
Appendix B: Potential Aggregation Bias
To have an assessment of the amount of transitions lost during the 12 weeks between
quarterly observations, I went back to the NLSY disk and extracted the weekly job
history for blacks and whites (STAT variable, former A-array) for the two first years
of the survey and computed weekly and quarterly transitions for all black and white
individuals in the survey. In this exercise, I did not account for dual jobs, wages,
hours of work, reason for leaving the employer, nor did I perform any further sample
selection, as I do in the paper.
Hereby, I report the percentage of weekly transitions within each quarterly tran-

sition computed omitting 12 weeks in-between:

Percentage of weekly transitions within quarterly transitions
for all Blacks and Whites in the NLSY (years 1978 and 1979)
Quarterly % of Weekly Transitions:
Transitions uw+1|uw ew+1|uw uw+1|ew ew+1|ew e0w+1|ew

Blacks
uq+1|uq 94.93 2.02 2.02 1.02 0.01
eq+1|uq 53.95 9.61 1.95 33.89 0.60
uq+1|eq 43.26 0.81 8.41 47.14 0.37
eq+1|eq 1.67 0.73 0.73 95.74 1.14
e0q+1|eq 21.21 5.67 5.67 63.90 3.56

Whites
uq+1|uq 95.27 1.76 1.76 1.20 0.02
eq+1|uq 47.58 9.60 1.94 40.20 0.68
uq+1|eq 39.05 0.93 8.52 51.01 0.49
eq+1|eq 1.93 0.90 0.90 95.07 1.20
e0q+1|eq 19.85 6.39 6.39 64.48 2.90
Note: In this table, the sums by row add up to 100.

For both race groups, there is big persistence of employment status within each
quarterly transition. Interestingly, each possible weekly transition happens the most
at its corresponding quarterly transition. For example, the weekly transition ew+1|uw
attains its highest percentage over the column, around 9.61%, at the quarterly tran-
sition eq+1|uq.
To have an idea of how different are inferences made using these two period lenghts,

I also report weekly transitions and compare their implied quarterly transitions to
quarterly transitions defined at the week when the quarter begins:
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Transitions for all Blacks and Whites in the NLSY (years 1978 and 1979)
Transitions %

Weekly Quarterly Quarterly
implied omitting
by Weekly 12 Weeks

Blacks
Pr(u|u) 96.61 75.36 82.88
Pr(u|e) 7.12 51.75 41.39
Pr(e|e) 91.87 47.74 56.06
Nobs 333270 22218

Whites
Pr(u|u) 96.09 68.66 77.39
Pr(u|e) 4.69 37.59 31.42
Pr(e|e) 94.20 61.69 66.25
Nobs 788550 52570

The quarterly transitions implied by the weekly transitions are computed iterat-
ing the weekly transition matrix 13 times. The quarterly transitions I (and Wolpin
1992) construct do not match exactly the quarterly transitions implied by the weekly
transitions. For both race groups they tend to overestimate the persistence of unem-
ployment and employment and underestimate job loss. However, given the substantial
omission of weekly observations, one can consider that the quarterly transitions are
not that inaccurate.

Appendix C: Numerical Solution of the Model
As mentioned in the main body of the paper, the model is solved on a discretized state
space. Certainly, the computation of the DP problem and the criterion function are
sensitive to the discretization of the state and choice variables, especially of wealth.
Few gridpoints for wealth reduce the accuracy of the model in replicating observed
quits and savings, and in estimating the borrowing limit. The choice of 201 gridpoints
for wealth, almost four times as much as the number of gridpoints for wages, aims to
ameliorate this problem. Fewer than 5% of wealth and 3% of wage observations lie
outside the admissible range defined by these bounds. The table below gives further
details of this discretization, based on Rendon (2006).

Discretization of variables
Assets Wages

Original Variable A ω
Discretized Variable A (i) ω (j)
Gridpoints i = 1, ..., NA j = 1, ..., Nw

Number of Gridpoints NA = 201 Nw = 51
Lower Bound A = −10, 250 w = 1, 000
Upper Bound A = 55, 250 w = 10, 000

Gridsize ∆A =
A−A
NA

∆w =
lnw−lnw

Nw
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The discrete probability for a wage draw ω (j) is

bf (j) = Φ
³
lnω(j)+∆w/2−µ

σw

´
− Φ

³
lnω(j)−∆w/2−µ

σw

´
Φ
³
lnw−µ
σw

´
− Φ

³
lnw−µ
σw

´ .

Wage as a function of age wt (ω) is also discretized and becomes
w(j, t)=ω (j) exp (α1t+ α2t

2). Arrival and layoff rates are q (t) = q0 exp (αqt) / [1 + q0 (exp (αqt)− 1)], q =
{λ, π, θ}.
The entire working lifetime is assumed to be 162 quarters. As in Wolpin (1992),

the solution to the model and estimation is made tractable assuming that the indi-
vidual solves the DP problem using longer period lengths for the more distant future
value functions. Let n be the period length measured in quarters and let tn be age
measured in periods of varying length n. The following scheme illustrates the periods’
transformation:

50 quarterly periods 8 annual periods 10 biannual periods
Quarters t: 1, 2„......, 49, 50 51, 52,...., 81, 82 83, 84,......, 161, 162

Period Length: n = 1 n = 4 n = 8
Transformed periods tn 1, 2,......, 49, 50 51, 52,...., 57, 58 59, 60,......, 67, 68

Then, the age in quarters measured in periods of varying length n = {1, 4, 8} is
t (tn) = min (tn, 50) + 4min (max (tn − 50, 0) , 58) + 8max (tn − 58, 0) .

Notice that the transformed number of periods tn does not indicate the number of
quarterly, annual, biannual periods. This way, a finite horizon DP problem of orig-
inally 162 quarterly periods is transformed into a problem of only T = 68 periods.
However, one has to make several adjustments in the setup to match these varying
period lengths.
The arrival and discount rates for a person of age tn measured in periods of length

n are, thus,

qn (tn) = 1− (1− q (t))n, q = {λ, π, θ}, βn = βn.

And the borrowing constraint is just Btn = −s
PT

τ=t(tn)
b/(1+ r)T−τ . For annual and

biannual period lengths, the quarterly consumption is assumed to be constant during
that period. If the agent is unemployed and consumes Cu in each quarter, wealth at
the end of a period of length n is

Atn+1 = (1 + r)nAtn + b
nX

j=1

(1 + r)j − Cu

nX
j=1

(1 + r)j .
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The utility function for a period of length n from quarterly consumption Cu is then

Un (Cu) =
nX
t=0

βtU (Cu) =
1− βn

1− β
U (Cu) =

1− βn

1− β
U

µ
gnAtn + b− gn

Atn+1

(1 + r)n

¶

where : gn =
(1 + r)nPn
j=1 (1 + r)j

=
1− 1

(1+r)

1− 1
(1+r)n+1

.

Consumption is also constant during the period when the individual is employed,
without any change in the wage offer distribution, but with an adjustment for wage
growth. The quarterly wage for a person of age tn measured in periods of length n is
thus

wn (ω, tn) = ω exp
¡
α1t (tn) + α2t

2 (tn)
¢
.

Hence, the utility function for a period of length n from a constant quarterly
consumption Ce of an employed agent with initial wage ω and age tn is

Un (Ce) =
nX
t=0

βtU (Ce) =
1− βn

1− β

·
U

µ
gnAtn + wn (ω, tn)− gn

Atn+1

(1 + r)n

¶
− ψ

¸
This way, the DP problem is solved by choosing wealth next period regardless of
the period length, just by making the necessary adjustments in the utility function
and its arguments during the backward solution. Note that this procedure does not
entail aggregating quarterly observations, because the estimation only uses data from
period 1 until period 40, for which I use quarterly periods.
The numerical solution proceeds in the following steps:

1. For tn = T + 1 define the discretized value functions:bV u [i, tn] = VR (A(i)) , andbV e [i, j, tn] = VR (A(i)) ,

where VR (A(i)) is the discretized value of being retired. For a CRRA utility
function, this value function admits an analytical expression:

V R
t (At) = max

{A}TFs=t

TFX
s=t

βs−t

³
As − As+1

1+r

´γ
− 1

1− γ
=
(At −ATF+1)

1−γ

1− γ
cγ1 −

1

1− γ
c2,

where c1 =
1−[ g

1+r ]
TF−T+1

1− g
1+r

, g = [β (1 + r)]
1
γ , c2 =

1−βTF−T+1
1−β , and ATF+1 > 0.

Analytical solutions for consumption and for assets are Ct =
gt−T
c1

AT and

At =
gt−T
c1

AT

µ
1−( g

1+r )
TF−t+1

1− g
1+r

¶
, respectively. With β (1 + r) < 1, consumption
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and assets of the retired decrease monotonically over time. Individuals are
assumed to live for 25 years (100 quarters) after retirement. As the value
function and the policy rules for retirement admit closed solutions and these
functions are only needed at the moment of retirement, their period length is a
quarter.

2. Integration. Define the discretized expected values

W u [i, tn] = λn (tn)
NwX
j=1

max
hbV e [i, j, tn] , bV u [i, tn]

i
f(j) + [1− λn (tn)] bV u [i, tn] ;

W e [i, j, tn] = [1− θn (tn)]

Ã
πn (tn)

NwX
l=1

max
hbV e [i, j, tn] , bV e [i, l, tn] , bV u [i, tn]

i
f(l)

+ [1− πn (tn)]max
hbV e [i, j, tn] , bV u [i, tn]

i´
+θn (tn)

Ã
πn (tn)

NwX
l=1

max
hbV e [i, l, tn] , bV u [i, tn]

i
f(l) + [1− πn (tn)])bV u [i, tn]

!
.

3. Compute the value function for the previous period

bV u [i, tn] = max
m≥i∗(tn+1)

½
Un

µ
gnA(i) + b− gn

A(m)

(1 + r)n

¶
+ βnW

u [m, tn + 1]

¾
,

bV e [i, j, tn] = max
q≥i∗(tn+1)

½
Un

µ
gnA(i) + wn(j, tn)− gn

A(q)

(1 + r)n

¶
+ βnW

e [q, j, tn + 1]

¾
,

where A (i∗ (tn + 1)) = Btn+1. The maximizers to these problems are q∗ =
q∗ (i, j, tn) and m∗ = m∗ (i, tn); the reservation wage is

j∗ (i, tn) =
n
j
¯̄̄ bV e [i, j, tn] ≥ bV u [i, tn] > bV e [i, j − 1, tn]

o
.

4. Go to step 2. This process goes backwards and it is repeated until reaching
period tn = 1.

Appendix D: Simulated Method of Moments
The discrete distribution of an observed variable is characterized by a set of J fre-
quencies mj, j = {1, .., J}. Let n be the total number of observations of the actual
variable and nj the number of observations of the actual variable in the jth cell.
The predicted counterparts of the frequencies and the number of observations for the
jth cell are bmj and n̂j, respectively. Let ∆m0 = [∆m1, · · · ,∆mJ ]

0 be a vector in
which ∆mj = mj − bmj, that is, the difference between the actual and the predicted
percentage for each cell. A method of moments estimation minimizes the weighted
average distance between the actual and predicted distributions ∆m0W−1∆m, where
W is a diagonal matrix in which each element of the main diagonal is mj

n
. Then, the
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weighted average distance of a variable, indexed by k, becomes

∆m0W−1∆m =

JkX
j=1

∆m2
j

µ bmj

n

¶−1
=

JkX
j=1

(mj − bmj)
2n2bmjn

=

JkX
j=1

(nj − n̂j)
2

n̂j
= χ2Jk−1.

Since a sum of chi-square random variables follows also a chi-square distribution, with
this diagonal weighting matrix the weighted average distance is χ2L−K =

PK
k=1 χ

2
Jk−1,

where L =
PK

k=1 Jk = 200 is the number of moments used in the estimation, and
K = 70 (7 variables ×10 years). Hence, matching the simulated moments to the
moments observed in the actual dataset is equivalent to computing a χ2-statistic for
the selected distributions: S (Θ) = χ2L−K.

Appendix E: Asymptotic Standard Errors
The asymptotic standard errors are obtained from the criterion function by the fol-
lowing formula:

Asy. V ar (Θ) =
·
∂2S (Θ)

∂Θ∂Θ0

¸−1
≈
·
∆2S (Θ)

∆Θ∆Θ0

¸−1
The first numerical derivative is computed by increasing each parameter proportion-
ally by h and smoothing the criterion function, which has many discontinuities,
with a quadratic approximation. If a first approximation of the first derivative is
S(Θ+hΘ)−S(Θ)

hΘ
, the relative step-size in each parameter can be further shrinked by

ε ∈ (0, 1). Let S (θ + εhθ) − S (θ) ≈ ε2 [S (θ + hθ)− S (θ)], then S(θ+εhθ)−S(θ)
εhθ

≈
ε2[S(θ+hθ)−S(θ)]

εhθ
. For ε = h, we obtain ∆S(Θ)

∆Θ
=

S(θ+h2θ)−S(θ)
h2θ

≈ S(θ+hθ)−S(θ)
θ

. Alterna-
tively, other methods can be used, such as a kernel approximations for smoothing the
computation of these derivatives as in Coppejans and Sieg (2005).
The second derivative is approximated in a similar way, that is, by computing

the implied variation in the numerical first derivative implied by a variation of each
parameter and smoothing it by the same relative variation:·

∆2S (Θ)

∆Θ∆Θ0

¸
ij

=

(
S(Θ−i,j ,θi+hθi,θj+hθj)−S(Θ−i,θi+hθi)−S(Θ−j ,θj+hθj)+S(Θ)

θiθj
, if i 6= j;

S(Θ−i,θi+2hθi)−2S(Θ−i,θi+hθi)+S(Θ)
θ2i

, if i = j.

where S (Θ−i, θi + hθi) is the criterion function when parameter θi is increased by hθi
and all the other parameters denoted byΘ−i are unchanged, and S (Θ−i,j, θi + hθi, θj + hθj)
is the criterion function when parameters θi and θj are increased respectively by hθi
and hθj and all of the others, Θ−i,j, are kept fixed.
The parameters’ asymptotic standard errors are the square root of the main di-

agonal of this matrix. I use h = 0.01 for the behavioral parameters, and h = 0.0001
for the proportions of types.
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Appendix F: Wage Peaks by Type
The following table indicates at which quarter wages of each race group reach their
maximum level

Maximum Wage by Race, Type and Quarter
Blacks Whites

Wage Peak Wage Peak
Types % Value Quarter Types % Value Quarter

p111 29.1 7458 137 p111 34.2 10018 180
p112 16.6 7539 135 p112 3.5 8180 164
p121 7.4 7470 136 p121 5.4 10018 180
p122 4.2 7540 135 p122 0.6 8180 164
p211 21.6 2591 66 p211 44.1 5194 41
p212 12.3 2557 66 p212 4.6 5634 35
p221 5.5 2596 65 p221 6.9 5195 41
p222 3.1 2557 66 p222 0.7 5634 36

Generally speaking, wages of blacks tend to peak earlier and at lower values than
wages of whites. Type combinations formed by Type 1 attain around $7,500 at
quarter, the highest maximum wage level of blacks, 135 and 137 after graduation. On
the other hand, type combinations formed by Type 2 parameter subset of blacks attain
around $2,650 quarterly wages at quarter 65 or 66. Whites of Type 1 in labor market
and taste parameters have higher maximum average wages, $10,018 attained later
in their careers, at quarter 180, while whites of Type 1 in labor market and Type 1
in taste parameters have medium maximum quarterly wages, $8,180, and peak at
quarter 164. White individuals belonging to Type 2 of labor market parameters have
lower maximum wages, between $5,200 and $5,600, attained between quarter 35 and
41.

Appendix G: Extended Table 6
The following tables extend the information reported in Table 6 of the main text by
providing a detailed report of the actual and predicted choice distributions. Table 6a
presents a summary of the actual and predicted distributions of employment status
and transitions for years 3, 6, and 9 after graduation for both race groups. Table 6b
presents a similar summary of the actual and predicted wealth and wage distributions,
as wealth as the corresponding average racial wealth and wage ratios. Both tables
include goodness of fit tests.
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Table 6a. Summary. Blacks and Whites: Actual and Predicted Choice Distribution.
Employment Status and Transitions for three selected Years after Graduation (in %)
Employment Years after Graduation
Variables Year 3 Year 6 Year 9

Act. Pred. χ2 Act. Pred. χ2 Act. Pred. χ2

Unemployment Rate
Blacks 34.2 32.2 1.1 19.3 25.6 12.6 19.7 19.4 0.0
Whites 18.3 16.4 2.4 10.9 13.3 3.9 8.8 9.6 0.6

Transitions
From Unemployment to Employment
Blacks 24.9 28.1 1.1 22.8 27.5 1.7 33.0 27.0 2.1
Whites 37.4 40.6 0.6 45.1 38.2 2.2 47.9 44.6 0.3

Transitions from Employment
Blacks: job separations 12.2 12.1 0.1 5.9 8.9 5.1 8.3 6.1 4.6
Blacks: job-to-job 9.5 9.9 8.2 7.9 7.4 6.9
Whites: job separations 8.4 8.0 1.3 6.5 6.2 0.1 5.6 4.6 5.3
Whites: job-to-job 11.3 10.2 8.5 8.3 5.2 7.0

Quits and Layoffs in job separations
Blacks 68.9 78.8 2.7 46.2 71.8 8.4 52.8 69.0 4.4
Whites 69.4 72.0 0.2 56.8 72.3 4.5 62.1 73.1 1.8

Quits and Layoffs in job-to-job transitions
Blacks 52.8 38.2 3.2 27.8 32.5 0.4 41.4 30.0 1.8
Whites 34.3 27.1 1.8 20.0 21.1 0.0 33.3 19.1 4.3

Crit. values at .5% signif.: χ2(1) = 7.9, χ
2
(2) = 10.6.
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Table 6b: Summary. Blacks and Whites: Actual and Predicted Choice
Distribution. Wealth and Wages for three selected Years after Graduation

Years after Graduation
Wealth and Year 3 Year 6 Year 9
Wages Blacks Whites Blacks Whites Blacks Whites

Act Pre Act Pre Act Pre Act Pre Act Pre Act Pre

Wealth Distribution:
A ≤ 0 2.8 3.7 7.8 15.6 5.7 6.3 13.8 12.6 6.2 7.3 10.7 7.6
0 < A ≤ 10K 95.8 88.9 76.6 66.7 86.8 86.4 68.8 67.2 83.2 82.6 60.0 47.9
10K < A ≤ 20K 0.0 5.4 10.9 11.9 4.7 5.6 10.9 14.1 6.2 7.1 12.1 22.4
20K < A ≤ 30K 1.4 1.5 3.1 4.5 0.9 1.2 2.2 4.3 2.7 2.0 10.7 14.4
A > 30K 0.0 0.5 1.6 1.3 1.9 0.6 4.3 1.9 1.8 0.9 6.4 7.7

χ2 4.7 3.8 3.3 7.0 1.4 14.2
Average Wealth 1393 2905 4921 5234 3381 3064 5664 6014 3702 3588 8780 11385
Black-White ratio 28 56 60 51 42 32

Wage Distribution:
w ≤ 2K 20.2 19.9 16.7 16.0 12.7 11.6 8.4 7.8 10.9 9.3 4.6 3.2
2K < w ≤ 4K 61.3 66.3 58.2 57.5 60.7 62.9 50.7 50.5 56.1 51.5 38.2 45.5
4K < w ≤ 6K 16.2 11.7 18.6 20.7 19.1 19.8 27.6 28.4 21.6 27.8 40.7 33.7
w > 6K 2.3 2.2 6.5 5.7 7.5 5.7 13.2 13.3 11.4 11.3 16.5 17.6

χ2 7.4 2.1 3.5 0.5 8.5 22.4
Average Wage 3104 2888 3363 3343 3473 3415 4114 3948 3739 3874 4552 4365
Black-White ratio 92 86 84 86 82 89

Crit. values at .5% signif.: χ2(3) = 12.8, χ
2
(4) = 14.9.
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Appendix H: Policy simulations
Let denote Θb

ijk, and Θw
ijk, i, j, k = 1, 2, where Θr

ijk = {Θ1r
i , Θ

2r
j , Θ

3r
k }, for r =

b, w, as the behavioral parameters of blacks and whites, respectively. The associated
probabilities of being Type 1 for each of the three subset of parameters are prl =
Pr (Θ1rl ), l = 1, 2, 3. To perform the counterfactual experiment, say, of assigning
blacks the labor market parameters of whites, I proceed as follows:

1. Replace the parameter subset of blacks, Θ1b
1 and Θ1b

2 , and the associated Type
probability, pb1 = Pr

¡
Θ1b1
¢
, by the corresponding parameter subset and Type

probability of whites, Θ1w
1 and Θ1w2 and pw1 = Pr (Θ

1w
1 ).

2. Generate eight counterfactual type combinations, {Θ1w
i , Θ

2b
j , Θ

3b
k }, for i, j, k =

1, 2, and redefine their associated probabilities:

p111 = pw1 p
b
2p

b
3, p112 = pw1 p

b
2

¡
1− pb3

¢
,

p121 = pw1
¡
1− pb2

¢
pb3, p122 = pw1

¡
1− pb2

¢ ¡
1− pb3

¢
,

p211 = (1− pw1 ) p
b
2p

b
3, p212 = (1− pw1 ) p

b
2

¡
1− pb3

¢
,

p221 = (1− pw1 )
¡
1− pb2

¢
pb3, p222 = (1− pw1 )

¡
1− pb2

¢ ¡
1− pb3

¢
.

3. Use these new parameter sets and type probabilities to solve the DP-problems
by type combination and generate simulated paths for the variables of interest.

Repeat this process for all counterfactual computations.

Appendix I: Decomposition of racial gaps in labor
market, wealth and taste differences
Let denote Xrst as the value of a predicted variable implied by a counterfactual pa-
rameter combination {Θ1r, Θ2s, Θ3t}, r, s, t = b, w, and its associated counterfactual
probability masses pijk, i, j, k = 1, 2, generated as described in Appendix A8. Then
one can decompose a racial gaps in the following way:

(Xwww −Xbbb)| {z } = (Xwbb −Xbbb)| {z }+(Xwwb −Xwbb)| {z }+(Xwww −Xwwb)| {z }
Total racial gap =

Labor market
component

Wealth
component

Taste
component ,

and express everything in relative terms by just dividing all terms by the total racial
gap. Notice that in this decomposition the first parameter change is in labor mar-
ket parameters, then, incrementally, blacks are assigned wealth parameters of whites,
and, finally, taste parameters of whites. However, there are altogether six possible
sequences for changes in these parameters, which yield six different results. In the
decomposition reported in the main text, I take an average of the six possible com-
putations of each of the three components.
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