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Abstract

In this paper, we re-visit the inference problem for interval identi�ed parameters originally
studied in Imbens and Manski (2004) and later extended in Stoye (2007). We establish a new
con�dence interval that is asymptotically valid under the same assumptions as in Stoye (2007).
Like the con�dence interval of Stoye (2007), our new con�dence interval extends that of Imbens
and Manski (2004) to allow for the lack of a super-e¢ cient estimator of the length of the identi�ed
interval. In addition, it shares the natural nesting property of the original con�dence interval
of Imbens and Manski (2004). A simulation study is conducted to examine the �nite sample
performance of our new con�dence interval and that of Stoye (2007). Finally we extend our CI
for interval identi�ed parameters to parameters de�ned by moment equalities/inequalities.

�We thank Patrik Guggenberger, Chuck Manski, Frank Schorfheide, Kevin Song, Jörg Stoye, and Jisong Wu for
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1 Introduction

Partial identi�cation of parameters of interest is common in many areas of economics, see Manski

(2003) for a survey in microeconometrics, Chernozhukov, Hong, and Tamer (2007) (CHT hence-

forth) for an extensive list of examples in microeconomics, and Moon and Schorfheide (2007) for

examples in macroeconomics. The distribution and quantile of the e¤ects of a binary treatment

studied in Fan and Park (2007a, b) for randomized experiments and Fan and Wu (2007) for switch-

ing regimes models add to the already extensive list of partially identi�ed parameters.

In the seminal paper of Imbens and Manski (2004) (IM henceforth), they proposed con�dence

intervals (CI) for interval identi�ed parameters that are asymptotically uniformly valid under main-

tained assumptions. Since IM, numerous papers on inference for partially identi�ed parameters have

appeared in the literature. They can be classi�ed into two groups; those based on re-sampling tech-

niques such as subsampling and bootstrap; and those that do not reply on re-sampling. The former

includes Bugni (2006), CHT, Romano and Shaikh (2005a,b) and the latter includes IM, Stoye

(2007), Rosen (2005), Soares (2006), Beresteanu and Molinari (2006), and Andrews and Guggen-

berger (2007) (AG (2007) henceforth). More recently, Moon and Schorfheide (2007) present a

Bayesian approach to this problem.

The simplicity of the CIs of Imbens and Manski (2004) and Stoye (2007) makes them appealing,

but their dependence on the speci�c structure of interval identi�ed parameters and the asymptotic

normality of estimators of the lower and upper bounds on the true parameter makes them hard to

generalize to parameters de�ned by general moment equalities/inequalities. In a series of papers,

Andrews and Guggenberger (2005a,b,c, 2007, AG hereafter) developed several general methods

of constructing uniform con�dence sets (CS) in non-regular models. In AG (2007), they propose a

simple plug-in asymptotic CS (PA-CS) for parameters de�ned by moment equalities/inequalities.

Compared with the subsampling CS, AG (2007) showed that the PA-CS may be asymptotically

conservative when there are restrictions on moment inequalities such that if one moment inequal-

ity holds as an equality, then another moment inequality can not be satis�ed as an equality. A

notable example of this is the interval identi�ed parameter case unless the true parameter is point

identi�ed. In contrast, the CIs of IM and Stoye (2007) take into account such restriction and are

not asymptotically conservative.

One contribution of the current paper is to extend the CI of IM to parameters de�ned by general

moment equalities/inequalities. To do this, we �rst re-examine the set-up of IM by using the general

approach of constructing CSs by inverting a two-sided hypothesis test for the true parameter. We

obtain an asymptotically uniformly valid, non-conservative CI by taking into account the restriction

on the interval bounds and we show that it reduces to that of IM when there exists a super-e¢ cient

estimator of the length of the identi�ed interval. We also show that the CI of Stoye (2007) can be
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obtained by inverting two one-sided tests for the true parameter. Unlike the CI of Stoye (2007), our

CI shares the natural nesting property with that of IM, i.e., the CI with a larger nominal con�dence

level includes the CI with a smaller nominal con�dence level. As a by-product, we note that our

CI can be easily adapted to the case where estimators of the lower and upper bounds on the true

parameter are not asymptotically normally distributed, provided their asymptotic distribution does

not exhibit a discontinuity as a function of parameters of the model.

For interval identi�ed parameters, the CI of Stoye (2007) and our new CI take into account

the restriction on the interval bounds by estimating the length of the identi�ed interval with a

shrinkage estimator. To construct asymptotically non-conservative CSs for parameters de�ned

by general moment equalities/inequalities, we use shrinkage estimators of the so-called slackness

parameters, one for each moment inequality. The value of a slackness parameter reveals to what

extent the correpsponding moment inequality is binding. For interval identi�ed parameters, a

weighted sum of the two slackness parameters is identical to the length of the identi�ed interval

and the use of shrinkage estimators of the slackness parameters plays the same role as the use

of a shrinkage estimator of the length of the identi�ed interval. Compared with existing CSs for

parameters de�ned by moment equalities/inequalities, our CS is easy to implement; no re-sampling

is required and no optimization is involved.

We carried out a simulation study on interval data and applied our new con�dence interval, that

of Stoye (2007), and the PA-CS of AG (2007) to three arti�cially created DGPs from the March

2000 wave of the Current Population Survey (CPS) data. The three DGPs represent respectively

the point identi�ed case, interval identi�ed case with a small interval length, and interval identi�ed

case with a large interval length. Our general �nding is that our new con�dence interval and that

of Stoye (2007) perform comparably, but the PA-CS of AG (2007) can over-cover especially when

the sample size is large. Moreover, the simulation results support the theoretical �nding of Stoye

(2007) and the current paper, i.e., it is essential to use the shrinkage estimator when the length of

the identi�ed interval is zero or small.

The rest of this paper is organized as follows. In Section 2, we re-examine the case of interval

identi�ed parameters and construct a new CI for the true parameter by inverting a two-sided hy-

pothesis test. In addition, we show that the CI of Stoye (2007) can be obtained by inverting two

one-sided tests. In Section 3, we extend our new CI for interval identi�ed parameters to a CS for

parameters de�ned by general moment equalities/inequalities and show that it is asymptotically

uniformly valid and non-conservative. Section 4 presents a simulation study and Section 5 con-

cludes. Technical proofs are presented in Appendix A and some algebraic derivations are given in

Appendices B and C.
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2 Con�dence Intervals for Interval Identi�ed Parameters

Let �l � �0 � �u, where �0 = �0 (P ) is the object of interest which depends on a probability

distribution P ; P must lie in a set P that is characterized by ex ante constraints. The bounds

�l; �u are identi�ed, but �0 may not be. IM �rst introduced a uniform con�dence interval (CI) for

�0 under the assumption of asymptotic joint normality of b�l;b�u and other assumptions, including
super-e¢ ciency of the estimator of � � �u � �l, where b�l;b�u are consistent estimators of �l; �u
respectively. Stoye (2007) proposed a CI that does not depend on the super-e¢ ciency condition

used in IM.

Useful examples of partial identi�cation in some economic situations are illustrated below start-

ing with the examples in IM. Other examples of interval identi�ed parameters include the two-sided

mean/interval data example, the quantile/distribution of the treatment e¤ects in Fan and Park

(2007a,b), and the correlation coe¢ cient between the potential outcomes in a Gaussian switching

regimes model (SRM) in Vijverberg (1993).

Example 1 (Two-Sided Mean/Interval Data). The parameter of interest is the population

mean of a random variable Y , E (Y ). We do not observe the realizations of Y , but rather we observe

the realizations of two random variables YL; YU such that P (YL � Y � YU ) = 1. Let fYLi; YUigni=1
be i.i.d. with the same distribution as fYL; YUg. Let �l = E (YL) and �u = E (YU ). Both �l and
�u are point-identi�ed from the sample information, but the parameter of interest �0 = E (Y ) is

interval identi�ed unless �l = �u: �l � �0 � �u. The estimators of the lower and upper bounds are
given by �̂l = n�1

Pn
i=1 YLi and �̂u = n

�1Pn
i=1 YLi.

Example 2 (Quantile of the Treatment e¤ects). We consider a binary treatment and use

Y1 to denote the potential outcome from receiving treatment and Y0 the outcome without treatment.

Let F1(�) and F0(�) denote the distribution functions of Y1 and Y0 respectively. Let � = Y1 � Y0
denote the treatment e¤ects and F�(�) its distribution function. Given the marginals F1 and F0,
sharp bounds on the quantile function of the treatment e¤ects � can be found in Williamson and

Downs (1990), see also Fan and Park (2007a). Speci�cally, for 0 < p < 1, let �0 = F�1� (p),

�l = inf
u2[p;1]

[F�11 (u)� F�10 (u� p)]; and �u = sup
u2[0;p]

[F�11 (u)� F�10 (1 + u� p)]:

It is known that �l � �0 � �u. With randomized data, F1 and F0 are identi�ed and thus �l, �u

are identi�ed. Estimators of �l; �u can be constructed by replacing F1 and F0 with their consistent

estimators such as the empirical distributions in the above expressions.

Example 3 (Correlation Between the Outcomes). Consider the following SRM:

Y1i = X 0
i�1 + U1i;

Y0i = X 0
i�0 + U0i;

Di = IfW 0
i+�i>0g; i = 1; : : : ; n; (1)

3



where fXi;Wig denote individual i�s observed covariates and fU1i; U0i; �ig individual i�s unobserved
covariates. Here, Di is the binary variable indicating participation of individual i in the program

or treatment; it takes the value 1 if individual i participates in the program and takes the value

zero if she chooses not to participate in the program, Y1i is the outcome of individual i we observe

if she participates in the program, and Y0i is her outcome if she chooses not to participate in the

program. For individual i, we always observe the covariates fXi;Wig, but observe Y1i if Di = 1

and Y0i if Di = 0. The errors or unobserved covariates fU1i; U0i; �ig are assumed to be independent
of the observed covariates fXi;Wig. We also assume the existence of an exclusion restriction, i.e.,
there exists at least one element of Wi which is not contained in Xi.

The textbook Gaussian model assumes that fU1i; U0i; �ig is trivariate normal:0@ U1i
U0i
�i

1A � N

240@ 0
0
0

1A ;
0@ �21 �1�0�10 �1�1�
�1�0�10 �20 �0�0�
�1�1� �0�0� 1

1A35 : (2)

Based on the sample information alone, �10 is not identi�ed. Using the fact that the covariance

matrix of the errors is positive semi-de�nite, Vijverberg (1993) showed �L � �10 � �U , where

�L = �1��0� �
q
(1� �21�)(1� �20�); �U = �1��0� +

q
(1� �21�)(1� �20�):

Note that �L and �U depend on the identi�ed parameters only and hence are themselves identi�ed,

but �10 is only interval identi�ed unless �L = �U . Estimators of �L; �U are straightforward to

construct once the parameters �1�; �0� are estimated by standard methods including maximum

likelihood or the two-step approach of Heckman.

While Example 1 falls in the framework of parameters de�ned by moment inequalities, Examples

2 and 3 do not.

2.1 A Review of IM and Stoye (2007)

IM proposed a CI for �0 as follows:

CIIM �
�b�l � c�b�lp

n
;b�u + c�b�up

n

�
;

where c� solves

�

 
c� +

p
nb�

max fb�l; b�ug
!
� � (�c�) = 1� �: (3)

in which b� = b�u � b�l and b�l;b�u; b�l; b�u are de�ned in the following assumptions. These are the
assumptions under which IM show the uniform validity of CIIM .

Assumption IM (i) There are estimators b�l;b�u that satisfy
p
n

 b�l � �lb�u � �u
!
=) N

��
0
0

�
;

�
�2l ��l�u
��l�u �2u

��
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uniformly in P 2 P, and there are estimators
�b�2l ; b�2u;b�� that converge to their population values

uniformly in P 2 P.
(ii) For all P 2 P, �2 � �2l ; �2u � �2 for some positive and �nite �2 and �2, and � � � <1.
(iii) For all � > 0, there are v > 0;K; and N0 such that n � N0 implies that

Pr
�p
njb���j > K�v� < �

uniformly in P 2 P.
Under Assumption IM (i)-(iii), IM showed that limn!1 inf�2� infP :�0(P )=� P (�0 2 CIIM) = 1�

�, i.e., CIIM is asymptotically uniformly valid (limn!1 inf�2� infP :�0(P )=� P (�0 2 CIIM) � 1��);
and non-conservative (limn!1 inf�2� infP :�0(P )=� P (�0 2 CIIM) = 1� �).

Stoye (2007) pointed out that Assumption IM (iii) is a super-e¢ ciency condition on the esti-

mator b� of the length of the identi�ed interval and may be violated in important applications. In

addition, Assumption IM (i)-(ii) and (iii) are mutually consistent for sequences of distributions Pn

such that �n ! 0 only if �2l � �2u ! 0 and �! 1 for all those sequences. To relax Assumption IM

(iii), Stoye (2007) proposed the following CI for �0 and veri�ed its asymptotic uniform validity and

non-conservativeness under Assumption IM (i) and (ii) only:

CIS �
( hb�l � clb�lp

n
;b�u + cub�up

n

i
if b�l � clb�lp

n
� b�u + cub�up

n

Ø otherwise
;

where (cl; cu) minimize (clb�l + cub�u) subject to the constraint thatZ cl

�1
�

 b�p
1� b�2 z + cub�u +

p
n��b�up1� b�2

!
d� (z) � 1� �;

Z cu

�1
�

 b�p
1� b�2 z + clb�l +

p
n��b�lp1� b�2

!
d� (z) � 1� �; (4)

if b� < 1 and
� (cl)� �

�
�cub�u +pn��b�u

�
� 1� �;

� (cu)� �
�
�clb�l +pn��b�l

�
� 1� �;

if b� = 1, in which �� is a shrinkage estimator of � de�ned as

�� =

� b� if b� > bn
0 otherwise

; (5)

and bn is some pre-assigned sequence such that bn ! 0 and bn
p
n!1. As shown in Stoye (2007),

if Assumption IM (iii) holds, then CIS reduces to that of IM (2004) except that CIS uses �� and

CIIM uses b�.
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2.2 A New Con�dence Interval for �0

The CIs of IM and Stoye (2007) are compositionally simple, but they rely heavily on the asymptotic

normality of
�b�l;b�u�, i.e., Assumption IM (i), and the speci�c structure of the identi�ed set [�l; �u]

through the use of b� or ��, see e.g., (3) and (4). As pointed out in Rosen (2005), Soares (2006),

Pakes, Porter, Ho, and Ishii (2006) (PPHI henceforth), and AG (2007), many economic models

imply moment equality/inequality constraints on parameters of interest and the identi�ed set for

these parameters may not be of the simple interval form.

In this subsection, we re-visit the issue of constructing CIs for interval identi�ed parameter �0

by using the general approach of inverting a hypothesis test, aiming at understanding the roles

played by the asymptotic normality of
�b�l;b�u� and the estimator of the length of the identi�ed

interval. By taking into account the interval structure of the identi�ed set for �0, we establish an

asymptotically non-conservative CI and show its uniform validity under Assumption IM (i) and

(ii) only. Like Stoye (2007), we show that our CI reduces to the CI of IM when supere¢ ciency

holds. Unlike the CI of Stoye (2007), our CI shares the natural nesting property with that of

IM, i.e., CIs with a larger nominal con�dence level include CIs with a smaller nominal con�dence

level. More importantly, this approach allows us to generalize the CI of IM to some asymptotically

non-normally distributed
�b�l;b�u� and parameters de�ned by moment equalities/inequalities.

We follow the notation in AG (2007). So, 1 = (1l; 1u) with 1l = (� � �l) =�l and 1u =
(�u � �) =�u, 2 = (�; �), 3 denotes the remaining parameters in P . The parameter space is

� =

�
 � (1; 2; 3) : for some (�; P ) 2 P; where P is de�ned in Assumption IM (i) and (ii),

1l � 0; 1u � 0; �u1u + �l1l = �;�1 � � � 1

�
:

Noting that

�0 = argmin
�

(�
�l � �
�l

�2
+

+

�
�u � �
�u

�2
�

)
;

where (x)� = min fx; 0g, (x)+ = max fx; 0g, we use the test statistic Tn(�0) de�ned below to

construct CSs for �0:

Tn(�0) = n

 b�l � �0b�l
!2
+

+ n

 b�u � �0b�u
!2
�

: (6)

A 1�� CS for �0 is de�ned as

CSn = f� : Tn(�) � c1�� (�)g ;

where c1�� (�) is an appropriately chosen critical value to guarantee that CSn has uniform asymp-

totic coverage rate of 1 � �. As discussed in AG (2007), other test statistics can be used as well,

but CSs based on them may not reduce to the CI of IM with super-e¢ ciency.
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Let
�
!n;h : n � 1

	
�
��
!n;h;1; !n;h;2; !n;h;3

�
: n � 1

	
denote a sequence of parameters in �

for which !1=2n !n;h;1 ! h1 � (hl; hu) ; !n;h;2 ! h2 � (h�; h�). De�ne

H =
�
(h1; h2) 2 R41 : 9 a subsequence f!ng of fng and a sequence

�
!n;h : n � 1

		
:

Let h = (h1; h2) and Jh denote the limiting distribution of Tn(�0) under
�
!n;h

	
. We show in Ap-

pendix A that Jh is the distribution function of the random variable
�
Zl;h� � hl

�2
+
+
�
Zu;h� + hu

�2
�,

where�
Zl;h�
Zu;h�

�
� N

��
0
0

�
;

�
1 h�
h� 1

��
:

Since Jh depends on h2 only through h�, we use cv1�� (hl; hu; h�) to denote the 1� � quantile
of Jh. Likewise we denote Jh as J(hl;hu;h�). We construct two CSs for �0 using Jh corresponding

to di¤erent values of h. The �rst one de�nes the critical value c1�� (�) in CSn as cv1�� (0; 0;b�).
This is the analog of PA-CS introduced in AG (2007) for parameters de�ned by moment equali-

ties/inequalities. Speci�cally,

CIAG = f� : Tn(�) � cv1�� (0; 0;b�)g :
We show in Appendix B that CIAG is in fact an interval, since cv1�� (0; 0;b�) does not depend on �.
Note that hl � 0, hu � 0, and Jh is stochastically decreasing in hl; hu. It follows that the PA-CS
CIAG is asymptotically uniformly valid, but it is in general conservative, as for any �, (hl; hu; �) =

(0; 0; �) may not belong to H unless �l = �u. This is because hl; hu satisfy �uhu+�lhl = lim (
p
n�).

In the special case where b� = 1, J(0;0;1) is �2[1] and the PA-CS CIAG reduces to the symmetric CI

for the identi�cation region [�l; �u] �rst proposed in Horowitz and Manski (2000):�b�l � z�b�lp
n
;b�u + z�b�up

n

�
;

see also (2) in IM, where z� is chosen such that

� (z�)� � (�z�) = 1� �:

An asymptotically non-conservative CI can be constructed by taking into account the restriction:

�uhu + �lhl = lim (
p
n�). De�ne

CIFP =
�
� : Tn(�) � c�1�� (b�)	 ;

where

c�1�� (b�) = max�cv1���0; pn��b�u ;b�� ; cv1���pn��b�l ; 0;b��� ; (7)

in which �� is the shrinkage estimator de�ned in (5).
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THEOREM 2.1 Suppose Assumption IM (i) and (ii) hold and 0 < � < 1=2. Then CIFP satis�es

limn!1 inf�2� infP :�0(P )=� Pr (�0 2 CIFP) = 1� �.

Similar to CIAG, CIFP is an interval, as c�1�� (b�) does not depend on �. As shown in Appendix
B, if � = 1, then

Jh(x) � J(hl;hu;�) (x)

= �
�
hl +

p
x
�
� �

�
�hu �

p
x
�
:

Hence c�1�� (1) satis�es
1

�
�q

c�1�� (1)
�
� �

�
�
p
n��b�u �

q
c�1�� (1)

�
� 1� �;

�

�p
n��b�l +

q
c�1�� (1)

�
� �

�
�
q
c�1�� (1)

�
� 1� �;

or equivalently

�

� p
n��

max fb�l; b�ug +
q
c�1�� (1)

�
� �

�
�
q
c�1�� (1)

�
= 1� �: (8)

It follows from (8) and the form of CIFP established in Appendix C that with super-e¢ ciency orb� = 1, CIFP reduces to the uniform CI for �0 proposed in IM except that CIFP uses ��, while

IM uses b�. In this sense, CIFP can be regarded as a natural extension of IM to the general case

without super-e¢ ciency condition.

Remark. (i) It is easy to see that CIFP is nested; (ii) The asymptotic validity of CIFP with

c�1�� (b�) de�ned in (7) does not depend on the asymptotic normality of ��̂l; �̂u�, as long as the
asymptotic distribution of

�
�̂l; �̂u

�
does not exhibit discontinuity as a function of parameters in the

model; (iii) The distribution of the treatment e¤ects in Fan and Park (2007b) provides an example

of interval identi�ed parameters for which the asymptotic distribution of estimators of the sharp

bounds exhibits discontinuity as a function of paramerers in the model. Park (2007a) is working

on an extension of CIFP to inference for the distribution of the treatment e¤ects for randomized

data.

2.3 The CI of Stoye (2007) � Revisited

Instead of inverting a two-sided test, we can also invert two one-sided tests for H0. For example,

de�ne

Tnl(�0) = n

 b�l � �0b�l
!2
+

and Tnu(�0) = n

 b�u � �0b�u
!2
�

:

1As explicitly stated in 8, the critical values for IM in 3 are comparable with
p
c�1�� (1) instead of c

�
1�� (1).
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Then a CI for �0 can be de�ned as

CIS = f� : Tnl(�) � cl \ Tnu(�) � cug

=

�
� : �̂l �

p
cl
�̂lp
n
� � � �̂u +

p
cu
�̂up
n

�
; (9)

where cl; cu are chosen to guarantee the correct level of coverage.2 (9) reveals that CIS is of the

same form as the CI proposed by Stoye (2007). Note that under
�
!n;h

	
,�

Tnl(�0)
Tnu(�0)

�
=)

 �
Zl;h� � hl

�2
+�

Zu;h� + hu
�2
�

!
:

We obtain

lim
n!1

inf
�2�

inf
P :�0(P )=�

Pr
�
�0 2 CIS

�
= inf

H
Pr
�
Zl;h� � hl +

p
cl \ Zu;h� � �hu �

p
cu
�

= inf
h�
min

8<: Pr
�
Zl;h� �

p
cl \ Zu;h� � �

p
n�
�u

�pcu
�
;

Pr
�p

n�
�l

+ Zl;h� �
p
cl \ Zu;h� � �

p
cu

� 9=;
= inf

h�
min

8<: �
�p
cu +

p
n�
�u

�
� �

�
�pcl;

p
cu +

p
n�
�u
;h�

�
;

�
�p
cu
�
� �

�
�pcl �

p
n�b�l ;pcu;h�

� 9=; (10)

where

� (x; y; �) =

Z y

�1

Z x

�1

1

2�
p
1� �2

exp

�
�1
2

�
s2 � 2�st+ t2

1� �2

��
dsdt:

The second equality follows from concavity of Pr
�
Zl;h� � hl +

p
cl \ Zu;h� � �hu �

p
cu
�
expressed

as a function of hl (Stoye 2007).

To determine cl and cu, we minimize the length of the CIS : �̂u
p
cu + �̂l

p
cl + �̂ such that

min

8<: Pr
�
Zl;b� � pcl \ Zu;b� � �p

n��b�u �pcu
�
;

Pr
�p

n��b�l + Zl;b� � pcl \ Zu;b� � �pcu�
9=;

= min

8<: �
�p
cu +

p
n��b�u

�
� �

�
�pcl;

p
cu +

p
n��b�u ;b�� ;

�
�p
cu
�
� �

�
�pcl �

p
n��b�l ;

p
cu;b��

9=;
= 1� �:

It can be easily shown that this leads to the same CI as that of Stoye (2007).

2We changed the de�nition of cl and cu in (4) to be consistent with other parts in the chapter. As a result, cl and
cu in (4) are

p
cl and

p
cu here. We will use

p
cl and

p
cu hereafter.
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3 Parameters De�ned by Moment Equalities/Inequalities

We follow the notation of AG (2007). Suppose there exists a true value �0 that satis�es the moment

conditions:

Emj (Wi; �0) � 0 for j = 1; :::; p and (11)

Emj (Wi; �0) = 0 for j = p+ 1; :::; p+ v;

where fmj (�; �) : j = 1; :::; p+ vg are known real-valued moment functions and fWi : i � 1g are
observed i.i.d. random vectors3 with joint distribution P . The true value �0 is not necessarily point

identi�ed, but the moment equalities/inequalities in (11) restrict the set of values of �0, referred to

as the identi�ed set of �0. In many economic/econometric models, the parameters of interest are

de�ned by a �nite number of moment equalities/inequalities in (11). One widely studied example

of partially identi�ed models in microeconometric literature is an entry game, see Bresnahan and

Reis (1991), Berry (1992), Tamer (2003), and Ciliberto and Tamer (2004). In the simple version

with only two players, depending on the entry decision of the second �rm, Firm 1 either does not

enter market, or operates as monopolist, or operates as duopolist. Assuming that the outcome of

the entry game in each market is a pure strategy Nash equilibrium, it is straightforward to show

that the Nash equilibrium is unique, except when both �rms are pro�table as monopolist but not

as duopolist. In the latter case, the model is silent about which �rm actually enters the market.

As a result, it only delivers bounds for the probability of observing a particular monopoly.

Example 5 (Simultaneous Entry Game) Let Yj be the player j�s entry decision for j = 1; 2.

Yj = 1 if the stochastic payo¤ function �j (Yj ; Y�j) > 0; 0 otherwise. Let�s assume a simple

linear payo¤ function, that is, �j (Yj ; Y�j) = Xj�j � djY�j + vj , E [vj jXj ; X�j ] = 0, and dj > 0:

Then, because there exist multiple equilibria, E [Y1 (1� Y0) jX1; X2] = P (Y1 = 1; Y0 = 0jX1; X2) is
partially identi�ed i.e.

P(1;0)L � P (Y1 = 1; Y0 = 0jX1; X2) � P(1;0)U

where

P(1;0)L = P (v1 > �X1�1 + d1; v2 � �X2�2 + d2)

+P (�X1�1 < v1 � �X1�1 + d1; v2 � �X2�2) ;

P(1;0)U = P (v1 > �X1�1; v2 � �X2�2 + d2) :

Similar bounds can be construct for E [Y1 (1� Y0) jX1; X2] = P (Y1 = 0; Y0 = 1jX1; X2) :
Another example is that of regression models with interval outcomes in Manski and Tamer

(2002) . Additional examples can be found in the references in the Introduction.

3The i.i.d. assumption is made for ease of exposition. This can be relaxed, see AG (2007).
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Example 6 (Regression Models with Interval Outcomes) Suppose a regressor vector Xi
is available and the conditional mean of unobserved Yi is modeled using the linear function X 0

i�. It

is known that P (YLi � Yi � YUi) = 1. The parameter � satis�es

E [YLijXi] � X 0
i� � E [YUijXi] :

These conditional restrictions imply the inequalities

E [YLiZi] � �0E [XiZi] � E [YUiZi] ; (12)

where Zi is a vector of positive transformations of Xi, see CHT (2007). Let Zi be of dimension q.

This falls in the moment inequality framework of (11) with p = 2q; v = 0, see also CHT (2007), AG

(2007), and Beresteanu and Molinari (2006).

In general, the identi�ed set for �0 de�ned in (11) does not have a simple interval structure,

preventing CIFP and CIS from being directly applicable. The purpose of this section is to extend

CIFP to �0 in (11) and clarify its relation to existing non-resampling based CSs in Rosen (2005),

Soares (2006), PPHI (2006), and AG (2007).

Let

m (Wi; �) = (m1 (Wi; �) ; :::;mk (Wi; �)) ;

where k = p+ v. We make the same assumptions as AG (2007) and refer the reader to their paper

for details. De�ne 1 =
�
1;1; :::; 1;p

�0 2 Rp+ by writing the moment inequalities in (11) as moment
equalities:

��1j (�)Emj (Wi; �)� 1;j = 0 for j = 1; :::; p;

where �2j (�) = V ar (mj (Wi; �)). Moon and Schorfheide (2007) refer parameters 1;j ; j = 1; ::; p as

the slackness parameters. Let

Tn (�) = n

pX
j=1

�
mn;j (�)b�n;j (�)

�2
�
+ n

p+vX
j=p+1

�
mn;j (�)b�n;j (�)

�2
;

where b�2n;j (�) is a consistent estimator of �2j (�). Let 
 = 
(�) = Corr (m (Wi; �)).

Let 2 =
�
2;1; 2;2

�
= (�; vech� (
)), where vech� (
) denotes the vector of elements of 
 that

lie below the main diagonal, and 3 the remaining parameters in the model. AG (2007) showed

that under the local sequence
�
!n;h

	
,

Tn (�) =) Jh �
pX
j=1

�
Zh2;2;j + h1

�2
� +

p+vX
j=p+1

�
Zh2;2;j

�2
;
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where h = (h1; h2) in which h1 = lim
�
!
1=2
n !n;h;1

�
and h2 � (h2;1; h2;2) = lim

�
!
1=2
n !n;h;1

�
,

Zh2;2 =
�
Zh2;2;1; :::; Zh2;2;k

�0 � N �0k;
h2;2� and 
h2;2 can be consistently estimated by
b
n (�) = bD�1=2n (�) b�n (�) bD�1=2n (�)

with bDn (�) = Diag �b�n (�)� and
b�n (�) = n�1 nX

i=1

(m (Wi; �)�mn (�)) (m (Wi; �)�mn (�))
0 :

Let cv1�� (h1; h2) denote the 1�� quantile of Jh. Note that two types of parameters appear in
Jh: h1 and h2;2 or 
h2;2 . To ease the exposition, we rewrite cv1�� (h1; h2) as a function of h1 and


h2;2 : cv1��
�
h1;
h2;2

�
. Although 
h2;2 can be consistently estimated, h1 can not. To circumvent

this problem, AG (2007) proposed a PA-CS for �0 by using the critical value cv1��
�
0; b
n (�)�.

They show that the PA-CS is not asymptotically conservative provided there are no restrictions on

the moment inequalities such that satisfaction of one inequality as an equality implies violation of

another. But as they noted, such restrictions do arise in some examples, including the two-sided

mean example and regression models with interval outcome data. In these examples, the vector

of slackness parameters 1 is restricted to be in a subset of R
p
+. For example, for the two-sided

mean or interval identi�ed parameters, 1 2 f1l � 0; 1u � 0; �u1u + �l1l = �g � R2+ unless

� = 0. Provided �0 is not point identi�ed, the restriction: �u1u + �l1l = �; implies that

if one inequality is satis�ed as an equality, e.g., 1l = 0, then the other inequality can not be

satis�ed as an equality, as 1u = �=�u > 0. By taking into account this speci�c structure or

restriction on the moment inequalities, the CI we constructed for interval identi�ed parameters are

not asymptotically conservative. However, it does not allow for a straightforward generalization

to the case characterized by general moment equalities/inequalities, as there is no such simple

characterization of restrictions of this type. Instead we propose the following remedy: for j =

1; :::; p; we de�ne

�1;j (�) =

(
mn;j(�)b�j(�) if mn;j (�) > bn

0 otherwise
:

Let �1 (�) =
�
�1;1 (�) ; :::; 

�
1;p (�)

�
and de�ne

CSMI =
n
� : Tn(�) � cv1��

�p
n�1 (�) ; b
n (�)�o ;

THEOREM 3.1 Under the same assumptions as Theorem 2 (a) of AG (2007), we have

lim
n!1

inf
�2�

inf
P :�0(P )=�

Pr (�0 2 CSMI) = 1� �:

12



It is interesting to observe that the CSs of Rosen (2005), Soares (2006), PPHI (2006), and the

PA-CS of AG (2007) are all4 based on cv1��
�
h1; b
n (�)� except that they use di¤erent values of

h1: The CS of PPHI (2006) and the PA-CS of AG (2007) use cv1��
�
0; b
n (�)� and are asymp-

totically conservative when there are restrictions on the moment inequalities such that satisfaction

of one inequality as an equality implies violation of another; Rosen (2005) and Soares (2006) use

cv1��
�
0; ::; 0;1; ::;1; b
n (�)� with p� zeros, where p� is an upper bound on the number of binding

inequality constraints in Rosen (2006) and p� is the number of binding moment inequalities chosen

via some moment selection criterion in Soares (2006). It is thus expected that the CS of Soares

(2006) is less conservative than those of Rosen (2005), PPHI (2006), and the PA-CS of AG (2007).

However, as Soares (2006) pointed out, this procedure may be compositionally intensive depending

on the dimension of �.

Interval-Identi�ed Parameters. Instead of estimating� = �u��l by the shrinkage estimator
��, we estimate 1l and 1u by shrinkage:

�1l =

(
��b�lb�l if � � b�l > bn
0 otherwise

; �1u =

( b�u��b�u if b�u � � > bn
0 otherwise

:

An alternative CS for �0 can be de�ned as follows:

CSIP =
�
� : Tn(�) � cv1��

�p
n�1l;

p
n�1u;b��	 :

Note that the use of shrinkage estimators �1l and 
�
1u in CSIP automatically takes into account the

restriction on the moment inequalities. To see this, suppose 1l = 0 so that � = �l. This implies

1u = � > 0 unless � = 0. For large enough samples, � � b�l would be smaller than bn and thus,
�1l = 0. In contrast, 

�
1u would approach �=�u. At the boundaries, the two CSs: CIFP and CSIP

behave similarly.

Regression Models with Interval Outcomes. In addition to CSMI, if q = 1, we can also

extend CIFP to �0. Let Wi = (YLi; YUi; Xi; Zi),

m1 (Wi; �) = �
0 [XiZi]� YLiZi; m2 (Wi; �) = YUiZi � �0 [XiZi] :

Let �
Z1;�
Z2;�

�
=) N

��
0
0

�
;

�
�2l (�) �l (�)�u (�) � (�)
�l (�)�u (�) � (�) �2u (�)

��
:

and Jh denote the distribution function of the random variable (Zl;� � hl)2+ + (Zu;� + hu)
2
� with

� = � (�). Note that � � mu (�) � ml (�) = E [YUiZi] � E [YLiZi] is point identi�ed and can be
consistently estimated by

b� = 1

n

nX
i=1

(YUi � YLi)Zi:

4Rosen (2005) uses a di¤erent test statistic from Tn (�).
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This can be taken into account to construct a CS for �0 that is not asymptotically conservative.

Let cv1�� (h) denote the 1�� quantile of Jh. Note that the CS in AG (2007) uses the critical value
cv1�� (0; 0;b� (�)), where

b� (�) = n�1
Pn
i=1 [mli (�)�ml (�)] [mui (�)�mu (�)]b�l (�) b�u (�) :

We propose to use:

c1�� (�) = sup
0�hl�

p
n��b�l(�)

cv1��

�
hl;

p
n�� � b�l (�)hlb�u (�) ;b� (�)� ; (13)

in which �� is a shrinkage estimator of � de�ned as

�� =

� b�; if b� > bn
0 otherwise

:

4 Numerical Studies

In this section, we �rst present a numerical comparison of the critical values of �ve CIs at 0.95

nominal level: CIFP, CIS, CIAG, and CIIM , and then present some results from a small-scale

simulation study on the �nite sample performance of CIFP, CIS, and CIAG.

4.1 Computation and Comparison of Critical Values

We recall that CIFP uses c�1�� (�) in (7):

c�1�� (b�) = max�cv1���0; pn��b�u ;b�� ; cv1���pn��b�l ; 0;b��� ;
where cv1�� (hl; hu; �) is the 1�� quantile of Jh for a given h = (hl; hu; �) and Jh is the distribution
function of the random variable, (Zl;� � hl)2+ + (Zu;� + hu)

2
�.

We �rst show that

c�1�� (b�) =
8<: cv1��

�p
n��b�l ; 0;b�� if b�l � b�u

cv1��
�
0;
p
n��b�u ;b�� if b�l < b�u : (14)

From the symmetry of the joint distribution of (Zl;�; Zu;�), it follows that the random variable

(Zl;�)
2
++
�
Zu;� +

p
n�
�u

�2
�
has the same distribution function as the random variable

�
Zl;� �

p
n�
�u

�2
+
+

(Zu;�)
2
�. But(�

Zl;� �
p
n�

�l

�2
+

+ (Zu;�)
2
�

)
�
(�

Zl;� �
p
n�

�u

�2
+

+ (Zu;�)
2
�

)

=

�
Zl;� �

p
n�

�l

�2
+

�
�
Zl;� �

p
n�

�u

�2
+

� 0 a.s. if �l � �u; � 0 a.s. if �l < �u,
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implying (14).

So to compute c�1�� (�), we just need to compute cv1��
�p

n��b�l ; 0;b�� or cv1�� �0; pn��b�u ;b��
depending on which of b�l; b�u is larger. One method for computing cv1�� (h) for a given h is by

simulation. Alternatively, one can invert Jh numerically. In Appendix B, we show that for j�j < 1;

Jh(x) � J(hl;hu;�) (x)

= �
�
hl +

p
x
�
�
Z hl+

p
x

�1
�

0@��z + hu +
q
x� (z � hl)2+p
1� �2

1A d� (z) ;
If � = 1; then

Jh(x) = �
�
hl +

p
x
�
� �

�
�hu �

p
x
�
;

Let hmax = max fhl; hug and hmin = min fhl; hug. If � = �1, then

Jh(x) =

8<: � (hmin +
p
x) if x � (hmax � hmin)2

�

�
hmax+hmin+

p
2x�(hmax�hmin)2
2

�
if (hmax � hmin)2 < x

:

For any �xed x, the value of Jh(x) can be computed numerically using the above expressions. We

have written a Gauss program for computing c�1�� (b�) which is available upon request.
The CIs: CIAG and CIHM are respectively based on cv1�� (0; 0; �) and

p
cv1�� (0; 0; 1). In

Figure 1 below, we plotted
p
cv0:95 (0; 0; �) against � 2 [�1; 1]. We note that

p
cv0:95 (0; 0; �)

decreases as � increases and approaches to ��1 (1� �=2) = 1:96 as �! 1: But for small values of

�, cv1�� (0; 0; �) can be much larger than cv1�� (0; 0; 1).
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Figure 1.
p
cv0:95 (0; 0; �) and ��1 (0:975)

In Figure 2 below, we plotted the critical values in CIFP, CIS, and CIIM against
p
n�=max f�l; �ug

for � = �0:4; 0; 0:4; 1.
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Figure 2. Comparison of critical values

The critical values for CIFP and CIIM depend on �l; �u through
p
n�=max f�l; �ug only. But

the critical value of CIS also depends on the values of �l; �u. We chose two sets of values:
�
�2l ; �

2
u

�
=

(2; 2) and
�
�2l ; �

2
u

�
= (1; 2). When �2l = �

2
u, Stoye�s lower and upper critical values are the same.

They are denoted as Stoye. When �2l 6= �2u, they di¤er and are denoted as StoyeL and StoyeU

respectively. In the graphs, StoyeL > StoyeU for all of the settings.

Several interesting conclusions can be made based on Figure 2. First, when
p
n�=max f�l; �ug >

2:5, all the critical values become almost identical to ��1 (1� �) = 1:645. Second, when
p
n�=max f�l; �ug

is small, the critical values for di¤erent CIs di¤er and the di¤erence becomes larger as � approaches

to �1. Third, when � is positive and �l = �u, the critical values of CIIM and CIS are numerically

indistinguishable. Lastly, when � = 1, the critical values of CIFP and CIIM coincide and they

coincide with that of CIS if �l = �u. But if �l 6= �u; the critical values of CIS di¤er from that of

CIFP or CIIM .
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4.2 Simulation: Population Mean with Interval Data

We apply CIFP, CIS, and CIAG to the example of two-sided mean or interval data. Like CHT

(2004) and Beresteanu and Molinari (2006), we use the March 2000 wave of the Current Population

Survey (CPS) data. The variable Y is the logarithm of wages and salaries of white men ages 20

to 50 only. The �population�of study consists of 13290 observations summarized in the following

table.

Table 1: Summary Statistics of DGP1: CPS Data
Variable # of Values Mean Std Dev Min Max
exp (Y ) (wages and salaries, in $) 13290 66943:2 52465:0 1 513472
Y 13290 4:539 0:985 0 5:711

In the simulation, the �population�or DGP consists of population values of the lower bound YL

and the corresponding values of the upper bound YU : From this DGP, we draw random samples of

sizes n = 500; 1000; 2000; 8000 respectively denoted as fYLi; YUigni=1. The estimators of the lower
and upper bounds are given by �̂l = n�1

P
i YLi and �̂u = n

�1P
i YLi.

We considered three DGPs designed to shed light on the performance of CIFP, CIS, and CIAG

in three typical cases: point-identi�ed case, interval identi�ed case with a small �, and interval

identi�ed case with a large �. For point identi�ed case, the DGP (DGP1) is the CPS data set, from

which we draw two types of random samples fYLi; YUigni=1; one with YLi = YUi = Yi for i = 1; :::; n
and the other with fYLigni=1; fYUig

n
i=1 being independent. For interval identi�ed case with small

�, the DGP (DGP2) consists of the logarithms of the bracketed wages and salaries data in CHT

(2004) and Beresteanu and Molinari (2006). There are 16 brackets: the values of YL and YU are

the logarithms of the bracketed wages and salaries. These brackets are (written in thousand $):

[0:001; 5] ; [5; 7:5] ; [7:5; 10] ; [10; 12:5] ; [12:5; 15] ; [15; 20] ; [20; 25] ; [25; 30] ;

[30; 35] ; [35; 40] ; [40; 50] ; [50; 60] ; [60; 75] ; [75; 100] ; [100; 150] ; [150; 100000] :For large�, we com-

bined the �rst eight brackets into one: [0:001; 30] and the last eight into the other one: [30; 100000]

and the DGP (DGP3) consists of the logarithms of the two bracketed wages and salaries. The

summary statistics of [YL; YU ] for the latter two DGPs are presented in Table 2 below.

Table 2: Summary Statistics of DGP2 and DGP3
Brackets Variable # of Values [�l; �u] [�l; �u] � �

16 [YL; YU ] 13290 [4:4409; 4:9059] [1:10; 0:861] 0:495 0:4650

2 [YL; YU ] 13290 [3:5283; 7:2534] [1:830; 1:440] 1:0 3:7251
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The length of the identi�ed interval � in the 16 bracket case is eight times smaller than that of

the 2-bracket case. Moreover, the magnitude of � in the 16 bracket experiment is almost half of �l

and �u. So, �l and �u in the 16 bracket case are close enough for us to expect bn to play a role at

least in small samples. In contrast, in the two bracket case, � is large almost twice of max f�l; �ug.
To implement CIFP and CIS, we need to choose bn. We used bn = s:d:

�
�̂
�
c= ln (n) with

c 2 f0; 3:5; 4g. When c = 0, bn = 0 which does not satisfy our conditions on bn in Theorem 2.1.

We chose this bn to illustrate two points. First, when the parameter �0 is point identi�ed or when

� is small, it�s possible that b�l is larger than b�u in which case, the e¤ect of using the shrinkage
estimator with bn = 0 is to replace negative b��s with zero; Second, when � is large enough, the

shrinkage estimator with bn = 0 is the same as the original estimator and in this case, we�ll observe

the performance of CIFP and CIS using the original estimator b�. When c = 3:5; 4, bn satis�es the
conditions of Theorem 2.1, CIFP and CIS are uniformly asymptotically valid and non-conservative

in all cases.

Throughout the simulation, we used � = 0:05 and 2000 replications. We compare the �nite

sample performance of CIFP, CIS, and CIAG via their minimum coverage rates referred to as �nite

sample con�dence sizes, see AG (2007). Given that their asymptotic con�dence sizes are achieved

at either �l (hl = 0) or �u (hu = 0), we report the respective coverage rates of CIFP, CIS, and

CIAG for � = �l; �u.

4.2.1 Point-identi�ed case

We �rst present results for YLi = YUi for i = 1; ::; n. In this case, b�l = b�u, so b� = 0 and all three

CIs are the same given by:

CIn =

�b�l � 1:96b�lp
n
;b�l + 1:96b�lp

n

�
:

This is also the CI of IM and Horowitz and Manski (2000). Its coverage rates denoted by CR(�0)

and width over 2000 simulations are reported in Table 3 below.

Table 3: Summary Statistics for CIn
n CR(�0) Width

500 0:9485 0:1720

1000 0:9525 0:1219

2000 0:950 0:0861

8000 0:9520 0:0431

As expected, the coverage rate is very close to the nominal level (0:95) for all sample sizes

considered.
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In the second experiment, fYLigni=1 6= fYUig
n
i=1, even though E [YLi] = E [YUi]. In this case, b�

may not be exactly zero. In fact, it is possible that b� is negative. Since we drew random samples

fYLig and fYUig independently, we would expect this to happen at about 50% of the simulations.

In Table 4 below, we presented the proportion of simulations with �̂ < bn denoted by P (��). This

is the proportion of simulations in which the shrinkage estimator �� plays a role. When c = 0,

P (��) shows the proportion of simulations with negative b�. It is about 0.5 for all sample sizes. In
addition, we reported the coverage rates and width of each CI based on each value of bn together

with the average of
p
c1�� denoted as Avg(

p
c1��)5.

Table 4: Summary Statistics when � = 0
n c P (��) Avg(

p
c1��) CR(�0) Width

500 CIS 0 0:497 (1:8487; 1:8268) 0:9495 0:1619
(3:5; 4) 1 (1:9553; 1:9558) 0:9495 0:1722

CIFP 0 0:497 1:9087 0:9480 0:1701
(3:5; 4) 1 2:0569 0:9480 0:1833

CIAG 2:0569 0:9480 0:1833

1000 CIS 0 0:4945 (1:8476; 1:8318) 0:9425 0:1146
3:5; 4 1 (1:9546; 1:9555) 0:9435 0:1218

CIFP 0 0:4945 1:9110 0:9430 0:1206
(3:5; 4) 1 2:0569 0:9445 0:1298

CIAG 2:0569 0:9445 0:1298

2000 CIS 0 0:496 (1:8459; 1:8323) 0:9455 0:0806
(3:5; 4) 1 (1:9551; 1:9547) 0:9455 0:0857

CIFP 0 0:496 1:9101 0:9425 0:0849
(3:5; 4) 1 2:0569 0:9425 0:0915

CIAG 2:0569 0:9425 0:0915

8000 CIS 0 0:499 (1:844; 1:833) 0:9470 0:0404
(3:5; 4) 1 (1:9547; 1:9549) 0:9470 0:0430

CIFP 0 0:499 1:9087 0:9480 0:0425
(3:5; 4) 1 2:0568 0:9480 0:0458

CIAG 2:0568 0:9480 0:0458

Several conclusions emerge from Table 4: First, the con�dence sizes of all three CIs are almost

the same for all sample sizes and are close to the nominal level, ranging from 0.9421 to 0.9495;

Second, the coverage rates of each of CIFP and CIS are almost the same across the three values

of c. The one with c = 0 shows slightly narrower CI than c = 3:5; 4; Third, CIFP with c = 3:5; 4

is the same as CIAG, as P (��) = 1 in both cases; Fourth, the critical values in this case are no

longer 1.96 as in the case fYLigni=1 = fYUig
n
i=1, as � = 0 in this case.

5For CSSn , we provide
�p
cl;1��;

p
cu;1��

�
which correspond (cl;1��; cu;1��) in the original Stoye�s notation.
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4.2.2 Interval-identi�ed case

Sixteen Brackets: A small � The coverage rates for �l and �u along with some summary

statistics are presented in Table 5 below.

Table 5: Summary Statistics for 16 Brackets
n c P (��) Avg(

p
c1��) Width CR(�l) CR(�u)

500 CIS 0 0 (1:6449; 1:6449) 0:6082 0:9235 0:9360
(3:5; 4) 1 (1:9024; 2:0263) 0:6353 0:9550 0:9725

CIFP 0 0 1:6449 0:6082 0:9235 0:9360
(3:5; 4) 1 1:9759 0:6371 0:9595 0:9655

CIAG 1:9759 0:6371 0:9595 0:9655

1000 CIS 0 0 (1:6449; 1:6449) 0:5653 0:9230 0:9340
3:5; 4 1 (1:9020; 2:0260) 0:5845 0:9535 0:9715

CIFP 0 0 1:6449 0:5653 0:9230 0:9340
(3:5; 4) 1 1:9760 0:5857 0:9570 0:9630

CIAG 1:9760 0:5857 0:9570 0:9630

2000 CIS 0 0 (1:6449; 1:6449) 0:5367 0:9335 0:9370
3:5 0:4655 (1:7641; 1:8228) 0:5429 0:9515 0:9625
4 1 (1:9015; 2:0263) 0:5503 0:9570 0:9685

CIFP 0 0 1:6449 0:5367 0:9335 0:9370
3:5 0:4655 1:7990 0:5433 0:9570 0:9580
4 1 1:9761 0:5512 0:9640 0:9630

CIAG 1:9761 0:5512 0:9640 0:9630

8000 CIS (0; 3:5; 4) 0 (1:6449; 1:6449) 0:5013 0:9450 0:9435
CIFP (0; 3:5; 4) 0 1:6449 0:5013 0:9450 0:9435
CIAG 1:9761 0:5086 0:9720 0:9705

In sharp contrast to the point identi�ed case, the con�dence sizes of CIFP and CIS in this case

di¤er signi�cantly for c = 0 and c = 3:5; 4. Note that when c = 0, P (��) = 0; so the shrinkage

estimator didn�t play any role in CIFP and CIS. Comparing the con�dence sizes of CIFP and

CIS for c = 0 and c = 3:5, we see clearly the role played by the shrinkage estimator ��: When

c = 0, P (��) = 0 and both CIFP and CIS under cover except when n = 8000, but when c = 3:5;

P (��) = 1 for n = 500; 1000 and P (��) = 0:4655 for n = 2000, the con�dence sizes of both CIFP

and CIS are closer to 0.95. When c = 4; P (��) = 1 for n = 500; 1000; 2000 and the con�dence size

of CIFP is the same as that of CIAG. When n = 8000; P (��) = 0 for all c and the con�dence size

of both CIFP and CIS is 0:9435 as opposed to 0:9705 for CIAG, con�rming the non-conservative

nature of CIFP and CIS. In general the width of CIFP is slightly larger than that of CIS.

It is very interesting to compare the con�dence sizes of CIFP for c = 0 across n. For all n, CIFP

for c = 0 uses the one-sided critical value ��1 (1� �). But when n = 500; 1000; 2000,
p
n� is not
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large enough for the asymptotics to take e¤ect leading to smaller con�dence size. In contrast, when

n = 8000,
p
n� is large enough leading to the con�dence size of 0:9435, the same as the con�dence

size for c = 3:5; 4. These results demonstrate clearly the role of c or bn when
p
n� is not large

enough (see n = 500, e.g.): increase the critical values so as to correct the con�dence size. When
p
n� is large enough, c or bn is no longer e¤ective and the asymptotics kick in.

Two Brackets: A large � In this case,
p
n� is large enough for all sample sizes considered

and bn does not play any role, i.e., P (��) = 0 for all c and all sample sizes.

Table 6: Summary Statistics for Two Brackets

n Avg(
p
c1��) Width CR(�l) CR(�u)

500 CIS (1:6449; 1:6449) 3:9655 0:9435 0:9580
CIFP 1:6449 3:9655 0:9435 0:9580
CIAG 1:960 4:0115 0:9655 0:9775

1000 CIS (1:6449; 1:6449) 3:8949 0:9455 0:9495
CIFP 1:6449 3:8949 0:9455 0:9495
CIAG 1:960 3:8949 0:9685 0:9785

2000 CIS (1:6449; 1:6449) 3:8453 0:9480 0:9495
CIFP 1:6449 3:8453 0:9480 0:9495
CIAG 1:960 3:8453 0:9680 0:9745

8000 CIS (1:6449; 1:6449) 3:8753 0:9465 0:9515
CIFP 1:6449 3:8753 0:9465 0:9515
CIAG 1:960 3:8753 0:9760 0:9735

The �rst observation from Table 6 is that CIS and CIFP are identical with con�dence size

being very close to the nominal level 0.95 for all sample sizes. However, CIAG is quite di¤erent

from CIS and CIFP: it overcovers for all sample sizes. Secondly, the critical value for CIAG is

��1 (1� �=2) = 1:96; while that for CIS and CIFP is ��1 (1� �) = 1:645: Since the critical value
for CIAG does not depend on �, the reason that the critical value for CIAG is ��1 (1� �=2) is
because �̂ = 1: See Figure 2. On the other hand, the reason the critical value for CIS and CIFP is

1.645 is because
p
n� is large enough for all sample sizes considered.

5 Conclusion and Current Research

In this paper, we provided a detailed theoretical and numerical study on CIs for interval identi�ed

parameters. By inverting a test for the value of the interval identi�ed parameter, we not only

developed a new CI, but also established its relationship with existing CIs, including that of IM,

Horowitz and Manski (2000), Stoye (2007), and AG (2007). This approach allows straightforward

extensions to interval identi�ed parameters for which the estimators of the interval bounds are not
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asymptotically normally distributed, provided they do not have discontinuity as a function of model

parameters. Moreover, we are able to generalize our new CI for interval identi�ed parameters to

parameters de�ned by general moment equalities/inequalities.

The simulation results presented in this paper support the theoretical �nding of Stoye (2007)

and the current paper: it is essential to use the shrinkage estimator of the length of the identi�ed

interval or that of the slackness parameters in the general case of parameters de�ned by moment

equalities/inequalities. The shrinkage estimator essentially distinguishes between binding and non-

binding moment inequalities.

The CI or CS developed in this paper has applicability in a wide range of economic/econometric

models with partially identi�ed parameters. Moreover, the idea underlying them can be extended

to partially identi�ed models for which at least one of the assumptions in this paper is violated. For

example, the validity of CIFP relies on the assumption that the asymptotic distribution of
�b�l;b�u�

does not have a discontinuity in the model parameters. This may be violated in some applications.

One of the authors is currently working on two such cases.

Park (2007a) investigates inference for the distribution of the treatment e¤ects of a binary

treatment. Using the same notation as in Example 2, but de�ne �0 = F�(�), �l = supymax(F1(y)�
F0(y � �); 0) and �u = 1 + infymin(F1(y) � F0(y � �); 0). Then it is known that �l � �0 � �u.

Again, with randomized data, F1 and F0 are identi�ed and thus �l, �u are identi�ed. Estimators

of �l; �u can be constructed by replacing F1 and F0 with their consistent estimators such as the

empirical distributions in the above expressions. However, the estimators of �l; �u do not satisfy

Assumption IM (i), as their asymptotic distribution exhibits discontinuity depending on the value

of supy(F1(y) � F0(y � �)) and infy(F1(y) � F0(y � �)). Park (2007b) is an application of this
to the Project STAR. Project STAR, conducted by Tennessee State Department of Education in

1985-1988, is a randomized experiment to investigate the e¤ect of class size reduction (CSR) on

students�performances. Although the potential heterogeneity of treatment e¤ects of Project STAR

has been well-awared (for example, Ding and Lehrer 2005), the heterogeneity has not been fully

investigated empirically.

Another extension of the partial identi�cation is Park (2007c). It studies the �mixing problem�

discussed by Manski (1997, 2003). The �mixing problem�arrises, for example, when we want to

"extrapolate the results from a randomized experiment (Manski 2003)". It is because we do not

know the �treatment shares�i.e. the possibility that people comply the rule and do not. When we do

not know the �treatment shares�, the probability of a certain range of outcome, say y 2 B, to occur
is bounded in [max fF1 (y 2 B) + F0 (y 2 B)� 1; 0g ;min fF1 (y 2 B) + F0 (y 2 B) ; 1g], hence the
boundary problem at 0 or 1 exist here, too. Park (2007c) studies on the statistical inference of this

problem.
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6 Appendix A: Technical Proofs

Proof of Theorem 2.1. Let

c1�� (�) = sup
0�hl�

p
n�
�l

cv1��

�
hl;

p
n�� �lhl
�u

; �

�
(15)

and

CIFP = f� : Tn(�) � c1�� (�)g :

Similar to the proof of Theorem 2 in AG (2007), it is straightforward to show that under Assumption

IM (i) and (ii), Assumption A0 and Assumption B0 in AG (2007) are satis�ed. As a result, a similar

argument to AG (2005b, 2007) yields: limn!1 inf�2� infP :�0(P )=� P
�
�0 2 CIFP

�
= 1� �. De�ne

W (hl) � (Zl;� � hl)2+ + (Zu;� + hu)
2
�

= (Zl;� � hl)2+ +
�
Zu;� +

p
n�

�u
� �l
�u
hl

�2
�
:

Since W (hl) is convex on
h
0;
p
n�
�l

i
a.s., we obtain,

sup
hl2

h
0;
p
n�
�l

iW (hl) = max

�
W (0) ;W

�p
n�

�l

��

= max

(
(Zl;�)

2
+ +

�
Zu;� +

p
n�

�u

�2
�
;

�
Zl;� �

p
n�

�l

�2
+

+ (Zu;�)
2
�

)
;

i.e.,

c1�� (�) = max

�
cv1��

�
0;

p
n�

�u
; �

�
; cv1��

�p
n�

�l
; 0; �

��
:

We now show that the result holds when c1�� (�) is replaced with c�1�� (b�). Since �̂l, �̂u, and b�
are uniformly consistent estimators of �l, �u, and � respectively, the result holds with

ec1�� (b�) = max�cv1���0; pn�b�u ;b�� ; cv1���pn�b�l ; 0;b��� :
Finally we need to justify the use of ��. We follow the same argument as Stoye (2007). Let

cn =
�
n�1=2bn

�1=2
. Then cn ! 0 and n1=2cn !1. We consider two cases: Case I. �n � cn; Case

II. �n < cn.

Case I. �n � cn. In this case, n1=2�n � n1=2cn ! 1, so either hl = 1 or hu = 1 or both.
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Suppose hl =1. Then

Pr [�0 2 CIFP] = Pr

�
Tn (�0) � max

�
cv1��

�
0;

p
n��b�u ;b�� ; cv1���pn��b�l ; 0;b����

! Pr

�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � max

�
cv1��

�
0;

p
n��b�u ;b�� ; cv1���pn��b�l ; 0;b����

! Pr

�
(Zu;� + hu)

2
� � max

�
cv1��

�
0;

p
n��

�u
; �

�
; cv1��

�p
n��

�l
; 0; �

���
! Pr

h
(Zu;� + hu)

2
� � max fcv1�� (0;1; �) ; cv1�� (1; 0; �)g

i
� Pr

h
(Zu;�)

2
� � max fcv1�� (0;1; �) ; cv1�� (1; 0; �)g

i
� 1� � ,

where we have used the result that Pr
h
�� = b�i ! 1 because of Pr

hb� > bni ! 1. The proof for

hu =1 is similar. Suppose both hl =1 and hu =1. Then it is easy to see that Pr [�0 2 CIFP]!
1.

Case II. �n < cn. In this case, Stoye (2007) shows that �� = 0 � � with probability

approaching one. Note that

Pr [�0 2 CIFP] = Pr

�
Tn (�0) � max

�
cv1��

�
0;

p
n��b�u ;b�� ; cv1���pn��b�l ; 0;b����

! Pr

�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � max

�
cv1��

�
0;

p
n��

�u
; �

�
; cv1��

�p
n��

�l
; 0; �

���
� Pr

h
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � cv1�� (0; 0; �)

i
� Pr

h
(Zl;�)

2
+ + (Zu;�)

2
� � cv1�� (0; 0; �)

i
= 1� �.

The proof is completed by noting that when � = 0, Pr [�0 2 CIFP]! 1� �.
Proof of Theorem 3.1. We prove the result when p = 2. The general case is similar. Similar

to the proof of Theorems 2.1, we need to justify the use of �1 (�) =
�
�1;1 (�) ; 

�
1;2 (�)

�
, where

�1;j (�) =

(
mn;j(�)b�j(�) if mn;j (�) > bn

0 otherwise
:

Let cn =
�
n�1=2bn

�1=2
. Then cn ! 0 and n1=2cn !1.

Case I. 1;j (�) � cn, j = 1; 2. In this case, n1=21;j (�) � n1=2cn !1. Thus,

Pr (�0 2 CSMI) ! Pr

0@ p+vX
j=p+1

�
Zh2;2;j

�2 � cv1�� (1;1;
n (�0))
1A

= 1� �:
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Case II. 1;j (�) < cn, j = 1; 2. Similar to Stoye (2007), one can show that �1;j (�) = 0 � 1;j
with probability approaching one. Thus,

Pr (�0 2 CSMI) ! Pr

0@ pX
j=1

�
Zh2;2;j + h1

�2
� +

p+vX
j=p+1

�
Zh2;2;j

�2 � cv1�� (0; 0;
n (�0))
1A

� Pr

0@ pX
j=1

�
Zh2;2;j

�2
� +

p+vX
j=p+1

�
Zh2;2;j

�2 � cv1�� (0; 0;
n (�0))
1A

= 1� �:

Case II. Suppose 1;1 (�) < cn, but 1;2 (�) � cn. The other case is similar. Then �1;1 (�) = 0 �
1;1 with probability approaching one and n1=21;2 (�) � n1=2cn !1. Thus,

Pr (�0 2 CSMI) ! Pr

0@ pX
j=1

�
Zh2;2;j + h1

�2
� +

p+vX
j=p+1

�
Zh2;2;j

�2 � cv1�� (0;1;
n (�0))
1A

� Pr

0@�Zh2;2;1�2� + p+vX
j=p+1

�
Zh2;2;j

�2 � cv1�� (0;1;
n (�0))
1A

= 1� �:

The proof is completed by noting that when all the inequalities are binding, Pr (�0 2 CSMI)!
1� �.

7 Appendix B: An Expression for Jh (x)

In this section, we derive a closed form expression for Jh (x). This should be useful in construct-

ing CSs in moment inequality models when there are two moment constraints. Let � (zl; zu; �)

and � (zl; zu; �) denote respectively the pdf and cdf of (Zl;�; Zu;�): the standard bivariate normal

distribution with correlation coe¢ cient �. De�ne

A1 (x) =
�
(zl; zu) 2 R2 : zl < hl and zu > �hu

	
;

A2 (x) =
�
(zl; zu) 2 R2 : zl < hl and � hu �

p
x � zu � �hu

	
;

A3 (x) =
�
(zl; zu) 2 R2 : hl � zl � hl +

p
x and zu > �hu

	
;

A4 (x) =
n
(zl; zu) 2 R2 : hl � zl � hl +

p
x;�hu �

p
x � zu � �hu; and (zl � hl)2 + (zu + hu)2 � x

o
;

A (x) = A1 (x)
S
A2 (x)

S
A3 (x)

S
A4 (x) :

If j�j < 1, then

Jh (x) = J(hl;hu;�) (x)

= P
�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

�
= P ((Zl;�; Zu;�) 2 A1 (x)

S
A2 (x)

S
A3 (x)

S
A4 (x))

=

Z 1

�1

Z 1

�1
I f(zl; zu) 2 A (x)g� (zl; zu; �) dzldzu;
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where I (A) = 1 if A happens; 0 otherwise. Graphically, A (x) is given by the shaded area below.

ρ,lZ

ρ,uZ

( ) ( ) xhZhZ uull ≤++−
−+

2
,

2
, ρρ

x

lh

uh−

A1

A2

A3

A4

Hence,

Jh (x) = Pr
h
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

i
= �

�
hl +

p
x
�
� �

�
hl;�hu �

p
x
�
�
Z hl+

p
x

hl

Z �hu�
q
x�(zl;��hl)

2

�1
� (zl; zu; �) dzudzl

= �
�
hl +

p
x
�
�
Z hl

�1
� (z) �

 
��z + hu +

p
xp

1� �2

!
dz �

Z hl+
p
x

hl

� (z) �

0@��z + hu +
q
x� (z � hl)2p

1� �2

1A dz
= �

�
hl +

p
x
�
�
Z hl+

p
x

�1
� (z) �

0@��z + hu +
q
x� (z � hl)2+p
1� �2

1A dz:
If � = 1, thenn

(Zl;� � hl)2+ + (Zu;� + hu)
2
� � x

o
=
n
Z : (Z � hl)2+ + (Z + hu)

2
� � x

o
,

where Z is a standard normal random variable. A similar analysis shows thatn
Z : (Z � hl)2+ + (Z + hu)

2
� � x

o
=

�
hl < Z � hl +

p
x
	
[
�
�hu �

p
x � Z < �hu

	
[ f�hu � Z � hlg

=
�
�hu �

p
x < Z � hl +

p
x
	
:
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Therefore, we get

J(hl;hu;1) (x) = Pr
�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

�
= �

�
hl +

p
x
�
� �

�
�hu �

p
x
�
:

If � = �1, then

Pr
�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

�
= Pr

�
(Z � hl)2+ + (�Z + hu)

2
� � x

�
= Pr

�
(Z � hl)2+ + (Z � hu)

2
+ � x

�
:

Letmax fhl; hug = hmax andmin fhl; hug = hmin. We can rewrite the event
n
(Z � hl)2+ + (Z � hu)

2
+ � x

o
as: n

(Z � hl)2+ + (Z � hu)
2
+ � x

o
= B1 (x)

S
B2 (x)

S
B3 (x)

S
B4 (x) ;

where Bj (x), j = 1; 2; 3; 4 correspond to the four possibilities in terms of the signs of (Z � hl) ;
(Z � hu). For example,

B1 (x) =
n
Z : Z � hl > 0, Z � hu > 0, and (Z � hl)2+ + (Z � hu)

2
+ � x

o
:

Note that Z � hl > 0 and Z � hu > 0 is equivalent to Z > hmax. In this case,n
Z : (Z � hl)2+ + (Z � hu)

2
+ � x

o
=

(
Z :

�
Z � hl + hu

2

�2
� 2x� (hl � hu)2

4

)

=

8<:Z : Z � hl + hu +
q
2x� (hl � hu)2

2

9=; provided 2x � (hl � hu)2

=

8<:Z : Z � hmax + hmin +
q
2x� (hmax � hmin)2

2

9=; provided 2x � (hmax � hmin)2 :

Also,

hmax <
hmax + hmin +

q
2x� (hmax � hmin)2

2
=) (hmax � hmin)2 < x:

Therefore, we get

B1 (x) =

8<:Z : hmax < Z � hmax + hmin +
q
2x� (hmax � hmin)2

2

9=; provided x > (hmax � hmin)2 ;

B1 (x) = ? if x � (hmax � hmin)2 :
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Similarly, we can show:

B2 (x) =
�
Z : hmin � Z < min

�
hmax; hmin +

p
x
		

B3 (x) =
�
Z : hmin � Z < min

�
hmax; hmin +

p
x
		

B4 (x) = fZ : Z � hming :

Combining them altogether, we getn
(Z � hl)2+ + (Z � hu)

2
+ � x

o
=

�
�1;min

�
hmax; hmin +

p
x
	�S8<: ? if x � (hmax � hmin)2�

hmax;
hl+hu+

p
2x�(hmax�hmin)2

2

�
if o/w

=

8<: (�1; hmin +
p
x) if x � (hmax � hmin)2�

�1; hl+hu+
p
2x�(hmax�hmin)2

2

�
if o/w

Therefore,

Pr
�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

�
=

8<: � (hmin +
p
x) if x � (hmax � hmin)2

�

�
hmax+hmin+

p
2x�(hmax�hmin)2
2

�
if (hmax � hmin)2 < x

:

8 Appendix C. The Form of the Con�dence Set CSn

In this section, we derive a more explicit form for CSn:

CSn = f� : Tn (�) � c1��g

=

8<:� : n
 
�̂l � �
�̂l

!2
+

+ n

 
�̂u � �
�̂u

!2
�

� c1��

9=; :
We need to distinguish between two cases. Case I. �̂l � �̂u and Case II. �̂l � �̂u. For Case I, it

is easy to show that

CSn =

�
� : �̂l �

p
c1��

�̂lp
n
� �̂l

�S�
� : �̂u � � � �̂u +

p
c1��

�̂up
n

�Sn
�̂l � � � �̂u

o
=

�
� : �̂l �

p
c1��

�̂lp
n
� �̂u +

p
c1��

�̂up
n

�
:

Case II is more complicated. We�ll examine it in detail. Note that

CSn = CSn1 [ CSn2 [ CSn3;
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where

CSn1 =

8<:� : n
 
�̂l � �
�̂l

!2
+

+ n

 
�̂u � �
�̂u

!2
�

� c1��; � � �̂u < �̂l

9=; ;
CSn2 =

8<:� : n
 
�̂l � �
�̂l

!2
+

+ n

 
�̂u � �
�̂u

!2
�

� c1��; �̂u < �̂l � �

9=; ;
CSn3 =

8<:� : n
 
�̂l � �
�̂l

!2
+

+ n

 
�̂u � �
�̂u

!2
�

� c1��; �̂u � � � �̂l

9=; :
By de�nition, we obtain

CSn1 =

8<:� : n
 
�̂l � �
�̂l

!2
� c1��

9=;Tn� : � � �̂u < �̂lo
=

�
� : �̂l �

p
c1��

�̂lp
n
� �
�Tn

� : � � �̂u < �̂l
o

=

( n
� : �̂l �

p
c1��

�̂lp
n
� � � �̂u

o
if �̂l �

p
c1��

�̂lp
n
� �̂u

? otherwise
;

and

CSn2 =

8<:� : n
 
�̂u � �
�̂u

!2
�

� c1��

9=;Tn�̂u < �̂l � �o

=

8<:� : n
 
� � �̂u
�̂u

!2
+

� c1��

9=;Tn�̂u < �̂l � �o
=

�
� : � � �̂u +

p
c1��

�̂up
n

�Tn
�̂u < �̂l � �

o
=

( n
� : �̂l � � � �̂u +

p
c1��

�̂up
n

o
if �̂l � �̂u +

p
c1��

�̂up
n

? otherwise
:

Now,

CSn3

=

8<:� : n
 
�̂l � �
�̂l

!2
+

+ n

 
� � �̂u
�̂u

!2
+

� c1��

9=;Tn�̂u � � � �̂lo
=

n
� :
�
�̂2u + �̂

2
l

�
�2 � 2

�
�̂2u�̂l + �̂

2
l �̂u

�
� + �̂2u�̂

2

l + �̂
2
l �̂
2

u �
c1��
n
�̂2l �̂

2
u

oTn
�̂u � � � �̂l

o
=

8><>:� :
 
� �

 
�̂2u�̂l + �̂

2
l �̂u

�̂2u + �̂
2
l

!!2
� �̂2l �̂

2
u

n
�
�̂2u + �̂

2
l

�
264c1�� � n

�
�̂l � �̂u

�2�
�̂2u + �̂

2
l

�
375
9>=>;T

n
�̂u � � � �̂l

o
:

1. If nb�2 > ��̂2l + �̂2u� c1��, then CSn3 = CSn1 = CSn2 = ?. So CSn = ?:
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2. If nb�2 � ��̂2l + �̂2u� c1��, then
CSn3

=

8><>:� :
 
� �

 
�̂2u�̂l + �̂

2
l �̂u

�̂2u + �̂
2
l

!!2
� �̂2l �̂

2
u

n
�
�̂2u + �̂

2
l

�
264c1�� � n

�
�̂l � �̂u

�2�
�̂2u + �̂

2
l

�
375
9>=>;T

n
� : �̂u � � � �̂l

o
= f� : A � � � Bg

Tn
� : �̂u � � � �̂l

o
;

where

A � �̂2u�̂l + �̂
2
l �̂u

�̂2u + �̂
2
l

�

vuuuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

�
264c1�� � n

�
�̂l � �̂u

�2�
�̂2u + �̂

2
l

�
375;

B � �̂2u�̂l + �̂
2
l �̂u

�̂2u + �̂
2
l

+

vuuuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

�
264c1�� � n

�
�̂l � �̂u

�2�
�̂2u + �̂

2
l

�
375:

Simple algebra shows that �̂u � B and �̂l � A implying

CSn3 = [A;B]
Th
�̂u; �̂l

i
=
h
max

n
A; �̂u

o
;min

n
B; �̂l

oi
:

Now, one can show:

�̂u �A =
�̂2u
b�

�̂2u + �̂
2
l

+

vuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

� "c1�� � nb�2�
�̂2u + �̂

2
l

�#

=

(
> 0 if c1�� > n

�̂2l

b�2
� 0 if c1�� � n

�̂2l

b�2 =)

8<: max
n
A; �̂u

o
= �̂u if �̂2l c1�� > nb�2

max
n
A; �̂u

o
= A if �̂2l c1�� � nb�2 ;

and

B � �̂l =
�̂2l
b�

�̂2u + �̂
2
l

+

vuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

� "c1�� � nb�2�
�̂2u + �̂

2
l

�#

=

(
> 0 if c1�� > n

�̂2u
b�2
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�̂2u
b�2 =)

8<: min
n
B; �̂l

o
= �̂l if �̂2uc1�� > nb�2

min
n
B; �̂l

o
= B if �̂2uc1�� � nb�2 :
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Summarizing, when nb�2 � ��̂2l + �̂2u� c1��, we get
CSn =

�
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p
c1��

�̂lp
n
; �̂u

�
[
h
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n
�̂u; A

o
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n
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[
�
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p
c1��

�̂up
n

�

=

8>>>>><>>>>>:

h
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p
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n
; �̂u +

p
c1��

�̂up
n

i
if nb�2 � c1��min��̂2l ; �̂2u	h

�̂l �
p
c1��

�̂lp
n
; B
i

if c1���̂2u < nb�2 � c1���̂2lh
A; �̂u +

p
c1��

�̂up
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i
if c1���̂2l < nb�2 � c1���̂2u

[A;B] if c1��max
�
�̂2u; �̂

2
u

	
< nb�2 � c1�� ��̂2u + �̂2l �
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