

p
∑

i
ζi(p) − c(max

i
ζi(p)) .

We shall consider the symmetric equilibrium, with xi = n−1X and zi = z for
all i. Having checked that first order conditions are sufficient, see the discussion
around equation (20), existence of this equilibrium follows from existence of a
solution to equation (22) below, which is easily established using the regular

12



curvature of the functions involved. In such an equilibrium the monopolist
produces z and sells nz, so that his problem becomes

max
z

nz p(z)− c(z) , with FOC p+ zp′ ≤ n−1 c′(z) (21)

where p is given by equation (19). At this point we take η = 1. Then µi = f(z) =
ql; also by symmetry ψi = 1 all i, so that p and p′ read, letting A = (δc)2/4t,

p(z) = Af ′(z)
[
1− 2f(z) + 4t

δc
n−1
n2

]
,

p′(z) = A
[
f ′′(z)

(
1− 2f(z) + 4t

δc
n−1
n2

)
− 2f ′(z)2

]
.

We now take t small (strong competition). For such t ’s the above expressions
are approximately as follows:

p(z) ' Af ′(z)
(
1− 2f(z)

)
, p′(z) ' A

[
f ′′(z)

(
1− 2f(z)

)
− 2f ′(z)2

]
.

Given f(0) < 1/2, which we maintain from previous paragraph (if it fails
monopolist produces zero), p(0) > 0, whence from (21) the monopolist will
produce positive z and meet FOC with equality. Using the above approximations
the FOC reads A(1− 2f)[f ′ + z

(
f ′′ − 2(1− 2f)−1f ′2

)
] = n−1c′, that is

A

[
1 + z

f ′′(z)− 2(1− 2f)−1f ′2

f ′(z)

]
=

n−1c′(z)
f ′(z)

(
1− 2f(z)

) . (22)

Since f ′′ < 0 the left member is smaller than A. Since we are assuming c(·)
convex the right member is increasing in z; therefore (for small t) equilibrium
zem with external monopolist is smaller than the zo determined by

A =
n−1c′(zo)

f ′(zo)
(
1− 2f(zo)

) ≡M(zo) .

We now go back to the circular city with open source common input. The
situation was that each firm would enjoy cumulative contribution Z by producing,
in symmetric equilibrium, n−1Z. In the linear cost version we had in the
previous section the equilibrium quantity was determined by relation (15).
Notice that with η = 1 the left member is just A, and denominator in right
member f ′(1 − 2f), like what we have here; numerator was 1, the constant
marginal cost of z. With c(zi) replacing zi in payoff (14), in symmetric equilibrium
the 1 in that numerator gets replaced by c′(n−1Z); that is, equilibrium Z in
GPL economy is defined by

A =
c′(n−1Z)

f ′(Z)
(
1− 2f(Z)

) ≡ C(Z) .

How does Z compare with zo? We assume c(·) convex with (weakly) convex
marginal cost (e.g. if c is a power function c(z) = zα, we are saying α ≥ 2); then
(elementary calculus) n−1c′(z) ≥ c′(n−1z). Thus we have A = C(Z) ≤ M(Z);
and since M(zo) = A and M is increasing, zo ≤ Z; since we already know that
monopoly equilibrium zem is less than zo, conclusion is:
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Result 4 (Linux-versus-Windows). Take η = 1 in the expressions (13) and (16)
for qi, and assume f(·) concave with f(0) < 1/2 and c(·) increasing convex along
with c′. Then in symmetric equilibrium the OS economy produces more research
on the common input than that provided by a patent-protected monopolist if
competition strong enough.

There are two effects at play here that counteract the monopolist’s advantage
that non-rivalry gives him. One is that marginal costs are increasing: the
monopolist has to produce the whole market quantity, while each competitor
goes away with an n-th of it. The other is the rent-paying effect mentioned
in the introduction: the stronger the competition the less affordable is paying
monopolistic rents. The end result is that when these two effect cumulate, Open
Source works better than the proprietary system.

3 Conclusions

We are discussing R&D on shared inputs where sequential innovation matters.
What we have shown is that, given a primary invention, the amount of subsequent
research is higher under GPL than under a proprietary licence held by a monopolist
if the productivity increase due to improvements in the common input is substantial
and the industry is sufficiently competitive. Releasing an invention under a
GPL may be the inventor’s choice, as it has been for Linux (Saint-Paul [13]
has a result about the possibility of voluntary information sharing in a related
context), but typically it is not. On the other hand imposing GPL by law
on any set of goods obviously de-incentivates innovative activity; thus there
is a patent policy trade-off between fostering initial inventions or subsequent
product development. Having identified the contexts in which a GPL would
lead to better sequential improvements than a proprietary licence, a policy route
which seems worth exploring (for such products) is the one hinted at by Kremer
[9], which consists of granting patents to inventors, and then proceeding with
patent buyouts by the government when this is judged beneficial (Kremer dose
not mention GPL, but the obvious step after a buyout would be to release the
patent’s content under a GPL).

On the empirical side, our model has testable implications which we propose
to investigate at a later stage. The typical regression one would want to set
up has expenditure on open source projects as dependent variable; this should
be extracted from the public firms’ balance sheets. As explanatory variables
we have highlighted the extent to which the OS’d input enters the group of
firms’ technological processes and the strength of competition in the industry;
and our finding that the two effects are complementary could be tested in
the usual way. Of course one should control for other variables which we
have not mentioned, possibly cost differentials between the OS’d input and
the proprietary alternative. Such variables may play a role, but as this paper
has pointed out, without the shared-input and competitivity conditions that we
have highlighted the free riding problem would prevent any cost advantage from
being exploited and frustrate any other mutually beneficial opportunity.
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