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Abstract

This paper proposes a term structure model with macro VAR in a stochastic volatility

setting. The speci�c feature of this model is that the risk premium of yields is directly driven

by the time-varying variance-covariance of the VAR innovation, which is modeled by a

Wishart Autoregressive process. Extending the essentially a¢ ne term structure model, this

framework not only incorporates the stochastic variance-covariance in the VAR innovation,

but also preserves the tractability and interpretability from a macro-�nance perspective.

Hence it provides a modeling tool to bridge the two strands of macroeconomic research: the

DSGE-VAR with stochastic volatility and the macro-�nance model of term structure. The

baseline model implies that: 1) the stochastic variance-covariance of the VAR innovation

has sizable e¤ect on medium to long maturity yields; 2) volatility is a curvature factor

of the yield curve, and the net e¤ect of the time-varying variance-covariance matrix is

also a curvature factor; 3) simulation study shows that it can well explain the bond yield

"conundrum", where di¤erences in volatility can result in di¤erent shapes of the yield curve

with the underlying macro variables remaining at the same level.
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1 Introduction

This paper proposes a convenient framework for studying the e¤ects of the volatility and

covolatility of macro variables on the yield curve. It also provides a useful tool for utilitzing

the yield curve information for the inference on macroeconomic volatility.

The stochastic behavior of the variance-covariance of macro variables and of �nancial asset

prices are of great importance in our understanding of their joint dynamics.

In the macroeconomic research agenda, substantial e¤ort has been devoted to the investi-

gation of the "Great Moderation" of volatility in recent economic history (Stock and Watson

(2003) for an overview). Important studies using DSGE-VAR models with stochastic volatility

are due to Primiceri (2005), Justiniano and Primiceri (2007). However, these studies only rely

on limited macro data. The rich information contained in bond yield data is not utilized for

the estimation and inference.

In the macro-�nance �eld where the term structure and the macro economy are jointly

studied, commonly used models assume constant volatility (Ang and Piazzesi (2003), Ang, Pi-

azzesi and Wei (2006), Ang, Dong and Piazzesi (2007), Diebold, Rudebusch and Aruoba (2006),

Rudebusch and Wu (2005), to name just a few). These models usually perceive the yield curve

as driven by a VAR state dynamics of macro variables and yield factors. In particular, models

featuring no-arbitrage restrictions provide a powerful tool in understanding the joint dynamics

in a parsimonious and coherent manner. But these no-arbitrage macro-�nance models are usu-

ally con�ned to the class of essentially a¢ ne term structure models (Dai and Singleton(2002),

Du¤ee(2002)) with constant variance-covariance of the VAR innovations. Though these works

have contributed to our understanding of the relationship between bond yield dynamics, mone-

tary policy transmission and the macro economy, the assumption of constant volatility is more

likely to be violated in yield data than in macro data, and the likely e¤ects of changing macro

volatility on yields cannot be explored. Some papers have examined the implication of regime

switching (and possibly change in volatility) on the yield curve and the macro economy (Ang

and Bekaert (2002)), however, within each regime, variance-covariance matrix of the under-

lying state residuals is assumed to be constant. The omitted stochastic volatility might be

crucial in driving the bond yield dynamics in some speci�c periods when the market volatility

strongly deviates from its mean level, even within one regime. In examining the recent bond
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yield "conundrum", for example, volatility is found to be an important factor correlated with

the unusually low level of long-term interest rate. The commonly used essentially a¢ ne term

structure models cannot capture that behavior (Rudebusch, Swanson and Wu (2007)).

The reason why few macro-�nance models incorporate stochastic volatility-covolatility might

be due to the complexity of modeling such features. As noted by many studies, in the a¢ ne

Gaussian class of term structure models, there seems to be a trade-o¤ between matching prop-

erties of the conditional mean and the conditional volatilities of yields (Singleton (2006) for a

detailed discussion). The choice of constant volatility a¢ ne model by macroeconomists might

be due to the concern of matching the �rst moment of macroeconomic dynamics. On the

other hand, some restrictive assumptions underlying yield models with stochastic volatility are

hard to be justi�ed from macroeconomic theory. For example, some quadratic term struc-

ture models dealing with stochastic volatility assume that the short rate is determined by the

variance-covariance matrix of the state variables (Ahn, Dittmar, and Gallant (2002)); while

macro economists usually regard the short rate as a monetary policy instrument which targets

on the level of in�ation and output gap.

Extending the essentially a¢ ne term structure model, this paper proposes a simple frame-

work to not only incorporate a stochastic variance-covariance in the VAR innovations, but

also preserve the tractability and interpretability from a macro-�nance perspective. Hence the

model provides a modeling tool to bridge two strands of macroeconomic research: the DSGE-

VAR model with stochastic volatility and the macro-�nance model of term structure. Using

this framework, macroeconomists will be able to study the role of stochastic volatility in macro

VAR by using information from the �nancial market; on the other hand, the e¤ect of stochastic

volatility underlying the macro economy on the term structure can be examined explicitly.

The proposed equilibrium no-arbitrage model of the yield curve can be understood as a

generalized framework extending Vasicek (1977) model with (matrix) a¢ ne form of stochastic

variance-covariance dynamics. In this setting, the time-varying risk premia come from uncer-

tainty in the variance-covariance of innovations to the state risk factors that drive the short

rate. This uncertainty then maps into longer maturity yields through no-arbitrage restric-

tions. The dynamics of volatility-covolatility, though evolving independently from the state

risk factors, also drives the yield curve at medium-to-long maturities. Hence the volatility

matrix can be deemed as "auxiliary" factor in yields. The model is denoted as Auxiliary Sto-
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chastic Volatility-covolatility A¢ ne Term Structure Model (ASV-ATSM). If the innovations to

the variance-covariance process are Gaussian, the model reduces to the Dai-Singleton(2002)

A¢ ne Term Structure Models (ATSM), but with a set of structural restrictions imposed on

the parameter space. In the extreme case where the distribution of variance-covariance of VAR

innovations collapses into a constant, the model converges to the essentially a¢ ne A0(m) model

with constant risk price.

In the baseline model, both the VAR dynamics and the variance-covariance of VAR in-

novations a¤ect the yield curve, without correlations between the two. This �exibility helps

to capture both the feature of linear projection of the yield curve level, and the behaviors of

stochastic volatility. In an extended model, leverage e¤ect (i.e. correlation between the VAR

variables and their contemporaneous variance-covariance factors) can be integrated, which en-

riches the dynamics of yields with respect to the volatility factors.

The paper is structured as follows: Section 2 explains the basic building blocks of the

baseline model . Section 3 derives the model and the no-arbitrage restrictions. Section 4

discusses the general state-space form, model classi�cation and extension with leverage e¤ects.

Section 5 is devoted to simulation study in which I examine the basic features of the model.

Section 6 discusses estimation strategy. Section 7 concludes.

2 Model building blocks

The model is cast in discrete time. The basic building blocks are similar to the discrete-time

essentially a¢ ne term structure model in Ang and Piazzesi (2003) with two exceptions: (i) risk

prices are assumed to be directly driven by the stochastic variance-covariance matrix of the

state VAR innovations; (ii) this variance-covariance matrix follows a Wishart Autoregressive

process.

2.1 Short rate

The short rate rt is a¢ ne in a state vector Xt, which includes some macro factors and possibly

latent factors from the yields
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rt = �0 + �
0
1Xt (1)

�0: a scalar.

�1: a K � 1 vector.

2.2 State variable dynamics

The transition equation for Xt follows a VAR(1):

Xt = �+�Xt�1 + vt; vt � N(0;
t) (2)

Xt: a K � 1 vector.

The variance-covariance matrix 
t of the VAR innovation vt follows a Wishart Autoregres-

sive (WAR) process,


t =M
t�1M
0 +�� + �t; (3)

where �� = J�, J denotes the degree of freedom (J � K to ensure nondegeneracy of the

distribution of 
t), and �t is a matrix of stochastic errors with zero conditional mean. In

particular, 
t �
JP
j=1

zj;tz
0
j;t, zj;t =Mzj;t�1 + �j;t, �j;t � N(0;�). M is the latent autoregressive

coe¢ cient and � the latent variance of the innovations. Gourieroux, Jasiak, and Sufana(2004)

study the property of this process in details.

Interesting features of this process is that at any time, the conditional distribution of 
t is

a well-de�ned non-central Wishart with

(�� + �t) �W (J;�)

and

Cov [vec (
t)] = Cov [vec (�t)] = J (Ik2 +H) (�
 �)

, where K is the number of VAR state factors that determine the short rate, and H is the

commutation matrix H =
P
Hij 
H 0

ij , where Hij denotes the K �K matrix with hij = 1 and

all other elements zero (Muirhead, R.J.(1982)). The distribution of vec (�t) is highly skewed

when J is low, and it slowly approaches to a Normal as J increases.
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2.3 Prices of risk

The prices of risk, denoted by a vector �t, are determined by the square root of the variance-

covariance matrix 
t, adjusted by a constant K � 1 vector �

�t = 

1=2
t �:

The prices of risk are associated with the sources of uncertainty in vt+1. In the essentially

a¢ ne term structure model with constant 
, in order to capture time-varying risk premia,

�t is assumed to be a¢ ne in the VAR state Xt, �t = �0 + �1Xt. In the current model, the

time-varying risk premia can be captured by the stochastic variance-covariance 
t naturally,

since market risk is fundamentally linked to volatility - the second moment, instead of the �rst

moment in the level of state Xt.

2.4 Pricing kernel

No arbitrage opportunity between bonds with di¤erent maturities implies that there is a dis-

count factor m linking the price of bond with maturity n at time t with the price of bond with

maturity n� 1 at time t+ 1.
P
(n)
t = Et

h
mt+1P

(n�1)
t+1

i
(4)

The stochastic discount factor is related to the short rate and risk perceived by the market,

which is de�ned as

mt+1 = exp

�
�rt �

1

2
�0t+1�t+1 � �0t+1"t+1

�
(5)

= exp

�
�rt �

1

2
�0
t+1�� �0vt+1

�
(6)

with vt+1 = 

1=2
t+1"t+1, "t+1 � N(0; 1).

Notice that in essentially a¢ ne models as in Ang and Piazzesi (2003),

mt+1 � exp
�
�rt �

1

2
�0t�t � �0t"t+1

�
,

where �t = �0 + �1Xt, hence the time variation there in the risk premium is due to dynamics

in the �rst moment Xt. That discount factor can be represented with a transformation of �t

so that

mt+1 � exp
�
�rt �

1

2
~�0t
~�t � ~�0tvt+1

�
,
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where �t = 
1=2~�t. The similarity between these discount factor and those in equations (5)

and (6) implies that they can be observationally equivalent, though the driving forces to time-

varying risk primium are di¤erent.

A no-arbitrage recursive relation can then be derived from the above equations as:

P
(n)
t = Et

h
mt+1P

(n�1)
t+1

i
= Et

h
mt+1mt+2P

(n�2)
t+2

i
= � � �

= Et

h
mt+1mt+2:::mt+nP

(0)
t+n

i
= Et [mt+1mt+2:::mt+n � 1]

= Et

�
exp

�
�
n�1P
i=0

�
rt+i +

1
2�

0
t+1+i� + �0vt+1+i
���

= Et [exp (An +B
0
nXt + Cn (
t))] = Et [exp (�nyt;n)]

= EQt

�
exp

�
�
n�1P
i=0

rt+i

��
EQt denotes the expectation operator under the risk-neutral probability measure.

The relationships between bond yields and the bond prices are:

yt;t+n =
�1
n
pt;t+n (7)

pt;t+n � lnP (n)t = An +B
0
nXt + Cn (
t)

yt;t+n = an + b
0
nXt + cn (
t) =

�1
n

�
An +B

0
nXt + Cn (
t)

�
(8)

Note that the short rate equation imposes C1(
t) = 0 as a boundary condition.

3 Econometric model representation and no-arbitrage restric-

tions

The above assumptions on the model building blocks imply �rst, that yields with di¤erent

maturities are driven by both the level of the state risk factors Xt and the variance-covariance

of the VAR innovations 
t; second, the factor loadings are tightly related by the no-arbitrage

condition.

This amounts to an econometric representation of a state-space model augmented with

a stochastic process of the variance-covariance matrix. That is, there are three blocks of

equations: the �rst block de�nes the measurement equations of yields with di¤erent maturities
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n, where cn (
t) is an a¢ ne function of elements in 
t.; the second block is the VAR state

dynamics of Xt with time-varying variance-covariance 
t of the VAR innovations ; and the

third block gives the autoregressive dynamics of 
t.

yt;t+n = an + b
0
nXt + cn (
t) + "t;t+n, "t;t+n � N(0; �2)

Xt = �+�Xt�1 + vt, vt � N(0;
t)


t = M
t�1M 0 + J�+ �t J�+ �t �W (J;�)

(M-0)

3.1 Unrestricted model

The econometric model can be estimated in an unrestricted manner, where no restrictions are

imposed on the yield equations to assure no-arbitrage. In this case, the model is the stochastic

counterpart of Engle�s (G)ARCH-in-mean model of asset returns, in which the contempora-

neous volatility a¤ects returns. In particular, the WAR process shares a similar spirit of the

BEKK-GARCH model (Engle and Kroner (1995)), where the variance-covariance has matrix

autoregressive dynamics. The WAR process automatically ensures positive de�nitiveness of 
t

with a well-de�ned dynamics and distribution.

In the ARCH-in-mean model, the levels of VAR states are often ignored and the role of

variations in variance-covariance is emphasized. This seems to be a reasonable simpli�cation

when applied to high frequency data. At monthly or quarterly frequency, on the contrary, VAR

state dynamics seems to be helpful to understanding the relatively slow movement and e¤ects

of macro state variables like in�ation and output on the yield curve.

3.2 Restricted (No-arbitrage) model

The no-arbitrage restrictions on the bond price equations in such a framework can be derived

as follows (Appendix A.1) :

With parameter space
�
�0; �1; �

2; �;�;M;�; J;�
�
:

An+1 = A1 +An +B
0
n�+Dn

B0n+1 = (B0n�+B
0
1)

Cn+1 (
t) = Tr [Gn+1 � 
t]
(9)
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in which
A1 = ��0
B1 = ��1
G1 = 0

and
Gn+1 � M 0�n (I � 2��n)�1M for n > 0

Dn � �J
2 ln [det (I � 2��n)]

with �n de�ned as follows:

�n = �1
2�B

0
n � 1

2Bn�
0 + 1

2BnB
0
n +Gn

Restrictions on the yield equations are accordingly:

bn+1 = � 1
(n+1)Bn+1

= 1
(n+1)

�
nP
i=0
(�0)i

�
b1

an+1 = � 1
(n+1)An+1

= = a1 +
1

(n+1)b
0
1

�
n�1P
i=0
�i
�
�+ J

2(n+1)

nP
i=1
ln [det (I � 2��i)]

cn+1 (
t) = � 1
(n+1)Cn+1 (
t)

= � 1
(n+1)vec (G (n+ 1))

0 � vec(
t)

3.3 Stochastic volatility and the curvature factor

What are the e¤ects of stochastic volatility on yields under this model setting? What are the

shapes of its factor loadings?

Suppose there is one state factor in Xt and its innovation follows a one-dimension Wishart

Autoregressive process �a Chi-square Autoregressive process. Approximate the short rate by

the 1-month yeilds, and calibrate its dynamics with an AR(1) and innovations an ARCH(1)

with monthly data from 1974:2 to 2001:12, I can set the VAR and WAR parameters as: � =

2:32 � 10�3, � = 0:95, M = 0:924, �� � J� = 1:1 � 10�7. Then set �0 = 0, �1 = 1, use

the discount factor de�nition of mt+1 � exp
�
�rt � 1

2�
0
�� �0vt+1

�
and calibrate a Vasicek

model to obtain � = �400. The resulting factor loadings of the volatility 
t on yields has
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a hump shape, which is quite similar to the familiar curvature factor from the Nelson-Siegel

representation.

Take the above calibrated parameter values, Figure 1 shows the implied intercepts an of

yields, factor loadings bn on the states Xt and loadings � 1
(n+1)G (n) of volatility matrix 
t,

respectively. It clearly depicts the state Xt as a slope factor, and 
t as a curvature factor.

[Figure 1. Factor loadings of yields with one state in X and one volatility factor]

Figure 2 compares how the model parameters a¤ect the volatility loadings on yields. The

�rst row shows that the persistence parameters � of the state dynamics andM of the stochastic

volatility process both have positive e¤ects on the factor loadings. The higher is the persistence,

the bigger is the volatility e¤ect on medium-to-long yields, and the peak of the curvature

factor also depends on the persistence. The �rst panel in the second row shows that of risk

price � governs the sign as well as magnitude of the factor loadings. When risk price is

negative(positive), the factor loadings are positive(negative), hence higher volatility results

in lower(higher) price of medium-to-long term bonds. The degree of freedom parameter, J ,

instead, has little e¤ect on the factor loadings.

[Figure 2. Parameters a¤ecting volatility factor loading]

The above �gures presents some basic features of the volatility factors when there is only

one state factor and hence one volatility factor. More general cases with multiple state factors

and volatility-covolatility factors will be discussed in the simulation studies in section 5.

3.4 Forward rate and excess returns

This model implies that forward rate is a function of both the state Xt and the volatility-

covolatility of state innovation 
t, but excess returns are only driven by 
t. (Appendix B).

Forward rate

Let f (1)t;n denote the log forward rate at time t for loans between time t + n � 1 and t + n.

It has the following expression:
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f
(1)
t;n = (An�1 �An) +

�
B0n�1 �B0n

�
Xt + Tr [(Gn�1 �Gn) 
t] (10)

Excess returns

De�ne rxnt+1 as the log holding period return from buying an n-period bond at time t and

selling it as an n � 1 period bond at time t + 1, the excess return rxnt+1 is driven by current
volatility-covolatility of state innovations together with all innovations vt+1 and �t+1, to Xt+1

and 
t+1, respectively.

rxnt+1 = const:+ Tr [(M 0Gn�1M �Gn) 
t] + g(vt+1; �t+1) , (11)

where g(vt+1; �t+1) is a linear combination of the innovations.

The expected excess return Et
�
rxnt+1

�
is only a function of current volatility-covolatility of

state innovations:

Et
�
rxnt+1

�
= const:+ Tr

��
M 0Gn�1M �Gn

�

t
�

(12)

In general the expected excess return between n-period bonds at time t and n � s period

bonds at time t+ s can be expressed as:

Et
�
rxnt+s

�
= const:+ Tr

��
(M s)0Gn�sM

s �Gn +Gs
�

t
	
. (13)

4 Compact State-space form, model classi�cation and exten-

sion with leverage e¤ects

In the econometric model representation (M-0), it is easy to understand that the augmented

process of the variance-covariance matrix 
t is also state dynamics in addition to the VAR

process of Xt. Hence, the three equations can be written in a more compact state-space

form. I classify this type of model as Auxiliary Stochastic Volatility-covolatility (ASV) a¢ ne

term structure models (ATSM). The original representation (M-0) is helpful in understanding

intuitively the restriction derivation and distribution property of the state elements. A more
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compact form is useful in understanding the relative classi�cation of this model with respect

to other a¢ ne term structure models.

In macro VAR with time-varying variance-covariance, the exogeneity of 
t to VAR statesXt

is usually assumed. I maintain this assumption in the baseline model derived above. However,

in �nancial data, leverage e¤ects are often observed, i.e., there is signi�cant correlation between

the variance-covariance and the level of the returns. This phenomenon is also relevant in the

dynamics of in�ation, which is an important factor determining the yield movement. At the

end of this section, I shall discuss the possibility of extension to allow leverage e¤ect in the

model.

4.1 Compact State Space form of the ASV-ATSM model

De�ne the entire state vector as

Zt =

"
Xt

vech (
t)

#
,

and coe¢ cient vector of state Zt on the measurement equation of yield with maturity n as

�n =

"
bn

� 1
nvec (Gn) � S

#
,

where S is the operator for transformation vec(X) = S � vech(X).
Further, with the following reparameterization of the state dynamics,

U =

"
�

J � vech (�)

#
, F =

"
� 0

0 (M 
M) � S

#
, and Qt =

"

t 0

0 S � V� � S0

#
,

the compact state space model representation can be written as

yt;t+n = an + �
0
nZt + "t;t+n, "t;t+n � N(0; �2)

Zt = U + FZt�1 + �t , �t � (0; Qt)
. (M-I)

The necessary intermediate results of matrix transformation on vectorization is listed in

Appendix C.
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4.2 Classi�cation of the ASV-ATSM model

The ASV-ATSM model can be classi�ed according to the number of state variables Xt driving

short rate, K, and the number of stochastic volatility-covolatility elements that govern the

innovations vt to the state variables Xt, m. I denote the by A+m (K)., where 0 � m � K(K+1)
2 .

In this class of models, Xt is conditionally Gaussian with variance-covariance 
t, but none of

the K factors drive stochastic volatility; instead, it is those m additional stochastic volatility-

covolatility factors at work, which do not enter the short rate equation. In addition, these m

factors jointly followWishart Autoregressive process and have non-central Wishart distribution.

Hence, I put +m into the notation to distinguish them from the Dai-Singleton classi�cation of

A¢ ne Term Structure Model Am (n), where the m stochastic volatility-covolatility factors be-

long to the n state factors that usually drive the short rate, and the state VAR have conditional

Gaussian distribution. Some special cases are described below:

� When m = K(K+1)
2 , the innovations vt to Xt is subject fully to stochastic volatility-

covolatility.

� Whenm = 0, the model collapses to the essentially a¢ ne term structure model: A+0 (K) m=0=

A0 (K).

� In between, there are intermediate cases, where some volatility-covolatility elements can
be restricted to constant. For example, in one case which assumes no correlation risk,

all o¤-diagonal elements for covolatility are restricted to be 0, then m = K, and each

diagonal elements of 
t follows a Chi-square autoregressive process. (The no-arbitrage

restrictions of such case is derived in Appendix A 1.4).

� Usually volatility distribution of yields presents high skewness, which means that the
degree of freedom in the WAR process is likely to be rather low. In this model, it is

restricted that J � K, where K is the dimension of the stochastic volatility-covolatility.

� When the stochastic volatility-covolatility is characterized by a Gaussian matrix autore-
gressive process (GMAR), then it becomes a structurally restricted Am (K +m) model.

The restrictions are such that the short rate has zero loadings on those m factors, there

is no interaction between the autoregressive dynamics of the two blocks of states, i.e., F

is block-diagonal; the variance-covariance Qt is also block-diagonal, in which the second
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group of factors vech (
t) transforms into the variance-covariance 
t for the innovation

of the other K state factors Xt. However, one should notice that although the limiting

case of a Wishart Autoregressive process is Gaussian when J !1, it is unlikely that this
limiting process serves to study signi�cant �uctuation in the variance-covariance matrix


t. Because Given a mean of this process �
, when J !1, �t ! 0, and 
t ! �
, which is

constant again. If the Gaussian matrix autoregressive is not a limiting case of WAR, then

it is challenging to restrict the parameters such that at any point of time, 
t is positive

de�nite. The model restrictions with GMAR process are derived in Appendix A.2.

An interesting feature of A+m (K) in comparison with A0 (K) model is that, with the same

number of VAR states, there are m more factor dynamics in the A+m (K) model, but still

comparable number of parameters with respect to an A0 (K) model with time-varying risk

prices. Because the number of parameters in the WAR process (M : K �K) is the same as the
number of parameters in the time-varying risk price coe¢ cient matrix (�1: K �K), just with
an additional degree of freedom parameter J . This might help to capture richer dynamics in

the yield curve while maintaining the same level of parsimony in parameterization.

4.3 Model extension with leverage e¤ects

One way to incorporate leverage e¤ects is to allow "volatility-in-mean" in the VAR state equa-

tion. In this case, although 
t is still exogenous, the level of 
t also a¤ects Xt, hence there is

correlation between 
t and Xt. Under this setting, the short rate is indirectly a¤ected by 
t

through the state variables Xt. However, unlike the square-root or quadratic term structure

models, this treatment does not allow the causal e¤ect to run the other way from Xt to the

variance-covariance.

Model restrictions with this extension is derived in Appendix A.3. With the macro VAR

in mind, this extension may be useful to study the state dynamics of in�ation, in which the

leverage e¤ect is often observed, i.e., high in�ation corresponds to high in�ation �uctuation.

When Xt is a¤ected by contemporaneous 
t, the VAR equation in Xt needs to be transformed

with rotation to derive the compact state-space model (M-I)
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5 Simulation study

This model has rich implications for the yield curve with respect to stochastic variance-

covariance in the state VAR innovations. Its characteristics can be studied by some simulation

exercises with simple A+m (K) models. In this section, I �rst show the results of a simula-

tion for A+1 (1) model in comparison with A0 (1) model with constant and time-varying risk

price. Then I study the variance-covariance e¤ects jointly from an A+3 (2) model. In the end, I

compare the time-varying e¤ect of volatility-covolatility from these models with the empirical

curvature components in yield data and discuss the link between them.

5.1 A+1 (1) model

In an A+1 (1) model, there is one state factor that drives short rate, and its innovations are

subject to a one-dimension stochastic volatility process. Since the volatility factor loading is

not sensitive to the degree of freedom J , and volatility distribution of yields is usually highly

skewed, I choose a low degree of freedom to capture this property.

In the simulation study, I choose the following parameter values: J = 1, . �0 = 2:32 �
10�3=(1�0:95), �1 = 1, � = 0, � = 0:95, M = 0:924, �� � J� = 1:1�10�7, �" = 3�10�5 and
� = �400 I use the steady state values of X and 
 as the initial state values at time t = 0.

Figure 3 shows one possible path simulated with T = 300. The state X is highly persistent,

and 
 presents signi�cant heteroskedasticity.

Figure 4 shows simulated yields of di¤erent maturities with one possible path in which

T = 300 These yields comove with common dynamics.

Figure 5.shows selected yield curves along the simulation path. The A+1 (1) can display

all kinds of shapes of the term structure: upward sloping, downward sloping, hump shape,

inverted hump, etc.

Figure 6. collects the selected yield curves in one graph with the same scale of index. The

dashed line represents the average yield curve.

[Figure 3] [Figure 4] [Figure 5] [Figure 6]

Figure 7. is a study on the e¤ects of di¤erent levels of stochastic volatility on yield curve

given the same level of state Xt. Each graph depicts the yield curve with a certain level of
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Xt with its average volatility (dashed line in the middle), high volatility (upper line), and

low volatility (lower line), where the high and low volatility is taken from the maximum and

minimum realization of a simulated path with T = 300. Since the volatility factor is exogenous

to the VAR state, for the selected level ofXt, the scenario of high or low level of volatility is with

positive probability. The main message here is that the volatility factor makes sizable di¤erence

on yield curve, especially in the medium range around 2 years. However, with the parameter

values, even at the 10 year maturity, the di¤erence between high and low volatility can be still

signi�cant as much as 100 basis points. The last graph shows an interesting scenario where

when the average curve �attens out, the volatility dominates the eventual shape of the yield

curve, not only in the slope, but also in the direction of the hump. The potential implication

for the bond yield conundrum is that the inverted yield curve is a result of low volatility in the

short rate at the time compared to previous periods when Xt were at similar level.

[Figure 7]

Figure 8 compares the factor loadings and average yield curve of A+1 (1) and A0 (1) models

assuming that the underlying VAR state Xt has the same mean and autoregressive coe¢ cient,

and the underlying variance-covariance matrix has the same mean. For each type of models,

there are two speci�cations as follows.

A+1 (1) Baseline model without leverage e¤ect With leverage e¤ect

(Blue dotted line) (Black solid line)

A0 (1) Constant risk price Time-varying risk price

(Red dash-dotted line) (Greet dashed line)

[Figure 8]

As can be seen from the graph, the loadings of Xt for all models display almost identical

pattern, even the A0 (1) model with time-varying risk price, as the e¤ect of �1 is relatively

small with respect to the autoregressive coe¢ cient, it is not distinguishable from other models.

The loadings for volatility signi�cantly di¤er between the two types of models. Essentially,

since 
 is constant in A0 (1) model, the graph captures only the conceptual coe¢ cient, i.e.
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use the components including 
 in the A0 (1) model, � 1
n

�
B0n
�0 +

1
2B

0
n
Bn �B0n
�1 �X

�
, to

calculate the coe¢ cient for 
. It turns out that this is also a curvature factor, but with much

smaller "loadings" with respect to the A+1 (1) models. By examining the loadings on 
 or 
t,

the "curvature" e¤ect is mainly driven by the Jensen�s inequality term B0n
Bn or B
0
n
tBn.

What�s particular striking is the high volatility loadings once leverage e¤ect is allowed in the

A+1 (1) model. Suppose that the underlying VAR has the same parameters and agents have

the same risk price, then the A0 (1) model understate signi�cantly the volatility e¤ect. A

regime-switching A0 (1) model might account for volatility shift, but only captures a very small

proportion of the e¤ect.

5.2 A+3 (2) model

After visualizing the volatility e¤ect form a one-factor model, I now calibrate a A+3 (2) model

with two parameterizations. Then one can see from the factor loadings of the elements in 
t,

that the general e¤ect of the whole variance-covariance matrix is still a curvature factor. And

the covariance coe¢ cient now comes into e¤ect either to mitigate or to propogate the e¤ects of

variances, meaning that changing correlation in the shocks to VAR has important implication

on the yield dynamics.

I use the Diebold and Li (2005) data on US yield curve from the period of 1984:1-2000:12

together with growth rate of indrustrial production and CPI in�ation to calibrate the A0 (2)

models. Then I parameterize the WAR process with di¤erent coe¢ cient matrix M , to see how

the variance covariance factors a¤ect the yield curve. I make two speci�cations of the A0 (2)

model as follows:

VAR states �1

1 [�cpi;m1]
h
0 1

i0
2 [gip; �cpi]

h
0:5 1:5

i0
In the �rst speci�cation, m1 denotes the one month rate, which is taken as the proxy of the
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short rate r. It has the following parameters:

� =

"
0:4

1:3

#
� 10�4; � =

"
:953 :024

:015 :971

#
; �0 = 0;

�
 =

"
4:49 :76

:76 10:11

#
� 10�8; � =

"
5500

�1600

#
; M =

"
:95 0

0 :95

#
;

�� = �
�M �
M 0.

The second speci�cation has the following parameters:

� =

"
6:2

0:89

#
� 10�4; � =

"
:928 �:162
�:002 :967

#
; �0 = �r � �X 0�1;

�
 =

"
30 1:95

1:95 4:54

#
� 10�8; � =

"
300

�1400

#
; M =

"
300

�1400

#
;

�� = �
�M �
M 0.

Figure 9 shows the simulated states from the �rst speci�cation. Here the correlation between

the VAR innovations has changed widely over time and even switched signs. Figure 10 shows

the factor loadings of the VAR states, the constant and the average yield curve. Due to

the speci�cation in �1, where the factor loading on CPI in�ation is zero, and in�ation has

in�uenced longer maturity yields through its VAR coe¢ cients interacted with short rate, hence

the factor loading of CPI in�ation has also a hump shape, which transmits to the yield curve

as a curvature factor. Figure 11shows the net e¤ects of the variance-covariance elements on

yields in percentage term. As can be seen from this graph, each element in 
t has a humped

e¤ect on the yield curve. The lower left panel shows the sum of e¤ects from the covariances

!12;t and !21;t. And its eventual total e¤ect depends on the signs and levels of risk prices, and

also their time-varying relative e¤ects. In net, the volatility in !22;t dominates, but from time

to time, the net e¤ect can turn negative due to either high volatility in !11;t or variance !12;t

and most probably due to their joint e¤ect.

[Figure 9] [Figure 10] [Figure 11]

Figure 12 shows the simulated states from the second speci�cation. Figure 13 and 14 shows

the factor loadings. In this speci�cation, both states in Xt display slope e¤ects, and due to the
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weak correlation factor, the positive volatility e¤ect from !22;t dominates that of !11;t. Most

of the time, the net e¤ect of 
t is positive.

[Figure 12] [Figure 13] [Figure 14]

5.3 Variance-covariance e¤ect and the curvature factor in yields

The simulation study has shown that the volatility factor and the net e¤ects of the variance-

covariance matrix 
t are hump shaped curvature factors. This gives strong indication that the

empirical curvature factor extracted from the yield curve either by non-parametric methods

or the Nielson-Siegle methods is closely related to the stochastic variance-covariance e¤ects of

the yield state VAR innovation. On the other hand, the �rst speci�cation of A+3 (2) model

with short rate and in�ation as state variables implies that rotation of state VAR factors can

generate curvature e¤ects per se, so the curvature factor is likely to be a mix of factors from

the VAR states and the variance-covariance. Overtime, the di¤erent components may magnify

itself through the curvature factor when its e¤ect dominates the others.

Figure 15 displays the empirical curvature factor extracted from Diebold-Li data. It �uc-

tuates widely along time, and often switch signs. The second panel shows the simulated e¤ect

of 
t in an A+1(1) model. The third panel shows the simulated net e¤ect of 
t in an A+3(2)

model from the �rst specifacation. From these graphs, we can see again that the shape of

the volatility factor corresponds well to the Nelson-Siegel curvature factor; there is signi�cant

�ucatuation in the variance-covariance e¤ects from the simulated models as well.

[Figure 15]

6 Model estimation

Estimation of this class of models can be carried out with di¤erent techniques, depending on

the modeling property of the stochastic volatility assumed in the model. If it is assumed to be

a Gaussian process, then either MLE or MCMC estimation in a Gibbs sampler with Kalman
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Filter step can be e¤ective. For the latter, Ang, Dong and Piazzesi (2005) has given a detailed

description. When the same method is applied to the ASV-ATSM model, the Kalman Filter

step should also take into account the time-varying volatility of the upper part of the Q matrix

in the (M-I) model representation.

If, instead, one assumes high skewness in the volatility distribution, hence uses a low degree

of freedom WAR process, then one should use MCMC estimation in a Gibbs sampler with

Particle Filter step, to deal with the non-Gaussian distribution in the WAR innovations. The

model setting provides a clear conditional dynamic structure of the states and yields (see below),

the WAR process has also a well-de�ned probability distribution. so that it provide a natural

experiment to explore the recently advanced techiques in particle �lters to approximate the

discrete time state dynamics in a non-Gaussian setting.

X0 �! X1 �! X2 �! � � � �! XT

& & &
^
... Y1

^
... Y2 � � �

^
... YT

% % %

0 �! 
1 �! 
2 �! � � � �! 
T

In the following, I brie�y depict the general procedure. To unfold the whole picture and to

explore into details the esimation issue, I reserve this task to a following paper.

6.1 General Procedure

The model can be estimated by MCMCmethods and Sequential Importance Sampling-Resampling

(particle �lter) in a Gibbs sampling algorithm.

For i = 1, choose �(0), 
(0)1:T = �
.

1) Given �(0), draw states.

1-1) Given parameters �(0), and assume steady state volatility 
(0)1:T = �
, draw X
(1)
1:T using

forward-�ltering backward-sampling via Kalman �lter(Carter and Kohn (1994)).

1-2) Given parameters �(0) and X(1)
1:T , draw 


(1)
1:T by forward �ltering and backward smooth-

ing via simulation (Pitt and Shephard (1999) and Godsill, Doucet and West (2004)).

2) Given state sample Z(1)1:T =
n
X
(1)
1:T ; vech

�


(1)
1:T

�o
, draw �(1).
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For i = 2:N,

1-1) Conditional on �(i�1) and 
(i�1)1:T , draw X
(i)
1:T by forward-�ltering backward-sampling

via Kalman �lter.

1-2) Conditional on �(i�1) and X(i)
1:T , draw 


(i)
1:T by forward-�ltering backward-sampling via

simulation.

2) Conditional on Z(i)1:T =
n
X
(i)
1:T ; vech

�


(i)
1:T

�o
, draw �(i).

Step 1-1) is easily implemented, because given 
1:T , X1:T evolves with Gaussian error. After

a standard Kalman Filter is implemented forward, the stateXt can be sampled backwards. This

procedure is proposed in Carter and Kohn (1994). Kim and Nelson(1999) also gives a detailed

explanation.

Step 1-2) is implemented with Sequential Importance sampling-Resampling (SIR, or Particle

�lter) technique to deal with forward-�ltering backward-smoothing procedure in a non-Gaussian

setting. Auxilliary Particle Filter (APF, Pitt and Shephard (1999)) can be utilized to e¢ ciently

sample from the forward �ltering proceducre; the backward-smoothing follows the method

depicted in Godsill, Doucet and West(2004).

Step 2) is actually implemented by MCMC in a Gibbs sampling algorithm, which is similar

to the procedure used in Ang, Dong and Piazzesi (2005), but with the some modi�cations

taking into consideration of the new features of this model .

7 Conclusions

This paper proposes a term structure model where the short rate is driven by a VAR state

dynamics, and the variance-covariance matrix of VAR innovations follows a Wishart autore-

gressive stochastice process. Under this model setting, the time-varying risk premia come from

uncertainty in the variance-covariance of innovations to the VAR state factors. And this uncer-

tainty maps into the long maturity yields through no-arbitrage restrictions. Hence the state of

volatility, though evolving independently from the VAR state factors which directly determine

the short rate, also drives the yield curve at the medium to long maturities, hence deemed as

"auxiliary" factors in yields. The model is denoted as Auxiliary Stochastic Volatility A¢ ne

Term Structure Model (ASV-ATSM). If the innovations to the volatility-covolatility process are

assumed to be Gaussian, it can be categorized in the Dai-Singleton(2002) A¢ ne Term Structure
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Model (ATSM) framework,but with a set of structures imposed on the parameter space and

the dynamics of states. In the extreme case where the distribution of variance-covariance of

innovations to the VAR collapses into a constant, the model converges to the essentially a¢ ne

A0(m) model with constant risk price. In another case with Gaussian process of the stochas-

tic volatility-covalitity, the model becomes an Am (m+K) model, where m is the number of

elements driving the stochastic volatility of the K state factors in the short rate.

In this model, both the VAR dynamics and the variance-covariance of VAR innovations

a¤ect the yield curve, without much restrictions on the variance-covariance matrix. This �exi-

bility helps to model not only the feature of linear projection of the yield curve level, but also

the behaviors of stochastic volatility.

This class of models have some interesting features:

1) volatility is a curvature factor of the yield curve;

2) the time-varying risk premia are directly driven by uncertainties in the variance-covariance

of innovations to the VAR states;

3) volatility of the VAR innovations has sizable e¤ects on medium to long maturity yields;

4) simulation study shows that it can well explain the bond yield "conundrum" where

although the underlying VAR states remain at the same level, di¤erence in volatility can result

in di¤erent shapes of the yield curve;

5) it provides a useful tool to jointly study the term structure and macro VAR with sto-

chastic volatility.

Estimation strategies are brie�y discussed in this paper. For the case where stochastic

volatility-covolatility is represented by a Wishart autoregressive process with low degree of

freedom, a MCMC in Gibbs sampler with Auxiliary Particle Filter step is e¤ective in the

estimation.
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APPENDIX A. Derivation of the no-arbitrage restrictions on
the yield equations

A.1 Derivation whenWAR as the stochastic volatility-covolatility process

First of all, to derive the model solution with WAR as the variance-covariance process, I

need to use the lemma on conditional Laplace transform of WAR process. The proof of this

lemma is presented in Gourieroux, Jasiak, and Sufana(2004).

Lemma 1. Conditional Laplace transform of WAR process

The conditional Laplace transform 	t of the WAR process (3)


t =M
t�1M
0 + J�+ �t, (J�+ �t) �W (J;�)

can be written as:
	t (�) = Et [expTr (�
t+1) jzt]

= Et
�
exp

�
z0t+1�zt+1

�
jzt
�

=
exp[z0tM 0�(I�2��)�1Mzt]

[det(I�2��)]J=2

=
expTr[M 0�(I�2��)�1M
t]

[det(I�2��)]J=2

(14)

where the argument of the Laplace transform is a symmetric matrix � and Tr denotes the trace

operator. The Laplace transform is de�ned for a matrix � such that


2�1=2��1=2

 < 1.

A.1.1 Pricing kernel

First of all, the pricing kernel de�nes the equilibrium relationship between the price of yield

of maturity n this month with the yield of maturity n � 1 next month by linking them with

the stochastic discount factor m.

P
(n+1)
t = Et

h
mt+1P

(n)
t+1

i
= Et

�
exp

�
�rt � 1

2�
0
t+1�� �0vt+1

	
exp fAn +B0nXt+1 + Cn (
t+1)g

�
= exp f�rt +AngEt

�
exp

�
�1
2�

0
t+1�� �0tvt+1 +B0nXt+1 + Cn (
t+1)
	�

= exp
�
��0 � �01Xt +An

	
�Et
�
exp

�
�1
2�

0
t+1�� �0vt+1 +B0nvt+1 + Cn (
t+1)
	�

= exp
�
��0 +An +B0n�+

�
B0n�� �01

�
Xt
	

�Et
�
exp

�
(��0 +B0n) vt+1 � 1

2�
0
t+1� + Cn (
t+1)

	�
= exp

�
��0 +An +B0n�+

�
B0n�� �01

�
Xt
	
�Hn(
t+1)
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where

Hn(
t+1) � Et
�
exp

�
(��0 +B0n) vt+1 � 1

2�
0
t+1� + Cn (
t+1)

	�
= Et

�
E
t+1 exp

�
(��0 +B0n) vt+1 � 1

2�
0
t+1� + Cn (
t+1)

	�
= Et

��
E
t+1 exp (��0 +B0n) vt+1

	
exp

�
�1
2�

0
t+1� + Cn (
t+1)
	�

= Et
�
exp

�
E
t+1

�
(��0 +B0n) vt+1 + 1

2var ((��
0 +B0n) vt+1)

�
� exp

�
�1
2�

0
t+1� + Cn (
t+1)
		�
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E
t+1
��
��0 +B0n

�
vt+1

�
= 0,
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E
t+1 [var ((��0 +B0n) vt+1)]
= E
t+1

�
(��0 +B0n) vt+1v0t+1 (�� +Bn)

�
= (��0 +B0n) 
t+1 (�� +Bn) .
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2
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1

2
Bn�
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BnB

0
n

�
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Hence,
P
(n+1)
t = exp

�
��0 +An +B0n�+

�
B0n�� �01

�
Xt
	

�Et

"
exp

(
JP
j=1
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t+1)

)
jzt

#

A.1.2. Solution

Second, by utilising the boundary condition C1(
t) = 0, one can deduce the coe¢ cient

restrictions iteratively.
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A.1.2.1. Starting from n = 1:

H1(
t+1) = Et

"
exp

(
JP
j=1

z0j;t+1	1zj;t+1 + 0

)
jzt

#
=

expTr[M 0�1(I�2��1)�1M
t]
[det(I�2��1)]J=2

= exp
n
D1 + Tr

h
M 0�1 (I � 2��1)�1M
t

io
For n = 1, �1 = 	1. De�ne expDn � [det (I � 2��n)]�J=2, thenDn = �J

2 ln [det (I � 2��n)].

P
(2)
t = Et

h
mt+1P

(1)
t+1

i
= exp

�
��0 +A1 +B01�+

�
B01�� �01

�
Xt
	
�H1(
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= exp
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��0 +A1 +B01�+D1 +

�
B01�� �01

�
Xt + Tr

h
M 0�1 (I � 2��1)�1M
t

io
Therefore,

A2 = ��0 +A1 +B01�+D1,
B02 = B01�� �01,

C2 (
t) = Tr
h
M 0�1 (I � 2��1)�1M
t

i
.

A.1.2.2. For n = 2:

P
(3)
t = Et

h
mt+1P

(2)
t+1

i
= exp

�
��0 +A2 +B02�+

�
B02�� �01

�
Xt
	
�H2(
t+1)

= exp
�
��0 +A2 +B02�+

�
B02�� �01

�
Xt
	

�Et

"
exp

(
JP
j=1

z0j;t+1	2zj;t+1 + Tr
h
M 0�1 (I � 2��1)�1M
t+1

i)
jzt

#
= exp

�
��0 +A2 +B02�+

�
B02�� �01

�
Xt
	

�Et

"
exp

(
JP
j=1

z0j;t+1

h
	2 +M

0�1 (I � 2��1)�1M
i
zj;t+1

)
jzt

#
De�ne �2 � 	2 +M 0�1 (I � 2��1)�1M ,

P
(3)
t = exp

�
��0 +A2 +B02�+

�
B02�� �01

�
Xt
	
� Et

"
exp

(
JP
j=1

z0j;t+1�2zj;t+1

)
jzt

#
= exp

�
��0 +A2 +B02�+

�
B02�� �01

�
Xt
	
� exp

n
D2 + Tr

h
M 0�2 (I � 2��2)�1M
t

io
= exp

n
��0 +A2 +B02�+D2 +

�
B02�� �01

�
Xt + Tr

h
M 0�2 (I � 2��2)�1M
t

io
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Therefore,
A3 = ��0 +A2 +B02�+D2,
B03 = B02�� �01,

C3 (
t) = Tr
h
M 0�2 (I � 2��2)�1M
t

i
.

A.1.2.3. Iterate forward, the general solution for n > 1:

An+1 = ��0 +An +B0n�+Dn,

= (n+ 1)A1 +B
0
1

�
n�1P
i=0
�i
�
�+

nP
i=1
Di

B0n+1 = B0n�� �01,
Cn+1 (
t) = Tr

h
M 0�n (I � 2��n)�1M
t

i
.

with
A1 = ��0
B1 = ��1
G1 = 0

and
Gn+1 � M 0�n (I � 2��n)�1M for n > 0

Dn � �J
2 ln [det (I � 2��n)]

with �n de�ned as the following:

�n = �1
2�B

0
n � 1

2Bn�
0 + 1

2BnB
0
n +Gn

A.1.3. An alternative presentation for the no-arbitrage coe¢ cients

In order to understand intuitively how these restrictions are imposed directly on the coef-

�cients in the yield equation, we can write them in the following a¢ ned form.

Given that

pt;t+n = An +B
0
nXt + Cn (
t) ,

yt;t+n = an + b
0
nXt + cn (
t) =

�1
n

�
An +B

0
nXt + Cn (
t)

�
,
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we can derive

bn+1 = 1
(n+1)

�
nP
i=0
(�0)i

�
b1

an+1 = = a1 +
1

(n+1)b
0
1

�
n�1P
i=0
�i
�
�� 1

(n+1)

nP
i=1
Di

cn+1 (
t) = � 1
(n+1)Tr [Gn+1
t]

.

A.1.4. Special case: Independent One-dimension Wishart(Chi-square) or Gaussian

Autoregressive Process

A.1.4.1. Chi-square Autoregressive Process

When 
t is assumed to be strictly diagonal, i.e., no correlation risk, then the diagonal

elements are independent Wishart (Chi-square) autoregressive process of dimension 1:


t =

2664
!11;t

. . .

!KK;t

3775
K�K

:

Each !ii follows a WAR(1) as:

!ii;t = m2
i!ii;t�1 + Ji�

2
i + �i;t; Ji�

2
i + �i;t �W1

�
Ji; �

2
i

�
,

where W1

�
Ji; �

2
i

�
is equivalent to �2i� (Ji).

Assume A and B are each a K � 1 vector, with ai and bi as their ith elements, then

A0
tB =
PK
i=1 ai!iibi .

With 
t restricted as such, �, M , 	n, �n, and Gn are also diagonal, with their ith diagonal

elements as:
G1;i = 0

Gn+1;i = m2
i�ni

�
I � 2�2i�n;i

��1
�n;i = ��iBn;i + 1

2B
2
n;i +Gn;i

Dn = �
PK
i=1

Ji
2 ln

�
I � 2�2i�n;i

�
Tr (Gn+1
t) =

PK
i=1Gn+1;i!ii;t

.
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A.1.4.2. Cholesky Decomposition and 
t with Chi-square Autoregressive Process

Suppose 
t can be represented by a Cholesky decomposition:


t = H ~
tH
0,

where ~
t is diagonal at any time (no correlation risk), and E(~
t) = I so that E(
t) = HH 0.

H is a lower triangular matrix with hji as its element in the jth row and ith colomn.

Then A0
tB = ~A0 ~
t ~B, where A and B are each a K � 1 vector, ~A0 = A0H, ~B = H 0B. The

ith element of them are respectively: ~Ai = ~A0i =
PK
j=i ajhji, ~Bi = ~B0i =

PK
j=i bihji.

A.2 Derivation when Gaussian matrix autoregressive process represents
the stochastic volatility-covolatility process

A.2.1 Lemma.

The conditional Laplace transform 	t of the Gaussian matrix autoregressive process


t =M
t�1M
0 +�� + �t; vec (�t) � NK2 (0; V�) (15)

is:
	t (�) = Et [expTr (�
t+1)]

= exp
�
tr (���) + 1

2vec (�
0)0 V�vec (�0) + tr (M 0�M
t)

	 (16)

Proof:

	t (�) = Et [expTr (�
t+1)]

= Et
�
exp

�
tr
�
�
�
M
tM

0 +�� + �t+1
��	�

= exp ftr [� (M
tM 0 +��)]g � Et
�
exp

�
tr
�
��t+1

�	�
= exp ftr (���) + tr (M 0�M
t)g � Et

�
exp

�
tr
�
��t+1

�	�

According to tr(A �B) = vec(A0)0 � vec(B)

tr
�
��t+1

�
= vec

�
�0
�0
vec

�
�t+1

�
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then

Et
�
exp

�
tr
�
��t+1

�	�
= Et

�
exp

�
vec (�0)0 vec

�
�t+1

�	�
= exp

�
Et
�
vec (�0)0 vec

�
�t+1

��
+ 1

2var
�
vec (�0)0 vec

�
�t+1

��	
= exp

�
0 + 1

2vec (�
0
1)
0 V�vec (�01)

	
=) 	t (�) = exp

�
tr (���) + 1

2vec (�
0)0 V�vec (�0) + tr (M 0�M
t)

	
A.2.2 Matrix transformation

� A useful matrix transformation result is needed:If A;B;C;D are K � 1 vectors each, and

 is K �K symmetric positive de�nite matrix, then:

A0
B + C 0
D = tr

 "
A0

B0

#


h
C D

i!
= tr

�h
A B

i0


h
C D

i�

� De�ne 	L;n �

2664
�1
2B

0
n

�1
2�

0

1
2B

0
n

3775
3�K

, and 	R;n �
h
� Bn Bn

i
K�3

.

One can show that

	R;n	L;n = 	n = �
1

2
�B0n �

1

2
Bn�

0 +
1

2
BnB

0
n:

A.2.3. Derivation results

Following similar steps as in Appendix A.1, and using the above results, the derivation can

be easily carried out and the restrictions have the following form:
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A1 = ��0
B1 = ��1
Cn(
t) = tr (Gn
t)

G1 = 0

	n = �1
2�B

0
n � 1

2Bn�
0 + 1

2BnB
0
n

�1 = 	1

�n+1 = 	;n+1 +M
0�nM

Gn+1 = M 0�nM

Dn = tr (�n�
�) + 1

2vec (�
0
n)
0 V�vec (�0n)

Notice, that the main di¤erences are in the expression of Gn+1 and Dn, which re�ects the

normal distribution of vec (�t).

A.3 Derivation of model extension with leverage e¤ects (volatility-in-
mean)

Speci�cation: volatility in mean

Xt = �+�Xt�1 + f (
t) + vt; vt � N(0;
t)

with Xt;i = �i +�iXt�1 +  
0
i
t i + vt;i;

where Ai denotes the ith row of A, and  i is a K � 1 vector.

A3.1 Pricing kernel

First of all, the pricing kernel de�nes the equilibrium relationship between the price of yield

of maturity n this month with the yield of maturity n � 1 next month by linking them with

the stochastic discount factor m.

P
(n+1)
t = exp

�
��0 +An +B0n�+

�
B0n�� �01

�
Xt
	
�Hn(
t+1)

where

Hn(
t+1) � Et
�
exp

�
(��0 +B0n) vt+1 � 1

2�
0
t+1� +B0nf (
t+1) + Cn (
t+1)

	�
= Et

�
exp

�
E
t+1

�
(��0 +B0n) vt+1 + 1

2var ((��
0 +B0n) vt+1)

�
� exp

�
�1
2�

0
t+1� +B0nf (
t+1) + Cn (
t+1)
		�
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With

B0nf (
t+1) =
KX
i=1

Bn;i 
0
i
t+1 i

Then

Hn(
t+1) = Et

"
exp

(
JP
j=1

z0j;t+1	nzj;t+1 + Cn (
t+1)

)
jzt

#

where

	n �
 
�1
2
�B0n �

1

2
Bn�

0 +
1

2
BnB

0
n +

KX
i=1

Bn;i i 
0
i

!
Hence,

P
(n+1)
t = exp

�
��0 +An +B0n�+

�
B0n�� �01

�
Xt +B

0
1f (
t)

	
�Et

"
exp

(
JP
j=1

z0j;t+1	nzj;t+1 + Cn (
t+1)

)
jzt

#

A3.2 Solution

Iterate forward, the solution can be derived similarly,

A1 = ��0
B1 = ��1
C1(
t) = 0

G1 = 0

	n =
�
�1
2�B

0
n � 1

2Bn�
0 + 1

2BnB
0
n +

PK
i=1Bn;i i 

0
i

�
�1 = 	1

Gn+1 =
PK
i=1 tr

h�
Bn;i i

�
 0i
t

i
+M 0�n (I � 2��n)�1M

�n+1 = 	n+1 +Gn+1

Dn = �J
2 ln [det (I � 2��n)]
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APPENDIX B. Implied forward rate and excess returns

B.1. Forward rate

f
(1)
t;n = pt;t+n�1 � pt;t+n

= An�1 +B0n�1Xt + Tr (Gn�1
t)

�An �B0nXt � Tr (Gn
t)
= (An�1 �An) +

�
B0n�1 �B0n

�
Xt

+Tr [(Gn�1 �Gn) 
t]

B.2. Excess returns

rxnt+1 = pt+1;t+n�1 � pt;t+n � yt;t+1
= An�1 +B0n�1Xt+1 + Tr [Gn�1Et (
t+1)]

�An �B0nXt � Tr (Gn
t) +A1 +B01Xt
= An�1 +B0n�1 (�+�Xt + vt+1) + Tr

�
Gn�1

�
M
tM

0 + J�+ �t+1
��

�An �B0nXt � Tr (Gn
t) +A1 +B01Xt
= An�1 +A1 �An +B0n�1 (�+�Xt) +B01Xt �B0nXt + JTr [Gn�1�]

+Tr [(M 0Gn�1M �Gn) 
t] +B0n�1vt+1 + Tr
�
Gn�1�t+1

�| {z }
g(vt+1;�t+1)

= �Dn�1 +B0n�1�Xt +
�
B01 �B0n�1��B01

�
Xt + JTr (Gn�1�)

+Tr [(M 0Gn�1M �Gn) 
t] + g(vt+1; �t+1)
= �Dn�1 + JTr (Gn�1�) + Tr [(M 0Gn�1M �Gn) 
t] + g(vt+1; �t+1)
= const:+ Tr [(M 0Gn�1M �Gn) 
t] + g(vt+1; �t+1)

Expected excess return:

Et
�
rxnt+1

�
= Et [pt+1;t+n�1]� pt;t+n � yt;t+1
= const:+ Tr [(M 0Gn�1M �Gn) 
t]
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Excess returns in general:

rxnt+s = pt+s;t+n�s � pt;t+n + pt;t+s
= An�s +B0n�sXt+s + Tr [Gn�s
t+s]�An �B0nXt � Tr (Gn
t)

+As +B
0
sXt + Tr (Gs
t)

= An�s +B0n�s

�
sP
i=0
�i�+�sXt +

sP
i=1
�s�ivt+i

�
+Tr

�
Gn�s

�
M s
t(M

s)0 + J�(s) +
sP
i=1
M s�i�t+i

�
M s�i�0��

�An �B0nXt � Tr (Gn
t) +As +B0sXt + Tr (Gs
t)

= An�s �An +As +B0n�s
�

sP
i=0
�i�+�sXt

�
�B0nXt +B0sXt

+JTr [Gn�s�(s)] + Tr f[(M s)0Gn�sM s �Gn +Gs] 
tg

+B0n�s

sX
i=1

�s�ivt+i + Tr

(
Gn�s

"
sX
i=1

M s�i�t+i
�
M s�i�0#)

| {z }
g(fvt+ig;f�t+ig)

= An�s �An +As +B0n�s
�

sP
i=0
�i�

�
+
�
B0n�s�

s �B0n +B0s
�
Xt

+JTr [Gn�s�(s)] + Tr f[(M s)0Gn�sM s �Gn +Gs] 
tg+ g
�
fvt+ig ;

�
�t+i

	�
= An�s �An +As +B0n�s

�
sP
i=0
�i�

�
+ JTr [Gn�s�(s)]

Tr f[(M s)0Gn�sM s �Gn +Gs] 
tg+ g
�
fvt+ig ;

�
�t+i

	�
= const:+ Tr f[(M s)0Gn�sM s �Gn +Gs] 
tg+ g

�
fvt+ig ;

�
�t+i

	�
where the deleting of Xt terms is due to the following facts:

B0n+1 = B01

"
nX
i=0

�i

#

B0n�s�
s �B0n +B0s = b01

�
n�s�1P
i=0

�i
�
�s � b01

�
n�1P
i=0
�i
�
+ b01

�
s�1P
i=0
�i
�

= b01

�
n�1P
i=s
�i �

n�1P
i=0
�i +

s�1P
i=0
�i
�
= 0

Expected excess returns in general:

Et
�
rxnt+s

�
= Et [pt+s;t+n�s]� pt;t+n + pt;t+s
= const:+ Tr f[(M s)0Gn�sM s �Gn +Gs] 
tg
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APPENDIX C. Matrix transformation for the derivation of
the compact state-space model

Some useful transformation and results to simplify the model representation.

1. Vectorization of the trace products of two symmetric matrices

Using a property of the vec operator:

vec(A0)0 � vec(B) = tr(B �A) = trace(A �B) = vec(B0)0 � vec(A);

if A and B are both symmetric matrices with dimension n, then

tr(A �B) = vec(A)0 � vec(B).

2. Vectorized presentation of the Wishart Autoregressive process

Using two properties of the vec operator,

vec(A+B) = vec(A) + vec(B)

vec(ABC) = (C 0 
A)vec(B)

the vectorized presentation of 
t =M
t�1M 0 +�� + �t can be written as:

vec (
t) = (M 
M) vec (
t�1) + vec (��) + vec (�t) : (17)

In the steady state:

vec (
) = (M 
M) vec (
) + vec (��)

+

vec (
) = (Ik2 �M 
M)�1vec (��) (18)
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Figure 1. Factor loadings of yields with one state in X and one volatility factor 
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Figure 2. Parameters affacting volatility factor loading 
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Figure 3.  )1(1+A  model simulation of states 
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Figure 4. Simulated yields from an  )1(1+A  model 
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Figure 5. Simulated yield curve from an  )1(1+A  model (I) 
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Figure 6. Simulated yield curve from an  )1(1+A  model (II) 
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Figure 7. Simulated yield curve with same state X but different  tΩ  
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Figure 8. Comparison of factor loadings of  )1(1+A  and  )1(0A  model 
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Figure 9.  Simulated states from an  )2(3+A  model 
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                                                 Figure 10.                                                                   Figure  11. 

Factor loadings from simulated  )2(3+A model : specification I 
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Figure 12.  Simulated states from an  )2(3+A  model 
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                                                Figure 13.                                                                   Figure  14. 

Factor loadings from simulated  )2(3+A model : specification II 
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Figure 15 
 

(a) Empirical Nelson-Siegel curvature factor 
(1970:01 - 2000:12) 
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(b) 1+A (1)                                        (c) 3+A (2)                                
 

0
20

40
60

80
100

120

0
50

100
150

200

-1

-0.5

0

0.5

1

1.5

2

2.5

Maturity (months)

Net effects of Ω  over time

Time

%

  
0

20
40

60
80

100
120

0
50

100
150

200

-1

-0.5

0

0.5

1

1.5

Maturity (months)

Net effects of Ω  over time

Time

%

 


