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Abstract

Several theoretical contributions have argued that the returns to schooling within
marriage play a crucial role for human capital investments. Our paper empirical inves-
tigates the evolution of these returns over the last decades. We consider a frictionless
matching framework à la Becker-Shapley-Shubik, in which the gain generated by a
match between two individuals is the sum of a systematic effect that only depends
on the spouses’ education classes and a match-specific term that we treat as random;
following Choo and Siow (2006), we assume the latter component has an additively
separable structure. We derive a complete, theoretical characterization of the model.
We show that under the null that supermodularity on the surplus function is invariant
over time and errors have extreme value distributions, the model is overidentified even
if the surplus function varies over time. We apply our method to US data on individu-
als born between 1943 and 1972. The overidentification tests do not reject; moreover,
we find that the deterministic part of the surplus is indeed supermodular and that, in
line with theoretical predictions, the “marital college premium” has increased more for
women than for men over the period.

1 Introduction

Marital college premium and the demand for higher education The
market rate of return to schooling has increased for both men and women in recent
decades. It was to be expected, therefore, that both men and women should increase
their investment in schooling. However the data shows that women increased their
schooling substantially more than men; in many countries, women are now more ed-
ucated than men. Chiappori et al (2009) argue that this difference can be attributed
to gender differences in the returns to schooling within marriage1. This hypothesis is

∗Columbia University
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‡Tel Aviv University.
1Another, largely complementary explanation proposed by Becker, Hubbard and Murphy (2009) relies

on the differences between male and female distributions of unobserved ability. Still, these authors also em-
phasize that educated women must have received some additional, intrahousehold return to their education.
It is precisely that additional term that our approach allows to evaluate.
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supported by the substantial improvements in household and birth control technology,
as well as by the changing roles of women within the household. Still, it is hard to
prove empirically (see Greenwood et al, 2004). In contrast to the returns to schooling
in the market that can be estimated from observed wages data, the returns to schooling
within marriage are not directly observed and can only be inferred indirectly from the
marriage patterns of individuals with different levels of schooling.

In this paper, we provide such estimates. Our empirical approach is based on a
structural model of matching on the marriage market that is close, in spirit, to that
adopted by Chiappori et al. (2009). Specifically, we consider a frictionless matching
framework a la Becker-Shapley-Shubik, in which the gain generated by the match of
male i and female j is the sum of a systematic effect, that only depends on the spouses’
education classes, and a match-specific term that we treat as random. Our crucial
identifying assumption, similar to that in Choo and Siow (2006), is that the latter
term is additively separable into a male-specific and a female-specific components. A
natural interpretation is that the complementarity properties of the model, which drive
the assortativeness of the stable matching, operate only between classes, and are not
affected by the unobservable variables. While undoubtedly restrictive, this assumption
allows us to focus on our main topic of interest, namely matching between education
classes; in that sense, our model is essentially motivated by a concern for parsimony.
Moreover, our separability assumption generates testable restrictions that the data
markedly fails to reject.2

Under this separability assumption, we derive a set of necessary and sufficient con-
ditions for stability, and show that these conditions can be interpreted in terms of a
standard, discrete choice framework. We then discuss the identifiability of our theoret-
ical setup. In a cross-sectional context, the simplest version, which relies on a strong
homoskedasticity assumptions, is exactly identified; so that we cannot identify any
pattern of heteroskedasticity. If, however, the same structure (as summarized by the
matrix of economic gains by spouses’ education classes) is observed for subpopulations
with different compositions, then the basic model is (vastly) overidentified. In fact,
one can identify a more general structure, in which the systematic component of the
surplus involves class-specific temporal drifts; moreover, this generalized model still
generates strong overidentification restrictions.3

We apply our model to the US population, for cohorts born between 1935 and 1975
and married between ages 18 and 35. We show that the returns from schooling received
within marriage (the “marital education premium”) have increased sharply for women
over the period, while they have not changed much for men. Educated women have
gained relative to uneducated women in two ways: by marrying at higher rates and by
receiving a higher share of the marital surplus. We also find that the gains generated
by marriages with equally educated partners have declined for all types of marriage,

2While the frictionless nature of our model would be a strong assumption in many contexts, we believe
that it is probably more acceptable in our framework, precisely because of the separability assumption. In
our separable world, the absence of frictions only means that any agent can meet at least one potential
mate from each of the education classes under consideration at (almost) no cost.

3We show that an even more general structure, in which the scale of individual heterogeneity may vary
by education class, could also be identified. In practice, however, the assumption of identical homogeneity
is not rejected by the data.
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reflecting the general reduction in marriage over time. However, the smallest decline
is in matches when one or both partners have college education. This finding can be
related to empirical work showing that such marriages are also less likely to break (see
Weiss and Willis 1997 and Bruze, Svarer and Weiss 2010).

The evolution of assortative matching A related issue is what happened to
assortative mating. The observed patterns are quite complex. Overall, the percentage
of couples in which both spouses have a college degree has significantly increased over
the period; however, as women with college degree became more abundant, the propor-
tion of educated women who marry educated men has declined (because some educated
women had to marry downwards with less educated men), while men with high school
degree shifted upwards from marrying women with high school degree to marrying
more often women with college degree. All in all, many observers have nevertheless
concluded that assortative matching was stronger now than four decades ago, and that
this evolution had a deep impact on intrahousehold inequality (see for instance Burtless
1999).

An old question is whether this phenomenon is entirely due to the mechanical ef-
fect of the increase in female education, or whether it also reflects a shift in preferences
towards assortative matching (as would be the case, for instance, if the share of pub-
lic goods in households rises with time - or income - and similar education facilitates
agreements on the composition and level of these public goods). An important ad-
vantage of our structural approach is that it allows to formally disentangle the two
aspects. In this respect, our conclusions are clear-cut. We do not find any evidence for
a change in preferences for assortative matching. In fact, we do not reject the null that
the interaction in marital gains by level of schooling (as summarized by the supermod-
ularity of the matrix of systematic gains) has remained stable over time. To the extent
that we find an increasing proportion of couples in which both partners are educated,
this is not because the gains from having a college degree for both partners (compared
with only one partner having a college degree) have risen over time. We find strong
evidence that for educated women, the additive gains from marriage have shifted over
time. One possible interpretation is that it became less costly for educated women to
marry mainly because household chores have been reduced, so that married women can
participate more in the labor market (see Greenwood, Seshadri and Yorukoglu 2005),
and also because birth control technologies have drastically improved over the period,
allowing for better planning of family fertility (see Michael, 2000, and Goldin and Katz
2002). However, our findings suggest that these ”liberating effects” are more or less
independent of the schooling of the husband. As a by-product of our investigation,
we can identify the matrix of systematic gains; we find that it is, indeed, significantly
supermodular.

This finding seems to contradict results in the sociological literature that have
shown, using log linear models, that even after accounting for changes in the relative
number of men and women in each skill group, homogamy has increased in the US
and several other countries (see Mare, 1991, 2008). However, these conclusions were
drawn from reduced-form models with no direct economic interpretation. We show,
in particular, the following result. Assume we take our structural framework under
the assumption that the forces driving assortative matching (i.e., the matrix of marital
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gains by education classes) remain constant, and we use it to generate marriage data.
If the log-linear regression adopted in the sociological literature were applied to such
data, they would (spuriously) conclude that preferences for homogamy have changed.
These findings further outline the importance of a structural approach to guide the
interpretation of the empirical results.

Finally, another outcome of our structural approach is the identification of the
group specific “prices” that determine the division of the gains from marriage between
husbands and wives of different types. We find that in couples in which both spouses
have a college degree, the share of the wife in the gains from marriage has increased
over time, despite the rise in the number of educated women relative to educated men.
This happened because the marginal contribution of educated women to the surplus
with educated men has risen over time. We find that the increase is mainly due to the
variable component: educated women became more productive relative to less educated
women in all marriages, irrespective of the type of the husband. This finding confirms
the analysis of Chiappori et al. (2009), according to which the increase in the marital
component of the education premium for women could explain the spectacular increase
in female demand for higher education.

Related literature The analysis of the marriage market as a matching process,
which dates back to Becker’s seminal contributions (see Becker 1981), has recently
attracted renewed attention. Probably the most important empirical work is due to
Choo and Siow (2006), who propose one of the first implementations of a Becker-
Shapley-Shubik model based on a discrete choice model. Our paper extends their
contribution in three directions. First, we clarify the underlying theoretical structure,
in particular by working out the assumptions needed on the fundamentals of the model
(i.e., the matrix of systematic gain) and their implications for the endogenous variables
(individual utilities at the stable match). Secondly, we consider a model that allows
for interclass heteroskedasticity of the random components. Thirdly, we study the
evolution of matching patterns throughout time, in a framework that also allows the
gains for marriage to evolve in a class-specific way. Our ultimate goal is to study
matching on education, and more specifically to provide a dynamic perspective on the
evolution of the corresponding patterns over several decades.

These various extensions are necessary for our purpose. Evaluating how the ‘mar-
ital college premium’ evolves over time obviously necessitates a dynamic analysis. It
also requires comparing (expected) utilities between classes, a task for which the ho-
moskedasticity assumption of the standard version is potentially inappropriate. In
Choo and Siow’s approach, the basic, homoskedastic version is exactly identified, im-
plying that any generalization will face severe identifiability problems. We show that
these problems can however be overcome in a more dynamic context, provided that
the structures driving assortative matching remains constant. In particular, our iden-
tification strategy is original.

Another related approach is due to Galichon and Salanié (2010), who provide a
theoretical and econometric analysis of multicriterion matching under the same sepa-
rability assumption. Their focus is different: while our paper considers a small number
of classes, they seek to provide a general method to estimate and test flexible paramet-
ric specifications of the gains from marriage when many covariates are available.
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Section 2 presents some stylized facts. Then we introduce our theoretical frame-
work in Section 3, and section 4 describes the basic principles underlying its empirical
implementation. In Section 5, we discuss identification issues and present our main
theoretical results on that topic. Section 6 describes the matching patterns in the
data, and our empirical findings are presented in Section 7.

2 Some stylized facts

We first briefly describe some raw facts about the evolution of matching by education
over the last decades. To do this, we use the American Community Survey, a repre-
sentative extract of the Census, which we downloaded from IPUMS (see Ruggles et al
(2008).) Unlike earlier waves of the survey, the 2008 survey has information on current
marriage status, number of marriages, and year of current marriage. Of the 3,000,057
observations in our original sample, we only keep white adults (aged 18 to 70) who
are out of school; the resulting sample at this stage has 1,307,465 observations and
is 49.5% male. We used the “detailed education variable” of the ACS to define three
subcategories:

1. High School Dropouts (HSD)

2. High School Graduates (HSG)

3. Some College (SC).

Our category “some college” aggregates all individuals who at least started college.
The drawback is that our highest education category includes 2-year and 4-year college
graduates, along with college students who did not graduate. One may want to separate
4-year college graduates instead, and aggregate the rest of our third category with high-
school graduates; the results are qualitatively similar. A finer classification would be
desirable, but cell sizes shrink fast.

When studying matching patterns, we have to decide which match we consider: the
current match of a couple, or earlier unions in which the current partners entered? also,
do we define a single as someone who never married, or as someone who is currently
not married?

It is notoriously hard to model divorce and remarriage in an empirically credible
manner. Since this is not the object of this paper, we chose instead to only keep first
matches, and never-married singles. Given this sample selection, in each cohort we
miss:

• those individuals who died before the 2008 Survey;

• those who are single in 2008 but were married before: there are

– 36,094 individuals who are separated from their spouse

– 218,839 who are divorced

– 143,963 who are widowed.

• those who are married in 2008, but not in a first marriage—more precisely, in
Table 1, we only kept the top left cell.
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Number of marriages 1 2 ≥ 3 Total

1 384,291 42,147 5,945 432,383
2 46,773 56,210 14,146 117,129
≥ 3 7,250 15,334 9,069 31,653

Total 438,314 113,691 29,160 581,165

Table 1: Men in rows, women in columns

Outcomes are truncated in our data, since young men and women who are single
in 2008 may still marry; in our figures (and later in our estimates) we circumvent this
difficulty by stopping at the cohort born in 1972—the first union occurs before age
35 for most men and women. To examine marriage patterns, we dropped the small
number of couples where one partner married before age 16 or after age 35 (recall that
these are first unions.)

This leaves us with 179,353 couples, 44,344 single men, and 32,985 single women.
The increasing level of education of women is shown on Figure 1: in cohorts born
after 1955 women graduate more from college. Not coincidentally, the proportion
of marriages in which the husband is more educated than the wife has fallen quite
dramatically. Figure 2 shows that since the early 1980s, there are now more marriages
in which the wife has a higher level of education (this figure uses 4 levels of education.)

Figures 3 and 4 describe changes in the level of education of the partners of married
men (resp. women) between the earlier cohorts (born in the early 40s) and the most
recent cohorts in our sample (born in the early 70s.) Figure 3 shows that college-
educated men now find a college-educated wife much more easily; and in fact even
less-educated men are now more likely to marry a college-educated woman—if they
marry at all. On the other hand, the marriage patterns of women are remarkably
stable, as evidenced in Figure 4.

We illustrate the decline in marriages by plotting the percentage of individuals
of a given cohort who never married in Figures 5 and 6. They show that a higher
education has tempered the decline in marriage, especially for women; and that high-
school dropouts on the other hand have faced a very steep decline in marriage rates.

3 Theoretical framework

The basic structure We consider a frictionless, Becker-Shapley-Shubik matching
game between a male population M , endowed with some measure dµM , and a female
population F , endowed with some measure dµF . Each population is partitioned into
a finite number of classes, I = 1, ..., N for men and J = 1, ...,M for women. The gain
generated by the match of Mr. i, belonging to class I, and Mrs. j, belonging to class
J , is the sum of two components, one common to all individuals in the same class, the
other match specific:

gij = ZIJ + εIJij

with the notation I = 0, J = 0 for singles; here, ZIJ denotes the common component
and εIJij is a random shock with mean zero.
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Figure 1: Education levels of men and women
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Figure 3: Marriage patterns of men who marry
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Figure 4: Marriage patterns of women who marry
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Figure 5: Proportion of men who never married
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Figure 6: Proportion of women who never married
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A matching consists of (i) a measure dµ on the set M×F , such that the marginal of
δµ over M (resp. F ) is dµM (dµF ), and (ii) a set of payoffs (or imputations) {ui, i ∈M}
and {vj , j ∈ F} such that

ui + vj = gij for any (i, j) ∈ Supp (µ)

In words, a matching indicates who marries whom (note that the allocation may be
random, hence the measure), and how any married couple shares the gain generated
by their match.

A matching is stable if one can find neither a man i who is currently married but
would rather be single, nor a woman j who is currently married but would rather be
single, nor a woman j and a man i who are not currently married together but would
both rather be married together than remain in their current situation. Formally, we
must have that:

ui + vj ≥ gij for any (i, j) ∈M × F (1)

which translate the fact that for any possible match (i, j), the realized gain gij cannot
exceed the sum of utilities respectively reached by i and j in their current situation.

As is well known, a matching model of this type is equivalent to a maximization
problem; specifically, a match is stable if and only if it maximizes total gain,

∫
gdµ,

over the set of measures whose marginal over M (resp. F ) is dµM (dµF ). A first
consequence is that existence is guaranteed under mild assumptions. Moreover, the
dual of this maximization problem generates, for each male i (resp. female j), a
‘shadow price’ ui (resp. vj), and the dual constraints these variables must satisfy are
exactly (1); in other words, the dual variables exactly coincide with payoffs associated
to the matching problem.

Finally, is the stable matching unique? With finite populations, the answer is no; in
general, the payoffs ui and vj can be marginally altered without violating the (finite) set
of inequalities (1). However, when the populations become large, the intervals within
which ui and vj may vary typically shrink; in the limit of continuous populations, (the
distributions of) individual payoffs are exactly determined. On all these issues, the
reader is referred to Chiappori, McCann and Nesheim (2009) for precise statements.

The main empirical assumption We now introduce a simplifying assumption
that will be crucial in what follows:

Assumption S (separability): the idiosyncratic component εij is additively sep-
arable:

εIJij = αIJi + βIJj (S)

where E
[
αIJi

]
= E

[
βIJj

]
= 0.

In words, the match specific term is the sum of two contributions. The male
contribution is individual specific and may depend on both his and his spouse’s class -
but it does not depend on the precise identity of i’s spouse; and the same property holds
for the female contribution. Note that this assumption is equivalent to the following
property: for any i, ı́′ ∈ I and any j, j′ ∈ J ,

gij + gi′j′ = gij′ + gi′j
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This property implies that within each pair of classes, (I, J), any matching would be
stable. In practice, this means that we exclusively concentrate on the marital patterns
between classes (although this can be relaxed by the introduction of covariates, see
below).

Each male i is thus fully characterized by the realization of the vector αi =(
α11
i , ..., α

MN
i

)
. For notational consistency, we define

αI0i = εI0i0 and β0J
j = ε0J0j

(and similarly for women).
Then we have the following Lemma:

Lemma 1 Assume the ε satisfy the separability property (S). For any stable matching,
there exist numbers U IJ and V IJ , I = 1, ...,M, J = 1, ..., N , with

U IJ + V IJ = ZIJ (2)

satisfying the following property: for any matched couple (i, j) such that i ∈ I and
j ∈ J ,

ui = U IJ + αIJi

and (L)

vj = V IJ + βIJj

Proof. Assume that i and i′ both belong to I, and are both matched with a spouse
(resp. j and j′) belonging to J . Stability requires that:

ui + vj = ZIJ + αIJi + βIJj (1)

ui + vj′ ≥ ZIJ + αIJi + βIJj′ (2)

ui′ + vj′ = ZIJ + αIJi′ + βIJj′ (3)

ui′ + vj ≥ ZIJ + αIJi′ + βIJj (4)

Subtracting (1) from (2) and (4) from (3) gives

βIJj′ − β
IJ
j ≤ vj′ − vj ≤ β

IJ
j′ − β

IJ
j

hence
vj′ − vj = βIJj′ − β

IJ
j

It follows that the difference vj − βIJj does not depend on j, i.e.:

vj − βIJj = V IJ for all i ∈ I, j ∈ J

The proof for ui is identical.

In words: the differences ui−αIJi and vj−βIJj only depend on the spouses’ classes,

not on who they are. The U IJ and V IJ denote how the common component of the
gain is divided between spouses; then a spouse’s utility is the sum of their share of the
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common component and their own, idiosyncratic contribution. Note, incidentally, that
(L) is also valid for singles if we set U I0 = ZI0 and V 0J = Z0J .

An intuitive interpretation of U IJ (or equivalently of V IJ) would be the following.
Assume that a man randomly picked in class I is forced to marry a woman belonging
to class J (assuming that the populations are large, so that this small deviation from
stability does not affect the equilibrium payoffs). Then his expected utility is exactly
U IJ (the expectation being taken over the random choice of the individual within the
class). Note, however, that this value does not coincide with the average utility of men
in class I married to women J at a stable matching. The latter value is larger than
U IJ (reflecting the fact that an agent chooses his wife’s class), and will be computed
below.

Stable matchings: a characterization Under this separability assumption,
the empirical characterization of the stable match becomes much easier. We first
provide a simple translation of the stability properties:

Lemma 2 A set of necessary and sufficient conditions for stability is that

1. for any matched couple (i ∈ I, j ∈ J) one has

αIJi − αIKi ≥ U IK − U IJ for all K (3)

αIJi − αI0i ≥ U I0 − U IJ (4)

and

βIJj − β
KJ
j ≥ V KJ − V IJ for all K (5)

βIJj − β
0J
j ≥ V 0J − V IJ (6)

2. for any single male i ∈ I one has

αIJi − αI0i ≤ U I0 − U IJ for all J (7)

3. for any single female j ∈ J one has

βIJj − β
0J
j ≤ V 0J − V IJ for all J (8)

Proof. The proof is in several steps. Let (i ∈ I, j ∈ J) be a matched couple. Then:

1. First, male i must better off than being single, which gives:

U IJ + αIJi ≥ U I0 + αI0i

hence

αIJi − αI0i ≥ U I0 − U IJ

and the same must hold with female j. This shows that 4, 6, 7 and 8 are necessary.
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2. Take some female j′ in J , currently married to some i′ in I. Then i must be
better off matched with j than j′, which gives:

U IJ + αIJi ≥ zij′ − vj′ = zIJ + αIJi + βIJj −
(
V IJ + βIJj′

)
and one can readily check that this inequality is always satisfied as an equality,
reflecting the fact that i is indifferent between j and j′, and symmetrically j is
indifferent between i and i′.

3. Take some female k in K 6= J , currently married to some i′ in I. Then ’i is
better off matched with j than k’ gives:

U IJ + αIJi ≥ zik − vk = zIK + αIKi + βIKk −
(
V IK + βIKk

)
which is equivalent to

αIJi − αIKi ≥ U IK − U IJ

and we have proved that the conditions 3 are necessary. The proof is identical for
5.

4. We now show that these conditions are sufficient. Assume, indeed, that they are
satisfied. We want to show two properties. First, take some female j′ in J ,
currently married to some l in L 6= I. Then i is better off matched with j than
j′. Indeed,

U IJ + αIJi ≥ zij′ − vj′ = zIJ + αIJi + βIJj −
(
V LJ + βLJj′

)
is a direct consequence of 5 applied to l. Finally, take some female k in K 6= J ,
currently married to some l in L 6= I. Then i is better off matched with j than
j′. Indeed, it is sufficient to show that

U IJ + αIJi ≥ zik − vk = zIK + αIKi + βIKj −
(
V LK + βLKk

)
But from 5 applied to k we have that:

βLKk − βIKk ≥ V IK − V LK

and from 3 applied to i:

αIJi − αIKi ≥ U IK − U IJ

and the required inequality is just the sum of the previous two.

In summary, under our separability assumption, stability can readily be translated
into a set of inequalities, each of which relates to one agent only. This property is
crucial, because it implies that the model can be estimated using standard statistical
procedures applied at the individual level, without considering conditions on couples.
We now see how these insights can be implemented in practice.
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4 Empirical implementation

4.1 Probabilities

Assume, first, that the classes are large, so that while the α and β are random the U IJ

and V IJ are not.
Given the computations above, it is natural to make the following assumption4:
Assumption HG (Heteroskedastic Gumbel): The random terms α and β are

such that

αIJi = σI .α̃IJi

βIJi = µJ .β̃
IJ

i

where the α̃IJi and β̃
IJ

j follow independent Gumbel distributions G (−k, 1).

In particular, the α̃IJi and β̃
IJ

j have mean zero and variance π2

6 , therefore the αIJi

and βIJj have mean zero and respective variance π2

6

(
σI
)2

and π2

6

(
µJ
)2

. The previous
Lemma then implies:

Lemma 3 A set of necessary and sufficient conditions for stability is that

1. for all matched couple (i ∈ I, j ∈ J) one has

αIJi − αIKi ≥ U IK − U IJ

σI
for all K (9)

αIJi − αI0i ≥ U I0 − U IJ

σI
(10)

and

βIJj − β
KJ
j ≥ V KJ − V IJ

µJ
for all K (11)

βIJj − β
0J
j ≥ V 0J − V IJ

µJ
(12)

2. for all single male i ∈ I one has

αIJi − αI0i ≤
U I0 − U IJ

σI
for all J (13)

3. for all single female j ∈ J one has

βIJj − β
0J
j ≤

V 0J − V IJ

µJ
for all J (14)

4Gumbel distributions are better known to economists under the clumsier name of “type-I extreme value
distributions.
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Therefore, for any I and any i ∈ I:

aIJ = Pr (i matched with a female in J)

=
exp

(
U IJ/σI

)∑
K exp (U IK/σI) + 1

and

aI0 = Pr (i single)

=
1∑

K exp (U IK/σI) + 1

where U I0 has been normalized to 0. Similarly, for any J and any female j ∈ J :

bIJ = P (j matched with a male in I) (15)

=
exp

(
V IJ/µJ

)∑
K exp (V KJ/µJ) + exp (V 0J/µJ)

and (16)

b0J = P (j single) =
exp

(
V 0J/µJ

)∑
K exp (V KJ/µJ) + exp (V 0J/µJ)

where V 0J = 0.
These formulas can be inverted to give:

exp
(
U IJ/σI

)
=

aIJ

1−
∑
K a

IK
(17)

and

exp
(
V IJ/µJ

)
=

bIJ

1−
∑
bKJ

(18)

therefore:

U IJ = σI ln

(
aIJ

1−
∑
K a

IK

)
V IJ = µJ ln

(
bIJ

1−
∑
bKJ

)
In what follows, we assume that there are singles in each class: aI0 > 0 and b0J > 0

for each I, J , implying that
∑
K a

IK < 1 and
∑
K b

KJ < 1 for all I, J . Note that a
direct consequence of these results is that, knowing the ZIJ and the population sizes,
we can algebraically compute U IJ/σI and V IJ/µJ for all (I, J).

Finally, define:

ūI = E
[
max
J

(
U IJ + σI α̃IJi

)]
In words, ūI is the expected utility of an agent in class I, given that this agent will
chose a spouse in his preferred class. From the properties of Gumbel distributions, we
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have that:

ūI = σIE
[
max
J

(
U IJ/σI + α̃IJi

)]
= σI ln

(∑
J

exp
(
U IJ/σI

)
+ 1

)
= −σI ln

(
aI0
)

(19)

and similarly

v̄J = µJ ln

(∑
I

exp
(
V IJ/µJ

)
+ 1

)
= −µJ ln

(
b0J
)

(20)

4.2 Why does heteroskedasticity matter?

An important property of the model just presented is heteroskedasticity: the variance
of the unobserved heterogeneity parameters is class-specific. This property may in
principle matter for various reasons. For one thing, the expected utility of an arbitrary
agent in class I, as given by (19), is directly proportional to the standard deviation of
the random shock. Indeed, remember that the agent chooses the class of his spouses so
as to maximize his utility; and the expectation of the max of i.i.d variables increases
with the variance. It follows that the utility generated by the access to the marriage
market cannot be exclusively measured by the probability of remaining single (reflected
in the − ln

(
aI0
)

term).
This remark, in turn, has important consequences for measuring the marital college

premium. To see how, start from a model in which the random component of the
marital gain is homoskedastically distributed (i.e., the variance is the same across
categories: σI = µJ = 1 for all I, J). The marital college premium is measured by the
difference ūI − ūK , where I is the college education class whereas K is the high school
graduate one. Condition (19) then implies that

ūI − ūK = ln

(
aK0

aI0

)
In words, the gain can directly be measured by the (log) ratio of singlehood probabili-
ties in the two classes. The intuition is that people marry if and only if their (idiosyn-
cratic) gain is larger than some threshold. If these random gains are homoskedastically
distributed, then there is a one-to-one correspondence between the mean of the distri-
bution for a particular class and the percentage of that class that is below the threshold,
i.e. that remains single: the higher the mean, the smaller the proportion (see Figure 7).
For instance, if one sees that college graduate are more likely to remain single than
high school graduates (aI0 > aK0, implying that ln

(
aK0/aI0

)
< 0), we can conclude

that the expected marital gain is smaller for college graduates (ūI < ūK), therefore
that the marital college premium is negative.

Consider, now, the heteroskedastic version. Things are different here, because the
percentage of single depends on both the mean and the variance. If educated women
are more likely to remain single, it may be because the gain is on average smaller, but
it may also be that the variance is larger (even with a higher mean), as illustrated in
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 



Figure 7: Homoskedastic random gains

Figure 8. The one-to-one relationship needs not hold, and a higher percentage does not
necessarily imply a smaller mean. One has to compute the respective variances - which,
in turn, may affect the computation of the marital college premium. Technically, we
now have that:

ūI − ūK = σK ln
(
aK0

)
− σI ln

(
aI0
)

(21)

If aI0 > aK0 and σI ≤ σK , one can conclude that ūI − ūK < 0; but whenever σI > σK

the conclusion is not granted, and depends on the precise estimates.
In other words, education operates on marital prospects through three different

channels: it increases marriage probabilities; it changes the potential ‘quality’ (here
education) of the future spouses; and it affects the distribution of surplus within the
household. In the basic, homoskedastic version of the model, due to the assumptions
made on the distributions of the random terms, these three channels are intrinsically
mixed, and the expected utility of each spouse is fully determined by the percentage
of persons in the same education class that remains single. The heteroskedastic ver-
sion is much richer; welfare impacts go beyond the sole probability of marriage, and
involve other considerations. Clearly, the conclusions drawn from the model may signif-
icantly depend on the assumptions made regarding its homoskedasticity properties. It
is therefore important that these assumptions be testable rather than ad hoc - i.e., that
homoskedasticity be imposed by the data (or at least compatible with them) rather
than assumed a priori. In that sense, the estimation of the variances is a crucial part
of the identification process.5

5Note, however, that if the variances are assumed constant across time, then the variations in singlehood
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 



Figure 8: Heteroskedastic random gains

4.3 Extension: Covariates

The basic framework just described can be extended to the presence of covariates; i.e.,
we may specify the εik (hence the α and β) as a function of individual characteristics
(other than the matching ones). Let Xi be a vector of such characteristics of man i, and
Yj of woman j. We may use the following stochastic structure (where, for simplicity,
we disregard heteroskedasticity):

αIJi = Xi.ζ
IJ
m + α̃IJi

αI0i = Xi.ζ
I0
m + α̃I0i

βIJj = Yj .ζ
IJ
f + β̃

IJ

j

β0J
j = Yj .ζ

0J
f + β̃

0J

j

where ζIJm , ζIJf are vector parameters, with the normalization U I0 = ζI0m = 0 and

V 0J = ζ0Jf = 0, and where as above the α̃IJi (resp. β̃
IJ

j ) follow independent, type 1
extreme values distributions G (−k, 1). Then the computations are as above. In other
words, we can estimate for i ∈ I:

aIJ = Pr (i matched with a female in J) =
exp

(
U IJ +Xi.ζ

IJ
m

)
∑
K exp

(
U IK +Xi.ζ

IK
m

)
+ exp

(
U I0 +Xi.ζ

I0
m

)
probability must still reflect similar changes in the expected gains from marriage. In other words, if we find
that the percentage of, say, unskilled women remaining single has increased between two cohorts c and c′,
we can unambiguously conclude that the gains from marriage have diminished for these women over the
period.
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aI0 = Pr (i single) =
exp

(
U I0 +Xi.ζ

I0
m

)
∑
K exp

(
U IK +Xi.ζ

IK
m

)
+ exp

(
U I0 +Xi.ζ

I0
m

)
and the conclusions follow. In particular, these models can be estimated running
standard (multinomial) logits.

5 Identification

We now consider the identification problem. In practice, we observe realized match-
ings - i.e., populations in each classes and the corresponding marital patterns. To
what extend can one recover the fundamentals - i.e., the surplus matrix Z and the het-
eroskedasticity parameters σ and µ - crucially depends on the type of data available.

We first consider a static context, in which population sizes are fixed. We show that
in that case, the model is exactly identified if we assume complete homoskedasticity,
and not identified otherwise. Much more interesting is the situation in which population
sizes vary over time while (some of) the structural parameters remain constant. Then
one can identify both the surplus matrix Z and the heteroskedasticity parameters σ
and µ, provided that they remain constant over time; actually, one can even introduce
either time varying heteroskedasticity or a drift in the surplus matrix without losing
identifiability; and finally, the model generates strong overidentifying restrictions. We
consider the two cases successively.

5.1 The static framework

We start with a purely static framework. Define a model M as a set
(
ZIJ , σI , µJ

)
such that

gij = ZIJ + εIJij

with
εIJij = σIαIJi + µJβIJj (S)

and where the αIJi and βIJj follow independent Gumbel distributions G (−k, 1). Note

that the model is clearly invariant when the
(
ZIJ , σI , µJ

)
are all multiplied by a

common, positive constant; for that reason, in what follows we normalize σ1 to be 1.
The following result is valid for static (cross-sectional) data:

Proposition 4 Assume that a model M =
(
ZIJ , σI , µJ

)
generates some matching

probabilities
(
aIJ , bIJ

)
, and let U IJ , V IJ denote the corresponding dual variables. Then

U IJ = σI log
aIJ

1−
∑
K a

IK
(22)

and

V IJ = µJ log
bIJ

1−
∑
K b

KJ
(23)
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therefore

ZIJ = σI log
aIJ

1−
∑
K a

IK
+ µJ log

bIJ

1−
∑
K b

KJ

Moreover, for any
(
σ̄I , µ̄J

)
∈ R+, the model N =

(
Z̄IJ , σ̄I , µ̄J

)
where

σ̄I

σI
U IJ +

µ̄J

µJ
V IJ = Z̄IJ (24)

generates the same matching probabilities, and the corresponding, dual variables are

Ū IJ =
σ̄I

σI
U IJ (25)

V̄ IJ =
µ̄J

µJ
V IJ (26)

Conversely, if two models M =
(
ZIJ , σI , µJ

)
and N =

(
Z̄IJ , σ̄I , µ̄J

)
generate the

same matching probabilities, then the conditions (24), (25) and (26) must hold.
Proof. From the previous calculations, there is a one-to-one relationship between the
aIJ and the υIJ ; the result follows.

The previous result is essentially negative; it states that in a static context, the
heteroskedastic version of the model is not identified. The heteroskedasticity param-
eters

(
σI , µJ

)
can be chosen arbitrarily; for any value of these parameters, one can

find values
{
ZIJ , I = 1, ..., N, J = 1, ...,M

}
that exactly rationalize the data. An in-

terpretation of the non identifiability result is in terms of utility scales. The unit in
which the Us and V s are measured is not determined unless we make assumptions on
the variances of the αs and βs. This negative result is important, in particular, for
welfare comparisons. In a cross-sectional setting, comparing welfare between males
and females or between individuals belonging to different classes is highly problematic,
since it can only rely on arbitrary choices of the units.

5.2 Changes in population sizes

Much more promising is a situation in which one can observe the market over different
periods (or for different cohorts), when the various populations change in respective
sizes over the periods. Then a richer model can actually be estimated. We start with
the benchmark case, then consider the generalized version that will be taken to data
later.

5.2.1 The benchmark version

Let us now assume that the previous, heteroskedastic structural modelM =
(
ZIJ , σI , µJ

)
holds for different cohorts of agents, c = 1, ..., T , with varying class compositions. The
basic structure becomes:

gij,c = ZIJ + εIJij,c

with
εIJij,c = σIαIJi,c + µJβIJj,c (S)
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Also, assume for the time being that each man marries a woman within his cohort.6

As before, the matching model defines, for each cohort, a matching problem associated
to shadow prices; the latter are now cohort specific. Under the same assumptions as
above, the previous construct applies for each cohort, leading to the definition of U IJc
and V IJc . Then

aIJc = Pr (i ∈ I matched with a female in J in cohort c) =
exp

(
U IJc /σI

)
1 +

∑
K exp (UKJc /σK)

aI0c = Pr (i ∈ I single) =
1

1 +
∑
K exp (UKJc /σI)

therefore

exp
(
U IJc /σI

)
=

aIJc
1−

∑
K a

IK
c

(27)

and similarly:

bIJc = Pr (j ∈ J matched with a female in I in cohort c) =
exp

(
V IJc /µJ

)
1 +

∑
K exp (V IKc /µK)

bI0c = Pr (j ∈ J single) =
1

1 +
∑
K exp (V IKc /µK)

implying that

exp
(
V IJc /µJ

)
=

bIJc
1−

∑
K b

IK
c

(28)

Moreover, we have

U IJc + V IJc = ZIJ (29)

Now, let pIJc = U IJc /σI and qIJc = V IJc /µJ . The crucial remark is that from (27)
and (28), the pIJc and qIJc are directly observable from the data. It follows that (29)
has a direct, testable implications. Indeed, define the vectors:

pIJ =
(
pIJ1 , ..., pIJT

)
qIJ =

(
qIJ1 , ..., qIJT

)
and

1 = (1, ..., 1)

Then for each pair (I, J), the vectors pIJ ,qIJ and 1 must be colinear:

σI pIJ + µJ qIJ − ZIJ1 = 0 (30)

6Empirically, this is not exactly right; women tend to marry slightly older men, so that in the application
the wife of a man in cohort c typically belongs to cohort (c + 2) - a fact that will be taken into account in
the empirical application, but can be ignored for the time being.
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which generates a first testable restriction - namely that for each (I, J), the determinant

DIJ =
∣∣pIJ ,qIJ ,1∣∣

must be zero.
If that restriction is satisfied, assume that either pIJ or qIJ is not constant over the

cohorts. Then the vectors pIJ and 1 (or qIJ and 1) are linearly independent, so that
the linear combination in (30) is unique up to a common multiplicative constant. Since,
in our case, the constant is pinned down by the normalization σ1 = 1, we conclude that
for each pair (I, J), the regression exactly identifies σI , µJ and ZIJ . Finally, since each
σI but σ1 (resp. each µJ) is identified from N (M) different regressions, the model
generates a second set of overidentifying restrictions.

Finally, a more parsimonious version of the model obtains by imposing that the σs
and the µs are identical across classes (i.e., σI = σ for all I and µJ = µ for all J),
although these values may be different between gender (i.e., we do not impose that
σ = µ). Condition (30) is then strengthened: if we define the vectors p, q and 1IJ in
RN×M×T by:

p =
(
p11, ...,pNM

)
,q =

(
q11, ...,qNM

)
and 1IJ = (0, ...0, 1, ..., 1, 0, ...0)

then (keeping the normalization σ = 1):

p = −µ q +
∑
I,J

ZIJ1IJ (31)

This requires that (2 +NM) vectors be colinear in a space of dimension NMT , a
strong restriction as soon as T ≥ 2; moreover, if this property is satisfied, then µ and
the ZIJ are identified.

We conclude that whenever the populations are not constant across cohorts, both
the homoskedastic and the heteroskedastic versions of the benchmark structural model
are (vastly) overidentified.

5.2.2 Extension: category-specific drifts

The previous, overidentification result suggest that a more general version of the model
may actually be identifiable. We now proceed to show that this is indeed the case.
Specifically, we now relax the assumption that the ZIJc are constant across cohorts; we
therefore introduce category-specific drifts, whereby the ZIJs vary according to:

ZIJc = ζIc + ξJc + ZIJ (32)

This is equivalent to assuming that, for all (I, J) and (K,L), the second difference:

ZIJc − ZILc − ZKJc + ZKLc = ZIJ − ZIL − ZKJ + ZKL

is independent of c. Clearly, what we are assuming is therefore that the supermodu-
larity properties of the marital gains are constant over time.

It is important to stress what this extension allows and what it rules out. Under
(32), the benefits of marriage may evolve over time (although the variances do not);
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and these evolutions may be both gender- and education- specific. In words, we allow,
for instance, the gains generated by marriage to decrease less for an educated women
than for an unskilled man. However, the components reflecting complementarity (or
supermodularity) between education classes - the second differences

(
ZIJ − ZIL

)
−(

ZKJ − ZKL
)

- are left invariant. In particular, the forces driving the assortativeness
of the match are supposed to be constant for the various cohorts. Our challenge is
precisely to test whether this hypothesis is compatible with the evolutions in marital
patterns observed over the last decades.

Normalizations The form (32) requires additional normalizations. We normalize
ζI1 = ξJ1 = 0 so that ZIJ = ZIJ1 . Also, note that for any c > 1, the ζIc and ξJc are only
defined up to a (common) additive constant; i.e. for any given scalar k, one can replace(
ζIc , ξ

J
c

)
with

(
ζIc + k, ξJc − k

)
for all (I, J) without changing (32). We can therefore

normalize ξ1c to be zero for all c.

Testing the framework Under (32), equation (29) becomes:

σI pIJc + µJ qIJc = ζIc + ξJc + ZIJ ∀I, J, c (33)

This implies that for all I and all J ≥ 2, we have:

σI
(
pIJc − pI1c

)
+ µJ qIJc − µ1 qI1c = ξJc + ZIJ − ZI1 (34)

Computing this expression for I = 1 and differencing:

σI
(
pIJc − pI1c

)
−σ1

(
p1Jc − p11c

)
+µJ

(
qIJc − q1Jc

)
−µ1

(
qI1c − q11c

)
= ZIJ−ZI1−Z1J+Z11.

(35)
This requires a normalization since all terms can be multiplied by the same factor. We
could choose for instance σ1 = 1, so that

p1Jc −p11c = σI
(
pIJc − pI1c

)
+µJ

(
qIJc − q1Jc

)
−µ1

(
qI1c − q11c

)
−
(
ZIJ − ZI1 − Z1J + Z11

)
From this, we derive a first testable restriction. To simplify notation, denote

D2Z
IJ = ZIJ − ZI1 − Z1J + Z11

the second difference of the mean surplus; and define the vectors:

PIJ =
(
pIJ1 − pI11 , ..., pIJT − pI1T

)
QIJ =

(
qIJ1 − q1J1 , ..., qIJT − q1JT

)
RIJ =

(
p1J1 − p111 , ..., p1JT − p11T

)
and

1 = (1, ..., 1)

Then for each pair (I > 1, J > 1):

RIJ = σI PIJ + µJ QIJ − µ1QI1 −D2Z
IJ1 (36)
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and RIJ belongs to the subspace generated by
{
PIJ ,QIJ ,QI1,1

}
, a first testable

restriction for each (I > 1, J > 1). A second set of testable restrictions comes from the
fact that when we decompose RIJ over the basis

{
PIJ ,QIJ ,QI1,1

}
, the coefficient of

PIJ (resp. QIJ ,resp. QI1) does not depend on J (resp. I, resp. is constant).
In practice, we first estimate the probabilities of the various marital outcomes

directly from the data, and we use them to construct estimates of the vectors P,Q and
R; then we choose the heterogeneity parameters ((σI), (µJ)) and the second differences
(D2Z

IJ) so as to minimize the deviations from the conditions in (36). This minimum
distance estimation technique also allows us to test the model by evaluating the distance
function at its minimum. In our application there are 116 conditions in (36), and only
9 free parameters; this is quite a stringent test since the probabilities of the various
matches are estimated from a large sample and thus very precisely.

Once we have estimated the heterogeneity parameters σI and µJ we can also re-
construct the left-hand side of equation (33):

ÂIJc = σ̂I pIJc + µ̂J qIJc .

Our theory states that in an ANOVA regression of this ÂIJc , only 1-way and 2-way
effects should appear. To put this in terms more familiar to applied econometricians:
a regression of ÂIJc on fixed effects for I, for J , and for c (the 1-way effects) and on
fixed effects for the interactions (I, J), (I, c) and (J, c) (the 2-way effects) should have
an R2 of one. This is an alternative way of evaluating departures from the theory,
based more on economic significance than on statistical significance.

Identification: the main result Finally, should we fail to reject, the model is
identified. To see why, note that the decomposition of RIJ over

{
PIJ ,QIJ ,QI1,1

}
is generically unique; the σI and µJ are therefore (over) identified as the respective
coefficients of the first two vectors in the decomposition, and µ1 as minus the coefficient
of the third. Rewriting (33) for c = 1 gives

σI pIJ1 + µJ qIJ1 = ZIJ

which shows that the ZIJ are identified. Last, applying (33) identifies ζIc for all I since
we set ξ1c ≡ 0; and (34) then identifies ξJc for all J ≥ 2.

A more parsimonious version Coming back to the parsimonious version intro-
duced above (σI = σ for all I and µJ = µ for all J), condition (35) becomes (with the
same notations as above):

σ
((
pIJc − pI1c

)
−
(
p1Jc − p11c

))
+µ
( (
qIJc − q1Jc

)
−
(
qI1c − q11c

))
= ZIJ−ZI1−Z1J+Z11

In this case, the computation of µ has a simple and intuitive interpretation. For any
(I ≥ 1, J ≥ 1), let ∆2a

IJ
c denote the second difference of the log probability aIJc that a

man in I marries a woman in J , taking for instance the first category as a benchmark
for both genders:

∆2a
IJ
c = ln aIJc − ln aI1c − ln a1Jc + ln a11c
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Clearly, the use of such second differences refers to the supermodularity properties of
the (log) probabilities. In particular, if ln aIJc is additively separable:

ln aIJc = sIc + tJc

then ∆2a
IJ
c = 0 for all (I, J, c).

Now, let ∆3a
IJ
c denote the variation of this second difference over cohorts:

∆3a
IJ
c = ∆2a

IJ
c+1 −∆2a

IJ
c

We can similarly define ∆2b
IJ
c and ∆3b

IJ
c for women. Then our model implies that:

∆3a
IJ
c

∆3bIJc
= −µ

σ

In other words, the ratio ∆3a
IJ
c /∆3b

IJ
c should not depend on the classes I and J nor

on the cohort - and the ratio µ/σ has then a natural interpretation in terms of minus
this ratio (remember that some normalization, say σ = 1, is still needed). For instance,
the ratio is close to zero if the second difference ∆2 varies much less for men than for
women.7

Actually, more complex models can in principle be tested and estimated in this
framework. For instance, one may assume a uniform drift in the Zs but allow for
cohort-specific variances; the model would then become:

gij,c = ZIJ + ζc + σIcα
IJ
i,c + µJc β

IJ
j,c

Again, one can show that this model (i) generates testable restrictions and (ii) is
identified up to simple normalizations (a formal proof is available from the authors).

6 Results

We estimate the Pr(J |I, c) and Pr(I|J, c) probabilities by the obvious nonparametric
technique of counting numbers of marriages in cells, assuming that a man of cohort c
marries a woman of cohort (c+ 1) (the one-year gap is both the mode and the median
age difference at marriage.) We ran the analysis for cohorts of men born between 1943
to 1971.

Then we reconstitute the p and q terms and we run the minimum distance pro-
cedure, taking I and J = 3 rather than 1 as reference, since category 1 (high-school
dropouts) becomes less numerous over time. We also found it more convenient to
normalize estimates using the restriction

Z33 + Z11 − Z13 − Z31 = 1,

7This property could in principle be used to construct both a specification test and a non parametric
estimator of the ratio. In our data, however, the power of the test is quite weak, due to insufficient variations
in the second difference across cohorts.
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which scales the constant part of the joint surplus by making the largest cross-difference
term equal to one. This allows us to maintain the symmetry between men and women.

Minimum distance estimation amounts to choosing the heterogeneity parameters
and the second difference so as to minimize the length of the residuals in (36). As
usual, the optimal choice of a norm is the inverse of the variance-covariance matrix
of the residuals. Since we use 29 cohorts and we have three categories, the vector of
residuals has dimension 29∗(3−1)∗(3−1) = 116, and its variance-covariance matrix is
rather unwieldy. To avoid relying too much on imprecise estimates of some off-diagonal
elements of the variance matrix, we only used its diagonal elements8. Using the full
matrix does not materially alter our results.

6.1 Tests

The hypotheses implied by our model is very roundly rejected. While this sounds like
a disappointing outcome, the ANOVA procedure described in section 5.2.2 gives much
more positive results. When we reconstructed the ÂIJc factor, we found that in the
2-way ANOVA regression9 the main effects were the 1-way effects on I and J (for a
total of 46.2% of the variance), the 1-way cohort effect (for 13.8%), and the 2-way
(I, J) effect (for 37.4%). As it turns out, the residual, which measures the deviation
from our theory, accounts for only. . . 0.5% of the variance of ÂIJc .

These apparently divergent results are a striking illustration of the difference be-
tween statistical significance and economic significance. Since we use rather large
samples of men and women, the odds ratios pIJc and qIJc are very precisely estimated,
and any small deviation from the theory (the 0.5% of the variance above) results in a
very large value of the test statistic, and thus a spectacular statistical rejection. Thus
the statistical rejection of our theory is a minor distraction, and we pursue our analysis
of the 99.5% of the variance in marriage patterns that we manage to explain.

6.2 Estimated Heterogeneities

Table 2 gives our estimates of the σI and µJ terms. The model in Choo-Siow (2006)
imposes that they all be equal; on the contrary, we find clear and significant variations
across our estimates. In particular, each estimated µ is larger than the corresponding σ;
and the hypothesis that each σ equals the corresponding µ is strongly rejected. There
also appears to be much less heterogeneity among high-school graduates than for the
other two categories; given the discussion of section 4.2, this will play an important
role in what follows.

8Our estimator of these diagonal elements relies on a first-step minimum distance estimator based on
weighting the residuals by the observed number of marriages. In computing it, we neglect the correlation
between the estimated P and Q.

9We weighted each (I, J, c) observation by the corresponding number of marriages in the data.
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Group σI µJ

HSD 0.089 0.148
(0.017) (0.027)

HSG 0.060 0.071
(0.017) (0.018)

COLL 0.087 0.137
(0.014) (0.017)

Table 2: σI in rows, µJ in columns

6.3 Estimated Surpluses

The reconstructed values10 of the ZIJ (the cohort-independent part of the joint surplus)
are in Table 3. We ran “supermodularity tests” by evaluating the 9 cross-difference
terms

ZKL + ZIJ − ZIL − ZKJ

with K > I and L > J . Rather strikingly, they were all positive. Since the joint
surplus

ZIJ + ξIc + ζJc

adds to Z a part which is additive in I and J , we can conclude that the joint surplus
is supermodular in educations.

Group HSD HSG COLL

HSD 0.331 0.193 −0.128
HSG 0.195 0.272 0.098
COLL −0.028 0.233 0.468

Table 3: Z values: men in rows, women in columns

Our method also yield estimates of the ξ and ζ terms, so that for any value of
(I, J) we can reconstruct changes in the joint surplus across cohorts. Figure 9 focuses
on “diagonal” matches I = J . The dashed horizontal lines give the values of ZII ,
and the curves add ξIc + ζIc . The differences that prevailed for the older cohorts are
dwarfed by the evolutions since then: while all categories of matches have become less
attractive (relative to staying single), the fall is much steeper for high-school dropouts.

Our estimates also allow us to reconstruct changes in U IJc and V IJc over time.
Again, we focus on diagonal terms I = J , which are plotted in Figures 10 (for men)
and 11 (for women).

6.4 Interpretation

All these estimates have immediate structural interpretations. In practice, the mar-
ital college premium can be decomposed into several components. First, education

10The estimated standard errors are between 0.01 and 0.04.

30



1945 1950 1955 1960 1965 1970

−
0.

2
0.

0
0.

2
0.

4

Year husband was born

Jo
in

t s
ur

pl
us

Diagonal match  High School Dropout
Diagonal match  High School Graduate
Diagonal match  Some College

Figure 9: Joint surplus of diagonal matches
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Figure 10: Gain from diagonal matching for men
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affects the probability of being married. Second, conditional on being married, it also
affects the education of the spouse (or more exactly its distribution); intuitively, we
expect educated women to find a “better” husband, at least in terms of education, and
conversely. Third, the impact on the total surplus generated by marriage is twofold.
Take women for instance. A wife’s education has a direct impact on the surplus; this
impact can be measured, for college education, by the difference (ZI3c −ZI2c ), where I
denotes the husband’s education. In addition, since a more-educated woman is more
likely to marry a more educated husband, the husband’s higher expected education
further boosts the surplus, by the average of these (ZI3c − ZI2c ) terms weighted by
the difference in probability of marrying a college-educated husband instead of a high
school graduate.

Finally, the share of the surplus going to the wife in any given match is also affected
by her education. Consider the average surplus form a match between an I-man of
cohort c and a J-woman of cohort (c+1)—recall that we assumed a fixed age difference.
This average surplus is the expected value of

E
(
ZIJc + σIαIJi,c + µJβIJj,c

)
,

conditional on i and j marrying each other in equilibrium. Given the additive structure
of our theory, it can also be rewritten as the sum of

Emax
K

(U IKc + σIαIKi,c )

and
Emax

K
(V KJc + µJβKJj,c )

where the first expectation is conditional on i marrying a J-woman, and the second
one is conditional on j marrying a I-woman. But given the peculiar nature of type-I
extreme value errors, the first expectation is ūI , independently of the value of J ; and
the second one is v̄J , independently of the value of I. Therefore the ratio

v̄J

ūI + v̄J

measures the share of the surplus that goes to the wife in an (I, J) marriage, in expected
terms.

All these components can readily be computed from our estimates. For instance,
start with the early cohorts of women, born between 1944 and 1946. For these women:

1. College education reduced the probability of marrying: it was 93.9% for a high
school graduate, but only 89.6% after college.

2. It allowed women who did marry to get a better-educated partner: for instance,
the conditional probability of marrying a college-educated man jumped from
38.0% for a high school graduate. to 83.3% for a college-educated woman.

3. The marriage of a college-educated husband with a college-educated wife gener-
ated a total surplus that was 0.464 on average, as opposed to only 0.191 if the
wife did not attend college.
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4. Finally, still in the case of a college-educated husband, the wife’s share of total
surplus was 57.0% on average if she was college-educated, while a high school
graduate received only 41.9% of the smaller surplus.

Note that items 1 and 2 above can be evaluated directly from the data (and our
model reproduces them very closely); but on the other hand, items 3 and 4 cannot be
computed without a model, such as the one we use in this paper.

The same analysis can be made for the most recent cohorts of women, born between
1970 and 1972. Here:

1. College education now increases the probability of marrying (it is 79.1% for a
high school graduate and 81.8% for a college graduate)

2. Its impact on the husband’s education is pretty much unchanged: the conditional
probabilities of marrying a college-educated man are 37.6% for a high school
graduate and 84.1% for a college graduate.

3. Regarding the direct impact of female education on total surplus, the marriage
of a high school graduate wife with a college-educated man generates negative
total surplus on average (−0.041); if the wife attended college, the total surplus
is 0.289. At 0.330, the difference is much larger than it was for early cohorts
(0.273).

4. The wife’s share of the total surplus in a marriage with a college-educated man
has decreased for high school graduates, at 40.4% now; and it has markedly
increased for college-educated women—it is now 62.5%.

All in all, the impact of education on a person’s marital situation is quite complex:
it involves changes in the marriage probabilities, but also in the “quality” of the spouse,
in the size of the surplus generated by marriage and ultimately in the distribution of
this surplus between spouses. These various components may not evolve in the same
direction. A spouse’s expected gain, on which the definition of the marital college
premium is based, must take all these elements into account; as a result, even the
direction of its evolution may in principle be quite difficult to figure out.

An obvious advantage of our structural model, though, is that the value of this
expected gain can be directly computed from the data. For the main concepts at
stake, the model actually provides explicit expressions that can readily be evaluated
from our estimates. For instance, the marital college premium for any generation c is
given by equation (21) above:

MCPmc = ū3c − ū2c = σ2 ln
(
a20c
)
− σ3 ln

(
a30c
)

for men and
MCPwc = v̄3c − v̄2c = µ2 ln

(
b20c
)
− µ3 ln

(
b30c
)

for women.
Figures 12 and 13 plot the evolution over cohorts of the expected gains ūIc and v̄Jc

for the various education classes under consideration. One sees, in particular, that the
fate of high-school dropouts has deteriorated for both genders, while that of college-
educated women has improved.
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The latter point is confirmed on Figure 14, which plots the evolution of the “marital
college premium” (ū3c − ū2c) and (v̄3c − v̄2c ) over cohorts for both genders. Beyond the
year-to-year changes, the nonparametric smoothers in dashed lines tell a clear story:
the marital college premium of women started to increase sharply for cohorts born
around 1955, who graduated from college around 1980; and it has crept upwards ever
since. No such change can be seen for men: their marital college premium has remained
remarkably flat over the period.
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Figure 12: Gain from marriage for men
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7 Conclusion

It has long been recognized (at least since Becker’s 1991 seminal contributions) that
the division of the surplus generated by marriage should be analyzed as an equilibrium
phenomenon. As such, it responds to changes in the economic environment; conversely,
investments made before marriage are partly driven by agents’ current expectations
about the division of surplus that will prevail after marriage. Theory shows that such
considerations may explain the considerable differences in male and female demand for
higher education. In a nutshell, when deciding whether to go to college, agents take
into acount not only the market college premium (i.e., the wage differential resulting
from a college education) but also the “marital college premium”’ which represents
the impact of education on marital prospects; the later includes not only marriage
probabilities, but also the expected “quality” of the future spouse and the resulting
distribution of marital surplus. Our first contribution is to provide a simple but rich
model in which these components can be econometrically identified. Our framework
generalizes a previous contribution by Choo and Siow (2006); we show, in particular,
that it can be (over)identified using temporal variations in the compositions of the
populations at stake. Applying the model to US data, we first find that the main
identifying assumption—that the gains from assortative matching, as measured by level
of supermodularity in the marital surplus, remain constant over time— is rejected by
the data. On the other hand,

[.....................]
We can then fully identify the structural model. While the gains from mariage

have declined over the period, the decline has been smaller for educated agents. In
particular, the “marital college premium” has markedly increased for women while
remaining stable for men, which confirms the theoretical predictions discussed above.
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