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Abstract

We develop a framework for modeling conditional loss distributions through the introduction
of risk factor dynamics. Asset value changes of a credit portfolio are linked to a dynamic global
macroeconometric model, allowing macro effects to be isolated from idiosyncratic shocks from
the perspective of default (and hence loss). Default probabilities are driven primarily by how
firms are tied to business cycles, both domestic and foreign, and how business cycles are linked
across countries. The model is able to control for firm-specific heterogeneity as well as generate
multi-period forecasts of the entire loss distribution, conditional on specific macroeconomic
scenarios. The approach can be used, for example, to compute the effects of a hypothetical
negative equity price shock in South East Asia on the loss distribution of a credit portfolio
with global exposures over one or more quarters. Our conditional modeling framework is thus
a step towards joint consideration of market and credit risk. The approach has several other
features of particular relevance for risk managers, such as the exploration of scale and symmetry
of shocks, and the effect of non-normality on credit risk. We show that the effects of such shocks
on losses are asymmetric and non-proportional, reflecting the highly non-linear nature of the
credit risk model. Non-normal innovations such as Student t generate expected and unexpected
losses which increase the fatter the tails of the innovations.
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1 Introduction

Risk management in general and credit risk analysis in particular has been the focus of extensive

research in the past several years. Credit risk is the dominant source of risk for banks and the subject

of strict regulatory oversight and policy debate (BIS (2001a,b)).1 Most recently, the proposal by

the Bank for International Settlements (BIS) to reform the regulation of bank capital for credit risk

(known as the New Basel Accord, or BIS 2) has sparked an intense debate in the literature (inter

alia, Jones and Mingo (1998), Altman, Bharath and Saunders (2002)). One strand of this debate

centers on the effect of business cycles and especially of severe economic downturns on bank risk and

value-at-risk capital requirements (Carpenter, Whitesell and Zakrajšek (2001), Carey (2002), Allen

and Saunders (2002)). However, this debate has been taking place largely without the benefit of

an explicit model of the linkages that exist between the loss distribution of a bank’s credit portfolio

and the evolution of the macroeonomic factors at national and global levels. Given the increasing

interdependencies in the global economy, risk managers of commercial or central banks alike may

well be interested in questions like “What would be the impact on the credit loss distribution of

a given bank (or banks) in a given region if there were large unfavorable shocks to equity prices,

GDP or interest rates in that or other regions?”

Our aim is to develop a conditional modeling framework for credit risk analysis which establishes

an explicit linkage between a portfolio of credit assets and the underlying international macroeco-

nomic system. The model is able to distinguish between default (and loss) due to systematic versus

idiosyncratic (or firm specific) shocks, providing an explicit channel for and model of default cor-

relation. This enables us to conduct policy analysis on the effect of changes in macroeconomic risk

factors on credit risk. Our approach is thus a step towards joint consideration of market and credit

risk.

In this paper we start with a simple problem: the development of a conditional loss model

using only publicly traded firms. In a simple Merton-type credit portfolio model, credit risk is

a function of correlated equity returns of the obligor companies. These equity returns are linked

to macroeconomic variables (national as well as global) using an approach structurally similar

to the Arbitrage Pricing Theory (APT). Default probabilities are driven primarily by how firms

are tied to business cycles, both domestic and foreign, and how business cycles are linked across

countries. Importantly, the foreign variables are tailored to match the international trade pattern

1The typical risk taxonomy includes market, credit and operational risk. See, for instance, discussions in Crouhy,

Galai and Mark (2001) or Marrison (2002).
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of the country under consideration. Domestic and foreign business cycle effects are allowed to

impact each firm differently. In this way we are able to account for firm-specific heterogeneity

in an explicitly interdependent global context. Moreover, we are able to generate multi-period

forecasts of the entire loss distribution, conditional on specific macroeconomic scenarios. A flexible

understanding of these loss distributions are critical for risk management applications and pricing

of complex credit assets such as collaterized debt obligations (CDOs).

Credit risk modeling can be broken down along several dimensions. One split is between asset-

or firm-based versus portfolio approaches. Broadly, there are two important variables describing

asset/firm level credit risk: the probability of default (PD) and the loss given default (LGD).2

The former has generated a rich literature, an early example being Altman (1968).3 If the firm is

privately held, the modeler has much poorer information than if the firm is public. The private firm

case invariably requires a valuation model based on firm financial and non-financial characteristics

(e.g. Altman (1968)), while the latter can, in addition to such variables, incorporate information

from debt and equity markets (recent examples are Shumway (2001), Kealhofer and Kurbat (2002),

Vassalou and Xing (2002)). Several authors have estimated default probabilities through an asset

pricing approach by extracting those probabilities from prices of defaultable bonds (Jarrow and

Turnbull (1995), Madan and Unal (1998), Duffie and Singleton (1999), Duffee (1999)).

The literature on modeling LGD (sometimes called loss severity) is not nearly as rich as it

is for PD. Most of the work has been strictly empirical (Altman and Kishore (1996), Gupton,

Gates and Carty (2000), Van de Castle, Keisman and Yang (2000)), documenting LGD variation

by such factors as industry, instrument seniority and type. The asset pricing literature, recognizing

that bond spreads incorporate expected loss (i.e. EL = PD · LGD), has only recently developed
theoretical models which aim to separate recovery (1− LGD) from probability of default (Bakshi,

Madan and Zhang (2001), Unal, Madan and Guntay (2003)).

While credit risk models based on asset prices, specifically on credit spreads of defaultable bonds,

have a distinct theoretical appeal, recent research strongly suggests that much of the information

in bond spreads is unrelated to default risk (Elton, Gruber, Agrawal and Mann (2001), Huang

and Huang (2002)).4 Collin-Dufresne, Goldstein and Martin (2001) investigate the changes to the

corporate credit spread and conclude that factors such as changes in levels and slopes of treasury

2The New Basel Accord explicitly mentions two additional variables: exposure at default and maturity. As these

affect credit risk only moderately (and are often taken to be non-stochastic), our discussion will focus on the two

dominant variables of PD and LGD.
3For a survey of different models see Altman and Saunders (1997) and Chava and Jarrow (2001).
4The other principal factors are taxes and liquidity.
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interest rates, the business climate, changes in market volatility and the Fama-French type factors,

in fact explain only a small fraction of the variations in the corporate credit spread.

Moving from individual assets or firms to a portfolio, most credit portfolio models link the

portfolio loss distribution to states of the world which provides the channel for default correlations.

However, with only one exception this linkage is to a single, unobserved systematic risk factor. That

is the case for adaptations of the options based approach à la Merton (1974) found in credit portfolio

models such as Gupton, Finger and Bhatia’s (1997) CreditMetrics, KMV’s PortfolioManager, as

well as in the actuarial approach employed by CSFB’s CreditRisk+ (Credit Suisse First Boston

(1997)) where the key risk driver is the variable mean default rate in the economy. Wilson’s

(1997a,b) model (CreditPortfolioView) is an exception. He allows for the macroeconomic variables

to influence a firm’s probability of default using a pooled logit specification. However, because the

defaults are grouped, typically by industry, and modeled at the (single country) national level, any

firm-specific heterogeneity is lost in the estimation.

Business cycle fluctuations can have a major impact on credit portfolio loss distributions. Carey

(2002), using re-sampling techniques, shows that mean losses during a recession such as 1990/91 in

the U.S. are about the same as losses in the 0.5% tail during an expansion. Bangia et al. (2002),

using a regime switching approach, find that capital held by banks over a one-year horizon needs

to be 25-30% higher in a recession that in an expansion.

Most of the work on PD and LGD referred to above has been done without explicit conditioning

on business cycle variables. The exceptions include Carey (1998), Frye (2000) and Altman, Brady,

Resti and Sironi (2002). These studies, perhaps not surprisingly, find that losses are indeed worse in

recessions. Tapping into information contained in equity returns (as opposed to credit spreads from

debt instruments), Vassalou and Xing (2002) show that default risk varies with the business cycle.

Allen and Saunders (2002) survey academic and practitioner models of credit risk with a specific

focus on the treatment of systematic or cyclical effects. They find that although many models

consider the correlation between default (PD) and systematic (e.g. macroeconomic) factors, few

extend this dependence to LGD.

The basic idea of our approach is to make the linkage between credit risk and business cycle

fluctuations more concrete, providing a tool for policy analysis, risk management and the pricing

of credit assets. The first step in developing such a model is to build an economic engine reflective

of the environment faced by an internationally active global bank. This is done in Pesaran, Schuer-

mann and Weiner (2003) — hereafter PSW — using recent advances in the analysis of cointegrating
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systems,5 where we develop a global vector autoregressive macroeconometric model (GVAR). In

contrast to existing models, the use of cointegration is not confined to a single country or region. We

first estimate specific vector error-correcting models (VECM) for individual countries (or regions).

This VECM structure allows us to impose long-run (cointegrating) restrictions on the variables.6

The model uses domestic macroeconomic variables such as GDP, the general price level, the level of

short term interest rates, exchange rate, equity prices (when applicable) and money supply. These

are related to corresponding foreign variables constructed exclusively to match the international

trade pattern of the country under consideration. Because of the integrated nature of the model,

we can analyze how a shock to one specific macroeconomic variable affects other macroeconomic

variables, even (and especially) across countries, as well as shocks to risk factors, e.g. oil prices,

affecting all regions.

We examine the credit risk of a fictitious corporate loan portfolio and its exposure to this wide

range of risk factors in the global economy. We model a firm’s probability of default as a function of

those risk factors but assume loss given default as an exogenously given random variable. Once we

pin down the link between equity returns and macroeconomic variables, we derive the overall single-

and multi-period credit loss distribution of a sample portfolio through Monte Carlo simulation.

Sampling takes place along three lines: correlated random draws of macroeconomic factors;

draws of firm-specific risk components; and draws of stochastic loss severities. Our baseline distrib-

utional assumption is Gaussian,7 but we also present results of the fatter tailed Student t distribu-

tion with 10 and 5 degrees of freedom. Our approach differs from others such as Wilson’s (1997a,b)

who directly models the default probability using only single-country macroeconomic factors as

regressors. We do so indirectly via the Merton model and use a much richer macroeconometric

specification which allows for country/region specific heterogeneities.

The plan for the remainder of the paper is as follows: Section 2 provides an overview of the

alternative approaches to credit portfolio modeling. Section 3 sets out the basic framework of our

model based on the Merton approach. Section 4 discusses the global macroeconometric model (the

GVAR). Section 5 shows how to incorporate the GVAR into the Merton model and develops math-

ematical expressions for the conditional loss distribution of a given credit portfolio under various

shock scenarios, including one-period and multi-period forecasting of the whole loss distribution.

Section 6 presents summary estimation results for the GVAR based on 11 countries/regions covering

5 In particular, see Pesaran and Shin (2002), and Garratt, Lee, Pesaran and Shin (2003).
6To be sure, particular interpretations of these relations in the form of alternative exactly identifying restrictions

have no effect on the loss distribution outcomes of the various shock scenarios we consider.
7Loss severities are drawn from a beta distribution.
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about 80% of world output. Section 7 considers the loss distribution of a given credit portfolio and

empirically investigates its response to different types of shocks (to output, interest rate, money

supply and equity prices). Section 8 offers some concluding remarks.

2 Credit Portfolio Models

2.1 An Overview

Our primary goal is to build up the loss distribution of the credit portfolio of a financial institution

such as a bank, first unconditionally and then with explicit conditioning on macroeconomic factors.

The unconditional distribution is intended to be “cycle-neutral” and provides a benchmark loss

distribution which is applicable in the very long run and integrates out the differential effects of

business cycle variations (boom, bust, expansion, recession, etc.) on the loss distribution. The con-

ditional loss distribution allows for the effect of business cycle variations and captures such effects

at a global level by explicitly taking account of the heterogeneous interconnections and interde-

pendencies that exist between national and international factors. In this setting, the probability

of default for firm j in country/region i can be (indirectly) affected by economic activity in some

other region, .

In any given time period, the probability of default for firm j in region i will be correlated,

through the influence of common macro effects (or systematic risk factors) in region i, and globally,

with the probability of default of other firms in the bank’s portfolio. However, not all macro factors

will affect all firms in the same way. Most credit portfolio models share this linkage of systematic

risk factors to default and loss; they differ in specifically how they are linked.

Generally speaking, there are two broad approaches to credit risk or credit portfolio modeling.8

The first couples a simple model of firm performance with a threshold value below which the firm

defaults. The default threshold is modeled as a function of the firm’s balance sheet and its financial

structure. This “structural” model underlies the so-called Merton options approach after Merton

(1974), which we will follow in this paper. Practitioner credit portfolio models such as Gupton,

Finger and Bhatia’s (1997) CreditMetrics as well as KMV’s PortfolioManager are adaptations of

8The different credit portfolio models are also distinct in the way they approach changes to the firms’ value.

Some models operate on a mark-to-market basis by looking at the change of market value of credit assets based on

credit migration and the term structure of credit spreads (CreditMetrics). Others focus on predicting default losses

(so-called default mode models such as CSFB’s CreditRisk+). Yet there are other approaches that allow for both

(e.g. KMV’s PortfolioManager, Wilson’s CreditPortfolioView).
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this approach.

The second modeling approach focusses on the factors that influence firm defaults directly. Two

examples are CreditPortfolioView (Wilson (1997a,b)) where the firm-specific probability of default

is estimated via a logit specification with macro-variables entering the logit regression directly, and

the actuarial approach of CSFB’s CreditRisk+ (Credit Suisse First Boston (1997)) where the key

risk driver is the mean default rate assumed to be a function of the macroeconomic variables. We

provide a brief overview of the Wilson model before developing the Merton options-based model.

For detailed comparisons, see Koyluoglu and Hickman (1998), Crouhy et al. (2000), Gordy (2000),

Saunders and Allen (2002) and Allen and Saunders (2002).

2.2 A First Generation Credit Risk-Macroeconometric Model

CreditPortfolioView (CPV) by Wilson (1997a,b) directly models the relationship of transition prob-

abilities or credit grades and the underlying macroeconomic factors, albeit one country at a time.

Typically firms are grouped into industry segments and default behavior is modeled at the industry,

not at the firm level.9 Consequently any firm-specific heterogeneity will be lost in the grouping

and could bias the results. Wilson assumes that the probability of default for industry group g in

region i at time t, PDgit, is determined by a systematic index variable mgit, common to all firms

in that industry group:

PDgit = fCPV (mgit).

He further specifies f(·) to be logistic, given by 1/ (1 + e−mgit), though other specifications are

possible. The index variable mgit can be viewed as driven by a set of macroeconomic variables xit

as well as industry specific random shocks υgit

mgit = gCPV (xit,υgit),

such that υgjit v N(0, σ2gi). The macroeconomic factors, xit, are modeled by Wilson as univariate

AR(2) processes, although other specifications are possible. Generally we may write

xit = h(Xi,t−1, εit;β),

so that the systematic factor mgit is made up of predetermined macroeconomic variables Xi,t−1 =

(xit−1,xit−2, ...,xit−p) and a contemporaneous innovation εit. For given group and sector specific
9Since defaults are modeled directly with a logistic regression, this grouping is necessary because individual firm

defaults are so rare.
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shocks, υgit, εit, the conditional probability of default can now be written as

PDgit | Xi,t−1 = fCPV (Xi,t−1;υgit, εit).

In practice the effects of the idiosyncratic shocks, (υgit, εit), on the probability default also need to

be integrated out before true conditional default probability can be obtained.

Segment specific default probabilities, needed to obtain estimates of the factor loadings β,

are estimated from bank loan loss experience (which is proprietary) or bond histories (which are

public). If the portfolio is marked to market using a transition matrix, the conditional probability

of default can also be used to adjust the transition matrix. Crouhy et al. (2000), however, criticize

the adjustment proposed by Wilson (1997a,b) as being ad hoc.

3 A Structural Merton Asset-Based Model of Default

In this section we set out the basic framework of our proposed approach. We shall begin with

a simple structural model of changes to a firm’s credit quality. The basic premise is that the

underlying asset value evolves over time (e.g. through a simple diffusion process), and that default

is triggered by a drop in firm’s asset value below the value of its callable liabilities. Following

Merton (1974), the lender is effectively writing a put option on the assets of the borrowing firm.

If the value of the firm falls below a certain threshold, the shareholders will put the firm to the

debt-holders.

The Merton model is called a "structural" model of credit risk since the model assumptions are

imposed upon the balance sheet — the firm’s structure. The liability structure in conjunction with

the value fluctuations of the firm’s assets determine the occurrence of default. In contrast to the

actuarial approach, the model has strong underpinnings in the modern theory of corporate finance

and option pricing.10

Thus there are two aspects which require modeling: (i) the firm’s performance or return process,

and (ii) the default threshold. Following an approach which is structurally similar to Ross’s (1976)

Arbitrage Pricing Theory (APT), a firm’s change in value (or return) is assumed to be a linear

function of changes in the underlying macroeconomic variables (the systematic component) and

the firm-specific idiosyncratic shocks. There may be other ways to fruitfully characterize the firm’s
10For a discussion of the power of Merton default prediction models see Falkenstein and Boral (2001) and Gemmill

(2002) who find that the Merton model generally does well in predicting default (Falkenstein and Boral) and credit

spreads (Gemmill). Duffee (1999) points out that due to the continuous time diffusion processes underlying the Black

Scholes formula, short-term default probabilities may be underestimated.
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performance process. However, our broad modeling goal is to develop a framework which allows

us to link macroeconomic variables explicitly to firms performance in order to arrive at (macro-

economic) conditional loss distributions. The APT model architecture allows us to achieve this in

a parsimonious manner, while at the same time taking proper account of return heterogeneities

across firms.11

We follow a typical adaptation of the Merton model by using asset returns and their volatility

instead of total value of assets and their volatility. But since asset returns are difficult to observe

directly, we use equity returns as a proxy.12

3.1 Conditional Asset Returns

Anticipating some of the results from our GVAR model presented in Section 4, we denote the

return of firm j in region i over the period t to t+ 1 by rji,t+1 and assume that conditional on the

information available at time t, Ωt, it can be decomposed as

rji,t+1 = µjit + ξji,t+1, (1)

where µjit is the (forecastable) conditional mean, and ξji,t+1 is the (non-forecastable) innovation

component of the return process. Following the standard Merton model we shall assume that

ξji,t+1 | Ωt ∼ N(0, ω2ξ,ji). (2)

The normality assumption could be a good approximation for quarterly returns, but it is relatively

easy to adapt the analysis to allow for fat-tailed distributions such as (standard) Student t with low

degrees of freedom in the range of, say, [5, 10].13 Alternatively, as discussed in Section 5, re-sampling

techniques can be used to allow for more general distributional assumptions. The assumption that

the conditional variance of returns are time-invariant also seems reasonable for quarterly returns,

although it would need to be relaxed for returns measured over shorter periods, such as weeks or

11For an overview of the theoretical and empirical literature on APT, see Campbell, Lo and MacKinlay (1997).

Chen, Roll and Ross (1986) test whether macroeconomic variables specifically matter in asset pricing. Using monthly

returns they find that industrial production, changes in the risk premium (spread on BBB corporate and Treasury

bonds), twists of the yield curve and inflation are significant in explaining expected stock return. Oil prices were not

found to be significant.
12Arguably equity returns are even preferred since they allow for non-constant liabilities within the Merton frame-

work.
13 In fact we do so in Section 7.
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days.14

The GVAR model provides the link between changes in macroeconomic variables (in region i

and globally) in µjit, and it does so uniquely for each firm to allow for firm-specific heterogeneity.

Specifically, domestic and foreign business cycle effects are allowed to impact each firm differently.

The main advantage of using the GVAR as a driver for a credit portfolio model is that it provides the

(conditional) correlation structure among macroeconomic variables of the global economy. When

generating loss distributions, this allows us to account for the state of business cycle and the

interdependencies that exist in the global economy in a relatively parsimonious and internally

consistent manner.

3.2 Default Thresholds, PDs and Credit Ratings

The second aspect of the credit risk model is the default threshold with respect to which the default

state can be defined. In the Merton model default occurs if the value of the firm j in region i at

time t falls below a given threshold value, cji.We can characterize the separation between a default

and a non-default state with an indicator variable I (rji,t+1 < cji) such that

I (rji,t+1 < cji) = 1 if rji,t+1 < cji =⇒ Default, (3)

I (rji,t+1 < cji) = 0 if rji,t+1 ≥ cji =⇒ No Default.

Conceptually it is useful to anchor the default process by fixing the default threshold, for instance

at the end of the sample period, thereby allowing the loss distribution to shift in response to

macroeconomic factors. The problem is not properly identified if we allow both to be time varying.

Define PDjit = Pr(rji,t+1 < cji | Ωt) as shorthand notation for the probability of default of
company j in region i at time t. The corresponding probability of default can then be expressed

from (1) and (3) as

PDjit = Φ

µ
cji − µjit
ωξ,ji

¶
, (4)

where Φ(·) is the standard normal distribution function. There are no direct observations on PDjit.

Instead what we do have is a credit rating Rjit for a set of large companies, namely those that were

assigned a rating by one of the rating agencies such as Moody’s or Standard & Poor.15 Importantly
14Volatility in quarterly models is of third order importance. Our framework could easily be adapted to deal with

more complex volatility effects by normalizing returns with dynamic volatilities using, for example, the RiskMetrics

method or other GARCH specifications.
15R may take on values such as ’Aaa’, ’Aa’, ’Baa’,..., ’Caa’ in Moody’s terminology, or ’AAA’, ’AA’, ’BBB’,...,

’CCC’ in S&P’s terminology.
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we have the rating histories {Rjit}Tt=1 for all companies j = 1, 2, ..., nci, i = 0, 1, ..., N in the credit

portfolio that we shall be considering. We may use these histories, plus histories for all other

companies with a rating at the beginning of period t, to estimate the default probability for each

rating for each time period, PDRt . For example, the estimated probability of default for companies

rated ’BBB’ in period t may be 22 basis points (PDBBBt = 22bp), while in period t0 it may rise to

37bp (PDBBBt0 = 37bp). We are then able to assign that default probability in period t for rating

R to all firms with that rating in that period.16

Given sufficient data for a particular region or country i (the U.S. comes to mind), one could in

principle have PDs varying over i. However, since a particular firm j’s default is only observable

once, multiple (serial) bankruptcies notwithstanding, it makes less sense to allow PD to vary across

j.17 Empirically, then, we will abstract from possible variation in default rates across countries i,

so that probabilities of default vary only across credit ratings and over time.18

Thus for a particular credit rating Rjit for firm j in region i at time t, (say ‘BBB’), we assign
the corresponding default probability estimate PD (Rjit) which varies over time and across rating

types but not over firms individually. Therefore, two different firms with the same credit rating in

period t will be assigned the same default probability estimates. Specifically

Pr(rji,t+1 < cji | Ωt) = PD (Rjit)

and therefore

cji = µjit + ωξ,jiDT (Rjit) , (5)

where DT (Rjit) = Φ
−1 (PD (Rjit)) is the ‘default threshold’ associated with the estimated default

probability PD (Rjit) , and Φ−1(·) denotes the inverse cumulative standard normal distribution.
Suppose now that we have time series data over the sample period t = 1, 2, ..., T, and we wish

to obtain an estimate of the default threshold at T to be used in computation of conditional loss

distribution over the period T to T + 1. Averaging the relations (5) over t = 1 to T we obtain

cji = µ̄ji + ωξ,jiDTRji,

16See Section 7 for a discussion on estimating PDRt .
17To be sure, one is not strictly prevented from obtaining firm-specific PD estimates at a given point in time. The

bankrupcty models of Altman (1968) and Shumway (2001) are such examples, as is the industry model by KMV.
18An important source of heterogeneity is likely the large variation in bankruptcy laws and regulation across

countries. However, by using rating agency default data, we use their homogeneous definition of default and are thus

not subject to these heterogeneities.
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where

µ̄ji =
1

T

TX
t=1

µjit, and DTRji =
1

T

TX
t=1

DT (Rjit) .

Note that taking the average of the thresholds rather than the threshold of the averages will yield

different results since the inverse CDF is a nonlinear transformation. A model-free estimate of µ̄ji
is given by r̄ji, the average return over the sample period; as noted above estimates of PD (Rjit)

can be obtained using time series observations of rating histories from credit rating agencies such

as Moody’s or Standard & Poor; and a consistent estimate of ωξ,ji can be obtained using (42) in

Section 5, based on the estimates of the GVAR model and the APT regression for firm j in region i.

Alternatively, an unconditional (model-free) estimate of the return variance, say ω2ji = V ar (rji,t+1),

could be used. The results are unlikley to be much affected by which of the two estimated error-

variances is used. But the model-free estimate has the advantage of being simple and arguably

is a better reflection of the rating agencies’ own approach of not putting too much weight on the

business cycle factors in arriving at their credit ratings (see discussion below).

Adopting the model-free estimation approach, cji can be consistently estimated at time T by

ĉji = r̄ji + ω̂jiDTRji, (6)

where

ω̂2ji =

PT
t=1 (rjit − r̄ji)

2

T − 1 .

Equation (6), while not time-varying per se, could change in the sense of being updated recursively

as new data becomes available, either by using an expanding or a rolling observation window.

Consider now the possibility of firm j in region i defaulting over period T to T + 1, viewed

at time T . We would say that conditional on information we have at time T default occurs when

rji,T+1 < ĉji, i.e. when

rji,T+1 < r̄ji + ω̂jiDTRji. (7)

While we assume that the default threshold remains constant in the future, we do allow rji,T+1 to

fluctuate in response to changes in underlying macroeconomic factors. By treating the critical value

as constant, we implicitly assume that the leverage ratio remains constant.19 Thus we continue to

make assumptions about the capital structure of the firm, but ones that are less restrictive and

19This approach is reasonable to the extent that firms indeed pursue a target leverage ratio. However, one may

argue that it could not be possible to maintain such a target ratio as a firm approaches financial distress. Provided

the firm has survived, we assume that the critical value is the same in the next quarter, even if the firm has only

narrowly escaped default in the previous quarter.

12



more realistic.20 So we may think of (7) as providing a measure of (unconditional) distance from

default given the information at time T , namely

DfDji,R = rji,T+1 −
¡
r̄ji + ω̂ξ,jiDTRji

¢
(8)

Figure 1 illustrates the general idea. The right of the two bell-shaped curves represents the

return distribution as calculated from the historical average over, say, several decades and thus can

be regarded as "unconditional" in that it represents an average state of the economy. Conditional

on a certain state of the economy, however, the mean return may shift. The illustrative example

in Figure 1 shows the given state of the economy shifting the obligor company closer to default,

where the conditional distance from default is given by the solid curve; the tail area to the left of

the origin has increased. This area represents the conditional probability of default given a "bad"

state of the economy. For the model to be properly identified, either the return, or implicitly the

distance from default, distribution can move and the threshold stay fixed, or vice versa, but not

both.

In the Merton default prediction model, accounting data (book value of callable liabilities),

the market value of equity and the volatility in the market value of equity are used to derive

PD (Rjit).21 We do the inverse: using an existing measure of expected default probability, we

determine the critical value ĉji. This default measure can be obtained from public sources of firm

risk ratings provided by rating agencies such as Moody’s or Standard & Poor.22 Both of these

rating agencies give solvency standards for the rated institutions and their publicly issued debt

(bonds) in the form of a credit grade, which may then be converted to a probability of default (e.g.

PD(AAt), the (annual) probability of default for an ‘AA’ rated firm), using historical data on
bond defaults. Hence credit ratings allow us to get a measure of the expected default probability

without the need for balance sheet analysis.

Mappings from credit ratings to default probabilities are typically obtained using corporate

bond rating histories over many years, often 20 years or more, and thus represent some average

across business cycles. The reason for such long samples is simple: default events for investment

grade firms are quite rare; for example, the annual PD of an ’A’ rated firm is approximately one

20While the standard Merton model assumes liability growth to be zero, the adapted version can incorporate other

growth rates. Still, assuming constant liability growth may be more realistic than allowing for no fluctuation of

liability values at all.
21This approach is taken by KMV to generate what they call EDF s (expected default frequencies) at the firm

level. See also footnote 17.
22For an overview of credit ratings and the credit rating industry, see Cantor and Packer (1995) and White (2001).
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Figure 1: Distance from default conditional on the state of the economy

basis point for both Moody’s and S&P rated firms.

In the literature, the use and specific interpretation of credit ratings is somewhat ambiguous.

One interpretation is that they are "cycle-neutral" (Saunders and Allen (2002), Catarineu-Rabell,

Jackson and Tsomocos (2002), Amato and Furfine (2003); Carpenter, Whitesell and Zakrajšek

(2001) point to some of the ambiguities), meaning that ratings are assigned only on the basis of

firm-specific information and not systematic or macroeconomic information.23 The rating agency’s

own description of their rating methodology broadly supports this view.

(Moody’s (1999), p.6,7): ".. [O]ne of Moody’s goals is to achieve stable expected [italics

in original] default rates across rating categories and time." ... "Moody’s believes that

giving only a modest weight to cyclical conditions best serves the interests of the bulk

of investors."

(S&P (2001), p.41):"Standard & Poor’s credit ratings are meant to be forward looking;

... Accordingly, the anticipated ups and downs of business cycles — whether industry-

specific or related to the general economy — should be factored into the credit rating all

along." ... "The ideal is to rate ’through the cycle’".
23Amato and Furfine (2003) find little evidence of procyclicality in ratings.
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However, there is ample evidence to suggest that credit ratings and associated default probabili-

ties vary systematically with the business cycle (e.g. Nickell, Perraudin and Varotto (2000), Bangia

et al. (2002)). Moody’s itself has changed its rating process in this regard (Moody’s (1999), p.6):

"Moody’s has been striving for some time to increase the responsiveness of its ratings to economic

developments." Our mapping from default experience to thresholds allows for this time variation.

4 An Overview of the GVAR Framework24

This section presents a synopsis of the global vector autoregressive model (GVAR) as a generator of

global macroeconomic dynamics and scenarios. It gives an overview of the framework underlying the

GVAR without going into the details of estimation techniques.25 In contrast to existing modeling

approaches, in the GVAR the use of cointegration is not confined to a single country or region.

By estimating a cointegrating model for each country/region separately, we are also able to allow

for endowment and institutional heterogeneities that exist across the different countries in our

modeling strategy. Accordingly, specific vector error-correcting models (VECM) are estimated

for individual countries (or regions), by relating domestic macroeconomic variables such as GDP,

inflation, equity prices, money supply, exchange rates and interest rates to corresponding foreign

variables constructed exclusively to match the international trade pattern of the country/region

under consideration. By making use of specific exogeneity assumptions regarding the ‘rest of the

world’ with respect to a given domestic or regional economy, the GVAR makes efficient use of

limited amounts of data, and presents a consistently-estimated global model for use in portfolio

applications and beyond.

4.1 Country/Region Specific Models

The GVAR assumes that there are N + 1 country/regions in the global economy, indexed by

i = 0, 1, . . . , N , where 0 is the reference country or region (taken to be the U.S.).26 Macroeconomic

variables of each region are modeled as a function of both their own past and the global economy’s

current and past state. It is assumed that the regional variables are related to deterministic variables

(such as a time trend), foreign variables (which are region-specific weighted averages of the rest

of the world) and variables that are taken to be exogenous to this global economy, such as the oil

24This section draws heavily from PSW.
25These can be found in PSW.
26For simplicity we will refer to regions only. For more on country to region aggregation, see PSW.

15



price. We specify the following vector autoregressive form for ki variables:27

xit = ai0 + ai1t+Φixi,t−1 +Λi0x
∗
it +Λi1x

∗
i,t−1 +Ψi0dt +Ψi1dt−1 + εit,

t = 1, 2, ..., T ; i = 0, 1, 2, ..., N, (9)

where xit is the ki × 1 country-specific factors/variables, ai1 is a ki × 1 vector of linear trend
coefficients, Φi is a ki×ki matrix of associated lagged coefficients, x∗it is the k∗i ×1 vector of foreign
variables specific to country i (to be defined below) with Λi0 and Λi1 being ki×k∗i matrices of fixed

coefficients, dt is an s×1 vector of common global variables assumed to be exogenous to the global
economy with Ψi0 and Ψi1 being ki × s matrices of fixed coefficients, and εit is a ki × 1 vector of
country-specific shocks assumed to be serially uncorrelated with a zero mean and a non-singular

covariance matrix, Σii = (σii, s), where σii, s = cov(εi t, εist), or written more compactly

εit v i.i.d.(0,Σii). (10)

Although the model is estimated on a regional basis, we allow for the shocks to be correlated across

regions. In particular, we assume that

E
¡
εitε

0
jt0
¢
= Σij for t = t0,

= 0 for t 6= t.

Interactions take place through three distinct, but interrelated channels:

1. Direct dependence of xit on x∗it and its lagged values.

2. Dependence of the region-specific variables on common global exogenous variables such as oil

prices.

3. Non-zero contemporaneous dependence of shocks in region i on the shocks in region j, mea-

sured via the cross country covariances, Σij .

It is worth noting that the foreign variables x∗it are tailored to be region-specific. The GVAR as-

sumes that each macroeconomic variable in the vector x∗it is a weighted average of the corresponding

macroeconomic variables of all other regions outside region i. Taking output as an example:

y∗it =
NX
j=0

wijyjt, with
NX
j=0

wij = 1 and wii = 0,

27Although easily extended to incorporate lags greater than one, the GVAR (1) specification given above is seen

as sufficient for the illustrative purposes of this paper. Typical values for ki are 5 or 6.
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where y∗it is the log of the output of the rest of the world from the perspective of region i, yjt is the

log of the output of region j, and wij is the weight attached to region j’s output in construction of

the rest of the world output as seen by region i. Weights for the construction of the region-specific

global variables could be based on trade shares for variables such as output, prices, exchange rates

or money supply or on capital flows for equity and interest rates. In what follows wij denotes the

trade share of region j in the total trade volume of region i.28

The individual models are estimated allowing for unit roots and cointegration assuming that

region-specific foreign variables are weakly exogenous, with the exception of the model for the U.S.

economy which is treated as a closed economy model. The U.S. model is linked to the outside

world through exchange rates themselves being determined in rest of the region-specific models.

While models of the form in equation (9) are relatively standard, PSW show that the careful

construction of the global variables as weighted averages of the other regional variables leads to

a simultaneous system of regional equations that may be solved to form a global system. They

also provide theoretical arguments as well as empirical evidence in support of the weak exogeniety

assumption that allows the region-specific models to be estimated consistently.

4.2 The Global Model and Multi-step Ahead Forecasts

In view of the contemporaneous dependence of the domestic variables, xit, on the foreign variables,

x∗it, the region-specific VAR models (9) still need to be solved simultaneously for all the domestic

variables, xit, i = 0, 1, ..., N . The global solution to the model yields a k × 1 vector xt, which
contains the macroeconomic variables of all regions, such that xt is a function of time, the lagged

values of all macroeconomic variables xt−1 and the exogenous variables common to all regions (and

their lags):

xt = b0 + b1t + zxt−1 +Υ0dt +Υ1dt−1+ut, (11)

xt = (x00t,x01t, ...,x0Nt)
0 is the global k × 1 vector, where k =

PN
i=0 ki is the total number of the

endogenous variables in the global model, b0 and b1 are k× 1 vectors of coefficients,29 z is a k× k

matrix of coefficients, dt is an s× 1 vector of common global variables assumed to be exogenous to
28See PSW for more details on how weights are constructed. The weights for the exchange rate, which is expressed

in terms of the currency of the reference country, differ in their calculation and do not necessarily sum to one.
29 In the presence of unit root and cointegration it is desirable to ensure that the trend coefficients, b1, are restricted

so that the trend characteristics of xt are not affected by the number of unit roots in z. This is achieved by setting
b1 = (I−z)γ1, where γ1 is a vector of unrestricted coefficients. For further details and discussions see Section 4 in
PSW.
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the global economy (here to be the oil price) with corresponding k × s matrices of coefficients, Υ0

and Υ1.30 Finally, ut is a k × 1 vectors of (reduced form) shocks that are linear functions of the
region-specific shocks (εit). In particular, we have ut = G−1εt, where εt = (ε00t, ε01t, ..., ε0Nt)

0, and

the k × k matrix G is defined in Section 3 of PSW. We also have

V ar (ut) = G
−1ΣεG

0−1, (12)

where Σε=V ar (εt).

In what follows we assume that the GVAR model is estimated over the period t = 1, 2, ..., T, and

the objective of the exercise is to generate forecasts, both unconditionally as well as conditional on

a particular shock scenario, over the period t = T +1, ..., T + n, with n being the forecast horizon.

Accordingly, all forecasts and loss distributions at different forecast horizons, n = 1, 2, ..., will be

conditioned on the state of the economy as characterized by the GVAR model and all the available

information at time T , namely ΩT = (xT ,dT ,xT−1,dT−1, ...).

For multi-step ahead forecasting and impulse response (or shock scenario) analysis the above

solution to the GVAR model needs to be augmented with a model for the common global variables

dt. To this end we adopt the following autoregressive specification

dt = µd +Φddt−1 + εdt, for t = T + 1, T + 2, ..., T + n, (13)

where εdt v i.i.d. (0,Σd), which are assumed to be distributed independently of the macroeconomic

shocks, εt, t = T + 1, T + 2, ..., T + n. We shall assume that all the eigen values of Φd lie on or

inside the unit circle and ∆dt is stationary with a constant mean.

For multi-step analysis it is convenient to stack up (11) and (13), and solve out the contempo-

raneous effect of dt on xt to yield

yt = µ+ δ t+Φyt−1 +D υt, (14)

where

yt =

Ã
xt

dt

!
, µ =

Ã
b0 +Υ0µd

µd

!
, δ =

Ã
b1

0

!
, υt =

Ã
εt

εdt

!
, (15)

Φ =

Ã
z Υ1 +Υ0Φd

0 Φd

!
, and D =

Ã
G−1 Υ0
0 Is

!
. (16)

30The exact relationships between the parameters of the GVAR model in (11), and those of the underlying region-

specific models (9) are given in PSW.
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The (k + s) × 1 vector, υt, augments the region-specific shocks of interest, εt, with the common
global shocks, εdt. In view of the independence of these shocks we have

V ar (υt) = Συ =

Ã
Σε 0

0 Σd

!
.

Solving the above difference equation forward from yT , we now obtain

yT+n = ΦnyT+
n−1X
τ=0

Φτ [µ+(T + n− τ)δ]

+
n−1X
τ=0

ΦτDυT+n−τ . (17)

This solution has three distinct components: The first component, ΦnyT , measures the effect of

initial values, yT , on the future state of the system. The second component captures the determin-

istic trends embodied in the underlying VAR model. Finally, the last term in (17) represents the

stochastic (unpredictable) component of yT+n.

As we shall see below, for the purpose of simulating the loss distribution of a given portfolio,

the conditional probability distribution of ∆yT+n is needed.31 Using (17) and after some algebra

we obtain

∆yT+n =
¡
Φn −Φn−1¢yT + g (T, n) + UT+n, (18)

where

g (T, n) = Φn−1 [µ+(T + 1) δ] +
n−1X
τ=1

Φτ−1δ, (19)

and

UT+n = DυT+n +
n−1X
τ=1

¡
Φτ −Φτ−1¢DυT+n−τ . (20)

Hence

E (∆yT+n | ΩT ) =
¡
Φn −Φn−1¢yT + g (T, n) , (21)

V ar (∆yT+n | ΩT ) = DΣυD
0 +

n−1X
τ=1

¡
Φτ −Φτ−1¢ ¡DΣυD

0¢ ¡Φτ −Φτ−1¢0 . (22)

If it is further assumed that the region-specific shocks, εt, and the common global shocks, εdt, are

normally distributed, we then have32

∆yT+n | ΩT v N
©¡
Φn −Φn−1¢yT + g (T, n) , Ψn

ª
, (23)

31That is because returns are modeled as being driven by changes in systematic factors in Section 5.
32 It is also possible to work with non-Gaussian shocks. An important example are t-distributed shocks that we

shall consider in our empirical applications in Section 7.4.
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where

Ψn = B+
n−1X
τ=1

¡
Φτ −Φτ−1¢B ¡Φτ −Φτ−1¢0 , (24)

and

B = DΣυD
0 =

Ã
G−1ΣG0−1 +Υ0ΣdΥ

0
0 Υ0Σd

ΣdΥ
0
0 Σd

!
. (25)

Finally, in the present application where the underlying GVAR model admits unit roots and cointe-

gration, the limit distribution of ∆yT+n | ΩT exists and is finite if δ =(I−Φ)γ, otherwise g (T, n)
increases without bound as n→∞. Under δ =(I−Φ)γ, using (19) we have

g (T, n) = Φn−1µ+(T + 1)
¡
Φn−1−Φn

¢
γ+

¡
I−Φn−1¢γ,

and it is easily seen that

lim
n→∞ [g (T, n)] = Φ

∗µ+(I−Φ∗)γ,

where Φ∗ = limn→∞ (Φn) is finite under our assumptions. More specifically, if δ =(I−Φ)γ we
have

lim
n→∞∆yT+n | ΩT v N {Φ∗µ+(I−Φ∗)γ, Ψ∗} ,

where33

Ψ∗ = B+
∞X
τ=1

¡
Φτ −Φτ−1¢B ¡Φτ −Φτ−1¢0 .

Therefore, as argued in Section 4 of PSW, it is important that the GVAR model is estimated

subject to the restrictions, b1 = (I−z)γ1, which in conjunction with the model for the common
global variables, (13), ensure that δ =(I−Φ)γ.

In summary, the GVAR’s sequential regional estimation and global aggregation methodology

allows for the practitioner to solve for the conditional distribution of the macroeconomic factors

globally, whereas single-stage estimation of the global system in equation (11) would be prohibitive

due to the very large number of coefficients and generally thin data sets. As a result, the model

allows us to examine the effects of a shock in one region on the macroeconomic factors that describe

the system globally, as our discussion of impulse response functions below shows.

33Notice that all the elements of
¡
Φτ −Φτ−1¢ decay exponentially with τ even under unit roots and hence Ψ∗

exists and is finite.
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4.3 Shock Scenario Analysis through GIRFs

For policy analysis, one would like to be able to examine how an isolated contemporaneous shock

to one macroeconomic variable affects all other macroeconomic variables in the global economy.

For example, it might be of interest to determine the effects of a contemporaneous 10% drop in the

Japanese equity prices on other macroeconomic variables, and the effects that these have on the

credit risk of a given portfolio. Impulse response functions provide us with the tools to carry out

this type of analysis. In so doing, it is of course important that the correlations that exists across

the different shocks, both within and across regions, are properly taken into accounted. However,

in a model which consists only of regional VAR’s (as in equation (9)) which are not integrated as

in the GVAR, it is impossible to uncover these effects because the interdependencies within regions

are lost. On the other hand, single-stage estimation of the global model (11) is extremely difficult,

and even if it were possible (and consistent), it would be impossible to construct a regional shock

(a shock to εit) within the context of such a global model. Only with the GVAR can both of these

challenges be adequately addressed.

In the traditional VAR literature this is accomplished by means of the orthogonalized impulse

responses (OIR) à la Sims (1980), where impulse responses are computed with respect to a set of

orthogonalized shocks, say ξt, instead of the original shocks, εt. The link between the two sets of

shocks are given by

ξt = P
−1εt,

where P is a k×k lower triangular Cholesky factor of the variance covariance matrix, V ar(εt) = Σε,

namely

PP0 = Σε.

Therefore, by construction E(ξtξ
0
t) = Ik. However, the drawback of using OIR is that the outcome

is dependent on the order of the variables.34 Koop, Pesaran and Potter (1996) and Pesaran and

Shin (1998) have developed an approach which is invariant to the order of the variables, known

as the generalized impulse response function (GIRF). The GIRF can be applied to region-specific

shocks as well as to the common global shocks. For example, if factor in country i is (purposefully)

shocked by one standard error (i.e. √σii, ) in the period from T to T + 1, the GIRF of yT+n is

given by

ψi (y, n) = E
¡
yT+n | ΩT , εi,T+1, =

√
σii,

¢
−E (yT+n | ΩT ) .

34This is due to the non-uniqueness of the Cholesky decomposition. While OIR are suitable for low-dimensional

models where variables can be arranged in causal order, they are not suitable for large dimensional GVAR models.
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The first term captures the expected effect of the shock, while the second term represents the

baseline scenario in the absence of the shock. In the case of the GVAR model, using (17) we have

ψi (y, n) = Φ
n−1DE

¡
υT+1 | ΩT , εi,T+1, =

√
σii,

¢
,

which yields

ψi (y, n) =
1

√
σii,

Φn−1DΣυsi , n = 1, 2, ..., (26)

where si is a (k + s) × 1 selection vector with its element corresponding to the th variable in

country i being unity and zeros elsewhere. A similar expression can also be derived for the effect of

shocking one of the common global variables by an appropriate choice of the selection vector, s, and

by replacing √σii, with the one standard error of the common global variable being shocked.35

The GIRF of the changes in the n-period ahead forecast, ∆yT+n, can also be derived directly

using (18) and is given by

ψi (∆y, n) =
1

√
σii,

DΣυsi for n = 1, (27)

=
1

√
σii,

¡
Φn−1 −Φn−2¢DΣυsi , for n = 2, 3, ..

Clearly, on impact (for n = 1), ψi (y, n) = ψi (∆y, n), but the two impulse response functions

deviate at higher order horizons.

Finally, to analyze the impact of shock scenarios on the loss distribution, we also need to consider

the effect of region-specific and common global shocks on the whole probability distribution function

of ∆yT+n conditional on ΩT . For this purpose we assume that the magnitude and the nature of

the shock is not such as to alter the probability distribution function of υT+1, and distinguish

between the cases where the change in εi,T+1, is pre-announced or anticipated, as compared to

the case where the change is unanticipated. The former could be relevant in the case of policy

announcements such as specific tax changes or general changes to the monetary policy. But for

risk analysis unanticipated forms of shocks seem more relevant. Assuming that the errors, υT+1,

are distributed as multivariate normal (even after the system is hit by the shock), the probability

distribution in the presence of an unanticipated unit shock to th factor in country i is given by

∆yT+n | ΩT , εi,T+1, =
√
σii, v N

©¡
Φn −Φn−1¢yT + g (T, n) +ψi (∆y, n), Ψn

ª
, (28)

35The GIRF are identical to the orthogonalized impulse response function only when Συ is diagonal and/or when

the focus of the analysis is on the impulse response function of shocking the first element of υt. See Pesaran and

Shin (1998).
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where ψi (∆y, n), and Ψn are defined by (26) and (24). Here we are assuming that the shock, if

unanticipated, does not change the conditional covariance matrix of υT+1.36

When the shock (or more accurately the policy intervention) is anticipated its variance as well

as its covariances with the other components of υT+1 will be zero on impact and we have

∆yT+n | ΩT , εi,T+1, =
√
σii, v N

©¡
Φn −Φn−1¢yT + g (T, n) +ψi (∆y, n), Ψn,i

ª
, (29)

where

Ψn,i = Bi , for n = 1, (30)

Ψn,i = Bi +
n−1X
τ=1

¡
Φτ −Φτ−1¢B ¡Φτ −Φτ−1¢0 , for n = 2, 3, ...

Bi = D
h
Συ −Συsi

¡
s0
i
Συsi

¢−1
s0
i
Συ

i
D0. (31)

5 Conditional Credit Risk Modeling

The conditional loss distribution of a given credit portfolio can now be derived by linking up the

return processes of individual firms, initially presented in equation (1), explicitly to the macro and

global variables in the GVAR model.

5.1 Return Regressions: A More General Formulation

Firm returns are usually modeled as a function of macro variables that are specific to the firm’s

domicile country plus global variables such as changes in oil prices. But such a specification leaves

out one of the key features of the GVAR model, namely the foreign-specific variables which could

be particularly important in the case of large international corporations. Here we extend the firm

return model by incorporating all GVAR factors to take full advantage of the GVAR dynamics.

Accordingly, a firm’s change in value (or return) is assumed to be a function of changes in the

underlying macroeconomic factors (the systematic component), say ki region-specific domestic and

k∗i foreign macroeconomic variables, the exogenous global variables dt (in our application oil prices)

and the firm-specific idiosyncratic shocks ηjit:

rji,t+1 = αji +

kiX
=1

βji, ∆xi,t+1, +

k∗iX
=1

β∗ji, ∆x
∗
i,t+1, +

sX
=1

γji, ∆dt+1, + ηji,t+1, t = 1, 2, ..., T, (32)

36 In principle it is possible to allow for simultaneous mean and variance change, for example, by adopting mean-

in-GARCH type models where conditional variance is assumed to be depend on the conditional mean of the errors.
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where rji,t+1 is the equity return from t to t + 1 for firm j (j = 1, ..., nci) in region i. αji is a

regression constant for company j in region i, ki and k∗i are the number of domestic and foreign

macroeconomic factors (drivers), respectively, in region i, βji, and β∗ji, are the factor loadings

corresponding to, respectively, the change in the th domestic and foreign macroeconomic variable

for company j in region i, ∆xi,t+1, and ∆x∗i,t+1, are, respectively, the log difference of the
th

domestic and foreign macroeconomic factor in region i, dt+1, is the th global factor, and γji, is

its associated coefficient. This can be written more compactly as

rji,t+1 = αji + β0ji∆xi,t+1 + β∗0ji∆x
∗
i,t+1 + γ0ji∆dt+1 + ηji,t+1, (33)

where xi,t+1, x∗i,t+1, and dt+1 are the ki× 1, k∗i × 1, and s× 1 vectors of macroeconomic and global
factors. The exact link between the macro factors in these APT regressions and the variables in

the GVAR model is through the composite vector zi,t+1 = (x0i,t+1,x
0∗
i,t+1)

0. As shown in PSW, this

regional composite vector can be obtained from the global variables:

zi,t+1 =

Ã
xi,t+1

x∗i,t+1

!
=Wixt+1,

where the weight matrix Wi serves as the ‘link’ between the global variable vector xt+1 and the

domestic (xi,t+1) and foreign (x∗i,t+1) variables for region i. The non-zero elements ofWi are given

by trade weights of country i relative to all other countries in the GVAR model. Hence we have

rji,t+1 = αji +B
0
jiWi∆xt+1 + γ0ji∆dt+1 + ηji,t+1, (34)

where Bji =
¡
β0ji,β

∗0
ji

¢0
. The GVAR model provides forecasts of all the global variables, xt+1,

that directly or indirectly affect the returns, rji,t+1. If the model captures all systematic risk, the

idiosyncratic risk components of any two companies in the model would be uncorrelated, namely

the idiosyncratic risks, ηji,t+1, ought to be cross-sectionally uncorrelated. The values of the global

exogenous variables, dt+1, could either by fixed to represent particular scenarios of interest, such as

high or low oil prices, or could be forecast using a sub-model such as the VAR specification given

by (13). Under this specification, due to the contemporaneous dependence of ∆xt+1 on ∆dt+1, we

re-write (34) as

rji,t+1 = αji + Γ
0
ji∆yt+1 + ηji,t+1, (35)

where the factor loadings Γ0ji =
³
B0jiWi,γ

0
ji

´
, and as before ∆yt+1 =

¡
∆x0t+1, ∆d0t+1

¢0.
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5.2 Expected Loss Due to Default

Given the value change process for firm j, defined by (33), and the default threshold, ĉji, obtainable

from an initial credit rating (see Section 3.2), we now consider the conditions under which the firm

goes bankrupt and is thus no longer able to repay its debt obligations. Specifically, we need to define

the expected loss to firm j at time T given information available to the lender (e.g. a bank) at time

T, which we assume is given by ΩT . Following (3), default occurs when the firm’s value (return) falls

below some threshold ĉji (e.g. when the value of a firm’s assets falls below the value of its callable

liabilities). Expected loss at time T (but occurring at T + 1), ET (Lji,T+1) = E (Lji,T+1 | ΩT ) , is
given by

ET (Lji,T+1) = Pr (rji,T+1 < ĉji | ΩT ) ET (Xji,T+1) ET (Sji,T+1) (36)

+ [1− Pr (rij,T+1 < ĉji | ΩT )]× L̃,

where Xji,T+1 is the maximum loss exposure assuming no recoveries for company j in region i

(typically the face value of the loan) and is known at time T , Sji,T+1 is the percentage of exposure
which cannot be recovered in the event of default (sometimes called loss given default or severity),37

and L̃ is some future loss in the event of non-default at T +1 (which we set to zero for simplicity).

Typically Sji,T+1 is not known at time of default and will be treated as a random variable over the

range [0, 1]. In the empirical application we make the typical assumption that Sji,T+1 are draws
from a beta distribution with given mean and variance calibrated to (pooled) historical data on

default severity.38

Substituting (34) into (36) and setting L̃ to zero we now obtain:39

ET (Lji,T+1) = πji,T+1|T ET (Xji,T+1) ET (Sji,T+1), (37)

where

πji,T+1|T = Pr
¡
αji + Γ

0
ji∆yT+1 + ηji,T+1 < ĉji | ΩT

¢
,

is the conditional default probability over the period T to T + 1, formed at time T . Our modeling

framework allows us to derive an explicit expression for πji,T+1|T . Using (18) and after some

37One would expect loss severity to be higher in recessions than expansions (see Frye (2000) and Altman et al.

(2002)). Bankruptcies are pro-cyclical, flooding the market with distressed assets which drive down their price (or

increasing severity). However, for simplicity we follow the standard assumption that exposure and severity are

independently distributed.
38The beta distribution is usually chosen since it is bounded, typically on the unit interval, with two shape para-

meters which can be expressed in terms of mean and standard deviation of losses.
39 It is common practice in the industry to set eL to zero.
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simplifications we have

πji,T+1|T = Pr
¡
ξji,T+1 < ĉji − µji,T | ΩT

¢
, (38)

where

ξji,T+1 = ηji,T+1 + Γ
0
jiDυT+1, (39)

and

µji,T+1|T = αji + Γ
0
ji [µ+(T + 1)δ]− Γ0ji (Ik+s −Φ)yT . (40)

These results decompose the return for firm j in region i into its explained (expected) and un-

explained (unexpected) components, with µji,T+1|T being the expected value of return formed at

time T , and ξji,T+1 the unexpected component. To clarify, the explained or forecastable portion of

firm return,µji,T+1|T , is comprised of firm-specific fixed effects, αji (i.e. the ”alphas” in an APT

context), the drift components of the macro factors and the global exogenous variables, (T+1)Γ0jiδ,

and factor loadings, −Γ0ji (Ik+s −Φ), which collect the effects of the region-specific factors and the
global exogenous variables on the firm’s expected return.

The unexpected component, defined by (39), is influenced by three different types of shocks: a

firm’s own shock, ηji,T+1, macroeconomic shocks, εT+1, and the global exogenous shock, εd,T+1 (in

our model the oil price shock).40 Note that although the firm in question operates in country/region

i, its probability of default could be affected by macroeconomic shocks worldwide. Under the

assumption that all these shocks are jointly normally distributed and the parameter estimates are

given, we have the following expression for the probability of default over T to T +1 formed at T 41

πji,T+1|T = Φ

 ĉji − µji,T+1|Tq
V ar

¡
ξji,T+1 | ΩT

¢
 , (41)

where

V ar
¡
ξji,T+1 | ΩT

¢
≡ ω2ξ,ji = ω2η,ji + Γ

0
jiBΓji. (42)

and B = DΣυD
0 is given by (25). The first term in ω2ξ,ji is the variance of firm’s idiosyncractic

shock, ηji,T+1. Also, since the region-specific shocks and the common global shocks are uncorrelated,

the second term in ω2ξ,ji can be further decomposed into two components as

Γ0jiBΓji = θ0jiΣεθji+θ
0
ji,dΣdθji,d,

40Recall that υT+1 = (ε0T+1, ε
0
d,T+1)

0.
41 Joint normality is sufficient but not necessary for ξji,t+1 to be approximately normally distributed. This is

due to the fact that ξji,t+1 is a linear function of a large number of weakly correlated shocks (63 in our particular

application).

26



where

θ0ji = B
0
jiWiG

−1, θ0ji,d = γ0ji +B
0
jiWiΥ0. (43)

Both of the restrictions (given parameter values and joint normality) can be relaxed. Parameter

uncertainty can be taken into account by integrating out the true parameters using posterior or

predictive likelihoods of the unknown parameters, as in Garratt et al. (2002). In the presence of

non-normal shocks one could either simulate the loss distributions assuming fat-tailed distributions

such as Student t with a sufficiently low degree of freedom as adopted in our empirical work below.

Alternatively, one can employ non-parametric stochastic simulation techniques by re-sampling from

estimated residuals of the GVAR model to estimate πji,T+1|T .

The expected loss due to default of a loan (credit) portfolio can now be computed by aggregating

the expected losses across the different loans. Denoting the loss of a loan portfolio over the period

T to T + 1 by LT+1 we have

ET (LT+1) =
NX
i=0

nciX
j=1

πji,T+1|T ET (Xji,T+1) ET (Sji,T+1), (44)

where nci is the number of obligors (which could be zero) in the bank’s loan portfolio resident in

country/region i.

5.3 Simulation of the Loss Distribution

The expected loss as well as the entire loss distribution can be computed once the GVAR model

parameters in (11), the return process parameters in (34) and the thresholds in (6) have been

estimated for a sample of observations t = 1, 2, ..., T . We do this by stochastic simulation using

draws from the joint distribution of the shocks, T+1 = (ε0T+1, ε
0
d,T+1,η

0
T+1)

0, where ηT+1 is the³PN
i=0 nci

´
× 1 vector of firm-specific shocks. As noted earlier these draws could either be car-

ried out parametrically from normal or t-distributed random variables, or if sufficient data points

are available, can be implemented non-parametrically using re-sampling techniques. Under the

parametric specification the variance covariance matrix of t+1 is given by

V ar ( T+1) =


Σε 0 0

0 Σd 0

0 0 Ση

 , (45)

where Ση is a diagonal matrix with elements ω2η,ji, j = 1, 2, ..., nci, i = 0, 1, ..., N.
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Denote the rth draw of this vector by (r)
T+1, and compute the firm-specific return, r

(r)
iT,t+1, noting

that

r
(r)
ij,T+1 = µji,T+1|T + ξ

(r)
ji,T+1, (46)

where µji,T+1|T is given by (40) and

ξ
(r)
ji,T+1 = η

(r)
ji,T+1 + θ0jiε

(r)
T+1 + θ0ji,dε

(r)
d,T+1. (47)

Then simulate the loss in period T + 1 using (known) loan face values, say FVji,T , as exposures,

and draws from a beta distribution for severities (as described above):

L
(r)
T+1 =

NX
i=0

nciX
j=1

I
³
r
(r)
ij,T+1 < ĉji

´
FVji,T S(r)ji,T+1. (48)

The simulated expected loss due to default is given by (using R replications)

L̄R,T+1 =
1

R

RX
r=1

L
(r)
T+1. (49)

When (r)
T+1 are drawn from a multivariate normal distribution with a covariance matrix given by

(45), then

L̄R,T+1
p→ ET (LT+1) , as R→∞.

The simulated loss distribution is given by ordered values of L(r)T+1, for r = 1, 2, ..., R. For a desired

percentile, for example the 99%, and a given number of replications, say R = 10, 000, credit value

at risk is given as the 100th highest loss.

5.4 Default and Expected Loss Given Economic Shocks

In credit risk analysis we may also be interested in evaluating quantitatively the relative impor-

tance of changes in different macroeconomic factors on the loss distribution. In the argot of risk

management this is sometimes called scenario analysis. To this end the loss distribution conditional

on a given shock can be compared to a baseline distribution without such a shock. As with all

counterfactual experiments it is important that the effects of the shock on other macroeconomic

factors are clearly specified. One possibility would be to assume that the other factors are dis-

placed according to their historical covariances with the variable being shocked. This is in line

with the GIRF analysis discussed in Section 4.3. In this set-up, if factor in country i is shocked
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by one standard error (i.e. √σii, ) in the period from T to T + 1, on impact the vector of the

macroeconomic factors would be displaced by

ψi (∆y, 1) =
1

√
σii,

DΣυsi , (50)

given by (27) for n = 1. Such a shock has no effect on the global exogenous variables nor on

the firm-specific shocks. In the absence of any macroeconomic shocks, namely when εT+1 = 0,

firm-specific returns are given by

r0ij,T+1 = µji,T+1|T + ηji,T+1 + θ0ji,dεd,T+1, (51)

so that the only sources of innovation are firm-specific (ηji,T+1) and specific to the global exogenous

variable (εd,T+1). With a one standard error shock to the th variable in country i, xi,T+1, , we

have an additional component (see (45) and (46)):

rij,T+1 = µji,T+1|T + Γ
0
jiψi (∆y, 1) + ηji,T+1 + θ0ji,dεd,T+1. (52)

The loss distributions associated with these two scenarios can now be simulated using these returns

in (48).

The above counterfactual, while of some interest, will underestimate the expected loss under

both shock scenarios since it abstracts from volatility of the macroeconomic factors. To allow for

volatility of macroeconomic factors in the analysis consider the case where the various shocks are

jointly normally distributed, and note that

rij,T+1 = µji,T+1|T + Γ
0
jiDυT+1 + ηji,T+1,

where µji,T+1|T is defined by (40). Following a similar line of argument as in Section 4.3, if the

shock is assumed to be anticipated we have

rij,T+1
¯̄
ΩT , εiT+1, =

√
σii, v N

n
µji,T+1|T + Γ

0
jiψi (∆y, 1), ω

2
ξ,ji,i

o
,

where εi,T+1, = s0i υT+1, ψi (∆y, 1) is defined by (50) and
42

ω2ξ,ji,i = ω2η,ji + Γ
0
jiBi Γji, (53)

where Bi is defined by (31). But if the shock is unanticipated (which we consider to be more

relevant for credit risk analysis) we have

rij,T+1
¯̄
ΩT , εiT+1, =

√
σii, v N

n
µji,T+1|T + Γ

0
jiψi (∆y, 1), ω

2
ξ,ji

o
,

42Note that s0Σs = σii, .
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where ω2ξ,ji is given by (42).

Therefore, to allow for volatility of the shocks (macroeconomic as well as idiosyncratic shocks),

the simulation of the loss distribution needs to be carried out using the draws

r
il,(r)
ij,T+1 = µji,T+1|T + Γ

0
jiψi (∆y, 1) + ωξ,ji Z(r) (54)

where Z(r) ∼ IIN (0, 1).

In the case of our empirical application where the log of oil prices is the only global variable in

the model, the effect of a unit unanticipated shock to oil prices, P o
t , can be simulated by generating

the returns as

r
o,(r)
ij,T+1 = µji,T+1|T + Γ

0
jiψo(∆y, 1) + ωξ,ji, Z(r),

where

ψo(∆y, 1) =
1

σo
DΣυso = σo

Ã
Υ0

1

!
,

σ2o is the variance of oil price shock, εot, so is a (k+1)×1 vector of zeros except for its last element
which is set equal to unity, such that s0

o
υt = εot. It is also worth noting that

Γ0jiψo(∆y, 1) = σo
¡
B0jiWiΥ0 + γ0ji

¢
= σoθji,o

simplifying the oil shock-conditional first period return to

r
o,(r)
ij,T+1 = µji,T+1|T + σoθji,o + ωξ,ji Z(r). (55)

This expression clearly shows that, relative to the baseline, the mean is increased by σoθji,o.43

The baseline loss distributions can also be simulated directly using the draws

r
(r)
ij,T+1 = µji,T+1|T + ωξ,ji Z(r), (56)

where the baseline return variance ω2ξ,ji is defined by (42). Default occurs if the rth simulated

return falls below the threshold ĉji defined by (6):

Baseline r
(r)
ij,T+1 < ĉji =⇒ Default, (57)

Macro-shock-Conditional r
il,(r)
ij,T+1 < ĉji =⇒ Default,

Oil—shock-Conditional r
o,(r)
ij,T+1 < ĉji =⇒ Default.

43For an anticipated oil price shock the variance term ω2ξ,ji in (55) needs to be replaced by ω
2
ξ,ji,o = ω2η,ji+θ

0
jiΣεθji.
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Using these results in (48), the loss distribution can be simulated for any desired level of accuracy

by selecting R, the number of replications, to be sufficiently large.

Finally, it is might also be of interest to compare the base line default probability, πji,T+1|T ,

given by (41) with the default probability that results under the (unanticipated) shock to xi,T+1, ,

which we denote by πiji,T+1|T . We have

πji,T+1|T = Φ
µ
ĉji − µji,T+1|T

ωξ,ji

¶
,

and

πiji,T+1|T = Φ
µ
ĉji − µji,T+1|T − Γ0jiψi (∆y, 1)

ωξ,ji

¶
. (58)

The above results readily extend to the case where the shocks follow multivariate t distributions

with the same degrees of freedom. In this more general case the linear combinations of t-distributed

shocks would still be t-distributed and the simulated returns in the case of a unit shock to xi,T+1,

will be given by

r
l,(r)
ij,T+1 = µji,T+1|T + Γ

0
jiψi (∆y, 1) + ωξ,ji

Ãr
v − 2
v

!
T (r)v , (59)

where T (r)v are draws from the Student t with v degrees of freedom.44 Similarly, for the simulation

of the baseline loss distribution we need to use the draws

r
(r)
ij,T+1 = µji,T+1|T + ωξ,ji

Ãr
v − 2
v

!
T (r)v . (60)

5.5 Simulation of Multi-Step Ahead Loss Distributions

Simulation of loss distributions over more than one period ahead poses new difficulties. We are now

presented with the problem of simulating from the joint probability distribution function of future

returns (rji,T+1, rji,T+2, ..., rji,T+n) , conditional on ΩT , where n is the forecast horizon. Using (18)

in (35) we have

rij,T+κ = µji,T+κ|T + ξji,T+κ, for κ = 1, 2, ..., n

where

µji,T+κ|T = αji + Γ
0
ji

£¡
Φκ −Φκ−1¢yT + g (T, κ)¤ ,

ξji,T+κ = Γ0jiUT+κ + ηji,T+κ,

44Note that V ar(T (r)v ) = v/(v − 2).
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and

UT+κ = DυT+κ +
κ−1X
τ=1

¡
Φτ −Φτ−1¢DυT+κ−τ

is the composite systematic (i.e. non-idiosyncratic) innovation over future periods T+κ = 1, 2, ..., n.

It is clear that at time T , the conditional mean returns, µji,T+κ|T , κ = 1, 2, ..., n, are known insofar

as they are forecast. It is also easily seen that the unpredictable components of the returns over

the different horizons have the following recursive structure:

ξji,T+1 = Γ0jiH0DυT+1 + ηji,T+1,

ξji,T+2 = Γ0jiH1DυT+1 + Γ0jiH0DυT+2 + ηji,T+2,

...

ξji,T+n = Γ0jiHn−1DυT+1 + Γ0jiHn−2DυT+2 + ....+ Γ0jiH0DυT+n + ηji,T+n,

where

Hκ = Φ
κ −Φκ−1, κ = 1, 2, ..., n and H0 = Ik+s.

Recall that the matrixΦ collects all the GVAR coefficients other than constants and trends and thus

characterizes the effect of initial values yT on the future state of the macroeconomic system (see

(17)). Therefore, the conditional distribution of the returns across the different forecast horizons

are correlated, and in the simulation of the loss distribution one needs to draw from the joint

distribution of rji = (rji,T+1, rji,T+2, ..., rji,T+n)
0. For this purpose we note that ξji,T+κ, κ =

1, 2, .., n, have zero means and a variance covariance matrix V ar(rji) whose (w, n) element is given

by

Γ0ji

Ã
mX
τ=1

Hw−τBH0w−τ

!
Γji + ω2η,ji, if w = n,

Γ0ji

Min(m,n)X
τ=1

Hm−τBH0n−τ

Γji, if w 6= n,

where B = DΣυD
0.

Alternatively, the returns can be simulated using the relations

r
(r)
ij,T+κ = µji,T+κ|T + ξ

(r)
ji,T+κ, for κ = 1, 2, ..., n, (61)

where

ξ
(r)
ji,T+κ =

κ−1X
τ=0

¡
Γ0jiHτBH0τΓji

¢1/2
Z(r)τ + ωη,ji Z

(r)
ηκ , (62)

where Z(r)0 , Z(r)1 , ..., Z
(r)
n−1; Z

(r)
η1 , Z

(r)
η2 , ..., Z

(r)
ηn are draws from IID N(0, 1).
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5.5.1 Baseline Multi-period Loss Distribution

The loss distribution due to default by firm j in region i over the period T to T + n can now be

written as

Lji(T +1, T +n) = Lji,T+1+λI (rji,T+1 ≥ ĉji) Lji,T+2+ ...+ λn−1
"
n−1Y
τ=1

I (rji,T+τ ≥ ĉji)

#
Lji,T+n,

(63)

where λ is a discount factor (0 ≤ λ < 1, could be set as λ = 1/ (1 + ρ) with ρ being an average real

rate of interest) and

Lji,T+κ = I (rji,T+κ < ĉji) Xji,T+κ Sji,T+κ, for κ = 1, 2, ..., n

The multi-period loss expression (63) can be thought of as a survival function which progressively

computes loss in period T +τ +1 only if the firm has survived the previous period T +τ . Using this

architecture the multi-period baseline loss distribution can be simulated using the draws r(r)ji,T+τ ,

for τ = 1, 2, .., n and r = 1, 2, ..., R (see (61)), the empirical distribution of Lji(T +1, T +n) can be

constructed from L
(r)
ji (T + 1, T + n) where

L
(r)
ji (T + 1, T + n) = L

(r)
ji,T+1 +

nX
t=2

λt−1
"
t−1Y
τ=1

I
³
r
(r)
ji,T+τ ≥ ĉji

´#
L
(r)
ji,T+t,

and

L
(r)
ji,T+κ = I

³
r
(r)
ji,T+κ < ĉji

´
X (r)ji,T+κ S

(r)
ji,T+κ, for κ = 1, 2, ..., n.

Aggregating across firms, we finally obtain the time T conditional, n step-ahead simulated loss

distribution of the credit portfolio:

L(r)(T + 1, T + n) =
NX
i=0

nciX
j=1

L
(r)
ji (T + 1, T + n), r = 1, 2, ..., R.

5.5.2 Multi-period Loss Distribution Given Economic Shocks

Consider now the effect of a one standard error shock to factor in country i on the multi-period

loss distribution. Using the results in Section 4.3 on impulse responses we have

r
i ,(r)
ij,T+κ = µji,T+κ|T + Γ

0
jiψi (∆y, κ) + ξ

i ,(r)
ji,T+κ, for κ = 1, 2, ..., n, (64)

where ψi (∆y, κ) is defined by (27) and

ξ
i ,(r)
ji,T+κ =

¡
Γ0jiBΓji

¢1/2
Z
(r)
0 +

κ−1X
τ=1

¡
Γ0jiHτBH0τΓji

¢1/2
Z(r)τ + ωη,ji Z

(r)
ηκ , (65)
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where as before B = DΣυD
0. Since ∆y contains both the endogenous macroeconomic variables

∆x as well as the exogenous global variable ∆d, oil prices in our applications, we no longer need

to derive a separate expression for oil price shocks. Note also that the second term in (65) will be

zero when κ = 1.

Clearly, the Student t random draws,
³q

v−2
v

´
T (r)v , can also be used instead of the Normal

draws, Z(r), in the simulation of the loss distributions, as in (59) and (60).

6 Estimation of GVAR

6.1 Region and Country Settings

We estimate a global quarterly model over the period 1979Q1-1999Q1 comprising a total of 25

countries which are grouped into eleven regions (shown in bold in Table 1). The advantage of the

GVAR is that it allows for a true multi-country setting; however it can become computationally

demanding very quickly. For that reason we model the seven key economies of the U.S., Japan,

China, Germany, U.K., France and Italy as regions of their own while grouping the other 19

countries into four regions.45

Table 1

Countries/Regions in the GVAR Model

U.S.A. Germany Japan

Western Europe South East Asia Latin America

·Spain ·Korea ·Argentina
·Belgium ·Thailand ·Brazil
·Netherlands ·Indonesia ·Chile
·Switzerland ·Malaysia ·Peru

·Philippines ·Mexico
·Singapore

Middle East China France

·Kuwait U.K. Italy

·Saudi Arabia
·Turkey

45See PSW, Section 8, for details on cross-country aggregation into regions.
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The output from these countries comprise around 80% of world GDP (in 1999). They were chosen

largely because the major banks in G-7 countries have much of their exposure in this set of countries.

Noticeably absent are Scandinavian countries, Africa and Australia-New Zealand. Future extensions

of the model will look to incorporate countries from these regions. Time series data on regions such

as Latin America or South East Asia were constructed from each country in the region weighted

by the GDP share. For this we used purchasing power parity (PPP)-weighted GDP figures, which

is thought to be more reliable than using weights based on U.S. dollar GDPs.46 For credit risk

modeling purposes we distinguish between the regions with developed capital markets, namely U.S.,

Germany, Japan, Western European countries, South East Asia and Latin America, and the rest,

namely China and Middle East, which over our sample period may not have had fully developed

capital markets. Finally, as noted earlier, the U.S. dollar will be used as the numeraire exchange

rate and its value in terms of the other currencies will be determined outside the U.S. model.

6.2 Macroeconomic Variables and Data Sources

The vector xit is defined as the ki×1 country-specific factors/variables. A typical set of endogenous
variables47 for country i (i 6= 0), is:

yit = ln (GDPit/CPIit) ,

pit = ln(CPIit),

qit = ln(EQit/CPIit),

mit = ln (Mit/CPIit) ,

eit = ln(Eit),

ρit = 0.25 ∗ ln(1 +Rit/100),


(66)

46PPP figures are from June 1996, Penn World Tables.
47Other variables are certainly possible. For credit risk applications, one might also want to include more financial

market information, e.g. credit spreads, and perhaps aggregate default or bankruptcy rates. However, we wanted

to restrict our macroeconomic variable set to be small and easily measured across a wide set of countries. Arguably

these six variables reasonably span the relevant economic space in our ”world” of 26 countries.
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where48

GDPit = Nominal Gross Domestic Product of country i during period t, in domestic currency

CPIit = Consumer Price Index in country i at time t, equal to 1.0 in a base year (say 1996)

Mit = Nominal Money Supply in domestic currency

EQit = Nominal Equity Price Index

Eit = Exchange rate of country i at time t in terms of US dollars

Rit = Nominal rate of interest per annum, in per cent

The GVAR uses quarterly data covering 21 years from 1979Q1 to 1999Q1. Main data sources are

the International Financial Statistics (IFS), Datastream and Data Resources Incorporated (DRI).

Note that in the case of the base economy (i.e. the U.S. in the current model), e0t = 0. Therefore

k0 = 5. In addition to that, the full set of macroeconomic factors is not available for all regions

(especially due to the dearth of data in emerging markets). Table 2 represents available data for

the eleven regions.

Table 2

Domestic Variables and Global Variables by Region

Domestic Variables Foreign Variables

Region yit pit qit mit eit rit ki y∗it p∗it q∗it m∗it e∗it r∗it k∗i
U.S.A X X X X - X 5 - - - - X - 1

U.K. X X X X X X 6 X X X X - X 5

Germany X X X X X X 6 X X X X - X 5

France X X X X X X 6 X X X X - X 5

Italy X X X X X X 6 X X X X - X 5

W. Europe X X X X X X 6 X X X X - X 5

Mid East X X - X X X 5 X X X X - X 5

China X X - X X X 5 X X X X - X 5

S.E. Asia X X X X X X 6 X X X X - X 5

Japan X X X X X X 6 X X X X - X 5

L. America X X X X X X 6 X X X X - X 5

63 51

48Note that the last transformation specified in (66) converts the annual rate of interest, Rit, to quarterly interest

rate, ρit, using a logarithmic scale.
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In total, there are 63 region-specific domestic macroeconomic variables or factors and therefore

63 equations to estimate, albeit not simultaneously. The problem of endogeneity is mitigated in

this version of the GVAR by allowing for only one global variable for the U.S. — the exchange

rate. Feedback mechanisms are thus confined to the channel of the exchange rate. For all other

regions, the exchange rate e∗it is omitted as a global variable.
49 Details of the estimated model, unit

root tests, residual serial correlation test and tests of weak exogeneity of foreign-specific variables

(namely x∗it) can be found in PSW. We also checked that all the 64 elements of g (T, n) defined by

(19) do in fact converge to finite limits as n→∞. Recall from our discussion at the end of Section

4.1 that the existence of the limit of g (T, n) as n→∞ is a necessary condition for the existence of

E (∆yT+n | ΩT ) which is one of the key components of the multi-step ahead loss distributions.

7 Credit Loss Results

7.1 Estimating PDs and Default Thresholds

Using methods described in Lando and Skødeberg (2002) and Schuermann and Jafry (2003), we

obtain quarterly PD estimates from time homogeneous transition intensities using ratings histories

for firms rated by Moody’s from January 1, 1979 to March 31, 1999, i.e. 1979Q1 to 1999Q1.

The transition intensity approach uses techniques from survival analysis which make efficient use

of ratings histories to obtain transition probabilities. This becomes especially important for the

estimation of the transition from rating R to default, denoted here as PDRt . No default event may

have occurred within a particular quarter; that does not, however, necessarily mean that PDRt = 0.

The transition intensity approach may still yield a positive probability of default for highly rated

obligors even though no default was observed during the sampling period. It suffices that an obligor

migrated from, say, Aaa to Aa to A, and then defaulted, to contribute probability mass to PDAaat .

Still, there may be instances when there is no movement at all during a particular quarter. In that

case the estimated default probability would indeed be identically equal to zero.

For each quarter and each rating-specifc PD, PDRt , we compute the inverse CDF to obtain

a time series of rating specific thresholds.50 Since Moody’s only rates a subset of large firms (in

49Bearing in mind that the exchange rate is defined in terms of U.S. dollars, the currency of the base economy, a

depreciation of the currencies in the rest of the world is per definition equal to an appreciation of the U.S. dollar.

Given this “mirror” relationship, it should suffice to incorporate the exchange rate mechanism as mentioned above.
50While (5) and (6) are written in terms of a standard normal distribution, other distributions such as (standard)

student-t can be substituted.
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1979 they rated 1190 firms of which about 98% were U.S. domiciled; by early 1999 this had risen

to 3710, about 80% U.S.), it is reasonable to assign a non-zero (albeit very small) probability of

default, even if the empirical estimate is zero. After all, we may want to infer default behavior for

a much broader universe of firms than is covered by the rating agencies. Hence we impose a lower

bound on the quarterly PD and their implied thresholds at a PD value of 1/100,000 per annum,

corresponding to 1/250,000 or 0.025 basis points per quarter.

Table 3 presents quarterly PD estimates obtained using the transition intensity approach with

Moody’s rating histories from 1979Q1 - 1999Q1. Specifically, the table presents the PD implied

by the average of quarterly inverse CDFs which we use to compute the default threshold ĉji. The

averages are weighted by the number of obligors rated at the beginning of each quarter. Default

probabilities exhibit the expected sharp increase as we descend the credit spectrum.

Table 3

Quarterly PD Estimates from

Moody’s Rating Histories

(1979Q1 - 1999Q1)

PD of avg.

inverse CDF

Rating (in Basis Points)

Aaa 0.0250

Aa 0.0276

A 0.0309

Baa 0.0748

Ba 2.0486

B 52.505

Caa 131.599

Following the discussion in Section 3.2, average critical values DTRji (recall that DTRji =
1
T

PT
t=1DT (Rjit) where DT (Rjit) = Φ

−1 (PD (Rjit))) are used to compute default thresholds ĉji

in (6).
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7.2 The Sample Portfolio

We analyze the effects of economic shocks on a fictitious large-corporate loan portfolio which is

summarized in Table 4. It contains a total of 119 companies, resident over ten of the eleven

regions. In order for a firm to enter our sample, several criteria had to be met. We restricted

ourselves to major, publicly traded firms which had a credit rating from either Moody’s or S&P.

Thus, for example, Chinese companies are not included for lack of a credit rating. The firms should

be represented within the major equity index for that country. We favored firms for which equity

return data was available for the entire sample period, i.e. going back to 1979. Typically this would

exclude large firms such as telephone operators which in many instances have only been privatized

recently, even though they might now represent a significant share in their country’s dominant

equity index. The data source is Datastream, and we took their Total Return Index variable which

is a cum dividend return measure.

The column to the right in Table 4 indicates the inception of the equity series available for APT-

type regression analysis. We wanted to mimic (broadly) the portfolio of a large, internationally

active bank. Arbitrarily picking Germany as the bank’s domicile country, the portfolio is relatively

more exposed to German firms than would be the case if exposure were allocated purely on a GDP

share (in our "world" of 25 countries). For the remaining regions, exposure was more in line with

GDP share. Within a region, loan exposure is randomly assigned. The expected severity for loans

to U.S. companies is the lowest at 20%, based upon studies by Citibank, Fitch Investor Service and

Moody’s Investor Service.51 All other severities are based on assumptions, reflecting the idea that

severities are higher in less developed countries. Table 4 gives the portfolio composition, regional

weights, individual exposures and expected (µβ) and unexpected (σβ) severities.
52

51As cited in Saunders and Allen (2002).
52Mean severity is assumed to be slightly lower in Germany (as compared to France or U.K., for example), since

Germany is assumed to be the bank’s domicile country and hence the bank may have some local advantages in the

recovery of distress assets. Unexpected severity refers to standard deviation of severity distribution assumed here to

be Beta distributed.
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Table 4

The Composition of the Sample Portfolio for Regions

Equity Series1 Credit Rating2 Portfolio Severity3

Region # Obligors Quarterly Range Per cent Mean S.D.

(µβ) (σβ)

U.S. 14 79Q1 - 99Q1 AAA to BBB- 20 20% 10%

U.K. 9 79Q1 - 99Q1 AA to BBB+ 6 35% 15%

Germany 18 79Q1 - 99Q1 AAA to BBB- 21 30% 15%

France 8 79Q1 - 99Q1 AA to BBB 8 35% 15%

Italy 6 79Q1 - 99Q1 A to BBB- 8 35% 15%

W. Europe 12 79Q1 - 99Q1 AAA to BBB+ 8 35% 15%

Middle East 4 90Q3 - 99Q1 B- 2 60% 20%

S.E. Asia 23 89Q3 - 99Q1 A to B 10 50% 20%

Japan 13 79Q1 - 99Q1 AAA to B+ 10 35% 15%

L. America 12 89Q3 - 99Q1 A to B- 5 65% 20%

Total 119 - - 100 - -

1. Equity prices of companies in emerging markets are not available over the full sample period used for the estimation

horizon of the GVAR. We have a complete series for all firms only for the U.S., U.K., Germany and Japan. For

France, Italy and W. Europe, although some of the series go back through 1979Q1, data was available for all firms

from 1987Q4 (France), 1987Q4 (Italy), 1989Q3 (W. Europe). We used that sample range for the APT regressions

for those regions. For L. America we have a complete sample range for all firms from 1990Q2.

2. The sample contains a mix of Moody’s and S&P ratings, although S&P rating nomenclature is used for convenience.

3. Severity is drawn from a beta distribution with mean µβ and standard deviation σβ .

7.3 APT Regressions

7.3.1 Factor Selection Process

With the GVAR framework serving as the global economic engine, we make use of the APT model to

capture systematic risk for use in the firm default model. Equation (32) above lays out the general

form of the APT regressions, but a closer look at this specification reveals two important issues.

First, given the diverse nature of the operations of the firms in our portfolio, one is tempted to
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included all the domestic, foreign and global factors (i.e. oil price changes) in the APT regressions.

This general approach may be particularly important in the case where a multinational is resident

in one country, but the bulk of its operations takes place in the global arena. However, because

there is likely to be a high degree of correlation between some of the domestic and foreign variables

(e.g. real equity prices and interest rates), it is by no means obvious how to proceed with the model

selection process.

Secondly, because not all regressors, be they foreign or domestic, are likely to be statistically

significant, it may be efficient to restrict those insignificant coefficients to zero for subsequent loss

simulation purposes. To this end two possible approaches can be followed. A standard procedure

would be to apply regressor selection methods to each of the firm-specific APT regressions sepa-

rately. Since we have 119 firms in our portfolio with as many as 1353 estimated coefficients each, the

application of such a procedure besides being very time-consuming can be subject to a considerable

degree of specification searches with undesirable consequences. Alternatively, we could view the

119 APT regressions as forming a panel with heterogeneous slope coefficients.54 Such panels have

been studied recently by Pesaran and Smith (1995) and Pesaran, Smith and Im (1996), where it is

shown that instead of considering firm-specific estimates one could base the analysis on the means

of the estimated coefficients, referred to as the mean group estimators (MGE). This approach as-

sumes that the variations of factor loadings, βji, and β∗ji, in (32) across firms in different regions

are approximately randomly distributed around the fixed means, β and β∗. This is the standard

random coefficient model used extensively in the panel literature. The choice of the factors in the

APT regressions can now be based on the statistical significance of the (population) mean coeffi-

cients, β and β∗, by using the MGE to select the slimmed-down regressor set. The appropriate

test statistics for this purpose are given by

t =
β̂qdV ar(β̂ ) and t∗ =

β̂
∗qdV ar(β̂∗) ,

53One constant, 6 domestic, 5 foreign macroeconomic variables plus oil prices.
54While we demonstrate the model with a portfolio of 119 firms, our approach could easily be applied to a much

larger portfolio.
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where, for nci companies in region i, i = 0, ...,N ,

β̂ =

PN
i=0

Pnci
j=1 β̂ji,PN

i=0 nci
,

dV ar(β̂ ) =

PN
i=0

Pnci
j=1

³
β̂ji, − β̂

´2³PN
i=0 nci

´³PN
i=0 nci − 1

´ ,
and similarly for β̂

∗
and dV ar(β̂∗).55

With these issues in mind, we are now able to take a systematic approach towards estimating

the APT regressions for each firm. For all firms, we start by estimating an APT regression that

includes all variables which correspond to the choice of variables in the GVAR model itself for the

firm’s domicile region. These regressor sets are summarized in Table 2 where we can see that the

U.S. firm equations are somewhat different from those in the other regions in that the only foreign

regressor included is foreign real exchange rate (∆e∗), but the domestic exchange rate variable is

excluded as the U.S. dollar is the numeraire currency. For the non-U.S. regressions, we apply the

MGE procedure to remove insignificant variables. Because of the limited number of U.S. firms, we

rely on t-statistics and the signs of individual coefficients to choose the best subset of regressors.

Finally, recognizing the likely collinearity of ∆q and ∆q∗ (the domestic and foreign equity series),

we run two versions of each model, one with domestic equity and one with foreign. We choose the

model with the higher adjusted R-squared, R̄2.56 ,57

7.3.2 APT Regression Results

A summary result of the initial APT regressions are provided in Table 5 in Appendix A where the

proportion of firms with significant APT regressions (using an F-test at the 5% level) and significant

t-ratios for individual factors are given across different countries/regions. This table is not meant to

55A similar exercise can of course be carried out at the country/region level. However, in the present application

we did not think the number of firms at the region level are sufficient for the MG test to be meaningful.
56Since the two non-nested APT regressions have the same number of coefficients the same result would follow if

other model selection criteria are used.
57Of course, there are other approaches to choosing an APT specification for each firm. We considered (and, in

fact, carried out) alternative approaches, including one which began with only domestic variables (plus oil) in the

APT regressions, slimming down via MGE, and then potential substitution of foreign for domestic variables if the

significance or sign of the domestic variable was called into question. In the end, we felt that taking an approach

that was more consistent with the framework of the GVAR model (i.e. beginning with all of the GVAR models and

then paring the model down) was more appropriate.

42



convey statistical significance or lack thereof but should rather be considered as broadly descriptive

of the APT regression results. For instance, the precision of the ratios (averages) depends on the

number of firms in each of the cells; reporting those would make the table visually awkward.

Around 90% of those regressions were significant (using the F-test) at the 5% level.58 The F-test

values in the first row of Table 5 suggest that changes in the macroeconomic factors have a significant

influence on equity returns. The t-statistics for the coefficients of individual macroeconomic factors

clearly single out two important ones: the domestic and foreign real equity returns.59 For regions

where no full equity series could be incorporated in the GVAR, i.e. the Middle East, we cannot

identify one dominant macroeconomic factor. In South East Asia, both domestic and foreign

output matter, as does the exchange rate. Oil price changes are significant in about a quarter of

the regressions.

Across the ten regions, variation in the macroeconomic factors explains between 25% and 50%

of the total variations in firm returns, as measured by R̄2. If we have captured overall systematic

risk reasonably well, the diversification benefits in an all-German portfolio (average R̄2 = 0.29)

should thus be greater than for an all- South East Asian portfolio (average R̄2 = 0.47)), which

seems to be more driven by systematic risk. Consequently, similarly sized macroeconomic shocks

should affect loans to South East Asian obligors to a higher extent than loans to German obligors.

We now employ the MGE test in order to determine the significance of the factors using our

panel of estimates, the results of which are presented in Table 6.

58 In PSW by comparison, where only the domestic variables (plus oil price) entered the APT regressions, around

80% of those regressions attained this significance level.
59Thus, it seems plausible to reduce the multi-factor APT-type approach to a single factor CAPM-type approach

for regions where an equity series is available.
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Table 6

Mean Group Estimates of Factor Loadings

in APT Regressions

Number of

Factors MGE S.E. of MGE t-ratios Coefficients

β̂ (β̂
∗
)

qdV ar(β̂ ) t (t∗)
PN

i=0 nci

constant 0.03 0.01 3.10 119

∆y 0.39 0.61 0.64 119

∆2p -1.22 0.39 -3.16 119

∆q 0.62 0.07 9.30 115

∆e 0.08 0.10 0.81 105

∆r -1.43 0.97 -1.47 119

∆m -0.01 0.26 -0.02 119

∆y∗ -2.01 1.15 -1.75 105

∆2p∗ -2.26 1.14 -1.98 105

∆q∗ 0.48 0.11 4.28 105

∆e∗ 0.10 0.15 0.62 14

∆r∗ 5.29 3.21 1.65 105

∆m∗ -0.42 0.58 -0.72 105

∆po 0.15 0.07 2.13 119

Based on the MG test results the statistically most significant factors are, perhaps not sur-

prisingly, changes in domestic and foreign real equity prices (∆q and ∆q∗). The MGE of equity

prices have the expected signs and their magnitudes seem plausible. For example, the estimated

coefficients of changes in domestic and foreign equity prices add up to 1.10, suggesting that the

composition of the loan portfolio closely matches that of a global market portfolio. Domestic in-

flation (and to a lesser extent foreign inflation) and oil prices were also statistically significant.

Both domestic and foreign inflation have negative effects on returns, as to be expected. The overall

effect of the oil price changes is, however, positive. This seems a reasonable outcome for energy

and petrochemical companies and for some of the banks, although one would not expect this re-

sult to be universal. In fact we do observe considerable variations in the individual estimates of

the coefficients of oil prices changes across different firms in our portfolio. Amongt the remaining

factors, interest rates and foreign output are also marginally significant. The latter is difficult to
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explain, particularly considering that domestic output is not statistically significant and foreign

output has a wrong sign. In view of this we decided to exclude both of the output variables from

our subsequent analysis. Of the two interest rate variables we included the domestic rate which

had the correct sign.

Our concerns regarding multicollinearity were confirmed by the regression results. Initially, we

included both foreign and domestic equity variables but found implausible (negative) estimates for

some of the APT regressions, which we believe partly reflects the high correlation of ∆q and ∆q∗

in some regions. Working with APT regressions with perversely signed estimated coefficients is

particularly problematic for the analysis of shock scenarios where the coefficient of equity prices

plays a critical role in the transmission of shocks to the loss distribution. We ran two sets of

APT regressions (including inflation, interest rate and the oil price variables); one with ∆q and

another with ∆q∗, and selected the regression with higher R̄2. The summary of the final set of APT

regressions and the associated MG estimates are given in Table 7. In this specification inflation,

equity price changes and oil price changes remain the key driving factors in the APT regressions.

It is also worth noting that the mean group estimate of the equity price variable is not significantly

different from unity, which suggests the credit risk portfolio we have selected is close to the (global)

market portfolio which has a “beta” of unity.

.

Table 7

Mean Group Estimates of Factor Loadings

The Preferred Model

Number of

Factors MGE S.E. of MGE t-ratios Coefficients

β̂ (β̂
∗
)

qdV ar(β̂ ) t (t∗)
PN

i=0 nci

constant 0.02 0.003 6.14 119

∆2p -1.20 0.37 -3.21 119

∆q/∆q∗ 1.08 0.05 22.36 119

∆e 0.07 0.15 0.46 14

∆r∗ -1.37 0.98 -1.40 105

∆po 0.32 0.07 4.27 119
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7.4 Simulated Conditional Loss Distributions

With the estimated GVAR model serving as the economic scenario generator and the fitted APT

regressions as the linkage between firms and the economy, we simulated loss distributions for three

different horizons: one, four and eight-quarters ahead.60 A one year horizon is typical for credit risk

management and thus of particular interest. For each horizon we examined the impact of several

shock scenarios.61

• a —2.33σ shock to real U.S. equity, corresponding to a quarterly drop of 14.28%

• a +2.33σ shock to real German output, corresponding to a quarterly rise of 2.17%

• a —2.33σ shock to real S.E. Asian equity, corresponding to a quarterly drop of 24.77%

• a +2.33σ shock to Japanese real money supply, corresponding to a quarterly rise of 2.87%

• a +2.33σ shock to the price of crude oil, corresponding to a quarterly rise of 16.01% 62

In addition we experimented with symmetric positive shocks to U.S. and S.E. Asian equity

prices, and a symmetric negative shock to the price of crude oil. These are of particular interest

here since their impacts on losses will not be (negatively) symmetric due to the nonlinearity of the

credit risk model. We also include a stress scenario for the U.S. equity market as reported in PSW,

namely an adverse shock of 8.02σ. Such a large shock corresponds to a quarterly drop of 49% which

is the largest quarterly drop in the S&P 500 index since 1928 (which occurred in the three months

to May, 1932). It also corresponds to the recent decline from their peak in 2000 to a recent low (in

early October, 2002). Finally we include an intermediate negative equity shock of −5σ.
We carried out 50,000 simulations for each shock scenario using Gaussian and Student t dis-

tributed (compound) innovations with 5 and 10 degrees of freedom, the former reflecting fat-tails

commonly found in equity and foreign exchange rate markets, the latter being an intermediate case

of fat-tailed innovations.63 All losses are discounted with a real interest rate of 2% per annum.

60The important issue of credit risk model evaluation is beyond the scope of this paper; we plan to address it in

subsequent work. See also Lopez and Saidenberg (2000).
61 2.33σ corresponds, in the Gaussian case, to the 99% Value-at-Risk (VaR), a typical benchmark in risk manage-

ment.
62The price at the end of 1999Q1 was $12.31 a barrel (Brent Crude). A +2.33σ shock would raise the price to

$14.45.
63To ensure convergence, we also performed simulations up to 200,000 runs; the results were indistinguishable from

our base runs based on 50,000 replications.
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For the forecasts and shock scenarios, we computed expected loss results, both theoretical (using

(44)) and simulated (49). The two sets of estimates turn out to be very close indeed so we only

report the simulated ones. The simulated expected loss results for all three simulation horizons are

summarized in Table 8a, where each column represents a particular scenario. The scenarios are

ordered roughly in descending order (left to right) of loss impact.

[Insert Tables 8a and 8b about here]

Taking first the shocks of size 2.33σ, the most significant impact on expected loss (EL) comes

from the the adverse shock to U.S. real equity prices. For the Gaussian case, at one quarter ahead,

losses are nearly three times the baseline values (Gaussian: 3.5bp vs. 1.2bp), but the relative

magnitude declines as the forecast horizon extends; about 70% higher at four quarters (6.8bp vs.

4.0bp) and just 36% higher at eight quarters (11.0bp vs. 8.1bp). If compound innovations are taken

to be Student t distributed, the relative severity of the U.S. real equity price scenario compared to

the baseline is less: about twice for one quarter ahead (5.2bp vs. 2.2bp for t[10], 8.3bp vs. 4.4bp for

t[5]), 30-40% for four quarters ahead (13.6bp vs. 9.7bp for t[10] and 21.6bp vs. 16.7bp for t[5]), and

just 16-28% for eight quarters ahead (19.9bp vs. 15.5bp for t[10] and 39.1bp vs. 33.7bp for t[5]).

Not surprisingly, the expected losses increase as we go from Gaussian shocks to the t distributed

shocks with much fatter tails, with losses being largest in the case of t distributed shocks with 5

degrees of freedom. As we shall see this pattern gets repeated as we consider other aspects of the

loss distribution.

From a risk perspective, it is not so much expected as unexpected loss (UL) which matters.

This is captured in the volatility or the standard deviation of losses summarized in Table 8b, and

there a similar story emerges. Taking again the -2.33σ shock to U.S. real equity prices, the ratio

of ULUSEQ to ULbaseline declines as the distribution of compound innovations becomes more fat-

tailed, irrespective of whether one, four or eight quarters ahead is considered. Risk differences

mitigate as the horizon extends. That ratio is 1.79 (12.0bp to 6.7bp), 1.27 and 1.14 for Gaussian,

one, four and eight quarters respectively. For t[10] it is 1.60 (14.9bp to 9.3bp), 1.21 and 1.13 for

one, four and eight quarters respectively, and for the most fat-tailed t[5] it is a more modest 1.39

(19.1bp vs. 13.7bp), 1.14 and 1.08 for one, four and eight quarters respectively.

But as to be expected, the absolute levels of expected and unexpected losses are greater the

fatter are the tail of the distribution assumed for the innovations. This overall pattern is consistent

across shock scenarios. For a given horizon, as we move from Gaussian to t[10] and then t[5], losses

increase as expected. As the horizon extends, an initially severe shock generates very similar EL
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and UL levels by the time two years have passed. These results clearly show the importance of

allowing for fat-tailed shocks for loss distributions particularly over relatively short horizons. As

horizons are extended the tail properties tend to be less important; a result which requires further

analysis.

Symmetric shocks do not result in symmetric outcomes, namely positive and negative shocks

of the same absolute size do not have the same absolute effects on loss distributions. We have

two scenarios with (negatively) symmetric shocks: U.S. and S.E. Asian real equity prices. This

asymmetry is apparent by looking at either EL or UL, Gaussian or t-distributed. For example, for

the S.E. Asian case, Gaussian innovations, in the first quarter the EL of the adverse shock is about

90% bigger than the baseline while the positive shock generates losses that are only about 20%

smaller (Table 8a). In the U.S. case, the asymmetry is less at the mean (EL), where losses increase

(decrease) by a factor of about 2.9 (2.3) for an adverse (positive) shock, than in the volatility of

losses (UL; see Table 8b), where an adverse shock increases UL by about 79% while a positive

shock of the same magnitude reduces loss volatility only by about 50%.

[insert Figures 2, 3 and 4 about here]

The asymmetry is especially pronounced if one considers the tails of the loss distributions.

These are shown in Figures 2 (one quarter), 3 (four quarters) and 4 (eight quarters) which chart

the 99% tail of the simulated loss distributions. For instance, looking at the four quarter horizon

(Figure 3), the S.E. Asian and U.S. negative equity shock-induced loss distributions lie further

above the baseline than their positive counterparts lie below that baseline. The shapes of the tails

are also different both across scenarios and across forecast horizons. The tail is especially kinked

after just the first quarter when the impact is the largest for the far tail (Figure 2). Those tails

smooth out considerably as the forecast horizons extends, as can be seen in Figures 3 and 4.

The benign shock to U.S. real equity prices reduces losses. In fact, in the first quarter, the 99%

VaR is 21.5bp compared to a baseline loss of 41.5bp. This changes as the horizon is extended. By

four quarters out (Figure 3), losses under this benign scenario at the 99% level are 51.3bp compared

with 55.5bp for the baseline scenario. After two years the difference is yet smaller (Figure 4): 66.8bp

vs. 73.4bp.

A positive shock to German real output does not have a substantial impact on the loss distri-

bution, despite the relative concentration of credit exposures to Germany in this portfolio (21% of

total face value). In fact, a positive shock to S.E. Asian real equity prices has a more beneficial

effect than a positive shock to German real output at any horizon (Figures 2-4). This is likely
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driven by the important role equity prices play in our APT models relative to output which do

not enter the preferred model at all (see Table 7). Thus shocks to GDP will translate to losses

indirectly through the other factors as governed by the generalized impulse response functions. A

similar outcome is also observed with Japanese money supply shock.

[Insert Figures 5a&b about here]

Figure 5a and 5b illustrate the impact of symmetric shocks to the oil price on credit loss. At

a magnitude of 2.33σ, we use both a positive (price increase) and a negative oil price shock (price

decrease). Interestingly, both shocks are found to have adverse impacts on credit loss - more so

for the negative oil shock. This is true for expected and unexpected loss (Tables 8a&b), as well

as the whole loss distribution. While one would not generally expect this result, it is in line with

our mean group estimates of the return regression equation, which are found to be positive at 0.32

(see Table 7). For the majority of firms in our sample, an upward shock to the oil price has benign

effects. Yet, there are also firms which move close to default in the presence of an upward shock

to the oil price (as one would expect for many industries). As we have already seen, symmetric

shocks do not result in symmetric changes to the loss distribution. The increase in credit loss from

an adverse shock is disproportionately larger than loss mitigation from a benign shock of the same

magnitude. While oil price shocks may have opposite effects on individual firm default risk, the

adverse effect tends to outweigh the benign one. Thus, it is plausible within the portfolio context

of our model that positive and negative shocks to the same variable may both result in adverse

effects on credit loss.

Figure 5a displays the loss distribution for a much longer portion of the tail than the other

charts: 90% and beyond instead of 99% and beyond. One can clearly see just how steep, in this

display manner, the loss curve becomes in the far tail. Past a certain point, about the 99%-ile,

losses increase dramatically. It is no accident that credit risk managers focus on this region.

[insert Figure 6 about here]

Figures 6 and 7 display the effect of using fat-tailed innovations, as compared with our Gaussian

basecase. In an attempt to summarize the effect over time across different shocks, in Figure 6 we

look at just the marginal mean loss, EL, for each of one to eight quarters. The top part of the

chart, shaded in pink, captures the t[5] loss region, and the bottom part, shaded in light yellow,

captures the losses resulting from Gaussian innovations. The expected loss from the basline t[10]

case is also included as a visual reference point; as expected, it falls between the Gaussian and t[5].
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As the innovations become more fat tailed, losses increase, exactly as expected. Marginal losses

due to shocks converge quickly to the marginal baseline shocks as the horizon extends beyond three

quarters. Baseline losses roughly double as one moves from Gaussian to t[10] and double again

from t[10] to t[5].

[insert Figure 7 about here]

What happens as the shocks become more and more extreme? This question is addressed in

Figure 7 for different U.S. real equity shock scenarios: −5.00σ and −8.02σ, the latter matching the
largest quarterly drop in the S&P 500 index since 1928. In this chart we display again the 99%

tail of the simulated loss distributions for the typical risk management horizon of four quarters.

We also display the baseline loss distribution for comparison. To be sure, a shock as extreme as

−8.02σ is, of course, outside the bounds of the estimated model. It would be unreasonable to
believe that such a large shock would not result in changes of the underlying parameters. However,

it is still instructive to examine the apparent trade-offs between size of shock and fatness of tails

of the innovations, two ways one might stress a credit risk model.

The loss curves are most spread apart for the baseline case, least for the extreme shock case

(−8.02σ) where loss curves are quite close together. Interestingly the tail losses due to a −5σ shock
under Gaussian assumptions are only a little larger than the tail losses under the no-shock baseline

scenario assuming innovations are t[5] distributed. Moreover the chart shows that when assuming

a Gaussian process, it seems perhaps unreasonable to consider a shock of such a magnitude (−5σ
or −8.02σ) as its likelihood would have been zero (or very nearly so!) if the Gaussian assumption
were in fact true.64

8 Concluding Remarks

In this paper we developed a coherent and consistent framework for modeling conditional loss

distributions through the introduction of risk factor dynamics. We explicitly link the asset value

changes of a credit (loan) portfolio to a dynamic global macroeconometric model which allows us

to isolate macro effects from idiosyncratic shocks as they relate to default (and hence loss). Default

probabilities are driven primarily by how firms are tied to business cycles, both domestic and

foreign, and how business cycles are linked across countries. In our model, domestic and foreign

64 Indeed this may be a good example of how the logic of a modeling strategy imposes restrictions on the type of

shocks that one could consider as a plausible counter-factual.
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business cycle effects are allowed to have differential impacts on different firms. Not only are we able

to control for firm-specific heterogeneity, but we also are able to generate multi-period forecasts of

the entire loss distribution, conditional on specific macroeconomic shock scenarios. Our conditional

modeling framework is thus a step towards joint consideration of market and credit risk.

The first step in developing such a model is to build an economic engine reflective of the envi-

ronment faced by an internationally active global bank. Our macroeconometric model, developed

in Pesaran, Schuermann and Weiner (2003), builds on recent advances in the analysis of cointe-

grating systems and allows for interaction among different economies through three separate but

interrelated channels:

1. Direct dependence of the relevant macro-factors on their region-specific foreign counterparts

and their lagged values;

2. Dependence of the region-specific variables on common global exogenous variables such as

oil prices and possibly other variables controlling for major global political events;

3. Non-zero contemporaneous dependence of shocks in region i on the shocks in region j,

measured via the cross-region covariances.

Thus, for instance, we are able to account for inter-linkages (if any) between interest rate changes

in the U.S. and output in Germany.

For the credit portfolio component of our model we use a simple Merton-type framework, mod-

eling credit risk as a function of correlated equity returns of the obligor companies. Equity returns

are linked to correlated macroeconomic variables using an approach structurally similar to the Ar-

bitrage Pricing Theory (APT). In this way we are able to account for firm-specific heterogeneity in

an explicitly interdependent global context; domestic and foreign business cycle effects are allowed

to impact each firm differently. We then use the estimated global model as the economic engine for

generating a multi-period conditional loss distribution of a credit portfolio using stochastic simu-

lation. Sampling takes place along three lines: correlated random draws of macroeconomic factors;

draws of firm-specific risk components; and draws of stochastic loan loss severities. Finally we

analyze the impact of a shock to a set of specific macroeconomic variables on the loss distribution,

allowing us to analyze the effect of a particular macroeconomic shock in one region on credit port-

folios concentrated in other regions, as well as shocks to risk factors, e.g. oil prices, affecting all

regions.

Our credit risk modeling approach has three other features of particular relevance for risk

managers: exploration of scale and symmetry of shocks on credit risk; effect of non-normality; and

ranking of shock impacts on credit risk. First, our framework allows for the analysis of symmetry
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and scale for a variety of macroeconomic shocks. Indeed we show that shocks not only have an

asymmetric but also non-proportional impact on credit risk due to the nonlinearity of the credit risk

model. Because the Merton model is an option-theoretic model, these traits echo characteristics of

the options markets: large movements in the underlying prices have disproportional effects on the

value of the option portfolio.

Second, we allow for simulated innovations to be drawn from non-normal distributions such

as the Student t with varying degrees of freedom to reflect the fat-tailed nature of some financial

variables. We show that the absolute levels of expected and unexpected losses are greater the fatter

are the tail of the innovation distribution. These effects are mitigated as we increase the horizon

of analysis.

Third, the model allows us to rank the effects of different shocks on a global portfolio. Not

surprisingly, shocks to real equity prices seem to have the most significant effect on implied credit

losses, followed here by shocks to the price of crude oil. Having arbitrarily picked Germany as the

portfolio’s domicile country, we naturally were interested in the impact of, say, a positive shock

to German real output. We find that such a shock does not have a substantial impact on the

loss distribution, despite the relative concentration of credit exposures to German economy in this

portfolio (21% of total face value). In fact, a positive shock to S.E. Asian real equity prices has a

more beneficial effect than a proportionate positive shock to German real output. Thus from the

perspective of a German risk manager, the viewpoint we are trying to mimic, given this portfolio,

positive shocks to German output are less cause for excitement than positive shocks to S.E. Asian

equity prices. Information of this kind is quite valuable for portfolio and/or risk managers, who

typically perform scenario analyses on a quarterly (or perhaps even more frequent) basis. It would

then allow the manager to consider alternative strategies such as reallocation or derivative solutions

to managing the largest risks associated with a portfolio.

In being able to analyze the impact of shocks to markets and macroeconomic variables, the

effectiveness of macro-hedging strategies of credit risk may be considered. Most of the underlying

risk factors can now be hedged with financial contracts and instruments, even the macroeconomic

ones.65 In addition, our framework can be employed in other applications ranging from the pricing

of credit instruments such as collateralized debt obligations (CDOs) and credit derivatives, to firm-

wide risk and capital management applications for financial institutions. These are clearly fruitful

areas for future research.
65For example, one U.S. investment bank currently offers options on economic statistics, so-called economic deriv-

atives.
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A APT Regression Results

Table 5

Results from Firm APT-type regressions: % of firms significant at 5% level66

W. Mid S. E. Latin

U.S.A. U.K. Germany France Italy Europe East Asia Japan America

F-test 93% 100% 94% 88% 83% 100% 75% 91% 91% 58%

const.67 21% 44% 6% 0% 17% 17% 0% 17% 15% 8%

∆y 14% 11% 0% 0% 0% 8% 25% 39% 8% 0%

∆2p 21% 11% 0% 13% 0% 0% 25% 17% 0% 42%

∆q 93% 44% 11% 25% 67% 92% — 70% 85% 67%

∆2e — 11% 0% 0% 0% 0% 0% 39% 38% 8%

∆r 0% 0% 0% 0% 17% 8% 50% 9% 0% 25%

∆m 14% 0% 0% 0% 0% 25% 25% 13% 0% 8%

∆y∗ — 0% 0% 0% 17% 25% 0% 52% 8% 8%

∆2p∗ — 11% 0% 13% 0% 8% 0% 4% 0% 17%

∆q∗ — 56% 100% 75% 0% 58% 25% 13% 15% 17%

∆2e∗ 7% — — — — — — — — —

∆r∗ — 22% 0% 13% 17% 17% 25% 4% 0% 8%

∆m∗ — 0% 0% 0% 0% 0% 0% 13% 0% 0%

∆po 21% 22% 33% 25% 33% 25% 0% 22% 0% 8%

avg. R2 0.30 0.34 0.38 0.49 0.56 0.64 0.52 0.61 0.40 0.48

avg. R̄2 0.25 0.25 0.29 0.34 0.43 0.51 0.33 0.47 0.31 0.27

66We use the maximum sample length available to all firms in one region.
67The remaining are t-tests.
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Table 8a

Mean (Expected Loss) of Simulated Losses for 1, 4 and 8 Quarters Ahead (in Basis Points of Exposure)1

-8.02σ
U.S.

Equity

-5.00σ
U.S.

Equity

-2.33σ
U.S.

Equity

-2.33σ
Oil

-2.33σ
SEA

Equity

+2.33σ
Japanese

Money

+2.33σ
U.S.

Interest 

Base-
line

+2.33σ
German
Output

-2.33σ
U.S.

Interest 

+2.33σ
Oil

+2.33σ
SEA

Equity

+2.33σ
U.S.

Equity

1Q Gaussian 133.2 21.8 3.5 3.5 2.3 1.5 1.5 1.2 1.2 1.1 1.3 1.0 0.5

t [10] 134.7 24.4 5.2 4.5 3.6 2.5 2.3 2.2 2.2 2.0 2.3 1.8 1.1

t [5] 135.8 27.3 8.3 6.8 6.0 4.6 4.5 4.4 4.4 4.3 4.5 3.9 2.7

4Q Gaussian 138.1 26.0 6.8 6.4 5.5 4.5 4.3 4.0 3.9 4.0 4.1 3.5 2.9

t [10] 143.4 34.0 13.6 11.9 11.8 10.2 9.7 9.7 9.4 9.6 9.9 8.6 7.8

t [5] 152.4 42.4 21.6 19.1 19.1 17.3 16.5 16.7 16.1 16.8 16.9 15.4 14.1

8Q Gaussian 143.2 30.7 11.0 10.0 9.7 8.5 8.2 8.1 7.7 7.8 8.2 7.1 6.6

t [10] 152.9 40.6 19.9 17.6 18.1 16.2 15.7 15.5 15.1 15.4 16.2 14.2 13.4

t [5] 171.6 60.8 39.1 35.6 36.9 34.3 33.7 33.7 32.9 33.7 34.7 31.6 30.4

                                                     
1 All losses are discounted by a real interest rate of 2% per annum.



Table 8b

Standard Deviation (Unexpected Loss) of Simulated Losses for 1, 4 and 8 Quarters Ahead (in Basis Points of Exposure) 2

-8.02σ
U.S.

Equity

-5.00σ
U.S.

Equity

-2.33σ
U.S.

Equity

-2.33σ
Oil

-2.33σ
SEA

Equity

+2.33σ
Japanese

Money

+2.33σ
U.S.

Interest 

Base-
line

+2.33σ
German
Output

-2.33σ
U.S.

Interest 

+2.33σ
Oil

+2.33σ
SEA

Equity

+2.33σ
U.S.

Equity

1Q Gaussian 63.1 30.1 12.0 11.8 9.4 7.6 7.5 6.7 6.9 6.7 7.0 6.3 4.2

t [10] 63.0 32.0 14.9 13.4 11.9 10.0 9.6 9.3 9.2 9.3 9.4 8.4 6.6

t [5] 64.0 34.4 19.1 16.8 15.9 13.9 13.7 13.7 13.6 13.7 13.9 13.1 10.6

4Q Gaussian 87.0 52.1 31.1 29.7 28.4 25.9 25.1 24.4 24.0 24.6 24.7 22.7 20.6

t [10] 95.4 62.2 42.4 38.8 39.0 360.0 34.5 35.0 33.9 35.2 35.6 32.8 30.2

t [5] 110.1 78.7 60.2 56.2 56.5 53.9 52.4 52.8 51.9 53.4 53.4 50.9 48.3

8Q Gaussian 114.6 78.4 55.7 52.8 53.2 50.2 49.0 48.9 47.6 48.3 49.2 45.8 43.8

t [10] 133.8 98.7 78.1 72.9 75.1 71.0 69.3 69.4 68.1 69.4 7.2 66.1 63.7

t [5] 166.6 1334.0 114.2 108.5 111.0 106.9 105.5 106.1 104.3 106.3 108.2 102.6 100.3

                                                     
2 All losses are discounted by a real interest rate of 2% per annum.
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Marginal Expected Loss per Quarter: Gaussian and t [5,10]
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