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Abstract
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The parametric specification assumes that the errors in the latent regression equations follow
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1 Introduction

Nonresponse is one of the most important and most studied sources of nonsampling error in sample

survey. A distinction is usually made between two forms of nonresponse, namely, unit and item

nonresponse. Unit nonresponse occurs when an eligible sample unit fails to participate to a survey

because of either failure to establish a contact, or because of explicit refusal to cooperate. Item

nonresponse occurs instead when a responding unit does not provide useful answers to particular

items of the questionnaire. For panel surveys, one can also distinguish another particular form of

unit nonresponse, namely, sample attrition. Attrition occurs when a responding unit in one wave

of the panel drops out in a subsequent wave.

This paper is mainly concerned with problems of nonresponse in cross-sectional surveys. These

problems, however, are also common to the first wave of panel surveys. It is important to emphasize

two crucial differences between unit nonresponse in the first wave of a panel and panel attrition.

First, the study of unit nonresponse in the first wave of a panel is usually complicated by the lack

of adequate information on the units who refuse to participate to the survey, whereas information

collected during the previous waves can be used to study panel attrition. This explains why

problems of unit nonresponse in the first wave of a panel have received much less attention than

problems of attrition. Second, unit response rates in the first wave of a panel are typically lower than

those achieved in subsequent waves. Other things being equal, this implies that unit nonresponse

in the first wave is more problematic than attrition.

One crucial issue in studying both unit and item nonresponse is to establish whether or not

the mechanism generating missing observations is random. Using the terminology introduced by

Rubin (1976), one can define three possible missing data mechanisms. The mechanism is missing

completely at random (MCAR) if missingness does not depend on the values of the variables in the

data matrix. The mechanism is missing at random (MAR) if, after conditioning on a set of observed

covariates, there is no relation between missingness and the observed outcome variables. The

mechanism is not missing at random (NMAR) if missingness and the observed outcome variables

are related even after conditioning on the set of observed covariates. When mechanisms underlying

(unit or item) nonresponse are NMAR, analyses that ignore nonresponse errors, or relay on the

MAR assumption, may lead to invalid inference about population parameters of interest.

An important strategy in order to reduce nonresponse errors consists of planning preventive

measures to cope with nonresponse at the survey design stage. Well-designed surveys aim to re-

duce unit nonresponse rates by choosing the most appropriate fieldwork period, interview mode,
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interviewer training, follow-up procedures and incentive schemes. Other aspects of the question-

naire design, like length of the interview, wording of the questions and their reference period, are

more likely to affect item nonresponse rates. Empirical studies by Groves and Couper (1998),

Groves et al. (2002), O’Muircheartaigh and Campanelli (1999) and Riphahn and Serfling (2002),

show that all these aspects of survey design are typically crucial to explain response rates achieved

in sample surveys. Unfortunately, despite the preventive measures adopted for minimizing nonre-

sponse errors, response rates are rarely close to 100 percent. This explains why most of the survey

nonresponse literature focuses on the development of statistical methods for ex-post adjustments

of nonresponse errors (see Lessler and Kalsbeek 1992, and Little and Rubin 2002). Weighting

adjustment methods, which involve the assignment of weights to sample respondents in order to

compensate for their systematic differences relative to nonrespondents, have been traditionally

used to deal with problems of unit nonresponse, whereas imputation procedures, which aim to fill

in missing values to produce a complete dataset, have been traditionally used to deal with problems

of item nonresponse. Although ex-post adjustment techniques have reached a high level of sophis-

tication, such methods commonly assume that the missing data mechanism is MAR, and they do

not generally allow compensating simultaneously for errors due to unit and item nonresponse.

This paper differs from previous studies in two respects. First, problems of selectivity due to

unit and item nonresponse are analyzed jointly. Second, missing data mechanisms underlying these

different types of nonresponse are allowed to be NMAR. In particular, we analyze a general sam-

ple selection model where unit and item nonresponse can jointly affect a regression relationship of

interest, and the two types of nonresponse can be correlated. Attention focuses on two alternative

specifications of the model, one parametric and the other semiparametric. In the parametric spec-

ification, errors in the two selection equations (one for unit and one for item nonresponse) and in

the equation for the outcome of interest are assumed to follow a trivariate Gaussian distribution.

In the semiparametric specification, we avoid distributional assumptions about the errors in the

three equations. After discussing issues related to identification and estimation of the two kind of

models, we provide an empirical application by using data from the first wave of SHARE (Survey on

Health, Aging and Retirement in Europe), a new survey conducted in 2004 across eleven European

countries. The aim of this analysis is to investigate the potential selectivity associated with unit

and item nonresponse in the estimation of Engel curves for food consumption at home and total

nondurable consumption.

The remainder of the paper is organized as follows. Section 2 formalizes the motivation
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of this study, and presents a general framework to analyze problems of unit and item nonre-

sponse. Sections 3 and 4 consider problems of identification and estimation of the parametric

and semi-parametric model respectively. Section 5 discusses the main survey design characteristics

of SHARE, and presents results of our empirical study. Finally, Section 6 summarizes our main

findings and offers some conclusion.

2 A sample selection model for unit and item nonresponse

Suppose that we are interested in estimating the conditional mean function of a random outcome by

using data from a survey, where a set of n1 units is initially drawn at random from some population.

Nonresponse may select the sample at two stages. First, unit nonresponse may reduce the sample

size to n2 < n1 responding units. Second, nonresponse to specific items of the questionnaire may

further reduce the number of usable observations to n3 < n2. The reduction of observations causes,

of course, an efficiency loss relative to the ideal situation of complete response. This efficiency loss

needs not be the main concern, because lack of independence between the missing data mechanism

and the outcome may also generate selectivity in the observed sample and may lead to biased

estimates of the population parameters.

To formalize the nature of the problem, we consider a sequential framework where individuals

first decide whether to participate to the survey, and then decide whether to answer to each item

of the questionnaire. Thus, the indicator of unit response is always observed, while the indicator

of item response is only observed for those units that agree to participate in the first stage. Let

Y1 denote the indicator of the event that an eligible sample unit participates to the survey, and let

Y2 denote the indicator of the event that a responding unit provides information on a specific item

of interest Y3. The response process is completely described by two elements: the probability of

unit nonresponse, π0 = Pr{Y1 = 0}, and the probability of item nonresponse conditional on unit

response, π0|1 = Pr{Y2 = 0 |Y1 = 1}. By the law of iterated expectations

E(Y3 |Y1 = 1)− E(Y3) = π0[E(Y3 |Y1 = 1)− E(Y3 |Y1 = 0)]. (1)

Further

E(Y3 |Y1 = 1) = E(Y3 |Y1 = 1, Y2 = 1) + π0|1[E(Y3 |Y1 = 1, Y2 = 0)− E(Y3 |Y1 = 1, Y2 = 1)].

Substituting this expression into the left-hand side of (1) and rearranging gives the following ex-

pression for the overall nonresponse bias, namely the difference between the conditional mean of
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Y3 for the sub-sample of fully responding units and the unconditional mean of Y3 for the overall

population,

E(Y3 |Y1 = 1, Y2 = 1)− E(Y3) = π0[E(Y3 |Y1 = 1)− E(Y3 |Y1 = 0)]+

+ π0|1[E(Y3 |Y1 = 1, Y2 = 1)− E(Y3 |Y1 = 1, Y2 = 0)].

The overall nonresponse bias is zero only if: (i) π0 = π0|1 = 0 (neither unit nor item nonresponse),

(ii) E(Y3 |Y1 = 1) = E(Y3 |Y1 = 0) and E(Y3 |Y1 = 1, Y2 = 1) = E(Y3 |Y1 = 1, Y2 = 0), or (iii)

the two sources of bias offset each other. If there are both unit and item nonresponse, the overall

nonresponse bias depends on two separate components proportional to the probabilities of unit and

item nonresponse respectively.

Our objective is to construct consistent estimates of the mean function of Y3 (conditional on

covariates) allowing for selectivity generated by unit and item nonresponse. Notice that distin-

guishing between unit and item nonresponse is of considerable practical importance for at least two

reasons. First, it can help improving the specification of the model, because different information

is usually available for studying the two types of nonresponse. In fact, the information available to

study unit nonresponse is usually confined to the information obtained from the sampling frame or

from the data collection process, whereas additional information collected during the interview can

be used to study item nonresponse. Second, understanding the different types of error generated by

unit and item nonresponse plays a key rule at the survey design stage, where resources have to be

allocated efficiently to reduce nonresponse errors. For instance, improving incentive schemes and

follow-up procedures can be useful fieldwork strategies to reduce unit nonresponse, while reducing

the complexity of the questionnaire can help reduce item nonresponse.

Our way of modelling the effects of both forms of selectivity is based on a straightforward

generalization of the classical sample selection model proposed by Heckman (1979). Our model has

the following form:

Y ∗ij = β>j Xij + σjUij , j = 1, 2, 3, i = 1, . . . ,N, (2)

Yi1 = 1{Y ∗i1 ≥ 0}, i = 1, . . . , n1, (3)

Yi2 = 1{Y ∗i2 ≥ 0}, if Yi1 = 1, i = 1, . . . , n2, (4)

Yi3 = Y ∗i3, if Yi1Yi2 = 1, i = 1, . . . , n3, (5)

where the Y ∗ij , j = 1, 2, 3, are latent continuous random variables representing respectively the

propensity to participate to the survey, the propensity to answer to the item of interest, and the

outcome variable in the uncensored sample. The latent variables are related to their observed
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counterparts through the observation rules (3)—(5), where 1{A} is the indicator function of the
event A. The Xij , j = 1, 2, 3, are kj-vectors of fully observable exogenous predictors and βj are

their associated parameters. The Uij are latent regression errrors with zero mean and unit variance,

and the σj are nuisance scale parameters. As usual, σ1 and σ2 are normalized to one in order to

identify coefficients of the binary response equations.

The primary interest of the analysis is to estimate the parameter β3 of the population regression

function from the sub-sample of fully observed units, for which:1

E(Y ∗i3 |Yi1 = 1, Yi2 = 1) = μi3 + σ3 E(Ui3 |Ui1 > −μi1, Ui2 > −μi2), (6)

where μij = β>j Xij . If one of the two nonresponse mechanisms is NMAR, then the conditional

expectation on the right hand side of (6) is different from zero, and traditional estimation methods

lead to inconsistent estimates of the population parameter β3. Consistent estimates can in general

be obtained through generalizations of the classical Heckman two-step procedure. Parametric and

semiparametric versions of this estimation procedure are presented in Sections 3 and 4 respectively.

3 A parametric model

In this section we consider a parametric framework in which the latent regression errors are assumed

to follow a trivariate Gaussian distribution with zero mean and correlation matrix

Σ =

⎡⎣ 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

⎤⎦ ,
where ρjk is the correlation between the errors in the j-th and the k-th equation.

In this parametric setting, the vector β = (β1, β2, β3) of model parameters can be estimated

consistently through the two-step procedure originally proposed by Poirier (1980) and further de-

veloped by Ham (1982). Here, we slightly modify their procedure in order to account for partial

observability of Y2 during the first estimation step. Using results of Tallis (1961), Poirier (1980)

shows that the conditional expectation on the right hand side of (6) admits the explicit represen-

tation

E(Ui3 |Ui1 > −μi1, Ui2 > −μi2) = ρ13λi1(θ) + ρ23λi2(θ), (7)

1 In the following, explicit conditioning on X1, X2 and X3 is suppressed to simplify notation.
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where θ = (β1, β2, ρ12) and the λij(θ) are bias correction terms given by

λi1(θ) =
φ(μi1)Φ(σ

−1(μi2 − ρ12μi1)

Φ2(μi1, μi2; ρ12)
,

λi2(θ) =
φ(μi2)Φ(σ

−1(μi1 − ρ12μi2))

Φ2(μi1, μi2; ρ12)
,

with σ =
p
1− ρ212, φ(·) and Φ(·) respectively the density and the distribution function of the

standardized Gaussian distribution, and Φ2(·, ·; ρ12) the bivariate Gaussian distribution function
with zero means, unit variances and correlation coefficient ρ12. The basic idea of the two-step

procedure is to use consistent estimates of the bias correction terms in (7) as additional regressors

in a standard OLS procedure.

In the first step, we consider a bivariate probit model with sample selection for (Y1, Y2), and

estimate the parameter θ by maximum likelihood (ML). Identifiability of the model requires im-

posing at least one exclusion restriction on the two set of exogenous covariates X1 and X2. Subject

to the identifiability restrictions, the log-likelihood for a random sample of n1 units can be written

as,

L(θ) =

n1X
i=1

[Yi1Yi2 lnπi11(θ) + Yi1(1− Yi2) lnπi10(θ) + (1− Yi1) lnπi0(θ)] , (8)

where
πi11(θ) = Pr{Yi1 = 1, Yi2 = 1} = Φ2(μi1, μi2; ρ12),

πi10(θ) = Pr{Yi1 = 1, Yi2 = 0} = Φ(μi1)− Φ2(μi1, μi2; ρ12),

πi0(θ) = Pr{Yi1 = 0} = 1− Φ(μi1).

A ML estimator θ̂ maximizes (8) over the parameter space Θ = <2 × (−1, 1). This estimator is
consistent if the bivariate probit model is correctly specified, and is asymptotically normal under

general conditions. Within this model, the hypothesis of conditional independence between unit

and item nonresponse can be tested through either a Wald test on the significance of ρ12, or a

likelihood ratio test that compares the maximized values of the log-likelihood in (8) with the sum

of the log-likelihoods of two simple probit models, one for Y1 and one for Y2 given Y1 = 1.

In the second step of the procedure, estimates λ̂ij = λij(θ̂), j = 1, 2, of the bias correction terms

in (7) are used as additional predictors in the augmented regression model

Yi3 = β>3 Xi3 + σ3ρ13λ̂i1 + σ3ρ23λ̂i2 + �i3 = γ> eXi3 + �i3, (9)

where �i3 = Ui3−σ3ρ13λ̂i1−σ3ρ23λ̂i2 is a heteroscedastic regression error with zero conditional mean,
γ = (β3, σ3ρ13, σ3ρ23) and eXi3 = (Xi3, λ̂i1, λ̂i2). The parameters γ can be estimated consistently
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by ordinary least square, even if computation of their standard errors needs to take into account

the heteroscedasticity induced by censoring and the additional variability induced by the use of

the generated regressors λ̂i1 and λ̂i2. Ham (1982) provides consistent estimators of σ3 and of the

asymptotic covariance matrix of the least square estimator of γ. Alternatively, standard errors of

the estimates can be obtained via the nonparametric bootstrap.

Although the implementation of this two-step estimator is relatively straightforward, one of

the major concerns is identifiability of the parameters in model (9). The identification problem

is closely related to that arising in the classical Heckman two-step procedure (see Vella 1998 and

Puhani 2000 for an extensive discussion). Parameters of the second estimation step may in principle

be identified through the nonlinearity of the inverse Mills ratio. However, since the inverse Mills

ratio is linear over a wide range of its argument, identification obtained through the nonlinearity

of the inverse Mills ratio is often weak. The inclusion of additional variables in the first estimation

step can therefore be useful to assist identification in the second estimation step.2 The above

considerations also hold for sample selection models with two censoring equations. Although larger

values of the correlation coefficient ρ12 increases slightly the nonlinearity of the bivariate Mills

ratio, the function is still linear for wide ranges of the two indexes μi1 = β>1 Xi1 and μi2 = β>2 Xi2.

Exclusion restrictions (that is, variables which are included in X1 and X2 but excluded from X3)

become then crucial to guarantee identifiability of the parameters in the second estimation step.

As suggested by Fitzgerald et al. (1998) and Nicoletti and Peracchi (2005), features of the

data collection process and socio-demographic characteristics of the interviewers can be promising

candidates for this set of exclusion restrictions. Because these variables are external to the subjects

under investigation and are not under their control, one should expect them to be irrelevant in

explaining the outcome variable of interest. On the other hand, results of several data validation

studies have shown that these variables are typically important predictors of both unit and item

response.

4 A semiparametric model

One criticism of parametric estimation of sample selection models stresses their sensitivity to incor-

rect specification of the model. Parametric estimators for this class of models are indeed inconsistent

whenever assumptions on the deterministic or the stochastic part of the model are not valid. Dur-

2 Leung and Yu (1996) show that the quasi-linearity of the inverse Mills ratio causes essentially a problem of
collinearity with the other covariates of the second estimation step, which in turn leads to inflated standard errors
and unreliable estimates.
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ing the last twenty-five years, a large body of the econometric literature has been concerned with

finding semiparametric procedures for consistent estimation in the presence of different forms of

misspecification. Some of these estimators are also known to be
√
n-consistent and asymptotically

normal (see Vella 1998 for a survey).

In this section, we focus on model (2)—(5) and consider semiparametric estimation procedures

that are robust to departures from the assumption of Gaussian errors. Once we relax the Gaussian

distributional assumption, estimation of the model raises two difficulties. First, one can not invoke

distributional assumptions to estimate parameters of the two binary response models. Second, one

can not use distributional relationships to find an analytical expression for the bias correction term

in equation (6). In this case, the conditional expectation for the outcome variable of interest can

be written as the partially linear model

E(Yi3 |Yi1Yi2 = 1) = μi3 + g(μi1, μi2), i = 1, . . . , n3, (10)

where β>3 Xi3 is the linear part of the model and g is now an unknown function of the two indexes

μi1 = β>1 Xi1 and μi2 = β>2 Xi2. Notice that the model maintains a double index structure. In

principle, the index restriction could be relaxed, but the resulting estimators would suffer of the

well known curse of dimensionality problem. The double index structure is therefore useful to

reduce the dimension of the covariate space, thereby avoiding the curse of dimensionality problem.

Before describing the estimation procedures for model (2)—(5), it is important to mention the

conditions under which it is identified. Identifiability of the equations for unit and item nonresponse

requires normalizing the location of the underlying distribution functions. Following Melenberg and

van Soest (1996), we set the intercept coefficient equal to its probit estimate. As shown by Ichimura

and Lee (1991), identifiability of the double-index model (10) also requires that the index of each

equation contains at least one continuous variable with a nonzero coefficient which is not contained

in the other index.3 Thus, unlike the parametric specification of the model, exclusion restrictions

should now include some continuous variable.

Subject to these identifiability restrictions, semiparametric estimation of model (10) can again

be carried out through a two-step procedure. In principle, parameters of the two response equations

could be jointly estimated by the semiparametric maximum likelihood approach of Lee (1995), which

generalizes to sequential choice models the approach originally proposed for binary choice models

by Klein and Spady (1993). In practice, because of both the large sample size and the large number

3 See Lemmas 2 and 3 in Ichimura and Lee (1991).
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of covariates used in our empirical application, the implementation of this estimator would be very

time consuming.4

To overcome this computational difficulty, we focus on a simpler semiparametric model where

errors of the two response equations are assumed to be independent. As shown later in Section 5.4,

this conditional independence assumption is strongly supported by the results from parametric

estimation of the model. Further, in the first step of the procedure, the parameters of the response

equations are estimated by the less computationally demanding semi-nonparametric (SNP) esti-

mator of Gallant and Nychka (1987). Specifically, after a suitable parametrization, the univariate

densities of the latent regression errors may be approximated by densities of the Hermite form

fK(u) =
1

ψK
τK(u)

2 φ(u), (11)

where τK(u) =
PK

k=0 τku
k is a polynomial of order K, and ψK =

R∞
−∞ τK(u)

2φ(t) dt. Since fK(u)

is invariant to multiplication of τ = (τ0, . . . , τK) by a scalar, τ0 is normalized to one.

The associated distribution function is of the form

FK(u) =

Z u

−∞
fK(t) dt =

1

ψ

2KX
k=0

τ∗k Ik(u), (12)

where Ik(u) =
R u
−∞ ukφ(t) dt are the truncated moments of the standardized Gaussian distribution

and satisfy the recursion Ik(u) = (k−1)Ik−2(u)−uk−1φ(u), with I0(u) = Φ(u) and I1(u) = −φ(u).
The two vectors of parameters β1 and β2 are estimated by maximizing the pseudo log-likelihood

functions of two binary choice models (one for Y1, and one for Y2 given Y1 = 1) in which the unknown

distribution functions are replaced by approximations of the form (12). As shown by Gallant and

Nychka (1987), this pseudo-ML estimator is consistent and asymptotically normal provided that

the degree K of the polynomial increases with the sample size. For a given sample size, the value

of K may be selected either through a sequence of likelihood ratio tests, or by model selection

criteria like the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

In particular, Gabler et al. (1993) and Stewart (2004) show that semiparametric specifications

with K ≤ 2 are equivalent to a simple probit model. Thus, the first semiparametric model that
generalizes the probit model is the specification with K = 3. In this semiparametric setting, a test

on the joint significance of the coefficients τ = (τ3, . . . , τK) is equivalent to a test on the Gaussian

distributional assumption of the error term.
4 Semiparametric estimators based on kernel density estimation typically require computing n kernel functions at

each step of the optimization process. Thus, the computational time required by these estimators depends crucially
on both the sample size and the number of covariates. For our empirical application, which involves about 14,700
observations and 42 covariates, the implementation of these estimators would be computationally too demanding.
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Given consistent estimates of the two indexes μi1 = β>1 Xi1 and μi2 = β>2 Xi2, the parameters of

the model for the outcome of interest can be estimated by the semiparametric approach of Robinson

(1988). In particular, model (10) directly implies that:

Yi3 − E(Yi3 |μi1, μi2, Yi1Yi2 = 1) = β>3 [Xi3 − E(Xi3 |μi1, μi2, Yi1Yi2 = 1)] + �i3, (13)

where E(�i3|μi1, μi2, Yi1Yi2 = 1) = 0. After replacing the unknown conditional expectations in (13)
with their nonparametric estimates, the slope coefficients can be estimated by OLS with no inter-

cept.5 Robinson (1988) shows that, under mild regularity conditions, the estimator of the slope

coefficient β3 is
√
n3-consistent and asymptotically normal. The intercept coefficient is instead

absorbed in the unknown function g, and is not identified. Finally, the nonlinear function of the

model g can be estimated nonparametrically by the residual component:

ĝ(μi1, μi2) = Ê(Yi3 |μi1, μi2, Yi1Yi2 = 1)− β̂>3 Ê(Xi3 |μi1, μi2, Yi1Yi2 = 1). (14)

where Ê(Yi3 |μi1, μi2, Yi1Yi2 = 1) and Ê(Xi3 |μi1, μi2, Yi1Yi2 = 1) denote respectively the nonpara-
metric estimates of E(Yi3 |μi1, μi2, Yi1Yi2 = 1) and E(Xi3 |μi1, μi2, Yi1Yi2 = 1).6 Notice that, since
the rate of convergence of ĝ depends on the rate of convergence of the nonparametric estimators

in (14), this estimator is not
√
n3-consistent in general.

5 An empirical application

In this section, we use data from the first wave of SHARE (Survey on Health, Aging and Retirement

in Europe) to investigate whether selectivity associated with unit and item nonresponse may bias

the estimation of Engel curve for household consumption.

There are reasons to believe that the process leading to missing consumption data is NMAR.

First, survey nonresponse typically depends on income. For a simple theoretical model of this rela-

tion see Korinek, Mistiaen and Ravallion (2004). Second, consumption is a good proxy of permanent

income. We focus on two PPP-adjusted consumption expenditure categories: food consumption

at home, and total nondurable consumption. Although the measure of primary interest for many

economic studies is total nondurable consumption, recent data validation studies by Browning et al.

(2002), Battistin et al. (2003) and Winter (2004) have shown that information collected through

5Like for the parametric two-step procedure, computation of the standard errors needs to take into account the
heteroscedasticity induced by censoring and the additional variability due to the use of the generated regressors μ̂i1
and μ̂i2. In our empirical application, standard errors are computed via the nonparametric bootstrap.

6 Alternatively, the nonlinear component of the model can be estimated by a nonparametric regression of Yi3 −
β̂>3 Xi3 on μ̂i1 and μ̂i2.
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sub-categories of consumption expenditures is usually more accurate than that collected through a

“one-shot” question on total nondurable consumption. In addition, food consumption at home is

typically an important component of total nondurable household consumption.

5.1 Country coverage and sampling design

SHARE is a standardized multi-purpose household survey designed to investigate several aspects of

the elderly population in Europe. Its first wave, conducted in 2004, covered 15,544 households and

22,431 individuals in eleven European countries (Austria, Belgium, Denmark, France, Germany,

Greece, Italy, Netherlands, Spain, Sweden and Switzerland).

In each country, the target population consists of all people living in residential households

who have at least 50 years of age, plus their (possibly younger) partners. The target population is

further restricted by a number of additional eligibility criteria, which exclude people who currently

do not reside at the sampled address, or died before the starting of the field period, or are unable

to speak the specific language of the national questionnaire, or are physically or mentally unable

to participate to the survey.

All national samples are selected through probability sampling, but sampling procedures are

not completely standardized across countries. Here, we distinguish between two groups of countries

depending on the nature of the sampling frame adopted. In one group of countries (Denmark,

Germany, Italy, Netherlands, Spain, and Sweden), the sampling frame is a population register

containing information at least on the age and the gender of the sampled units. In another group

of countries, the sampling frame is either a telephone register (like in Austria, Belgium, Greece

and Switzerland) or a register of dwellings (like in France), and does not contain information on

the background characteristics of the sampled units. In these countries, age-eligibility was assessed

through a preliminary screening phase in the field. However, because of nonresponse during the

screening phase, it was not possible to determine the eligibility status of about 15 percent of gross

sample. For this second group of countries, the analysis of unit nonresponse is therefore complicated

by the lack of sampling frame information and unknown eligibility of a fraction of the gross sample.

To avoid these problems, we only consider the first group of countries (Denmark, Germany, Italy,

Netherlands, Spain, and Sweden).

Table 1 provides the number of eligible households, the unweighted household response rate,

and the most common sub-components of the household nonresponse rate (that is, noncontact
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rate, refusal rate and other non-interview rate) by country.7 The household response rate ranges

between a minimum of 47 percent in Sweden and a maximum of 62 percent in Netherlands, and is

equal to 56 percent on average. Focusing attention on the reasons for nonresponse, we find that

refusal to participate to the survey is the main reason (34 percent), although in some countries a

non negligible fraction of nonresponse is also due to noncontact (13 percent in Spain) and other

non-interview reasons (5 percent in Sweden).

Conditional on unit response, SHARE also experienced non-negligible amounts of missing data

for open-ended questions on the amounts of income, assets and consumption expenditures. Item

response rates (that is, the fraction of eligible respondents with a “Don’t know” or “Refusal” answer)

for the two consumption expenditure items of interest are reported in Table 2. The cross country

average of the item response rates is equal to 86 percent for food consumption at home, and 83

percent for total nondurable consumption. Also in this case there is however a considerable variation

across country. The lowest item response rates are in Spain (78 and 77 percent respectively), while

the highest are in Sweden (93 and 90 percent respectively).

Although response rates obtained in the first wave of SHARE do not differ considerably from

those obtained by other comparable European surveys, results of Tables 1 and 2 suggest that unit

and item nonresponse may be two important sources of nonsampling errors.

5.2 Consumption expenditure data and outliers

A preliminary analysis of PPP-adjusted consumption expenditure data reveals clearly the presence

of outliers in the tails of the empirical distribution of these variables. This is a typical problem

of data collected through retrospective and open-ended questions. On the one hand, there are

households who report zero or very low expenditures. Although zero or very low expenditures

may be plausible answers for some consumption categories, we believe that these observations

are highly suspicious for food consumption at home and total nondurable consumption. To deal

with this problem, we trim 1 percent of the observations from the lower tail of the two empirical

distributions. On the other hand, we find extremely high expenditures which are presumably due to

interviewer’s typing errors. To exclude these outliers, we trim 1 percent of the observations from the

upper tail of the two empirical distributions. Since outliers can be considered as useless answers,

7 For each country, the unweighted household response rate is computed as the fraction of eligible households with
at least one interviewed person. Further details on the computations of these outcome rates are given in Börsch-Supan
and Jürges (2005).
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in our empirical application trimmed observations are treated as item nonresponse.8 Summary

statistics (that is, number of nonmissing observations, mean, standard deviation, minimum and

maximum) of the two PPP-adjusted and trimmed consumption distributions are showed in Table 3.

5.3 Predictors of the unit and the item response probabilities

In SHARE, predictors of unit nonresponse can be obtained by exploiting the information coming

from the sampling frame, the survey agencies and the fieldwork. By matching these different sources

of data, we are able to get information on background characteristics of the selected household

member (like age and gender), interviewers’ characteristics (like age, gender and years of education)

and workload (measured by the number of households visited in person), total number of calls and

length of the fieldwork (measured by the number of days elapsed between the first and the last call

attempt).

Once we focus on the sub-sample of responding households, the additional information collected

during the interview can be used to study nonresponse on specific items of the questionnaire. The

multidisciplinary nature of the SHARE data offers the unique opportunity of assessing whether

item nonresponse on consumption questions is related to different types of economic and health

variables, once we control for features of the data collection process and background characteristics

of respondents and interviewers.

Since consumption questions are asked to the household member who is most knowledgeable

about housing matters (the “household respondent” or HR), a set of variables related to socio-

demographic characteristics, cognitive abilities, and health conditions of the HR has been included

as predictors of item response. Our set of socio-demographic variables includes age (which enters

as a quadratic term), gender, years of education, current job situation, marital status, household

size, and a dummy variable for living in small cities. Cognitive abilities are measured through the

scores obtained in the mathematical, orientation in time and delayed recall tests performed during

the cognitive function (CF) module of the SHARE interview. The set of health variables includes

instead the EUROD depression scale index, and a set of dummies for self-reported problems in

managing money, less than good self-perceived health, and at least one ADL limitation.9

Although household income and wealth are two obvious predictors, such variables are affected

by item nonresponse, measurement errors and outliers. To deal with the first problem, we use

8 A sensitiveness analysis with 1.5 and 2 percent of trimming does not lead to qualitative different results. Thus,
for efficiency reasons, we only present results with 1 percent of trimming.

9 An accurate description of these health measures can be found in Börsch-Supan et al. (2005).
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imputed gross annual household income and net financial assets as provided in the SHARE public

release database, but include dummies for imputed values.10 To reduce the impact of measurement

errors and outliers, we instead use dummies for income and wealth quartiles.

To control for differences in the interview process, we use a set of measure of the cognitive

burden of the interview. These variables include the length of the household respondent interview,

and a set of dummies for interviews done by proxy, at the respondent home, and with the presence

of other non-household member.

As a measure of the interviewers’ computer skill, we also include the length of the Interviewer

(IV) module. The IV module contains a set of closed questions on the background characteristics

of the interviewers and the conditions of the interview process. More striking, since this module

is only completed by the interviewer without involving the respondent, its length provides a proxy

measure of the interviewers’ computer skill.11

Definitions and summary statistics (that is, number of nonmissing observations, mean and

standard deviation) of the predictors of unit and item response are provided in Tables 4 and 5

respectively.

5.4 Parametric estimates

To assess the selectivity effects generated by unit and item nonresponse, we estimate and compare

five alternative models. Model 1 is a standard linear model estimated for the fully responding

units without accounting for selectivity generated by nonresponse. Model 2 is a classical sample

selection model estimated for the unit respondents and only accounts for selectivity generated by

item nonresponse. Model 3 is a classical sample selection model estimated for the full sample with a

single indicator (Di = Yi1Yi2) for unit and item response. Model 4 is a generalized sample selection

model which accounts for selectivity generated by unit and item nonresponse, but assumes that

errors in the unit and the item response equations are independent. Finaly, Model 5 is a generalized

sample selection model which accounts for selectivity generated by unit and item nonresponse,

and does not impose independence of the error terms in the two response equations. Parametric

estimates of these models are provided in Tables 6 - 9.

All estimated models share two common features. First, given the high comparability of the

SHARE data, we pool data from the various countries and introduce country dummies to capture

10 Imputed values of household income and wealth are based on hotdeck and multiple imputation methodologies.
Here, for simplicity reasons, we only use the first of the five imputed distributions.
11 Estimates of a regression model for the length of the IV module reveals that this module tends to last longer for

interviewers with higher age and lower education (result omitted to save space).
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unobserved heterogeneity across countries. Pooling the data allows increasing the number of ob-

servations and helps reducing problems of collinearity due to the limited within-country variability

of some variable (like characteristics of the fieldwork and the interviewers). Second, identifiability

of the model parameters is achieved by imposing a common set of exclusion restrictions. As men-

tioned in Section (3), our exclusion restrictions are based on characteristics of the fieldwork, the

interview process and the interviewers. In particular, characteristics of the fieldwork are used to

predict unit nonresponse, features of the interview process are used to predict item nonresponse,

and socio-demographic characteristics of the interviewers are used to predict both. If we distinguish

between household or personal characteristics and country dummies (V), fieldwork information (Z),

interviewer characteristics and characteristics of the interview process (W), then we can write

X1 = (V,W,Z), X2 = (V, V
∗,W,W ∗), X3 = (V, V

∗).

The use of this large set of exclusion restrictions should protect against problems of collinearity,

especially during the second estimation step.

Table 6 presents estimates of the probability of unit response for Models 3, 4 and 5. In particular,

Model 3 is a probit model with a single indicator for unit and item response, Model 4 is a probit

model for unit nonresponse, and Model 5 a bivariate probit model with sample selection which

also accounts for the correlation between unit and item nonresponse. We find that the probability

of unit response tends to fall with age. Women are less likely to participate than men, but the

differences are not strongly significant. The interviewer’s gender does not seem to matter, whereas

the interviewer’s age is positively related to unit response. The interviewer’s education, the total

number of calls and the length of the fieldwork are negatively related to unit response. This

may simply reflect the strategy of increasing the number of calls and switching to more experienced

interviewers when there are difficulties in reaching contact and gaining respondents’ cooperation. A

comparison of the estimates in Models 4 and 5 also shows that relaxing the conditional independence

assumption between errors in the two response equations has only negligible effects on parameter

estimates in the unit response equation.

Table 7 provides estimates of the probit model (Model 4) and the bivariate probit model (Model

5) for the probabilities of item response on the two consumption items. Estimates of the corre-

lation coefficient ρ12 are relatively small, and the corresponding likelihood ratio tests never reject

conditional independence between unit and item nonresponse. Accordingly, the differences between

estimated coefficients of the probit model and the bivariate probit model are not statistically signif-

icant. By focusing on the predictors of item response, we find that the probability of item response
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tends to fall with the age of the household respondent. Living in a small city, being employed,

being single, or being more educated are negatively related to item response, but the estimated

effects are only weakly statistically significant. Even after controlling for respondent’s background

characteristics such as age and education, the cognitive function scores are positively related to

item response probabilities, while other health measures are not. The positive coefficients on the

income and wealth quartiles suggest that item nonresponse leads to selection of households with

higher income and wealth. Furthermore, the negative coefficients on the dummies for income and

wealth imputations suggest that nonresponse to income and wealth questions is positively related

to nonresponse to consumption questions. Among characteristics of the interview process and the

interviewers, we find that allowing the interviewee to be assisted by a proxy respondent and using

more experienced interviewers (that is, interviewers with higher workload and better computer

skill) both have a positive impact on the probability of item response.

Estimates of the Engel curves for food consumption at home and total nondurable consumption

are presented in Tables 8 and 9 respectively. Here, a comparison of the five alternative models allows

assessing the selectivity effects of unit and item nonresponse operating through the bias correction

terms λunit and λitem. For both food consumption at home and total nondurable consumption, the

selection biases associated to unit and item nonresponse have opposite sign and therefore partly

offset each other: the first (unit nonresponse) is positive, the second (item nonresponse) is negative.

For food consumption at home, the coefficients on the bias correction terms are not statistically

significant, and estimates of the five models are not very different. We conclude that unit and item

nonresponse appear to be purely random. For total nondurable consumption, the coefficients on

the bias correction terms are statistically significant. Therefore, neither unit nor item nonresponse

errors are ignorable, and only the two generalized sample selection models (Models 4 and 5) provide

consistent estimates for the model parameters of interest. The estimates of Model 3 are similar

to those of Model 1 probably because relevant predictors of item response probability are omitted

by the model with a single indicator for unit and item response. The estimates of Model 2 are

instead similar to those of Models 4 and 5. Here, the main differences occur in the coefficients of

the country dummies that are important predictors of both unit response and total nondurable

consumption.

Before turning to the semiparametric specification of the model, we find interesting to investigate

the importance of collinearity problems during the second step of the estimation procedure. Since

our models are identified through a set of exclusion restrictions, multicollinearity should not be

17



a major concern. Nevertheless, results provided in Table 7 show that most of the variables used

as exclusion restrictions are not important predictors of item nonresponse. The lack of suitable

exclusion restrictions could therefore be responsible for problems of collinearity which inflate the

variance of the bias correction term associated with item nonresponse. In order to assess the

relevance of these collinearity problems, we provide at the bottom of Tables 8 and 9 the largest

variance inflation factor (VIF) among covariates of the second estimation step. Although the VIF

associated with λitem is, as expected, the highest, the informal rules of thumb usually adopted for

the analysis of the VIF does not reveal any serious problem of collinearity.12

5.5 Semiparametric estimates (Preliminary, to be completed...)

This section presents estimates of a semiparametric two-step procedure that are robust to violations

of the Gaussianity of the error terms. As mentioned above in Section 4, this analysis assumes that

errors in the unit and the item response equations are independent. In principle, the conditional

independence assumption could be relaxed, but the resulting semiparametric estimators would

require an unreasonable amount of computer time. Furthermore, in our empirical application, this

assumption is strongly supported by the results of the parametric estimation of the model (see

Section 5.4).

In the first step of the procedure, parameters of the unit and the item response equations are

estimated separately by the SNP estimator of Gallant and Nychka (1987). Since in this approach

inference is conducted conditional on K (the degree of the Hermite polynomial used for approxi-

mating the unknown distribution function of the error terms), estimation is carried out by varying

K from 3 to 5. Specifications underlying these alternative choices of K are then compared through

likelihood ratio tests, AIC, and BIC. According to the various model selection criteria in Table 10,

the preferred specification has K = 4 for unit response and K = 3 for item response. Parametric

and semiparametric estimates of these models are presented in Tables 11 and 12 respectively. Be-

cause of the different scale, estimated coefficients of the probit model and the semiparametric model

are not directly comparable. Estimates in Tables 11 and 12 are normalized by setting respectively

the coefficients for the length of the fieldwork (lfield) and the length of the IV module (ivlength)

equal to -0.01.13

12 According to these rules, there is evidence of multicollinearity if the largest VIF is greater than 10 (see Chatterjee
et al. 2000).
13 Specifically, coefficients of the parametric and semiparametric models are divided by the absolute value of the

coefficients associated with these variables time 0.01. Standard errors of the resulting nonlinear combinations are
computed by the delta method.

18



For unit response, we find important differences between the parametric and the semiparametric

estimates. In particular, the main differences occur for interviewers’ characteristics, features of

the fieldwork, and country dummies. The parameters τ of the Hermite polynomial expansion are

significantly different from zero at the 1 percent level. Therefore, the probit specification is strongly

rejected. The estimated error density exhibits multimodality, positive skewness and greater kurtosis

than a standard normal density (see Figure 1).

For item response, the probit model is still rejected for food consumption at home, but not for

total nondurable consumption. For food consumption at home, the estimated error density exhibits

bimodality. Overall, however, the differences between the parametric and the semiparametric es-

timates of the regression coefficients are small. Thus, parametric estimates of the item response

equations are only marginally affected by violations of the Gaussian distributional assumptions.

In the second step of the procedure, estimates of the two indexes μ̂1 = β̂>1 X1 and μ̂2 = β̂>2 X2

are used to estimate a partially linear model for the outcome variables of interest. Following

Robinson (1988), the unknown conditional expectations in (13) are estimated nonparametrically

by Nadaraya-Watson kernel regression estimators of the form

Ê(Wi | μ̂i1, μ̂i2, Yi1Yi2 = 1) =
An3(Wi | μ̂i1, μ̂i2, Yi1Yi2 = 1)
An3(1 | μ̂i1, μ̂i2, Yi1Yi2 = 1)

, (15)

with Wi equal to Yi3 or Xi3, and

An(Wi |μi1, μi2, Yi1Yi2 = 1) =
1

(n− 1)h2n

nX
j 6=i

Wj K
µ
μi1 − μj1

hn
,
μi2 − μj2

hn

¶
,

An(1 |μi1, μi2, Yi1Yi2 = 1) =
1

(n− 1)h2n

nX
j 6=i
K
µ
μi1 − μj1

hn
,
μi2 − μj2
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¶
,

where K(u, v) = K(u)K(v) is the product of two univariate bias reducing kernels, K(t) = (3/2−
t2/2)φ(t), and hn = n−1/p is a bandwidth that goes to zero as n → ∞. In determining nonpara-
metric estimates, we also trim observations for which An3(1 |μi1, μi2, Yi1Yi2 = 1) is less than n

−1/r
3 .

After replacing the unknown conditional expectations in (13) with their nonparametric estimates,

the vector of parameters β3 is estimated through standard OLS with no intercept.14 Standard errors

of the OLS estimator are instead computed by the nonparametric bootstrap with 200 replications.

Semiparametric estimates of the partially linear model for food consumption at home and total

nondurable consumption are presented in Tables 13 and 14 respectively. To explore sensitiveness

of Robinson’s estimator with respect to choice of the bandwidth parameter and the trimming

14 As mentioned in Section 4, the intercept coefficient is absorbed in the nonlinear function g, and is not identified.
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factor, estimation is carried out for alternative combinations of p and r.15 In particular, results

are presented for p = 5 and r = 21 (column a), p = 6 and r = 13 (column b), p = 7 and r = 10

(column c). Parametric estimates of Model 3 are also reported to facilitate comparisons.

To be completed...

6 Conclusions

In this paper we investigate problems of selectivity generated by unit and item nonresponse in

cross-sectional surveys. The paper is organized in two parts.

In the first part, we analyze a general sample selection model in which unit and item non-

response can simultaneously affect a regression relationship of interest through NMAR missing

data mechanisms. Issues concerning identification and estimation have been considered for two

alternative specifications of this model. In the parametric specification, errors in the two selection

equations and in the equation for the outcome of interest are assumed to follow a trivariate Gaussian

distribution. In the semiparametric specification, we relax assumptions on the Gaussianity error

terms.

In the second part, we use data from the first wave of SHARE to investigate whether selec-

tivity associated with unit and item nonresponse may bias the estimation of Engel curve for food

consumption at home and total nondurable consumption.

To be completed...

15Combinations of p and r are selected to satisfy conditions imposed on the choice of the bandwidth parameter
hn3 and the trimming factor bn3(see Robinson 1988, Theorem 1).
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Table 1: Unweighted household response rates.

Response Noncontact Refusal Other noninterview
Country Eligible rate rate rate rate
Denmark 1742 0.61 0.09 0.29 0.01
Germany 2583 0.60 0.05 0.34 0.01
Italy 2505 0.54 0.08 0.36 0.02
Netherlands 2509 0.62 0.05 0.32 0.01
Spain 2619 0.50 0.13 0.36 0.01
Sweden 3956 0.47 0.06 0.42 0.05
Total 15914 0.56 0.08 0.34 0.02

Table 2: Unweighted item response rates for consumption expenditure questions.

Food Total
Country Eligible at home consumption
Denmark 1178 0.81 0.79
Germany 1566 0.88 0.88
Italy 1376 0.85 0.84
Netherlands 1559 0.89 0.77
Spain 1341 0.78 0.77
Sweden 1850 0.93 0.90
Total 8870 0.86 0.83

Table 3: Summary statistics for consumption expenditure questions (Yearly amounts expressed in
100 Euro. Empirical distributions trimmed symmetrically by 2 percent.).

Variable Obs. Mean Std. Min Max
Food at home 7496 49.5 39.8 2.3 640.0
Total consumption 7204 118.8 84.2 9.5 960.0
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Table 4: Summary statistics for the predictors of unit response.

Variable Obs. Mean Std. Description
agecl_1 15884 .37 0.48 Age class 50—59
agecl_2 15884 .52 0.50 Age class 60—79
agecl_3 15884 .11 0.32 Age class 80+
female_gs 15893 .54 0.50 Female
iv_age 15900 49.2 11.5 Interviewer age
iv_female 15900 .71 0.45 Interviewer female
iv_yedu 15604 13.5 3.0 Interviewer years of education
iv_wl 15914 43.6 35.1 Interviewer workload (households visited in person)
tot_call 15914 3.7 5.0 Total number of call attempts
lfield 15914 41.1 46.2 Length of fieldwork (days between first and last call)

Table 5: Summary statistics for the predictors of item response.

Variable Obs. Mean Std. Description
hr_age 8856 64.8 10.4 HR age
hr_female 8870 0.54 0.50 HR female
hr_yedu 8842 10.0 4.5 HR years of education
hr_working 8820 0.34 0.47 HR working (1 - paid work in the last 4 weeks)
single 8846 0.33 0.47 HR leaving as single
hsize 8870 2.11 1.02 Household size
s_city 8681 0.23 0.42 Household leaves in a small city
math 8806 3.30 1.18 Score on mathematical test (1—5)
orient 8822 3.76 0.65 Score on orientation in time test (1—5)
recall 8753 3.32 2.03 Score on delayed recall test (1—11)
eurod 8737 2.32 2.26 EURO depression scale index (1—12)
p_money 8870 0.04 0.18 Self-reported problems in managing money
sp_health 8830 0.69 0.46 Less than good self-reported health
adl1 8827 0.10 0.30 At least one ADL limitation
income_q1 8867 0.25 0.43 1st quartile gross annual HH income
income_q2 8867 0.25 0.43 2nd quartile gross annual HH income
income_q3 8867 0.25 0.43 3rd quartile gross annual HH income
income_q4 8867 0.25 0.43 4th quartile gross annual HH income
inc_mis 8870 0.55 0.50 Gross annual income missing
wealth_q1 8870 0.25 0.43 1st quartile net financial assets
wealth_q2 8870 0.25 0.43 2nd quartile net financial assets
wealth_q3 8870 0.25 0.43 3rd quartile net financial assets
wealth_q4 8870 0.25 0.43 4th quartile net financial assets
wea_mis 8870 0.52 0.50 Net financial assets missing
iv_length 8797 1.8 1.5 Length of the IV module (min.)
int_length 8775 71.8 26.1 Length of the HR interview (min.)
f_proxy 8710 0.02 0.13 Full proxy interview (CO module)
p_proxy 8710 0.06 0.25 Partial proxy interview (CO module)
int_home 8708 0.96 0.20 Interview done at the respondent home
int_oper 8870 0.01 0.11 Non-household members present during the interview
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Table 6: Parametric estimates for unit response (* denotes an observed significance level between
1% and 5%, ** denotes an observed significance level below 1%.

Model 3 Model 5
Food Total Model 4 Food Total

Variable at home consumption at home consumption
agecl_1 .0716 ** .0778 ** .0363 .0352 .0362
agecl_3 -.2805 ** -.2623 ** -.2016 ** -.2013 ** -.2021 **
female_gs -.0175 -.0532 * -.0409 * -.0411 * -.0419 *
iv_agec .0029 ** .0031 ** .0020 * .0020 * .0020 *
iv_agec2 .0001 .0002 * .0002 ** .0002 ** .0002 **
iv_female .0084 .0003 .0131 .0133 .0133
iv_yedu -.0220 ** -.0174 ** -.0174 ** -.0173 ** -.0173 **
iv_wl .0011 ** .0008 * .0005 .0005 .0005
tot_call -.0216 ** -.0227 ** -.0248 ** -.0249 ** -.0247 **
lfield -.0025 ** -.0023 ** -.0030 ** -.0030 ** -.0030 **
DK .0200 .0276 .2481 ** .2478 ** .2481 **
DE .0592 .0826 * .1302 ** .1296 ** .1301 **
IT -.2106 ** -.1767 ** -.0612 -.0616 -.0612
NL -.0342 -.1586 ** .1191 ** .1188 ** .1197 **
ES -.3688 ** -.3289 ** -.1751 ** -.1760 ** -.1749 **
_cons .4467 ** .3629 ** .5253 ** .5253 ** .5249 **
n 15129 15129 15129 15129 15129

25



Table 7: Parametric estimates for item response. To save space, country dummies are not reported.

Food at home Total consumption
Variable Model 4 Model 5 Model 4 Model 5
hr_agec -.0099 ** -.0101 ** -.0141 ** -.0142 **
hr_agec2 -.0001 -.0001 .0001 .0001
hr_female .1686 ** .1595 ** -.0440 -.0480
hr_yedu -.0107 -.0107 -.0089 -.0089
hr_working -.1164 * -.1172 * -.0875 -.0888
single -.0869 -.0848 -.0957 * -.0943 *
hsize .0046 .0046 -.0337 -.0332
s_city -.0568 -.0535 -.1404 ** -.1365 **
math .0328 .0323 .0132 .0131
orient .1361 ** .1327 ** .0570 .0556
recall .0205 .0200 .0329 ** .0324 **
eurod .0185 * .0183 * .0159 .0158
p_money -.1856 -.1835 -.1009 -.1007
sp_health -.0653 -.0639 -.0505 -.0496
adl1 -.0914 -.0898 .0481 .0474
income_q2 .1663 ** .1629 ** .1446 ** .1430 **
income_q3 .2629 ** .2586 ** .2322 ** .2299 **
income_q4 .2066 ** .2028 ** .1745 ** .1726 **
inc_mis -.5130 ** -.5050 ** -.5405 ** -.5356 **
wealth_q2 .2686 ** .2636 ** .3196 ** .3156 **
wealth_q3 .2778 ** .2734 ** .3400 ** .3366 **
wealth_q4 .2596 ** .2554 ** .3795 ** .3756 **
wea_mis -.3005 ** -.2968 ** -.4399 ** -.4368 **
int_length .0003 .0003 -.0001 -.0001
f_proxy -.1540 -.1539 -.0986 -.1000
p_proxy .2790 ** .2764 ** .1707 * .1709 *
int_home .1757 .1795 .2535 ** .2572 **
iv_length -.0296 ** -.0291 ** -.0335 ** -.0331 **
iv_agec .0026 .0029 .0032 .0034
iv_agec2 -.0001 -.0001 .0000 .0000
iv_female .0022 .0034 .0213 .0220
iv_yedu -.0191 ** -.0216 ** -.0036 -.0058
iv_wl .0025 ** .0026 ** .0023 ** .0024 **
_cons 1.1184 ** .9198 ** 1.1510 ** .9934 **
n2 8343 8343 8343 8343
ρ12 .25 .20
LR stat. 2.04 1.40
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Table 8: Parametric estimates for food consumption at home. Standard errors in Models 4 and
5 are computed via the nonparametric bootstrap with 200 replications. The F test for selectivity
due to nonresponse has 2 degree of fredom.

Variable Model 1 Model 2 Model 3 Model 4 Model 5
hr_agec -.1372 * -.1141 -.1463 * -.1154 -.1173
hr_agec2 -.0014 -.0011 -.0019 -.0014 -.0013
hr_female -.6723 -1.0175 -.7137 -1.1104 -1.0616
hr_yedu .6561 ** .6827 ** .6550 ** .6844 ** .6820 **
hr_working -1.9995 -1.7261 -2.0428 -1.7451 -1.7692
single -6.1386 ** -5.9074 ** -6.1584 ** -5.9052 ** -5.9320 **
hsize 9.1801 ** 9.1529 ** 9.1886 ** 9.1571 ** 9.1591 **
s_city -3.0464 ** -2.8938 ** -3.0133 ** -2.8498 ** -2.8705 *
math .9791 * .9220 .9793 * .9186 .9252 *
orient -1.0676 -1.4855 -1.0775 -1.5357 -1.4868
recall -.1478 -.1895 -.1449 -.1922 -.1881
eurod -.1864 -.2335 -.1836 -.2355 -.2303
p_money 3.3942 4.1331 3.3062 4.1317 4.0536
sp_health .3159 .4383 .3383 .4678 .4523
adl1 1.8020 1.9702 1.8164 1.9937 1.9731
income_q2 4.5850 ** 4.1464 ** 4.5936 ** 4.1081 ** 4.1586 **
income_q3 6.4019 ** 5.7814 ** 6.4063 ** 5.7211 ** 5.7897 **
income_q4 8.6045 ** 8.0739 ** 8.6165 ** 8.0304 ** 8.0887 **
inc_mis -1.4115 -.3109 -1.4428 -.2341 -.3529
wealth_q2 -1.2389 -1.8365 -1.2358 -1.8973 -1.8316
wealth_q3 1.8521 1.2432 1.8691 1.1984 1.2638
wealth_q4 1.7104 1.1334 1.7304 1.0925 1.1546
wea_mis 2.0540 * 2.6909 * 2.0322 * 2.7292 * 2.6614 *
DK 1.4370 2.7389 1.9051 3.6946 3.4180
DE 12.2940 ** 12.5080 ** 12.6369 ** 12.9751 ** 12.8819 **
IT 24.5841 ** 25.7032 ** 24.5809 ** 26.1165 ** 25.9491 **
NL 16.1005 ** 16.8427 ** 16.5916 ** 17.5761 ** 17.3946 **
ES 36.1994 ** 37.2255 ** 35.9838 ** 37.4959 ** 37.3591 **
λunit 2.8767 2.4931
λitem -7.5852 -8.3263 -6.9457
λ 3.1917
_cons 8.5574 11.2834 * 5.8704 9.2770 9.2732
n3 7194 7194 7194 7194 7194
F stat. 1.39 1.19
VIF(λitem) 7.55 7.35
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Table 9: Parametric estimates for total nondurable consumption.

Variable Model 1 Model 2 Model 3 Model 4 Model 5
hr_agec -.2433 -.0506 -.2789 * -.0560 -.0642
hr_agec2 .0010 .0000 -.0005 -.0021 -.0018
hr_female -.8914 -.2478 -1.2160 -.5462 -.5430
hr_yedu 3.1308 ** 3.2544 ** 3.1237 ** 3.2550 ** 3.2490 **
hr_working 7.0921 ** 8.3832 ** 6.9384 ** 8.2185 ** 8.1725 **
single -11.2351 ** -9.7006 ** -11.3105 ** -9.6729 ** -9.7600 **
hsize 15.0224 ** 15.4302 ** 15.0539 ** 15.5195 ** 15.4916 **
s_city -5.4186 * -3.4619 -5.3292 * -3.1144 -3.2555
math 2.5428 * 2.4441 * 2.5509 * 2.4559 * 2.4620 *
orient .6236 -.3841 .5798 -.5566 -.4916
recall .5584 .1535 .5697 .1276 .1498
eurod -.1058 -.3302 -.1001 -.3395 -.3273
p_money 5.8168 8.0690 5.4542 7.7237 7.6177
sp_health -.1644 .4085 -.0854 .5763 .5327
adl1 1.9367 1.0715 1.9825 1.0358 1.0731
income_q2 7.2244 ** 5.0580 7.2468 ** 4.8732 5.0038
income_q3 18.8715 ** 15.7920 ** 18.8726 ** 15.4836 ** 15.6640 **
income_q4 35.1644 ** 32.6011 ** 35.2099 ** 32.4056 ** 32.5547 **
inc_mis -.1013 6.7949 -.2224 7.2489 * 6.8644
wealth_q2 -1.0916 -5.1350 -1.0841 -5.5318 -5.3022
wealth_q3 5.6637 * 1.4106 5.7229 * 1.1108 1.3469
wealth_q4 15.7174 ** 10.9524 ** 15.7737 ** 10.5943 ** 10.8588 **
wea_mis 1.1227 6.6737 * 1.0639 7.0958 * 6.7963 *
DK -15.6851 ** -9.6490 * -13.9261 ** -3.8128 -4.7703
DE 7.1788 * 6.1823 8.6411 ** 8.9289 ** 8.6733 *
IT 29.7056 ** 33.0788 ** 29.8885 ** 35.2981 ** 34.9076 **
NL 37.4428 ** 45.5221 ** 38.2639 ** 50.5252 ** 49.5840 **
ES 47.2019 ** 50.3912 ** 46.6226 ** 51.8244 ** 51.5568 **
λunit 18.2535 * 16.5190 *
λitem -39.3742 * -43.1858 ** -38.3924 *
λ 11.3312
_cons 6.2336 15.2485 -3.4895 1.7557 2.6268
n3 6910 6910 6910 6910 6910
F stat. 12.20 ** 12.28 **
VIF(λitem) 9.37 9.19
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Table 10: Model selection criteria for the semiparametric specifications.

K Log-lik. LR stat. AIC BIC
Unit response

3 -10040.79 20117.58 20254.82
4 -10013.72 54.13 ** 20065.45 20254.82
5 -10013.67 0.10 20067.35 20254.82
Item response (food consumption at home)

3 -2971.45 6024.91 6313.10
4 -2971.09 0.73 6026.18 6321.40
5 n.c. n.c. n.c. n.c.
Item response (total nondurable consumption)
3 -3398.12 6878.25 7166.44
4 -3397.90 0.46 6879.79 7175.02
5 -3397.40 0.99 6880.80 7183.05
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Table 11: Semiparametric estimates for unit response. The results are based on the scale normaliza-
tion βlfield = −.01. Standard errors computed by the delta method. LR stat. is a likelihood-ratio
test for the joint significance of τ3 and τ4.

Variable Parametric Semipar.
agecl_1 .1228 .1448
agecl_3 -.6822 ** -.8047 **
female_gs -.1386 -.1805
iv_agec .0068 .0017
iv_agec2 .0006 ** .0005
iv_female .0443 -.0077
iv_yedu -.0589 ** -.0749 **
iv_wl .0016 .0048 **
tot_call -.0839 ** -.4090 **
DK .8395 ** 1.2614 **
DE .4405 ** .5161 *
IT -.2072 .1360
NL .4030 ** .8712 **
ES -.5924 ** -.4439
τ1 -4.6378 **
τ2 -3.8454 **
τ3 1.1993 **
τ4 .5686 **
_cons 1.7774 **
n1 15129 15129
Std. dev. 1.92
Skewness 0.33
Kurtosis 1.90
LR stat. 151.67 **
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Table 12: Semiparametric estimates for item response. LR stat. is a likelihood-ratio test for the
significance of τ3.

Food at home Total consumption
Variable Parametric Semipar. Parametric Semipar.

hr_agec -.0033 * -.0039 * -.0042 ** -.0041 **
hr_agec2 -.0000 -.0000 .0000 .0000
hr_female .0569 * .0625 * -.0132 -.0123
hr_yedu -.0036 -.0035 -.0027 -.0026
hr_working -.0393 -.0519 -.0261 -.0247
single -.0293 -.0306 -.0286 -.0272
hsize .0015 -.0003 -.0101 -.0101
s_city -.0192 -.0214 -.0420 * -.0402 *
math .0111 .0129 .0039 .0042
orient .0460 * .0386 * .0170 .0153
recall .0069 .0099 .0098 * .0099 *
eurod .0063 .0055 .0047 .0047
p_money -.0626 -.0585 -.0301 -.0263
sp_health -.0220 -.0196 -.0151 -.0143
adl1 -.0308 -.0278 .0144 .0127
income_q2 .0561 * .0507 .0432 * .0418 *
income_q3 .0888 * .0808 * .0694 * .0666 *
income_q4 .0698 * .0672 .0522 * .0493 *
inc_mis -.1732 * -.2076 * -.1615 ** -.1618 **
wealth_q2 .0907 * .1069 * .0955 ** .0951 **
wealth_q3 .0938 * .1045 * .1016 ** .0997 **
wealth_q4 .0876 * .1050 * .1134 ** .1124 **
wea_mis -.1015 * -.1174 * -.1315 ** -.1278 **
hrint_min .0001 .0001 -.0000 -.0000
f_proxy -.0520 -.0598 -.0295 -.0246
p_proxy .0942 * .1083 * .0510 .0518
int_home .0593 .0639 .0758 * .0757 *
ivlength -.0100 -.0100 -.0100 -.0100
iv_agec .0009 .0012 .0010 .0009
iv_agec2 -.0000 -.0000 .0000 -.0000
iv_female .0007 .0029 .0064 .0049
iv_yedu -.0064 -.0069 * -.0011 -.0012
iv_wl .0008 * .0009 * .0007 * .0007 *
DK -.2196 * -.2635 * -.1591 ** -.1592 **
DE -.0647 -.1048 * -.0016 -.0061
IT -.1926 * -.2234 * -.0917 * -.0908 *
NL -.1983 * -.2416 * -.2327 ** -.2283 **
ES -.2076 * -.2402 * -.1130 * -.1109 **
τ1 .0304 -.0080
τ2 -.1022 * -.0498
τ3 -.0479 * -.0161
n2 8343 8343 8343 8343
Std. dev. 1.56 .95
Skewness 0.30 .51
Kurtosis 2.78 5.61
LR Test 14.64 ** 1.68

31



Table 13: Semiparametric estimates of food consumption at home. Bandwidth parameter and trim-
ming factor in semiparametric models are respectively equal to (n3)−1/p and (n3)−1/r. Hausman 1
is a Hausman-type test computed over all coefficients except the intercept and the bias correction
terms (28 d.o.f). Hausman 2 is a Hausman-type test computed for the coefficients on HH size,
income and wealth quartiles, and country dummies (12 d.o.f.).

Semiparametric
Model A Model B Model C

Variable Parametric p = 5, r = 21 p = 6, r = 13 p = 7, r = 10
hr_agec -.1154 -.1276 -.1302
hr_agec2 -.0014 -.0016 -.0017
hr_female -1.1104 -1.2704 -1.2905
hr_yedu .6844 ** .6901 ** .6805 **
hr_working -1.7451 -1.4568 -1.5034
single -5.9052 ** -5.8420 ** -5.8689 **
hsize 9.1571 ** 9.0978 ** 9.1364 **
s_city -2.8498 ** -2.7738 ** -2.8259 **
math .9186 .7909 .8383
orient -1.5357 -1.9549 -1.7558
recall -.1922 -.1650 -.1584
eurod -.2355 -.1959 -.1728
p_money 4.1317 4.1570 4.0126
sp_health .4678 .3435 .2908
adl1 1.9937 1.9136 1.9322
income_q2 4.1081 ** 3.9664 * 4.0258 *
income_q3 5.7211 ** 5.6412 ** 5.8064 **
income_q4 8.0304 ** 7.9168 ** 8.0922 **
inc_mis -.2341 .0578 -.2775
wealth_q2 -1.8973 -1.5534 -1.5430
wealth_q3 1.1984 1.0746 1.2595
wealth_q4 1.0925 .8914 1.0378
wea_mis 2.7292 * 3.2901 * 3.0450 *
DK 3.6946 6.9867 6.3047
DE 12.9751 ** 14.5094 ** 14.5565 **
IT 26.1165 ** 28.0741 ** 27.6258 **
NL 17.5761 ** 19.7250 ** 19.5662 **
ES 37.4959 ** 36.8591 ** 36.6881 **
λunit 2.8767
λitem -8.3263
_cons 9.2770
n3 7194 7194 7194
Hausman 1 11.97 12.73
Hausman 2 2.83 2.44
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Table 14: Semiparametric estimates of total nondurable consumption.

Semiparametric
Model A Model B Model C

Variable Parametric p = 5, r = 21 p = 6, r = 13 p = 7, r = 10
n3
Hausman
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Figure 1: Semiparametric estimates of density functions.

a) Unit response

b) Item response (food at home) c) Item response (total consumption)
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