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1 Introduction

A growing body of empirical evidence suggests the presence of a certain (albeit mod-

est) level of predictability in stock returns. Several financial and macro-economic

variables have been reported as being useful predictors of future stock returns, in-

cluding interest rates and different interest rate spreads (such as the yield spread,

term spread and credit spread), as well as valuation ratios such as the dividend

yield and the price-earnings ratio. There is, however, little consensus about which

variables really are the relevant predictor variables that should enter a successful re-

turn forecasting model. Put differently, an investor who intends to use a predictive

regression to forecast future stock returns faces model uncertainty.

At the same time, recent studies demonstrate that the relationship between stock

returns and predictor variables is not stable over time, see Pesaran and Timmermann

(2002), among others. Important political and economic events, such as changes

in monetary policy, oil crises and recessions fundamentally change the economic

environment including financial markets. In terms of predictive regressions for stock

returns, an investor should take into account that parameters exhibit occasional

structural breaks.

A third related issue that investors have to cope with is the fact that parameters

in return forecasting model are estimated using historical data, implying the presence

of parameter (estimation) uncertainty.

While model uncertainty and structural breaks in the context of return prediction

models have been studied in isolation, attempts to consider both features simultane-

ously are very rare, but see Pettenuzzo and Timmermann (2005). In this section we

develop the return forecasting methodology that allows for instability in the relation-

ship between stock returns and predictor variables, for model uncertainty, and for

parameter estimation uncertainty simultaneously. On the one hand, the predictive

regression specification that we put forward allows for occasional structural breaks

of random magnitude in the regression parameters. On the other hand, we allow for

uncertainty about the inclusion of the forecasting variables in the model and about

the parameter values by employing Bayesian model averaging.

The paper proceeds as follows. In Section 2 we describe our methodology, and

put forward the predictive regression specification that incorporates all three relevant

sources of uncertainty together. Given that the Bayesian analysis of our model is

non-standard, we provide a detailed description of the prior specification and the

simulation of the posterior distributions. In Section 3 we report results from an

empirical application of the approach developed in Section 2 to predicting US stock
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returns using a set of 11 financial and macro-economic predictor variables. We find

that over the period 1966-2005, several structural breaks occurred in the relationship

between US stock returns and predictor variables such as the dividend yield and

interest rates. These changes appear to be caused by important events such as the

oil crisis, changes in monetary policy, the October 1987 stock market crash, and the

internet bubble at the end of the 1990s. The economic value of incorporating the

different sources of uncertainty in investment decisions in real-time is assessed in

Section 4, by means of an ex-ante recursive forecasting experiment. We find that

a typical investor would be willing to pay up to several hundreds of basis points

annually to switch from a passive buy-and-hold strategy to an active strategy based

on a return forecasting model that allows for model and parameter uncertainty as

well as structural breaks in the regression parameters. Section 5 concludes.

2 Methodology

In this section we develop the return forecasting methodology that allows for insta-

bility in the relationship between stock returns and predictor variables, for model

uncertainty, and for parameter estimation uncertainty simultaneously. On the one

hand, the predictive regression specification that we put forward allows for occa-

sional structural breaks of random magnitude in the regression parameters. On the

other hand, we allow for uncertainty about the inclusion of the forecasting variables

in the model and about the parameter values by employing Bayesian Model Aver-

aging (BMA). Given that the Bayesian analysis of our model is non-standard, we

provide a detailed description of the prior specification and the simulation of the

posterior distributions. Finally, we conclude with some remarks on possible uses of

the posterior results, including forecasting future returns. How to use those in active

investment strategies is discussed in Section 4.

2.1 The Model

Let rt denote the stock return in excess of the risk-free rate during period t, and let

xt = (x1t, x2t, . . . , xkt)
′ denote a vector of k predictor variables (which are observed

at the beginning of period t) for t = 1, . . . , T . The benchmark model in the literature

for predicting stock returns is the standard linear regression model

rt = β0 +
k∑

j=1

βjxjt + εt, (1)
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where εt ∼ N(0, σ2). Two crucial assumptions (among others) underlying the linear

regression model are, first, that the set of relevant predictor variables xt is given and

fixed, and second that the regression parameters β = (β0, β1, . . . , βk) are constant

over time. Both assumptions are questionable in empirical practice, and extensions

of the model that drop either of the two assumptions have been developed in recent

years. These are briefly discussed first, before we introduce our general model that

allows for both uncertainty about the relevant predictor variables and for possible

structural breaks in the regression parameters.

First, the fact that the set of predictor variables xt in (1) is given and fixed a

priori is unrealistic, in the sense that the investor rarely knows with certainty which

particular forecasting variables are the relevant ones to include. Avramov (2002) and

Cremers (2002) have analyzed this issue of model uncertainty, advocating the use of

Bayesian model averaging where all 2k possible models are considered (assuming the

intercept is always included in the model) and averaged according to their posterior

probabilities.

A possible way to represent model uncertainty in the linear regression is by means

of a latent binary random variable sj = 0, 1 determining the inclusion of xjt in the

model, with Pr[sj = 1] = λj for j = 1, . . . , k. The return forecasting model with

uncertainty about the relevant predictor variables (but with constant parameters)

then is given by

rt = β0 +
k∑

j=1

sjβjxjt + εt. (2)

The k sj variables can be summarized in a k-dimensional vector S = (s1, . . . , sk).

The vector S can take 2k different values resulting in 2k possible different regression

models. Model selection is therefore defined in terms of variable selection, see George

and McCulloch (1993) and Kuo and Mallick (1998). We denote each model by the

index i = (s1, . . . , sk)2. Note the intercept parameter β0 is always included in the

model, as typically assumed.

Second, as discussed in the introduction, there is abundant empirical evidence

showing that the relationship between stock returns and typical predictor variables

such as the dividend yield is not stable over time, implying that the assumption of

constant regression parameters βj as in (1) is invalid.

There are several ways to extend the linear regression model in order to capture

parameter instability. An attractive flexible specification that allows for occasional
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structural breaks in the regression parameters is as follows:

rt = β0t +
k∑

j=1

βjtxjt + εt, (3)

where βt = (β0t, β1t, . . . , βkt) is a vector of time-dependent regression parameters,

which evolve over time according to

βjt = βj,t−1 + κjtηjt, j = 0, . . . , k, (4)

where ηjt ∼ N(0, q2
j ) for j = 0, . . . , k, and κjt is an unobserved uncorrelated 0/1

process with Pr[κjt = 1] = πj for j = 0, . . . , k. Hence, the value of the jth regression

parameter βjt stays the same as βj,t−1 unless κjt = 1 in which case it changes with

ηjt, see, for example, Koop and Potter (2004) and Giordani et al. (2006) for a similar

approach. The predictor variables xt are demeaned to exclude that any break in one

of the βjt implies also a break in the coefficient of the constant term, β0t. Then, β0t

represent the unconditional equity premium.

The specification in (4) implies that the regression parameters βjt, j = 0, . . . , k,

are allowed to change every time period, but they need not change at any point in

time. The presence of a change is described by the latent binary random variable

κjt, while the magnitude of the change is determined by ηjt, which is assumed to

be normally distributed with mean zero. Note that the changes in the separate

regression parameters are not restricted to coincide as in Pesaran and Timmermann

(2002) but rather are allowed to occur at different points in time, see also Giordani

et al. (2006).

While model uncertainty and structural breaks in the context of return pre-

diction models have been studied in isolation, attempts to consider both features

simultaneously are very rare, but see Pettenuzzo and Timmermann (2005). Using

the representation of model uncertainty as given in (2), it actually turns out to

be fairly straightforward to incorporate structural breaks as well, for example by

adding the time-varying parameter specification as given in (4). Hence, we propose

the following linear regression model for the excess stock return rt:

rt = β0t +
k∑

j=1

sjβjtxjt + εt, (5)

where εt ∼ N(0, σ2) and βt = (β0t, β1t, . . . , βkt)
′ evolves over time according to (4)

as before.

For inference in our model (5) with (4) we opt for a Bayesian approach. This

will provide the posterior distribution of the latent κjt processes for j = 0, . . . , k
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and t = 1, . . . , T . Bayesian inference on S leads to posterior probabilities of the

2k possible models which can in turn be used for Bayesian model selection and

Bayesian model averaging. Notice that κjt does not depend on S. At the same time

the estimate of κjt can be different across different values of S and hence breaks can

occur in different parameters and at different time periods across models. Below we

first discuss prior specification, followed by a description of the posterior simulation

algorithm.

2.2 Prior Specification and Posterior Simulation

The parameters in the model (5) with (4) are the variances of the residual returns,

σ2, and of the magnitude of the breaks in the regression parameters, q2
0, . . . , q

2
k, in

addition to the variable inclusion probabilities λ1, . . . , λk and the structural break

probabilities π0, . . . , πk. The model parameters are collected in the (3(1 + k) × 1)

vector θ = (σ2, λ1, . . . , λk, q
2
0, . . . , q

2
k, π0, . . . , πk). To facilitate the posterior simula-

tion we make use of independent conjugate priors. For the variance parameters we

take the inverted Gamma-2 prior

σ2 ∼ IG-2(νs, δs) (6)

and

q2
j ∼ IG-2(νj, δj) (7)

for j = 0, . . . , k, where the ν and δ are prior parameters which can be chosen to

reflect the prior beliefs about the variances.

For the probability parameters we take Beta distributions,

λj ∼ Beta(aj, bj) for j = 1, . . . , k, and (8)

πj ∼ Beta(cj, dj) for j = 0, . . . , k. (9)

The parameters aj and bj can be set according to ones prior belief about the inclusion

of the jth explanatory variable in the model. Prior beliefs about structural breaks

are incorporated through the parameters cj and dj. Realistic values of these prior

parameters depend on the problem at hand. In Section 3 we discuss the prior settings

for our application.

Posterior results are obtained using the Gibbs sampler of Geman and Geman

(1984) combined with the technique of data augmentation of Tanner and Wong

(1987). The latent variables S = (s1, . . . , sk), B = {βt}T
t=1 and K = {κt}T

t=1 with

κt = (κ0t, κ1t, . . . , κkt) are simulated alongside the model parameters θ.
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The complete data likelihood function is given by

p(r, B, K, S|x, θ) =
T∏

t=1

p(rt|S, xt, βt, σ
2)

T∏
t=1

p(βt|βt−1, κt, θ)

k∏
j=1

λ
sj

j (1− λj)
1−sj

T∏
t=1

k∏
j=0

π
κjt

j (1− πj)
1−κjt , (10)

where r = (r1, . . . , rT ) and x = (x′1, . . . , x
′
T )′. The terms p(rt|S, xt, βt, σ

2) and

p(βt|βt−1, κt, θ) are normal density functions, which follow directly from (5) and

(4), respectively. If we combine (10) together with the prior density p(θ), which

follows from (6)–(9), we obtain the posterior density

p(θ, B,K, S|r, x) ∝ p(θ)p(r, B,K, S|x, θ). (11)

To derive the Gibbs sampler we combine the Kuo and Mallick (1998) algorithm

for variable selection and the efficient sampling algorithm of Gerlach et al. (2000) to

handle the (occasional) structural breaks. The sampling scheme can be summarized

as follows:

1. Draw S conditional on B, K, θ, r and x.

2. Draw K conditional on S, θ, r and x.

3. Draw B conditional on S, K, θ, r and x.

4. Draw θ conditional S, B, K, r and x.

Step 1 is done similarly to Kuo and Mallick (1998), which is a simplified version

of the George and McCulloch (1993) algorithm. Starting from the previous iteration,

the variable S is drawn from its full conditional posterior distribution. The complete

data likelihood function (10) is computed for sj = 0 and sj = 1 resulting in pj,0 and

pj,1. The full conditional posterior is then given by

Pr[sj = 1|r, x, θ, B, K, S−j] =
pj,1

pj,0 + pj,1

, (12)

for j = 1, . . . , k, where S−j = (s1, . . . , sj−1, sj+1, . . . , sk).

The (occasional) structural breaks, measured by the latent variable κjt, are drawn

in step 2 using the algorithm of Gerlach et al. (2000), which derives its efficiency

from generating κjt without conditioning on the states βjt. The conditional posterior

density for κt, t = 1, . . . , T unconditional on B is

p(κt|K−t, S, θ, r, x) ∝ p(r|K, S, θ, x)p(κt|K−t, S, θ, x)

∝ p(rt+1, . . . , rT |r1, . . . , rt, S, θ, x)

p(rt|r1, . . . , rt−1, κ1, . . . , κt, S, θ, x)p(κt|K−t, S, θ, x),

(13)
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where K−t = {κs}T
s=1,s6=t. Note that the term p(κt|K−t, S, θ, x) is simply given by∏k

j=0 π
κjt

j (1 − πj)
1−κjt given that κjt does not depend on sj. The two remaining

densities p(rt+1, . . . , rT |r1, . . . , rt, S, θ, x) and p(rt|r1, . . . , rt−1, κ1, . . . , κt, S, θ, x) can

easily be evaluated as shown in Gerlach et al. (2000). Because κt can take a finite

number of values, the integrating constant can easily be computed by normalization.

The full conditional posterior density for the latent regression parameters B in

step 3 is computed using the simulation smoother as in Carter and Kohn (1994).

The Kalman smoother is applied to derive the conditional mean and variance of the

latent factors; for the initial value β0 a multivariate normal prior with mean 0 is

chosen.

Note in case the variable xj is not selected, the full conditional distributions of

κjt and βjt for t = 1, . . . , T do not depend on the data r and x. Hence, in this case

we sample unconditionally from the process in (4) and the binary random process

for κjt.

To sample the parameters θ in step 4 we can use standard results in Bayesian

inference. Hence, the variance parameters σ2 and q2
j are sampled from inverted

Gamma-2 distributions and the probabilities πj and λj are sampled from Beta dis-

tributions.

2.3 Using the Posterior Results

The output of the Gibbs sampler can be used to compute several quantities of

interest. First, the marginal posterior distribution of the individual sj parameters

p(sj|r, x) represents the posterior probability that variable xj is included in the

model. This can used to assess the (relative) importance of the different predictor

variables for forecasting stock returns. The interaction of different predictor variables

can also be examined. For example, following Doppelhofer and Weeks (2005) the

degree of dependence or jointness among two explanatory variables xj and xl can be

formally computed by the following measure of jointness:

Jj,l = log

(
p(sj = 1 ∩ sl = 1|r, x)

p(sj=1|r, x) ∗ p(sl = 1|r, x)

)
(14)

where the numerator is the posterior joint probability of inclusion of the couple of

variables xj and xl, and the denominator is the product of the marginal posterior

probabilities of the inclusion of the ith and jth variables. We define two variables

significant substitutes if Jj,l < −1, and significant complements if Jj,l > 1. In

addition, posterior model probabilities are easily obtained form the joint posterior

of S p(S|r, x).
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Second, we can use the simulated draws of K to do inference on the occurrence of

structural breaks in the regression parameters during the sample period. Obviously,

one might consider the marginal posterior distribution of a single κjt p(κjt|r, x),

but the presence of contemporaneous breaks in different parameters can also be

evaluated. Similarly, one can examine whether posterior evidence for breaks differs

across models by conditioning on the inclusion/exclusion of certain variables in the

model, for example, the posterior probability of a break in the regression parameter

of variable xj given that variables xl and xm are included in the model is given by

p(κjt|sl = sm = 1, r, x).

Third, the model in (5) with (4) can be used to predict future returns rT+h for

h ≥ 1. As our inference is Bayesian, we can explicitly take into account parameter

uncertainty, uncertainty in variable selection, and uncertainty in the occurrence of

structural breaks. In the empirical application in the next section, we focus on one-

step ahead forecasting. For that reason the discussion below is limited to the case

h = 1, but it can be generalized to h > 1 straightforwardly.

The one-step ahead predictive density of rT+1 made at time T conditional on r,

x and xT+1 is given by

p(rT+1|r, x, xT+1) =

∫∫ ∑
S

∑
K

∑
KT+1

p(rT+1|S, xT+1, βT+1, σ
2)

p(βT+1|βT , κT+1, θ)
k∏

j=0

π
κj,T+1

j (1− πj)
1−κj,T+1p(B, K, S, θ|r, x)dBdθ, (15)

where p(rT+1|S, xT+1, βT+1, σ
2) and p(βT |βT−1, κT+1, θ) follow directly from (5) and

(4) and were p(B,K, S, θ|r, x) is the posterior density.

As we average over the posterior distribution of S we implicitly take a weighted

average over all possible model specifications, where the weights are the poste-

rior model probabilities. The posterior distribution also reflects our posterior be-

liefs about the in-sample structural breaks K. Finally, note that we also aver-

age with respect the unknown KT+1 variable to account for the possibility that a

break may occur in the out-of-sample period T + 1, where the weights are given by∏k
j=0 π

κj,T+1

j (1− πj)
1−κj,T+1 .

Simulating rT+1 from the one-step ahead distribution (15) is in fact rather straight-

forward. In each step of the Gibbs sampler, we use the simulated values of πj to

draw the out-of-sample values of κj,T+1 for j = 0, . . . , k. Given the simulated values

of κj,T+1 and given the Gibbs draws of q2
j and βT one can simulate βT+1 using (4).

Equation (5) in combination with the simulated value of βT+1 and the current Gibbs

draws of S and σ2 then provide a simulated value for rT+1.
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Of course, often forecasting returns in itself is not the ultimate goal, but rather

a means for determining the optimal asset allocation, for example. We postpone

a detailed discussion of this issue in the context of our empirical application to

Section 4.

3 Model uncertainty and structural breaks in re-

turn forecasting models for the S&P 500

In the remainder of this paper we report results from an empirical application of

the approach developed in Section 2 to predicting US stock returns using a set of 11

financial and macro-economic predictor variables. We start with a brief description of

the data set and the choices made for prior specification. Next, we present full-sample

estimation results, which can be considered as an ex-post analysis of the occurrence

of structural breaks and the relevance of the different forecasting variables. An ex-

ante recursive forecasting experiment, which assesses the usefulness of our approach

for predicting stock returns and active investment strategies in real-time is taken up

in the following section.

3.1 Data

We use an update of the data set of Marquering and Verbeek (2004) covering the

period from January 1966 until December 2005, for a total of 480 monthly obser-

vations. We use as our dependent variable the continuously compounded monthly

return on the S&P 500 index in excess of the 3-month T-Bill rate. The set of po-

tential predictor variables includes the price-earnings ratio (PE), the dividend yield

(DY ), the 3-month T-Bill rate (I3), the 12-month Treasury Bond rate (I12), an-

nual inflation (INF ), the annual growth rate of industrial production (IP ), annual

growth of the monetary base (MB), the commercial paper-Treasury yield spread

(CP ) and the logarithmic transformation of the realized monthly volatility (V ol),

which is computed as an adjusted estimator based upon the assumption that daily

returns in month t are appropriately described by a first-order autoregressive pro-

cess, following French et al. (1987) and Akgiray (1989). To avoid look-ahead bias,

the financial variables are included with a one-month lag and the macroeconomic

variables with a two-month lag. The second lag of the short- and long-term interest

rates are included as well to allow for the possibility that changes in the interest

rates affect investment decisions more than their levels.
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3.2 Prior specification

For the hyperparameters aj and bj in the beta distribution that is used for the prior

probability of inclusion of the variable xjt we assume aj = bj = +∞, implying that

Pr[sj = 1] = λj = 0.5 for all j = 1, . . . , k. As in our framework the λj’s are indepen-

dent across j, a ‘diffuse’ prior for λj implies that all individual models have equal

prior probability, as discussed in Fernández et al. (2001). For the hyperparameters

cj and dj in the Beta distribution for the prior probability of breaks in the regression

parameters, pj = Pr[κjt = 1], we assume cj = 0.7 and dj = 35 for any j. This implies

that the prior mean duration between breaks in a particular regression parameter is

equal to 51 months. Finally, for the conjugate inverted Gamma-2 densities for σ2

and ω2
j , we assume a very peaked prior for the ω2

j with mode near zero to limit the

number of potential breaks.

3.3 Full-sample estimation results

We estimate the linear regression model with variable selection and occasional struc-

tural breaks in the parameters (5) with (4) using the complete sample period from

January 1966 until December 2005. This enables us to provide an ex-post analy-

sis of the relevance of the different predictor variables and possible breaks in their

regression parameters.1

Table 1 provides the posterior mean for the probability of inclusion parameter

λj. We observe that the first lag of the 3-month T-Bill rate I3−1 is included with

probability 1. This perhaps is not surprising given that the dependent variable is

the stock return in excess of the 3-month rate. The only other variables for which

the posterior probability of inclusion is higher than the prior probability are the

first lag of 12-month T-bond rate I12−1 (0.775), the dividend yield DY−1 (0.727)

and the price-earnings ratio PE−1 (0.587). Obviously, bonds are alternative invest-

ments to stocks, in particular during bear markets, such that it is to be expected

that they have some predictive power for stock returns. By contrast, the dividend

yield is often referred to as an indicator of stock market performance. Note that

the second lags of both interest rates have rather low posterior inclusion probabili-

ties, indicating that movements in interest rates have substantially lower in-sample

predictive power than the interest rate levels. The credit spread CP−1 and stock

1We point out that the predictor variables are demeaned to exclude that possible breaks in the
relation between the excess returns and some predictors imply also a breaks in the coefficient of
the constant term.
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return volatility LV OL−1 have particular low posterior inclusion probabilities, indi-

cating that these variables have not been useful as predictors of stock returns over

the sample period considered. Finally, all three macroeconomic variables have pos-

terior inclusion probabilities slightly below the prior value of 0.5, suggesting lower

predictive power than the financial variables.

Additional insight into the variable selection results can be obtained from the

joint selection of different variables. For that purpose, Table 2 presents the poste-

rior joint probabilities of inclusion for all possible pairs of variables. Note that the

prior probability of joint inclusion for any two variables is equal to 0.25, given that

all individual prior probabilities are equal to 0.5 and independent across variables.

Table 3 shows the values of the measure of jointness results of Doppelhofer and

Weeks (2005). Note that the jointness measure involving the 3-month T-Bill rate

takes the value zero by construction. Obviously, the results in Table 2 partly follow

directly from the variable-specific selection probabilities in Table 1. For example,

given that the dividend yield and the two interest rate variables have such high indi-

vidual probabilities of inclusion, their combinations have high posterior probability

to be selected together as well. The measure of jointness for (DY−1,I12−1) has a

correspondingly large value. The couple (PE−1,DY−1) has a posterior probability of

being selected together of 0.316, which is very close to the lower bound (0.314) that

is possible given their individual inclusion probabilities. Although not borne out by

their coefficient of jointness, this indicates that these variables are close substitutes.

This is not surprising given that both the price-earnings ratio and the dividend

yield are well-accepted valuation measures having similar predictive content for the

development of the stock market. For the monetary base growth variable MB−2

the posterior probability of joint inclusion with the dividend-yield, price-earnings

ratio, and both short- and long-term interest rates is higher than its prior, while

the corresponding jointness measures in Table 3 confirm that money growth is com-

plementary to these financial variables. Almost all other combinations of variables

have posterior probabilities lower than the prior value of 0.25. Nevertheless, the

jointness measures for industrial production growth IP−2 and volatility LV OL−1

indicate that these variables may include some useful information that complements

the financial variables.

Finally, Table 4 provides the ten models which have the highest probabilities to

be selected. The conclusions from this table agree with the findings from Tables 1-3

as discussed above. First, the variables I3−1 and I12−1 are always included in the

most likely models. Second, either the dividend yield DY−1 or the price-earnings
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ratio PE−1 also enters the model, but these two variables are not often included

together because they are complements. Third, even though in several models one

of the macro-economic variables is included, their importance does not seem very

large. Finally, it is worth nothing that the sum of the posterior probabilities for

these ten models is larger than 0.5, suggesting that financial variables are the most

important predictor variables for stock returns.

We now turn to the analysis of the regression parameters and possible structural

breaks therein. Figure 1 shows the posterior mean for the latent binary variable

κjt governing the occurrence of changes in the regression parameters, together with

the associated posterior mean for βjt. For the latter, 25th and 75th percentiles of

the posterior distributions are also shown. One of the things that stands out most

clearly from the graphs in Figure 1 is the spiky nature of the posterior mean of

κjt, suggesting that the probabilities of structural breaks in the parameters vary

considerably from one period to the next.2 This occurs for two reasons. First,

κj,t can be different across different values of S, such that breaks can occur at

different times across models. Second, in case a break is estimated to have occurred

in a certain month, the probability of a break in the next month will be much

lower. Despite the volatile behavior of the break probabilities, three periods with

considerable probability mass can be identified: during the years 1974-1975, around

1982 and around 2001. Political reasons and the oil price shocks provide possible

explanations for the first break period. The change of the Federal Reserve’s operating

procedures at the beginning of the 1980’s explain the second break, and the crash

of the internet bubble the third one. Also note that the stock market crash in

October 1987 gives rise to an isolated jump in the break probability for some variables

(notably the constant C, the price-earnings ratio PE−1, industrial production IP−2,

the credit spread CP−1 and volatility LV OL−1). This seems to suggest that this

event did not give rise to a permanent change in the relationship between stock

returns and the predictor variables, but rather is identified as an outlier.

The 25th-75th percentile bands for the regression parameters βjt in Figure 1 are

quite wide and furthermore, the magnitudes of the changes in the posterior mean

when a break occurs do not seem very large. This is due to the fact that variables are

not always selected in the model, and when they are not, values for their regression

parameters are drawn from their prior distributions. This explains, for example, why

the variables with a low probability to be selected have rather flat posterior means

2Recall that the posterior mean of κjt is identical to the posterior probability of a break occurring
in the regression parameter for the jth variable xjt at time t.
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for βj,t, around the prior value. In Figure 2 we therefore consider the posterior

densities for κjt and βj,t conditional on inclusion of the variable j, that is sj = 1.

Obviously, the posterior probabilities of structural breaks are much higher in this

case, while the magnitudes of the breaks become larger and vary considerably over

the set of variables. Several interesting findings emerge. First, the pattern of the

intercept β0t reveals a gradual increase in the unconditional equity premium during

the 1980s and 1990s, followed by a decline just before the turn of the millennium.

Second, for the price-earnings ratio PE−1 and the dividend yield DY−1 the most

substantial changes in parameters occur during the period 1999-2002 (in addition to

the drop in the PE−1 coefficient during the second half of the 1970s). These changes

reflect the large decline in the dividend yield and corresponding large increase in the

price-earnings ratio due to the dramatic boom of stock prices during that period.

Third, the largest breaks in the coefficients related to interest rates appear to have

occurred around 1982, around the time the Federal Reserve changed its monetary

policy. Fourth, the coefficients related to inflation and industrial production growth

display the largest change around 1974, due to the oil price shocks and the higher

level of inflation and slowdown in economic growth that followed. Fifth and finally,

the coefficients of the monetary base and the credit spread display very large breaks

at October 1987. Hence, contrary to our prior observation that the stock market

crash probably is considered to be an outlier, it does seem to have led to structural

breaks in at least some relationships between stock returns and predictor variables.

In that respect, the pattern in the coefficient of volatility also is interesting, showing

a gradual decline up to the moment of the crash, and a gradual increase thereafter.

4 Active investment strategies allowing for model

uncertainty and structural breaks

The full-sample results presented in the previous section provides a useful ex post

characterization of the (relative) importance of financial and macroeconomic vari-

ables as predictors in return forecasting models and of possible breaks in the re-

gression parameters. For an investor, both issues of variable selection and model

instability are most interesting from an ex ante perspective. That is, the relevant

questions are whether we can identify the appropriate predictor variables and detect

structural breaks in regression parameters in real time, and how these may affect

investment decisions. Answering these questions is the purpose of this section.
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4.1 A utility-based performance measure

Several papers consider the effects of either model uncertainty or model instability

on optimal asset allocation decisions, see Kandel and Stambaugh (1996), Barberis

(2000), Avramov (2002) and Pettenuzzo and Timmermann (2005). Most of these

analyses focus on horizon effects, that is the issue how uncertainty about the relevant

predictor variables or the possibility of structural breaks changes the decisions of

investors with different horizons, typically ranging from a single month up to ten

years. Here we only consider an active short-term investor, with an investment

horizon of one month. The investor’s portfolio consists of stocks and riskfree bonds

only. At the start of each month T +1, the investor decides upon the fraction of her

portfolio to be invested in stocks wT+1, based upon a forecast of the excess stock

return rT+1. The investor is assumed to maximize a power utility function with

coefficient of relative risk aversion γ:

u(WT+1) =
W 1−γ

T+1

1− γ
, γ > 0, (16)

where WT+1 is the wealth at the end of period T + 1, which is equal to

WT+1 = WT ((1− wT+1) exp(rf,T+1) + wT+1 exp(rf,T+1 + rT+1)), (17)

where WT denotes initial wealth, and where rf,T+1 is the riskfree rate.

Without loss of generality we set initial wealth at one, WT = 1, such that the

investor’s optimization problem is given by

max
wT+1

ET (u(WT+1)) = max
wT+1

ET

(
((1− wT+1) exp(rf,T+1) + wT+1 exp(rf,T+1 + rT+1))

1−γ

1− γ

)
,

(18)

where ET is the conditional expectation given information at time T . How this

expectation is computed depends on the treatment of model uncertainty and model

instability by the investor. Consider the most general case, both allowing for uncer-

tainty concerning which predictor variables to include and allowing for the possibility

of structural breaks in the regressions parameters, as given by model (5) with (4).

The marginal predictive density for future excess stock returns p(rT+1|r, x, xT+1) in

(15) should then be used to derive the proportion of the portfolio allocated to stocks

according to (18). That is, the investor solves the following problem:

max
wT+1

∫
u(WT+1)p(rT+1|r, x, xT+1)drT+1. (19)

The integral in (19) is approximated by generating G independent draws {rg
T+1}G

g=1

from the predictive density p(rT+1|r, x, xT+1), and then using a constraint numerical
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optimization method to maximize the quantity:

1

G

G∑
g=1

(
((1− wT+1) exp(rf,T+1) + wT+1 exp(rf,T+1 + rg

T+1))
1−γ

1− γ

)
(20)

Two further cases are included in the empirical analysis below. First, we con-

sider an investor who incorporates model uncertainty but ignores the possibility of

structural breaks in the regression parameters. This investor obtains a forecast of

the excess stock return rT+1 from model (5) but with βjt = βj for j = 0, 1, . . . , k

and t = 1, . . . , T + 1. Second, we consider an investor who also is ignorant about

model uncertainty and simply includes all available predictor variables in the model,

effectively using the benchmark model (1) for return forecasting.

As explained by Barberis (2000), the weight wT+1 in (17) cannot be left uncon-

strained in the optimization problem (18) as expected utility would be equal to −∞
in that case. We consider the following two restrictions on wT+1. First, we restrict

wT+1 ∈ [−1, 2], allowing some extent of short-sales and leveraging of the portfo-

lio. Second, we do not allow for short-sales or leveraging at all, by constraining

wT+1 to be in the [0,1] interval. Hence, in total we consider six active investment

strategies. For comparison, we include three static benchmark strategies: I) holding

stocks only, II) holding a portfolio consisting of 50% stocks and 50% bonds, and III)

holding bonds only.

We evaluate the different investment strategies by computing the ex post utility

levels substituting the realized return of the portfolios at time T + 1 in (18). Total

utility is then obtained as the sum of u(WT+1) across all investment periods T =

T0, . . . , T0+T ∗. In order to compare two alternative strategies we compute the return

that equates their average utilities. For example, suppose we compare the strategy

based on excess return forecasts from the benchmark model (1) with a fixed set

of predictor variables and constant regression parameters to the strategy based on

the general model (5) with (4) that incorporates model uncertainty and structural

breaks. The wealth provided at time T +1 by the two resulting portfolios is denoted

as W1,T+1 and W2,T+1, respectively. We then determine the value of ∆ such that

T0+T ∗∑
T=T0

u(W1,T+1) =

T0+T ∗∑
T=T0

u(W2,T+1/ exp(∆)). (21)

Following Fleming et al. (2001), we interpret ∆ as the maximum performance fee

the investor would be willing to pay to switch from the first strategy to the second.

In that sense, ∆ represents the economic value of model uncertainty and model

instability, in the example above.
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Finally, the portfolio weights in the active investment strategies change every

month, and the portfolio must be rebalanced accordingly. Hence, transaction costs

play a non-trivial role and should be taken into account in evaluating the relative

performance of different strategies. Rebalancing the portfolio at the start of month

T + 1 means that the weight invested in stocks is changed from wT to wT+1. We

assume that transaction costs amount to a fixed percentage c on each traded dollar.

Setting the initial wealth WT equal to 1 for simplicity, transaction costs at time T +1

are equal to

cT+1 = 2c|wT+1 − wT | (22)

where the multiplication by 2 follows from the fact that the investor rebalances her

investments in both stocks and bonds. The net portfolio return is then given by

rT+1− cT+1. We apply two scenarios with transaction costs of 0.1% and 0.5%. Note

that for a passive strategy the inclusion of transaction costs matters only in buying

the portfolio at the beginning.

4.2 Empirical Results

The analysis for the active investment strategies is implemented for the period from

January 1976 until December 2005, involving T ∗ = 360 one month ahead return

forecasts. The models are estimated recursively using an expanding window of ob-

servations, with the first T = 120 months being used to estimate the initial models

that are used to obtain the first return prediction. The investment strategies are

implemented for two levels of relative risk aversion, γ = 5 and 10. Before we analyze

the performance of the different portfolios, we summarize the statistical accuracy of

the forecasts of the excess stock returns.

The forecasts obtained from the model allowing for uncertainty concerning which

predictor variables to include and allowing for the possibility of structural breaks in

the regressions parameters (5) with (4) have mean error (ME) of 0.33% and a root

mean square prediction error (RMSPE) of 4.58%. This is slightly more accurate

than the linear and BMA forecasting models, both of which have RMSPEs equal

to 4.64%. The ME of these models are 0.45% and 0.41%, respectively. Figure 3

shows five-year moving averages of the excess returns’ RMSPE and the hit ratio,

defined as the proportion of correctly predicted signs. Both graphs show that the

model performs quite well until October 1987. The stock market crash causes a

large upward jump in the RMSPE, and marks the beginning of a period with less

accurate forecasts and a steady decline in the hit ratio. Forecast accuracy improves

again considerably during the period 1991-1997 with the RMSPE reaching a low of
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just under 3% and the hit ratio peaking at 0.67. Predictability of the stock returns

then deteriorates dramatically due to the internet bubble and its burst, and the

hit ratio sharply drops to less than 0.4 in 2004. In sum, predictive accuracy varies

considerably over time, even if a flexible forecast approach allowing for structural

breaks and model uncertainty is employed.

Table 5 provides summary statistics for the performance of the nine different

investment strategies considered, ignoring transaction costs for the moment. In

addition to the total utility levels and the performance fee ∆ relative to the buy-

and-hold stock portfolio, we report traditional performance measures including the

annualized mean and standard deviation of portfolio returns, and the Sharpe ratio

(computed as the ratio of the mean monthly excess return on the portfolio and the

monthly standard deviation of the portfolio return).

Over the complete investment period from January 1976 until December 2005,

the average annualized return on the buy-and-hold stock portfolio is 11.91% with an

estimated unconditional standard deviation of 15%, while the bonds portfolio pro-

vides a mean return of 5.82% with a standard deviation of 0.85%. The Sharpe ratio

of the stock portfolio is 0.117, while for the bond portfolio it is zero by construction.

In terms of utility levels, the buy-and-hold mixed portfolio consisting of 50% stocks

and 50% bonds renders the best results.

Next consider the active investment strategies based on excess return forecasts

that account for model uncertainty and breaks (Strategies IV and VII). We observe

that these all render lower average returns than the buy-and-hold stock portfolio.

At the same time, portfolio risk is reduced considerably as well. For example, the

restricted portfolios render return standard deviations that are 8.0% and 6.1% for

γ = 5 and 10, respectively, compared to 15% for the passive stock portfolio. This

reduction in volatility comes at the cost of lower mean returns by 2.2% and 3.2%

for low and high risk averse investors, respectively. Despite this substantial return

sacrifice, the Sharpe ratios of the active portfolios are higher at 0.138 and 0.133. The

benefits of the active investment strategy also are revealed clearly by the performance

fee ∆. We find that the investor would be willing to pay 130 and 700 basis points

to switch from the passive to the active strategy. The passive mixed portfolio is

outperformed as well, although the estimates of ∆ are considerably lower at 45

and 64 basis points. The reduction in average returns is less for the unrestricted

portfolios, but the corresponding reduction of return volatility also is much smaller

such that the resulting Sharpe ratios are below that of the passive stock portfolio.

For the investor with low risk aversion (γ = 5), the passive strategy now renders
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higher utility, resulting in a negative performance fee of −140 basispoints for the

active strategy. The high risk averse still prefers the active strategy though, and

would be willing to pay 475 basis points annually to trade it against the buy-and-

hold stock portfolio.

The performance of the other active investment strategies based on excess return

forecasts from more restricted models is less convincing. Although these strategies

lower the volatility of portfolio returns even more than the strategy based on forecasts

from the general model, the reduction in average returns is considerably larger as

well. For example, the restricted portfolio based on excess return forecasts from

the model that only accounts for model uncertainty but ignores structural breaks

(Strategy VIII) renders volatility of 1.1% but at a mean return of only 6.1% for

γ = 10. In all cases the resulting Sharpe ratios is lower compared to the portfolios

based on the general model. Also in terms of the utility levels and performance fee,

Strategy VII achieves the best performance.

Figure 3 suggests that the accuracy of the excess return forecasts varies consider-

ably over time. How this affects the performance of the active strategies can be seen

from Table 6, which shows performance statistics for three sub-periods each covering

a decade for the investor with high relative risk aversion (γ = 10).3 We focus on the

restricted active portfolios that results from forecasts of the general model allowing

for model uncertainty and structural breaks (Strategy VII). Its performance is quite

impressive during the first decade of the investment period, from January 1976 until

December 1985, with a Sharpe ratio of 0.207, more than double the Sharpe ratios

of the passive portfolios held in Strategies I and II. This is due to the fact that

the mean return of the active strategy during this period is actually higher than

the mean return of the buy-and-hold portfolio (14.4% compared to 13.2%), while

volatility is reduced by about 40%. The corresponding performance fees are positive

and large. The Sharpe ratios of the active and passive strategies are exactly equal

during the second decade from January 1986 until December 1995, although in terms

of utility level the buy-and-hold stock portfolio is still outperformed by the active

strategy. The mixed portfolio achieves exactly the same level of utility however,

resulting in a performance fee close to zero. The active strategy’s performance dete-

riorates during the third and final decade, from January 1996 until December 2005.

Although the reduction in portfolio returns’ volatility is of the same magnitude as

before, the loss in average return is much larger. This results in a Sharpe ratio of

3Sub-sample results for the investor with low relative risk aversion (γ = 5) are qualitatively
similar and therefore not shown to save space. Detailed results are available upon request.
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0.019, compared to 0.094 for the passive portfolios. It is quite remarkable then that

the active strategy still achieved higher utility than the buy-and-hold stock portfolio

(−13.06 compared to −13.68). The mixed passive portfolio in turn renders higher

utility than the active strategy, resulting in a negative performance fee. In sum, it

seems that the performance of the active strategies has gradually declined over time.

Our analysis of the active investment strategies so far has ignored transaction

costs. Obviously, their effects on the strategies; performance crucially depends on the

average absolute change in portfolio weights, see (22). Figure 4 shows the portfolio

weight for stocks in the restricted portfolios based on excess stock return forecasts

from the general model, allowing for model uncertainty and structural breaks in the

regression parameters (Strategy VII). Although there are extended periods of time

when the investment in stocks is at high or low levels, month-to-month variation in

the portfolio weight seems quite substantial. Hence, a proper analysis of the effects

of transaction costs is warranted.

Tables 8 and 8 present results for the complete 30-year investment period for

low (0.1%) and moderate (0.5%) levels of transaction costs, respectively. The pres-

ence of transaction costs obviously hurts the active strategies’ performance. For low

transaction cost levels, the restricted portfolio based on return forecasts from the

general model continues to outperform the buy-and-hold stock and mixed portfolios,

although the performance fees ∆ become somewhat lower. For moderate transaction

cost levels, only the high risk averse investor prefers the active strategy over the pas-

sive stock portfolio. For both levels of risk aversion considered, the mixed portfolio

renders superior results on all measures considered: it has higher mean return, lower

volatility (and thus a higher Sharpe ratio) and higher utility.

5 Conclusion

Optimal portfolio decisions force investors to make a number of important decisions

concerning the return forecasting model used. These decisions involve in particu-

lar the treatment of different sources of uncertainty, about the relevant predictor

variables (model uncertainty), the values of the regression parameters (parameter

uncertainty), and their stability (structural breaks). In this paper we have devel-

oped a framework to incorporate all three sources of uncertainty simultaneously.

This extends previous research allowing for either parameter uncertainty and model

uncertainty (Avramov (2002), Cremers (2002)), or parameter uncertainty and pa-

rameter instability (Pesaran et al. (2004)).
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Our empirical results suggest, first, that over the period 1966-2005, several struc-

tural breaks occurred in the relationship between US stock returns and predictor

variables such as the dividend yield and interest rates. These changes appear to be

caused by important events such as the oil crisis, changes in monetary policy, and

the October 1987 stock market crash. Second, we find that allowing for model un-

certainty, and structural breaks has considerable economic value. A typical investor

would be willing to pay up to several hundreds of basis points annually to switch

from a passive buy-and-hold strategy to an active strategy based on a return fore-

casting model that allows for model and parameter uncertainty as well as structural

breaks in the regression parameters. The active strategy that incorporates all three

sources of uncertainty performs considerably better than strategies based on more

restricted return forecasting models.
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Table 1: Probability of variable selec-
tion

Mean posterior
Variable inclusion probability
PE−1 0.587
DY−1 0.727
I3−1 1.000
I3−2 0.169
I12−1 0.775
I12−2 0.095
INF−2 0.208
IP−2 0.352
MB−2 0.435
CP−1 0.070
LV OL−1 0.094

The table presents the marginal poste-
rior probability of any single explanatory
variable to be selected.
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Table 5: No transaction costs

Strategy Mean St dev SR Utility ∆m ∆0.5m ∆b

Panel B: γ=5
I: 100% market 0.119 0.150 0.117 -87.88
II: 50% market 0.089 0.075 0.117 -87.63
III: 0% market 0.058 0.008 0.000 -88.28
IV: BMASB 0.105 0.144 0.094 -88.29 -140.0 -225.3 -4.877
V: BMA 0.065 0.017 0.109 -88.07 -64.19 -149.5 70.88
VI: Linear 0.081 0.067 0.099 -87.86 6.00 -79.36 141.1
VII: BMASB (0,1) 0.097 0.080 0.138 -87.50 129.9 44.58 265.0
VIII: BMA (0,1) 0.065 0.017 0.109 -88.07 -64.19 -149.5 70.88
IV: Linear (0,1) 0.077 0.050 0.109 -87.83 16.61 -68.75 151.7

Panel B: γ=10
I: 100% market 0.119 0.150 0.117 -39.96
II: 50% market 0.089 0.075 0.117 -38.10
III: 0% market 0.058 0.008 0.000 -38.30
IV: BMASB 0.093 0.103 0.097 -38.56 474.8 -163.3 -91.25
V: BMA 0.055 0.106 -0.009 -45.52 -1736 -2374 -2302
VI: Linear 0.072 0.039 0.102 -38.07 647.3 9.186 81.27
VII: BMASB (0,1) 0.087 0.061 0.133 -37.91 701.8 63.66 135.7
VIII: BMA (0,1) 0.061 0.011 0.084 -38.20 601.3 -36.82 35.26
IV: Linear (0,1) 0.069 0.029 0.111 -38.05 652.7 14.63 86.71

The table presents the annualized average % return, the annualized standard deviation, the Sharpe
ratio (SR), and the utility value of the 9 different strategies for the full forecasting sample period
1976:1-2005:12. The last 3 columns present the annualized return in basis points that an active
strategy gives in surplus of the return of a passive strategy.
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Table 6: Subperiods, γ = 10

Strategy Mean St dev SR Utility ∆m ∆0.5m ∆b

Panel A: 1976:1 - 1985:12
I: 100% market 0.133 0.140 0.097 -12.88
II: 50% market 0.109 0.070 0.097 -12.46
III: 0% market 0.086 0.008 0.000 -12.51
IV: BMASB 0.197 0.148 0.217 -12.26 665.1 223.2 270.9
V: BMA 0.097 0.121 0.028 -13.11 -230.7 -672.6 -624.9
VI: Linear 0.132 0.055 0.240 -12.19 734.0 292.2 339.9
VII: BMASB (0,1) 0.144 0.081 0.207 -12.20 723.2 281.4 329.0
VIII: BMA (0,1) 0.088 0.009 0.086 -12.48 425.0 -16.79 30.90
IV: Linear (0,1) 0.114 0.036 0.229 -12.28 639.5 197.7 245.3

Panel B: 1986:1 - 1995:12
I: 100% market 0.138 0.153 0.158 -13.40
II: 50% market 0.096 0.077 0.158 -12.65
III: 0% market 0.054 0.005 0.000 -12.81
IV: BMASB 0.052 0.071 -0.010 -13.09 307.5 -458.9 -293.2
V: BMA 0.029 0.137 -0.053 -19.46 -4976 -5742 -5576
VI: Linear 0.057 0.025 0.041 -12.79 614.2 -152.2 13.48
VII: BMASB (0,1) 0.078 0.044 0.158 -12.65 764.6 -1.783 163.9
VIII: BMA (0,1) 0.058 0.010 0.115 -12.77 641.7 -124.7 40.99
IV: Linear (0,1) 0.062 0.022 0.107 -12.74 670.4 -96.00 69.66

Panel C: 1996:1 - 2005:12
I: 100% market 0.086 0.157 0.094 -13.68
II: 50% market 0.061 0.079 0.094 -12.99
III: 0% market 0.035 0.005 0.000 -12.99
IV: BMASB 0.031 0.063 -0.019 -13.22 461.7 -237.7 -233.9
V: BMA 0.038 0.009 0.095 -12.96 729.4 29.98 33.81
VI: Linear 0.027 0.022 -0.102 -13.08 598.5 -101.0 -97.14
VII: BMASB (0,1) 0.038 0.049 0.019 -13.06 620.5 -78.91 -75.08
VIII: BMA (0,1) 0.038 0.009 0.095 -12.96 729.4 29.99 33.82
IV: Linear (0,1) 0.031 0.020 -0.053 -13.04 648.0 -51.46 -47.63

The table presents the annualized average % return, the annualized standard deviation, the Sharpe
ratio (SR), and the utility value of the 9 strategies for the full forecasting sample period 1986:1-
1995:12. The last 3 columns present the annualized return in basis points that an active strategy
gives in surplus of the return of a passive strategy.
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Table 7: 0.1% transaction costs

Strategy Mean St dev SR Utility ∆m ∆0.5m ∆b

Panel A: γ=5
I: 100% market 0.119 0.150 0.117 -87.88
II: 50% market 0.089 0.075 0.117 -87.63
III: 0% market 0.058 0.008 0.000 -88.28
IV: BMASB 0.090 0.144 0.065 -88.51 -213.0 -298.4 -77.79
V: BMA 0.046 0.017 -0.211 -88.08 -67.34 -152.8 67.85
VI: Linear 0.064 0.067 0.026 -87.93 -18.003 -103.43 117.2
VII: BMASB (0,1) 0.090 0.080 0.114 -87.60 96.20 10.77 231.4
VIII: BMA (0,1) 0.064 0.017 0.098 -88.08 -67.34 -152.8 67.85
IV: Linear (0,1) 0.074 0.049 0.092 -87.87 1.862 -83.57 137.1

Panel B: γ=10
I: 100% market 0.119 0.150 0.117 -39.96
II: 50% market 0.089 0.075 0.117 -38.10
III: 0% market 0.058 0.008 0.000 -38.30
IV: BMASB 0.084 0.103 0.072 -38.70 429.3 -208.9 -136.6
V: BMA 0.048 0.106 -0.029 -45.76 -1807 -2445 -2373
VI: Linear 0.070 0.039 0.084 -38.10 635.0 -3.164 69.15
VII: BMASB (0,1) 0.082 0.061 0.111 -37.98 678.1 40.02 112.3
VIII: BMA (0,1) 0.061 0.011 0.074 -38.12 599.8 -38.37 33.94
IV: Linear (0,1) 0.068 0.029 0.095 -38.08 645.0 6.91 79.22

The table presents the annualized average % return, the annualized standard deviation, the Sharpe
ratio (SR), and the utility value of the 9 different strategies for the full forecasting sample period
1976:1-2005:12 with transaction cost of 0.1%. The last 3 columns present the annualized return in
basis points that an active strategy gives in surplus of the return of a passive strategy.
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Table 8: 0.5% transaction costs

Strategy Mean St dev SR Utility ∆m ∆0.5m ∆b

Panel A: γ=5
I: 100% market 0.119 0.150 0.117 -87.88
II: 50% market 0.088 0.075 0.116 -87.63
III: 0% market 0.058 0.009 0.000 -88.28
IV: BMASB 0.032 0.144 -0.053 -89.38 -507.1 -592.8 -371.4
V: BMA -0.031 0.024 -1.078 -88.12 -79.96 -165.7 55.71
VI: Linear -0.003 0.068 -0.262 -88.22 -114.22 -200.0 21.45
VII: BMASB (0,1) 0.063 0.081 0.017 -88.00 -39.29 -125.0 96.38
VIII: BMA (0,1) 0.061 0.017 0.051 -88.12 -79.96 -165.7 55.71
IV: Linear (0,1) 0.062 0.049 0.022 -88.05 -57.21 -142.9 78.47

Panel B: γ=10
I: 100% market 0.119 0.150 0.117 -39.96
II: 50% market 0.088 0.075 0.116 -38.10
III: 0% market 0.058 0.009 0.000 -38.31
IV: BMASB 0.046 0.103 -0.033 -39.24 245.4 -392.8 -319.5
V: BMA 0.019 0.107 -0.104 -46.78 -2101 -2739 -2666
VI: Linear 0.059 0.038 0.007 -38.25 585.4 -52.73 20.52
VII: BMASB (0,1) 0.063 0.062 0.022 -38.25 583.0 -55.19 18.07
VIII: BMA (0,1) 0.060 0.011 0.037 -38.16 593.6 -44.60 28.66
IV: Linear (0,1) 0.061 0.028 0.031 -38.17 614.1 -24.03 49.23

The table presents the annualized average % return, the annualized standard deviation, the Sharpe
ratio (SR), and the utility value of the 9 different strategies for the full forecasting sample period
1976:1-2005:12 with transaction cost of 0.5%. The last 3 columns present the annualized return
in basis points that an active strategy gives in surplus of the return of a passive strategy.
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Figure 1: Marginal posterior densities of the breaks and β parameters
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Note: The figure presents the posterior means (solid line) of κjt on the left side and βjt on the
right side. The dashed lines are the 25th and 75th percentiles of the posterior densities.
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Figure 2: Posterior densities of the breaks and β parameters conditional on inclusion
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Note: The figure presents the posterior means (solid line) of κjt on the left side and βjt on the
right side, conditional upon inclusion of the jth variable (sj = 1). The dashed lines are the 25th
and 75th percentiles of the posterior densities.
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Figure 3: Out-of-sample results
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The figure presents five-year moving averages of the RMSPE on the left and of the Hit Ratio on
the right.
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Figure 4: Stock portfolio weights in restricted portfolios (Strategy VII)
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The figure presents the portfolio weight for stocks in the restricted portfolios based on excess
stock return forecasts from the general model, allowing for model uncertainty and structural
breaks in the regression parameters (Strategy VII).
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