
Identifying technology spillovers and product
market rivalry�

Nick Bloomy, Mark Schankermanzand John Van Reenenx

April 12, 2007

Abstract

Support for R&D subsidies relies on empirical evidence that R&D �spills
over�between �rms. But �rm performance is a¤ected by two countervail-
ing R&D spillovers: positive e¤ects from technology spillovers and negative
business stealing e¤ects from R&D by product market rivals. We develop a
general framework showing that technology and product market spillovers
have testable implications for a range of performance indicators, and then
exploit these using distinct measures of a �rm�s position in technology space
and product market space. Using panel data on U.S. �rms between 1980
and 2001 we show that both technology and product market spillovers oper-
ate, but technology spillovers quantitatively dominate. The spillover e¤ects
are also present when we analyze three high tech sectors in �ner detail.
Using the model we evaluate the net spillovers from three alternative R&D
subsidy policies.
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1. Introduction

Knowledge spillovers have been a major topic of economic research over the last

thirty years. Theoretical studies have explored the impact of research and develop-

ment (R&D) on the strategic interaction among �rms and long run growth1. While

many empirical studies appear to support the presence of technology spillovers,

there remains a major problem at the heart of the literature. This arises from the

fact that R&D generates at least two distinct types of �spillover� e¤ects. The

�rst is technology (or knowledge) spillovers which may increase the productiv-

ity of other �rms that operate in similar technology areas, and the second type of

spillover is the product market rivalry e¤ect of R&D. Whereas technology spillover

are bene�cial to �rms, R&D by product market rivals has a negative e¤ect. De-

spite a large amount of theoretical research on product market rivalry e¤ects of

R&D (including patent race models), there has been very little empirical work

on such e¤ects, in large part because it is di¢ cult to distinguish the two types of

spillovers using existing empirical strategies.

It is important to identify the empirical impact of these two types of spillovers.

Econometric estimates of technology spillovers in the literature may be severely

contaminated by product market rivalry e¤ects, and it is di¢ cult to ascertain the

direction and magnitude of potential biases without building a model that incor-

porates both types of spillovers. Furthermore, even if there is no such bias, we need

estimates of the impact of product market rivalry in order to asses whether there

is over- or under-investment in R&D. If product market rivalry e¤ects dominate

technology spillovers, the conventional wisdom that there is under-investment in

R&D could be overturned.

This paper develops a methodology to identify the separate e¤ects of technol-

1See, for example, Philippe Aghion and Peter Howitt (1992) or Michael Spence (1984). Zvi
Griliches (1992) and Wolfgang Keller (2004) have surveys of the literature.
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ogy and product market spillovers and implements this methodology on a large

panel of U.S. companies. Our approach is based on two features. First, using a

general analytical framework we develop the implications of technology and prod-

uct market spillovers for a range of �rm performance indicators (market value,

patents, productivity and R&D). The predictions di¤er across performance indica-

tors, thus providing identi�cation for the technology and product market spillover

e¤ects. Second, we empirically distinguish a �rm�s positions in technology space

and product market space using information on the distribution of its patenting

(across technological �elds) and its sales activity (across di¤erent four digit indus-

tries). This allows us to construct distinct measures of the distance between �rms

in the technology and product market dimensions2. We show that the signi�cant

variation in these two dimensions allow us to distinguish empirically between tech-

nology and product market spillovers.3Applying this approach to a panel of U.S.

�rms for a twenty year period (1981-2001) we �nd that both technological and

product market spillovers are present and quantitatively important. Nevertheless,

the technology spillover e¤ects are larger in magnitude than the rivalry e¤ects so

there will still be under-investment in R&D from a social perspective. We also �nd

(weaker) evidence that R&D by product market rivals is, on average, a strategic

complement for a �rm�s own R&D. Using parameter estimates from the model

we evaluate the impact of three di¤erent R&D subsidy policies and show that the

typical focus of R&D support for small and medium �rms may be misplaced, if

2In an earlier study Adam Ja¤e (1988) assigned �rms to technology and product market
space, but did not examine the distance between �rms in both these spaces. In a related paper,
Lee Bransetter and Mariko Sakakibara (2002) make an important contribution by empirically ex-
amining the e¤ects of technology closeness and product market overlap on patenting in Japanese
research consortia.

3Examples of well-known companies in our sample that illustrate this variation include IBM,
Apple, Motorola and Intel, who are all close in technology space (revealed by their patenting and
con�rmed by their research joint ventures), but only IBM and Apple compete in the PC market
and only Intel and Motorola compete in the semi-conductor market, with little product market
competition between the two pairs. Appendix D has more details on this and other examples.
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the objective is to redress market failures associated with technology spillovers.

Our paper has its antecedents in the empirical literature on knowledge spillovers.

The dominant approach has been to construct a measure of outside R&D (the

�spillover pool�) and include this as an extra term in addition to the �rm�s own

R&D in a production, cost or innovation function. The simplest version is to mea-

sure the spillover pool as the stock of knowledge generated by other �rms in the

industry (e.g. Jeremy Bernstein and M. Ishak Nadiri, 1989). This assumes that

�rms only bene�t from R&D by other �rms in their industry, and that all such

�rms are weighted equally in the construction of the spillover pool. Unfortunately,

this makes identi�cation of the strategic rivalry e¤ect of R&D from technology

spillovers impossible because industry R&D re�ects both in�uences4. A more

sophisticated approach recognizes that a �rm is more likely to bene�t from the

R&D of other �rms that are �close�to it, and models the spillover pool (which we

will label �SPILLTECH�) available to �rm i as SPILLTECHi = �j;j 6=iwijGj

where wij is some �knowledge-weighting matrix�applied to the R&D stocks (Gj)

of other �rms j. All such approaches impose the assumption that the interac-

tion between �rms i and j is proportional to the weights (distance measure) wij.

There are many approaches to constructing the knowledge-weighting matrix. The

best practice is probably the method �rst used by Adam Ja¤e (1986), exploiting

�rm-level data on patenting in di¤erent technology classes to locate �rms in a

multi-dimensional technology space. A weighting matrix is constructed using the

uncentered correlation coe¢ cients between the location vectors of di¤erent �rms.

We follow this idea but extend it to the product market dimension by using line of

business data for multiproduct �rms to construct an analogous distance measure

4The same is true for papers that use �distance to the frontier�as a proxy for the potential
size of the technological spillover. In these models the frontier is the same for all �rms in a
given industry (e.g. Daron Acemoglu, Philippe Aghion, Claire Lelarge, John Van Reenen and
Fabrizzio Zilibotti, 2006).
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in product market space5.

Two caveats are in order about the scope of this paper. First, we focus on

technology and product market spillovers, rather than �rent spillovers�that arise

from mismeasured input prices6. Second, even in the absence of rent spillovers and

strategic e¤ects, it is not easy to distinguish a spillovers interpretation from the

possibility that positive interactions are �just a re�ection of spatially correlated

technological opportunities� (Zvi Griliches, 1998). If new research opportuni-

ties arise exogenously in a given technological area, then all �rms in that area

will do more R&D and may improve their productivity, an e¤ect which may be

erroneously picked up by a spillover measure. This issue is an example of the

�re�ection problem�discussed by Charles Manski (1991). A necessary condition

for identi�cation is prior information that speci�es the relevant reference group

and this is the role played by a knowledge weighting matrix. Beyond that, we

place parametric structure on the nature of interactions through our �rm speci�c

pairings in technology space and product market space to achieve identi�cation.

In addition, we attempt to mitigate the re�ection problem by exploiting the panel

structure of our data using various controls for the unobserved shocks (such as

�rm speci�c e¤ects and measures of industry demand).

The paper is organized as follows. Section 2 outlines our analytical framework.

Section 3 describes the data and Section 4 discusses the main econometric issues.

The econometric �ndings are presented in Section 5. In Section 6 we use the

5Without this additional variation between �rms within industries, the degree of product
market closeness is not identi�ed from industry dummies in the cross section. Also note that
the extent of knowledge spillovers may be infuenced by geographic proximity (the classic paper is
Adam Ja¤e, Manuel Trajtenberg and Rebecca Henderson, 1993), research collaborations (Jasjit
Singh, 2005), and other factors.

6As Zvi Griliches (1979) pointed out, rent spillovers occur when R&D-intensive inputs are
purchased from other �rms at less than their full �quality-adjusted�price. Such spillovers are
simply consequences of conventional measurement problems and essentially mis-attribute the
productivity gains to �rms that purchase the quality-improved inputs rather than to the �rms
that produce them.
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preferred estimates to evaluate the social returns generated by three R&D subsidy

policies. The concluding remarks summarize the key results and directions for

future research.

2. Analytical Framework

We consider the empirical implications of a non-tournament model of R&D with

technology spillovers and strategic interaction in the product market7. We study

a two-stage game. In stage 1 �rms decide their R&D spending and this produces

knowledge (which we will empirically proxy by patents and TFP) that is taken as

pre-determined in the second stage. There may be technology spillovers in this

�rst stage. In stage 2, �rms compete in some variable, x, conditional on knowl-

edge levels k. We do not restrict the form of this competition except to assume

Nash equilibrium. What matters for the analysis is whether there is strategic

substitution or complementarity of the di¤erent �rms�knowledge stocks in the

reduced form pro�t function. Even in the absence of technology spillovers, prod-

uct market interaction would create an indirect link between the R&D decisions

of �rms through the anticipated impact of R&D induced innovation on product

market competition in the second stage. There are three �rms, labelled 0, � and

m: Firms 0 and � interact only in technology space (production of innovations,

stage 1) but not in the product market (stage 2); �rms 0 and m compete only in

the product market.

Although this is a highly stylized model it makes our key comparative static

predictions very clear. Appendix A contains several extensions to the basic model.

7This approach has some similarities to Chad Jones and John Williams (1998) who examine
an endogeneos growth model with business stealing, knowledge spillovers and congestion exter-
nalities. Their focus, however, is on the biases of an aggregate regression of productivity on
R&D as a measure of technological spillovers. Our method, by contrast, seeks to inform micro
estimates through separately identifying the business stealing e¤ect of R&D from technological
spillovers.
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Firstly, we allow other �rms to overlap simultaneously in product market and tech-

nology space and also allow for more than three �rms in the economy. Secondly,

we consider a tournament model of R&D (rather than the non-tournamament

model which is the focus of this section). Thirdly, we allow patenting to be en-

dogenously chosen by �rms rather than only an indicator of knowledge, k: The

comparative static results are shown to be robust to all these extensions with one

exception that we will discuss below.

Stage 2

Firm 00s pro�t function is �(x0; xm; k0): We assume that the function � is

common to all �rms. Innovation output k0 may have a direct e¤ect on pro�ts, as

well as an indirect (strategic) e¤ect working through x: For example, if k0 increases

the demand for �rm 0 (e.g. product innovation), its pro�ts would increase for any

given level of price or output in the second stage.8

The best response for �rms 0 and m are given by x�0 = argmax �(x0; xm; k0)

and x�m = argmax �(xm; x0; km); respectively. Solving for second stage Nash

decisions yields x�0 = f(k0; km) and x�m = f(km; k0): First stage pro�t for �rm

0 is �(k0; km) = �(k0; x
�
0; x

�
m), and similarly for �rm m: If there is no strategic

interaction in the product market, �(k0; x�0; x
�
m) does not vary with xm and thus

�0 do not depend on km:

We assume that �(k0; km) is increasing in k0, decreasing in km and concave9.

Stage 1

Firm 0 produces innovations with its own R&D, possibly bene�ting from

8We assume that innovation by �rm m a¤ects �rm 00s pro�ts only through xm, which is
plausible in most contexts. This can be extended without changing the predictions of the
model.

9The assumption that �(k0; km) declines in km is reasonable unless innovation creates a
strong externality through a market expansion e¤ect. Certainly at km ' 0 this derivative must
be negative, as monopoly is more pro�table than duopoly.
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spillovers from �rms that it is close to in technology space:

k0 = �(r0; r� ) (2.1)

where r0 is the R&D of �rm 0, r� is the R&D of �rm � and we assume that

the knowledge production function �(:) is non-decreasing and concave in both

arguments. This means that if there are technology spillovers, they are necessarily

positive. We assume that the function �(:) is common to all �rms.

Firm 0 solves the following problem:

max
r0
V 0 = �(�(r0; r� ); km)� r0: (2.2)

Note that km does not involve r0:The �rst order condition is:

�1�1 � 1 = 0

where the subscripts denote partial derivatives with respect to the di¤erent argu-

ments. By comparative statics,

@r�0
@r�

= �f�1�1� +�11�1��g
A

(2.3)

where A = �11�
2
1+�1�11 < 0 by the second order conditions. If �1� > 0; �rm 0

0s

R&D is positively related to the R&D done by �rms in the same technology space,

as long as diminishing returns in knowledge production are not �too strong.�On

the other hand, if �1� = 0 or diminishing returns in knowledge production are

strong (i.e. �1�1� < ��11�1�� ) then R&D is negatively related to the R&D done
by �rms in the same technology space. Consequently the marginal e¤ect @r�0

@r�
is

formally ambiguous.

Comparative statics also yield

@r�0
@rm

= ��12�1
A

(2.4)
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where rm is the R&D of �rm m. Thus �rm 00s R&D is an increasing (respectively,

decreasing) function of the R&D done by �rms in the same product market if

�12 > 0 �i.e., if k0 and km are strategic complements (respectively, substitutes).10

We also obtain
@k0
@r�

= �2 � 0 (2.5)

and

@k0
@rm

= 0 (2.6)

Table 1 summarizes the basic predictions. The intuition for these results is

straightforward. In the case where there is are no product market rivalry or tech-

nology spillovers, R&D by other �rms should have no in�uence on �rm 0�s decisions

or market value. Now suppose there are technology spillovers. From the knowl-

edge production function (2.1), we see immediately that technology spillovers (r� )

increase the stock of knowledge (patents), k0; conditional on the �rm�s own R&D

�i.e. spillovers increase the average product of the �rm�s own R&D. This in turn

increases the �ow pro�t, �(k0; km); and thus the market value of the �rm. At the

same time, the increase in k0 raises the level of total factor productivity of the

�rm, given its R&D spending. The e¤ect of technology spillovers on the �rm�s

R&D decision, however, is ambiguous because it depends on how such spillovers

a¤ect the marginal (not the average) product of its R&D and this cannot be signed

a priori.

10It is worth noting that most models of patent races embed the assumption of strategic
complementarity because the outcome of the race depends on the gap in R&D spending by
competing �rms. This observation applies both to single race models (e.g., Glenn Loury, 1979;
Thomas Lee and Lewis Wilde, 1980) and more recent models of sequential races (Philippe
Aghion, Christopher Harris and John Vickers, 1997). There are patent race models where this
is not the case, but they involve a �discouragement e¤ect�whereby a follower may give up if
the R&D gap gets so wide that it does not pay to invest to catch up (Christopher Harris and
John Vickers, 1987).
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We turn next to the e¤ects of R&D by �rms that are close in product market

space. First, product market rivals�R&D has a direct, negative in�uence on �rm

0�s value, through the business stealing e¤ect. This can work by reducing the

�rm�s pro�t margins or market shares, or both. Second, R&D by product market

rivals has no e¤ect on the �rm�s production of knowledge and thus no direct e¤ect

on the number of patents, which is our main empirical proxy for �rm knowledge.

For the same reason, product market rivals�R&D does not a¤ect the level of

(physical) total factor productivity. Thirdly, the relationship between the �rm�s

own R&D and the R&D by product market rivals depends on how the latter a¤ects

the marginal pro�tability of the �rm�s R&D �i.e. it depends on the sign of �12.

As expected, R&D reaction functions slope upwards if k0 and km are strategic

complements and downwards if k0 and km are strategic substitutes. Finally, we

note one important caveat regarding the absence of an e¤ect of product market

rival R&D on knowledge. Equation (2.6) will only hold if our empirical measure

k purely re�ects knowledge. As we show formally in Appendix A.3, if patents

are costly then they will be endogenously chosen by a �rm and equation (2.6)

will not hold in general as �rms will tend to patent more (less) if knowledge is a

strategic complement (substitute). It turns out there is some empirical evidence

in our data for this e¤ect11. We also note that if the measure of total factor

productivity is contaminated by imperfect price de�ators, product market rival

R&D could be negatively correlated with R&D because it will depress �rm 0�s

11The intuition is relatively simple. Suppose there is a �xed cost to �ling a patent on knowl-
edge. Firms choose to make this investment depending on the bene�ts of doing so relative to
these costs. In equilibrium, with strategic complementarity, when rivals increase R&D spending
(thus their stock of knowledge), this increases the marginal pro�tability of �rm 0�s R&D. Since
we assume that patenting generates a percentage increase in innovation rent (�patent premium�),
the pro�tability of patenting also increases (given the �xed cost of patenting). Thus R&D by
product market rivals raises both R&D spending and the patent propensity of �rm 0. For empir-
ical evidence of strategic patenting behaviour, see Bronwyn Hall and Rosemarie Ziedonis (2001),
and Michael Noel and Mark Schankerman (2006).
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prices and therefore measured �revenue�productivity.

[Table 1 about here]

Three points about identi�cation from Table 1 should be noted. First, the

presence of spillovers can in principle be identi�ed from the R&D, patents, pro-

ductivity and value equations. Using multiple outcomes thus provides a stronger

test than we would have from any single indicator. Second, business stealing is

identi�ed only from the value equation. Third, the empirical identi�cation of

strategic complementarity or substitution comes only from the R&D equation.

Identi�cation cannot be obtained from the knowledge (patents/productivity) or

value equations because the predictions are the same for both forms of strategic

rivalry.

3. Data

We use �rm level accounting data (sales, employment, capital, etc.) and market

value data from U.S. Compustat 1980-2001 and match this into the U.S. Patent

and Trademark O¢ ce (USPTO) data from the NBER data archive. This contains

detailed information on almost three million U.S. patents granted between January

1963 and December 1999 and all citations made to these patents between 1975

and 199912. Since our method requires information on patenting, we kept all �rm

years with a positive patent stock (so �rms which had no patents at all in the

37 year period were dropped), leaving an unbalanced panel of 715 �rms with at

least four observations between 1980 and 2001. Appendix B provides details on

all datasets.
12See Bronwyn Hall, Adam Ja¤e and Manuel Trajtenberg (2005) and Adam Ja¤e and Manuel

Trajtenberg (2002). We also constructed a forward cite-weighted patent count as a quality
adjusted measure. This produced very similar results to the simpler raw count except in speci�c
industries, such as pharmaceuticals (see Table 11).
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3.1. Calculating Technological Closeness

The technology market information is provided by the allocation of all patents

by the USPTO into 426 di¤erent technology classes (labelled N-Classes). We use

the average share of patents per �rm in each technology class over the period

1970 to 1999 as our measure of technological activity, de�ning the vector Ti =

(Ti1; Ti2; :::Ti426), where Ti� is the share of patents of �rm i in technology class

� . The technology closeness measure, TECHij (i 6= j), is also calculated as the
uncentered correlation between all �rm i; j pairings following Adam Ja¤e (1986):

TECHi;j =
(TiT

0
j )

(TiT
0
i )

1
2 (TjT

0
j )

1
2

(3.1)

This ranges between zero and one, depending on the degree of overlap in technol-

ogy, and is symmetric to �rm ordering so that TECHij = TECHji.13 We con-

struct the pool of technology spillover R&D for �rm i in year t, SPILLTECHit;as

SPILLTECHit = �j;j 6=iTECHijGjt: (3.2)

where Gjt is the stock of R&D by �rm j in year t. The R&D stock is calculated

using a perpetual inventory method, Gt = Rt + (1 � �)Gt�1, with a depreciation
rate (�) of 15% (Hall et al, 2005).

3.2. Calculating Product Market Closeness

Our main measure of product market closeness uses the Compustat Segment

Dataset on each �rm�s sales broken down into four digit industry codes (lines

13The main results pool the patent data across the entire sample period, but we also exper-
imented with sub-samples. Using just a pre-sample period (e.g. 1970-1980) reduces the risk of
endogeneity, but increases the measurement error due to timing mismatch if �rms exogenously
switch technology areas. Using a period more closely matched to the data has the opposite
problem (i.e. greater risk of endogeneity bias). In the event, the results were reasonably similar
since �rms only shift technology area slowly. Using the larger 1963-2001 sample enabled us to
pin down the �rm�s position more accurately, so we kept to this as the baseline assumption.
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of business). On average each �rm report sales in 5.2 di¤erent four digit industry

codes, spanning 762 industries across the sample. We use the average share of

sales per industry code within each �rm as our measure of activity by product

market, de�ning the vector Si = (Si1; Si2; :::Si597), where Sik is the share of sales of

�rm i in the four digit industry code k.14 The product market closeness measure

for any two di¤erent �rms i and j, SICij, is then calculated as the uncentered cor-

relation between all �rms pairings in an exactly analogous way to the technology

closeness measure:

SICi;j =
(SiS

0
j)

(SiS
0
i)

1
2 (SjS

0
j)

1
2

(3.3)

This ranges between zero and one, depending on the degree of product market

overlap, and is symmetric to �rm ordering so that SICij = SICji. We construct

the pool of product-market R&D for �rm i in year t; SPILLSICit;as:

SPILLSICit = �j;j 6=iSICijGjt (3.4)

There are several issues with calculating the key SPILLSIC and SPILLTECH

measures, which we discuss in Sections 3.3 and 3.4, paying particular attention to

alternative datasets to the Compustat Segment Data and alternative functional

forms of the measures of distance.

3.3. Alternative to Compustat Segment Data: the BVD Dataset

The breakdown of �rm sales into four digit industries in the Compustat Segment

Dataset may be biased. Belen Villalonga (2004) carefully investigated the diversi�-

cation discount that typically obtained when using Compustat Segment Dataset.

14The breakdown by four digit industry code was unavailable prior to 1993, so we pool data
1993-2001. This is a shorter period than for the patent data, but we perform several experiments
with di¤erent assumptions over timing of the patent technology distance measure to demonstrate
robustness (see below).
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She found that using a US Census Bureau database called BITS (Business In-

formation Tracking Service) the diversi�cation discount turns into a premium.

Villalonga argued that this is because �rms �strategically� report segment data

breakdowns in their company accounts. Unfortunately BITS is only available for

use at the US Census Bureau, making it di¢ cult to access publicly. We therefore

turned to an alternative datasource called the BVD (Bureau Van Dijk ) Database.

This contains cross-sectional industry and ownership information on around ten

million subsidiaries in North America and Europe, which can be directly matched

into Compustat to create a breakdown of each �rm�s activity across four digit in-

dustries. Since we are interested in global activity (to match Compustat�s global

accounting coverage) the BVD database seems a good alternative to BITS (BITS

refers only to activities within the United States and many of our �rms are multi-

nationals).

We used the primary and secondary four digit industry classes for every sub-

sidiary within a Compustat �rm that could be matched to BVD to calculate dis-

tribution of employment15 across four digit industries (essentially summing across

all the global subsidiaries). On average we matched 29.6 subsidiaries per �rm:

11.4 of these are in the US and Canada and 18.2 of these are in Europe. We are

able to match three-quarters of all �rms in our Compustat sample to the BVD

dataset which represents 84% of all employment and 95% of all R&D. Since the

BVD-Computsat match has fewer �rms, our baseline results use the Computsat

Segment Dataset and we use the BVD-based measures to check robustness.

The correlation between the Compustat Segment and BVD Dataset measures

is reasonably high. The correlation between the sales share of �rm i in industry

k between the two datasets is 0.503. The correlation of ln(SPILLSIC) across

15We assume that sales is proportional to employment. Like BITS many subsidiaries do not
report sales in the BVD Dataset.
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�rms is 0.592. The within-�rm over-time variation identi�es our empirical results

as we control for �xed e¤ects, so it is reassuring that the within-�rm correlation of

ln(SPILLSIC) across the Compustat Segment and BVD datasets rises to 0.737.

3.4. Alternative distance metrics

We have chosen particular functional forms of our distance metric based on Ja¤e

(1986), but there are obviously a host of alternatives. To see the issues consider a

general form of the relationship between an outcome measure Qi (e.g. the market

value of �rm i) and the product market spillovers from other �rms in the economy

where we abstract from all other factors (similar issues arise for SPILLTECH

so for notational simplicity we focus on just SPILLSIC):

Qi = g(Si;Sj; Rj;�) (3.5)

Si is a vector of �rm i�s sales distribution across industries (as above), Sj is the

matrix of all other �rms� sales distribution vectors, Rj is the vector R&D for

each �rm j, � is a parameter vector and g(:) is an unknown function mapping

sales distributions and R&D to �rm i�s outcome. Di¤erent assumptions over the

functional form of g(:) will de�ne the spillover relationship. The only substantive

assumption we have made in equation (3.5) is that �rm sales are the relevant

measure for where companies are located in product market space. Empirically,

we have to place more structure over equation (3.5) to operationalize it in our

application. Joris Pinske, Margaret Slade and Craig Brett (2002) discuss general

issues in constructing semi-parametric versions of equation (3.5). Our approach

in this paper is to consider several possible parametric versions of equation (3.5).

Our canonical case is based on Ja¤e (1986) as this has proven a fruitful ap-

proach in the technology spillover literature and it seems natural to keep this as

a benchmark for SPILLTECH and to take a symmetrical approach when con-
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sidering product market spillovers, SPILLSIC. One unattractive feature of this

de�nition of SICij is that the distance measure between �rm i and �rm j is not

invariant with respect to �rm j0s sales in a third sector where �rm i does not op-

erate. We consider an alternative distance measure, SICAi;j = SiS
0
j; that is robust

to this problem16 and can also be rationalized by a simple model of independent

markets coupled with aggregation (see Appendix C.1). In this case the alter-

native product market spillover measure is SPILLSICAit = �j;j 6=iSIC
A
ijGjt and

the analogous measures for technology TECHA
i;j = TiT

0
j and SPILLTECH

A
it =

�j;j 6=iTECH
A
ijGjt: However, this alternative, SIC

A
i;j , has an important disadvan-

tages as compared to the Ja¤e measure, SICi;j: In particular, it is sensitive to

arbitrary industry boundaries that a¤ect overlap in sales distributions. To illus-

trate, consider the following case with two equally sized �rms and two sectors.

In scenario (i) both �rms are in the same sector and in scenario (ii) each �rm is

split 50-50 in the two sectors. SICi;j will be the same in both cases (SICi;j = 1)

whereas SICAi;j = 1 in scenario (i) and SIC
A
i;j = 0:5 in scenario (ii).

We also consider a third alternative based on Glenn Ellison and Edward

Glaeser�s (1997) theory-based measure of �co-agglomeration�(see Appendix C.2

for exact de�nition of SPILLTECHEG
it ). In the Ellison-Glaeser model, plants

choose optimally where to set-up and will tend to locate close to other plants if

they can bene�t from spillovers. In our context, �rms will choose to locate in par-

ticular technological classes if they believe they can bene�t from spillovers from

other �rms operating in the same technology classes. Obviously this argument

16To see this consider an economy with three possible sectors A, B and C. Firm 1 sells 10
units in industry A and B (and performs 10 units of R&D in these industries). Firm 2 sells 10
units in industry B and C (and performs 10 units of R&D in these industries). Firm 3 sells 10
units only in industry B (and performs 10 units of R&D in this industry). It is not obvious
why the optimizing behavior of �rm 1 should be di¤erent if she faces just �rm 2 or just �rm
3. But our basic Ja¤e method generates SPILLSIC12 = 10 (=0.5*20) and SPILLSIC13 =
7.07(=0.707*10). By contrast, SPILLSICA12 = SPILLSIC

A
13 = 5
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does not apply to SPILLSIC as �rms will want to avoid rivals who are �close�

to them in product market space.

Finally, Peter Thompson and Marianne Fox-Kean (2005) have suggested that

the three digit patent class may be too coarse and a �ner disaggregation is better

for measuring spillovers. We therefore constructed SPILLTECHTFK
it which uses

four digit patent classes to calculate the distance measure, TECHTFK
it . As pointed

out by Rebecca Henderson, Adam Ja¤e and Manuel Trajtenberg (2005) �ner

disaggregation of patents classes is not necessarily superior as the classi�cation is

subject to a greater degree of measurement error17.

Ultimately there is no one obvious, objectively superior distance metric for

spillovers. We take a pragmatic approach and compare our results across all four

alternative measures in order to check whether robust results are obtained.

3.5. Descriptive Statistics of SPILLTECH and SPILLSIC

In order to distinguish between the e¤ects of technology spillovers and product

market interactions we need variation in the distance metrics in technology and

product market space. To gauge this we do three things. First, we calculate the

raw correlation between the measures SIC and TECH, which is 0.469, positive

but well below unity, implying independent variation in the two measures. After

weighting with R&D stocks following equations (3.2) and (3.4) the correlation

between ln(SPILLTECH) and ln(SPILLSIC) is 0.422. For estimation in logs

with �xed e¤ects and time dummies the relevant correlation in the change of

ln(SPILLTECH) and ln(SPILLSIC) is only 0.319 (all these correlations at

signi�cant at the one per cent level). Second, we plot SIC against TEC in Figure

1 from which it is apparent that the positive correlation we observe is caused by a

17This is because the information is only available from 1976 (compared to 1963 for all patents),
has more missing values and contains a greater degree of arbitrary allocation by the patent
examiners.
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dispersion across the unit box rather than a few outliers. Finally, in Appendix D

we discuss examples of well-known �rms that are close in technology but distant

in product market spaces, and close in product market but distant in technology

space.

Table 2 provides some basic descriptive statistics for the accounting and patent-

ing data, and the technology and product market closeness measures, TECH and

SIC: The sample �rms are large (mean employment is over 18,000), but with

much heterogeneity in size, R&D intensity, patenting activity and market valua-

tion. The two closeness measures also di¤er widely across �rms.

[Table 2 about here]

4. Econometrics

4.1. Generic Issues

There are four main equations of interest that we wish to estimate: a market value

equation, a patents equation, a productivity equation and a R&D equation.18.

There are generic econometric issues with all three equations which we discuss

�rst before turning to speci�c problems with each equation. We are interested in

investigating the relationship

yit = x
0
it� + uit (4.1)

where the outcome variable for �rm i at time t is yit, the variables of interest

(especially SPILLTECH and SPILLSIC) are xit and the error term, whose

properties we will discuss in detail, is uit.

First, we have the problem of unobserved heterogeneity. We will present esti-

mates with and without controlling for correlated �xed e¤ects (through including

18For an example of this multiple equation approach to identify the determination of techno-
logical change, see Zvi Griliches, Bronwyn Hall and Ariel Pakes (1991).
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a full set of �rm speci�c dummy variables). The time dimension of the company

panel is relatively long, so the �within groups bias�on weakly endogenous vari-

ables (see Nickell, 1981) is likely to be small, subject to the caveats we discuss

below19. Second, we have the issue of the endogeneity due to transitory shocks.

To mitigate these we condition on a full set of time dummies and a distributed

lag of industry sales20. Furthermore we lag all the other variables on the right

hand side of equation (4.1) by one period to overcome any immediate feedback

e¤ects21. Third, equation (4.1) is static, so we experiment with more dynamic

forms. In particular we present speci�cations including a lagged dependent vari-

able. Finally, there are inherent non-linearities in the models we are estimating

(such as the patent equation) which we discuss next.

4.2. Market Value equation

We adopt a simple linearization of the value function proposed by Zvi Griliches

(1981)22

ln

�
V

A

�
it

= ln�it + ln

�
1 + v

�
G

A

�
it

�
(4.2)

where V is the market value of the �rm, A is the stock of tangible assets, G is the

R&D stock, and the superscript v indicates that the parameter is from the market

value equation. The deviation of V=A (also known as �Tobin�s average Q�) from

19We have between four and twenty-one years of continuous �rm observations in our sample.
In the R&D equation, for example, the mean number of observations per �rm is eighteen.
20The industry sales variable is constructed in the same way as the SPILLSIC variable. We

use the same distance weighting technique, but instead of using other �rms�R&D stocks we
used rivals�sales. This ensures that the SPILLSIC measure is not simply re�ecting demand
shocks at the industry level.
21This is a conservative approach as it is likely to reduce the impact of the variables we are

interested in. An alternative (in the absence of obvious external instruments) is to explicitly
use the lags as instruments - we report some experiments using these GMM based approaches
in the results section.
22See also Ja¤e (1986), Bronwyn Hall et al (2005) or Jenny Lanjouw and Mark Schankerman

(2004).
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unity depends on the ratio of the R&D stock to the tangible capital stock (G=A)

and ln�it. We parameterize this as

ln�it =�
v
1 lnSPILLTECHit + �

v
2 lnSPILLSICit + Z

v0
it �

v
3 + �

v
i + �

v
t + �

v
it

where �vi is the �rm �xed e¤ect, � vt is a full set of time dummies, Z
v
it denotes

other control variables such as industry demand, and �vit is an idiosyncratic error

term. If v(G=A) was �small� then we could approximate ln
�
1 + v

�
G
A

�
it

�
by

v
�
G
A

�
it
: But this will not be a good approximation for many high tech �rms

and, in this case, equation (4.2) should be estimated directly by non-linear least

squares (NLLS). Alternatively one can approximate ln
�
1 + v

�
G
A

�
it

�
by a series

expansion with higher order terms (denote this by �(G
A
)), which is more compu-

tationally convenient when including �xed e¤ects. Empirically, we found that a

sixth order series expansion was satisfactory. Taking into consideration the generic

econometric issues over endogeneity discussed above, our basic empirical market

value equation is:

ln

�
V

A

�
it

= �((G=A)it�1) + �
v
1 lnSPILLTECHit�1 + �

v
2 lnSPILLSICit�1

+Zv0it �
v
3 + �

v
i + �

v
t + �

v
it (4.3)

4.3. Patent Equation

We use a version of the Negative Binomial model to analyze our patent count

data. Models for count data assume a �rst moment of the form:

E(PitjXit; Pit�1) = exp(x
0
it�

p)

where E(:j:) is the conditional expectations operator and Pit is a (possibly cite
weighted) count of the number of patents. In our analysis we want to allow both

for dynamics and �xed e¤ects, and to do so we use a Multiplicative Feedback
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Model (MFM). The conditional expectation of the estimator is:

E(PitjXit; Pit�1) = expf�1Dit lnPit�1 + �2Dit + �
p
1 lnSPILLTECHit�1 +

�p2 lnSPILLSICit�1 + Z
p0
it�

p
3 + �

p
i + �

p
tg (4.4)

where Dit is a dummy variable which is unity when Pit�1 > 0 and zero otherwise:

The variance of the Negative Binomial under our speci�cation is:

V (Pit) = exp(x
0
it�

p) + � exp(2x0it�
p)

where the parameter, �, is a measure of �over-dispersion�, relaxing the Poisson

restriction that the mean equals the variance (� = 0 ).

We introduce �rm �xed e¤ects into the count data model using the �pre-sample

mean scaling�method of Richard Blundell, Rachel Gri¢ th and John Van Reenen

(1999). This relaxes the strict exogeneity assumption underlying the conditional

maximum likelihood approach of Jerry Hausman, Bronwyn Hall and Zvi Griliches

(1984). Essentially, we exploit the fact that we have a long pre-sample history

(from 1970 to at least 1980) of patenting behaviour to construct its pre-sample

average. This can then be used as an initial condition to proxy for unobserved

heterogeneity under the assumption that the �rst moments of all the observables

are stationary. Although there will be some �nite sample bias, Monte Carlo evi-

dence shows that this pre-sample mean scaling estimator performs well compared

to alternative econometric estimators for dynamic panel data models with weakly

endogenous variables (see Richard Blundell, Rachel Gri¢ th and Frank Windmei-

jer, 2002).

4.4. Productivity Equation

Although we consider more complex forms, the basic production function is of the

R&D augmented Cobb-Douglas form:
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lnYit = �
y
1 lnSPILLTECHit�1+�

y
2 lnSPILLSICit�1+Z

y0
it �

y
3+�

y
i+�

y
t+�

y
it (4.5)

The key variables in Zy0it are the other inputs into the production function - labour,

capital, and the own R&D stock. If we measured output correctly then the pre-

dictions of the marginal e¤ects of SPILLTECH and SPILLSIC in equation

(4.5) would be the qualitatively same as that in the patent equation, Technology

spillovers improve total factor productivity (TFP), whereas R&D in the product

market should have no impact on TFP (conditional on own R&D and other in-

puts). In practice, however, we measure output as �real sales�- �rm sales divided

by an industry price index. Because we do not have information on �rm-speci�c

prices, this induces measurement error. If R&D by product market rivals de-

presses own prices (as we would expect), the coe¢ cient on SPILLSIC will be

negative and the predictions for equation (4.5) are the same as those of the market

value equation. Controlling for industry sales dynamics (see Tor Klette and Zvi

Griliches, 1996) and �xed e¤ects should go a long way towards dealing with the

problem of �rm-speci�c prices. In the results section, we show that that the neg-

ative coe¢ cient on SPILLSIC essentially disappears when we control for these

additional factors.

4.5. R&D equation

We write the R&D intensity equation as:

ln(R=Y )it = �
r ln(R=Y )it�1+�

r
1 lnSPILLTECHit�1+�

r
2 lnSPILLSICit�1+Z

r0
it�

r
3+�

r
i+�

r
t+�

r
it

(4.6)

where Y is real sales. The main issue to note is that the contemporaneous value

of SPILLTECH and SPILLSIC would be particularly di¢ cult to interpret in
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equation (4.6) due to the re�ection problem (Manski, 1991). A positive correla-

tion could either re�ect strategic complementarity or common unobserved shocks

that are not controlled for by the other variables in equation (4.6). We address

identi�cation explicitly in the next sub-section explicitly.

4.6. Identi�cation Issues

Since we are attempting to identify a �social e¤ect�we must address the Man-

ski (1991) identi�cation issues. The paper has no magic bullet, but does have

several advantages over other contributions in the spillover literature. We do not

attempt to non-parametrically identify the spillover e¤ects (which Manski shows

is not possible) and instead make some parametric assumptions over the form of

distance metric. Fundamentally, identi�cation of the various spillover e¤ects for

�rm i comes from two elements - a time invariant �distance�between �rm i and

all other �rms and the time-varying R&D of other �rms. For example, the fact

that we measure two �rms as close in technology space indicates that they may be

bene�ting from mutual inter-�rm spillovers. But this is not necessarily the case,

the �rms will also appear close in technology space if they have some compara-

tive advantage in utilizing similar technologies but there is no actual technology

spillover between them23. Instead, our application utilizes the fact that there are

exogenous shocks di¤erentially a¤ecting the R&D of other �rms in the economy.

These shocks can arise for a variety of reasons such as the US R&D tax credit

that created very heterogeneous incentives across di¤erent companies 24. Another

23For the same reason, Ellison and Glaeser�s (1997) agglomeration parameter cannot identify
between regional concentration of an industry arising from genuine spillovers and that arising
from natural advantage (e.g. the presence of a coastline).
24Brownyn Hall (1992) shows that there is much heterogeneity in the tax-adjusted user cost

of R&D across US �rms because of the design of the credit (rolling �base�, tax exhaustion, etc.).
She uses this �rm and time speci�c variation to identify substantial e¤ects of the tax credit on
the R&D behaviour of US �rms in her sample of Compustat �rms.
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example would be the end of the Cold War which led to large falls in the degree

of government support for defence-related R&D.

We identify spillovers from the assumption that a given increase in the R&D

of �rm j should have a larger e¤ect on �rm i if it is �close�and a smaller e¤ect

on �rm i if it is �distant�. Thus, we can control for distance in a non-parametric

way (through �rm �xed e¤ects) and for general changes in R&D (time dummies)

and seek to identify from the interaction. Of course, this does not remove all iden-

ti�cation issues. For example, consider the problem of a transitory unobserved

shock speci�c to a pair of �rms close in technology space - this could simulta-

neously raise their R&D, patents, productivity and market value. Our approach

tries to mitigate this problem in several ways. First, we include many controls

for this possible shock - time dummies, industry sales, �rm �xed e¤ects and time

varying other �rm-level covariates in some regressions (e.g. sales, capital, labor,

own R&D, etc. ). Second, we also lag all the �rm level variables to avoid contem-

poraneous feedback). Most importantly, the model predicts di¤erential responses

across di¤erent spillover variables in di¤erent equations. Consider the market

value equation, for example. We predict that R&D by �rms close in the prod-

uct market (SPILLSIC) should have a negative e¤ect on market value whereas

R&D by �rms whereas �rms close in technology space (SPILLTECH) should

have a positive e¤ect on market value. So any shock that is raising other �rms�

R&D generally is predicted to have a di¤erential e¤ect on a �rm depending on its

closeness in the product space vs. technology space. Furthermore, in the R&D

equation SPILLSIC is predicted to have a positive e¤ect on R&D if there is

strategic complementarity (which is what we �nd). It is hard to come up with

a story for why an omitted shock should increase �rms�R&D but depress �rms�

market value. So although we can never rule out the possibility that some com-

plex interaction of omitted shocks drives our results in a world without spillovers,
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it seems unlikely.

5. Empirical Results

[Tables 3,4,5,6 about here]

5.1. Market Value Equation

Table 3 summarizes the results for the market value equation. We present spec-

i�cations with and without �xed e¤ects. The coe¢ cients of the other variables

in column (1) were close to those obtained from nonlinear least squares estima-

tion25. In this speci�cation without any �rm �xed e¤ects, the product market

spillover variable, SPILLSIC, has a positive association with market value and

SPILLTECH has a negative association with market value. These are both con-

trary to the predictions of the theory. Finally, we �nd that the growth of industry

sales a¤ects the �rm�s market value (the coe¢ cients are fairly close to each other

but of opposite signs), which probably re�ects unobserved demand factors.

When we allow for �xed e¤ects, the estimated coe¢ cient on SPILLTECH

switches signs and becomes positive and signi�cant as compared to column (1)26.

A ten percent increase in SPILLTECH is associated with a 2.4 percent in-

crease in market value. At sample means, this implies that an extra dollar of

SPILLTECH is associated with an increase in the recipient �rm�s market value

of 4.3 cents. That is if another �rm with perfect overlap in technology areas

(TECH = 1) raised its R&D by one dollar, we predict that the �rm�s market

value would rise by 4.3 cents. Recall that we include a sixth-order series of the

25Using OLS and just the �rst order term of G=A, the coe¢ cient on G=A was 0.266, as
compared to 0.420 under nonlinear least squares. This suggests that a �rst order approximation
is not valid since G=A is not "small" - the mean is close to 50% (see Table 2).
26The �xed e¤ects are highly jointly signi�cant, with a p-value < 0.001. The Hausman test

also rejects the null of random e¤ects plus three digit dummies vs. �xed e¤ects (p-value=0.02).
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ratio of own-R&D stock to tangible capital, G=A; in order to capture the nonlin-

earity in the value equation. Using the parameter estimates on these G=A terms,

we obtain an elasticity of market value with respect to own R&D of 0.242 (at

the mean). Evaluated at the sample means, this implies that an extra dollar of

R&D stock is associated with $1.19 higher market value. This estimate is higher

than the 86 cent �gure obtained by Hall et al (2005) over an earlier sample pe-

riod. Comparing these estimates we conclude that the private value of a dollar of

technology spillover is only worth (in terms of market value) about 3.6 percent as

much as a dollar of own R&D.

With �xed e¤ects, the estimated coe¢ cient on SPILLSIC is now negative

and signi�cant at the �ve percent level. Evaluated at the sample means, a ten

percent increase in SPILLSIC is associated with a 0.72 percent reduction in

market value. This implies that an extra dollar of SPILLSIC is associated with

a reduction of a �rm�s market value by 4.6 cents. Interestingly, the negative

e¤ect of an extra dollar of product market rivals�R&D is similar in magnitude

to the positive e¤ect of a dollar of technology (R&D) spillovers. Of course, the

net e¤ect of R&D spending by other �rms will depend on the product market

and technological distance between those �rms (TECH and SIC). Using our

parameter estimates, we can compute the e¤ect of an exogenous change in R&D

for any speci�c set of �rms (see Section 6).

In short, once we allow for unobserved heterogeneity in the speci�cation of the

market value equation, the signs of the two spillover coe¢ cients are consistent with

the prediction from the theory outlined in Section 2. Conditional on technology

spillovers, R&D by a �rm�s product market rivals depresses its stock market value,

as investors expect that rivals will capture future market share and/or depress

prices.

It is also worth noting that, if we do not control for the product market ri-
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valry e¤ect, the estimates of both spillover variables are biased toward zero. Col-

umn (3) presents the estimates when SPILLSIC is omitted. The coe¢ cient on

SPILLTECH declines and becomes statistically insigni�cant at the 5 per cent

level. Failing to control for product market rivalry could lead us to miss the im-

pact of technology spillovers on market value. The same bias is illustrated for

SPILLSIC - if we failed to control for technology spillovers we would �nd no

statistically signi�cant impact of product market rivalry (column (4)). It is only

by allowing for both �spillovers�simultaneously that we are able to identify their

individual impacts.

Attenuation bias is exacerbated by �xed e¤ects, but classical measurement

error should bias the coe¢ cients towards zero. This suggests that the change in

the coe¢ cients on the spillover variables between columns (1) and (2) when we

introduce �xed e¤ects is not due to classical measurement error as the coe¢ cients

become larger in absolute magnitude. Instead, it is likely that unobserved hetero-

geneity obscures the true impact of the spillover variables on market value. This

could arise if we have not controlled su¢ ciently for �rms who are closely clustered

in high tech sectors - they will tend to have high value of SPILLSIC and high

Tobin�s Q (since R&D will not perfectly control for intangible knowledge stocks).

This will drive a positive correlation between the SPILLSIC term and market

value even in the absence of any technological or product market interactions.

Fixed e¤ects control for this unobserved heterogeneity27.

27We also tried an alternative speci�cation that introduces current (not lagged) values of
the two spillover measures, and estimate it by instrumental variables using lagged values as
instruments. This produced similar results. For example estimating the �xed e¤ects speci�cation
in column (2) in this manner (using instruments from t�1) yielded a coe¢ cient (standard error)
on SPILLTECH of 0.282 (0.092 ) and on SPILLSIC of -0.079 (0.028 ).
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5.2. Patents Equation

We turn next to the patents equation (Table 4). Column (1) presents the estimates

in a static model with no controls for correlated individual e¤ects. Unsurprisingly,

larger �rms and those with larger R&D stocks are much more likely to have

more patents. SPILLTECH has a positive and highly signi�cant association

with patenting, indicating the presence of technology spillovers. By contrast, the

product market rivalry term has a much smaller coe¢ cient and is not signi�cant

at the 5% level. The overdispersion parameter is highly signi�cant here, rejecting

the Poisson model in favour of the Negative Binomial.

In column (2) we control for �rm �xed e¤ects using the Blundell et al (1999)

method of conditioning on the pre-sample patent stock (these controls are highly

signi�cant). Compared to column (1), the coe¢ cient on the R&D stock falls

but remains highly signi�cant. A ten percent increase in the stock of own R&D

generates a 2.8 percent increase in patents. The estimated elasticity of 0.28 points

to more sharply diminishing returns than most previous estimates in the literature,

but the earlier studies do not typically control for technology spillovers or the

level of sales to capture demand factors. Turning to our key variables, allowing

for �xed e¤ects reduces the coe¢ cient on SPILLTECH; but it remains positive

and signi�cant at the �ve per cent level.

Finally, in column (3) of Table 3 we present our preferred speci�cation, which

includes both �rm �xed e¤ects and lagged patent counts28. Not surprisingly, we

�nd strong persistence in patenting (the coe¢ cient on lagged patents is highly

signi�cant). In this model SPILLTECH retains a large and signi�cant coe¢ -

28The pre-sample estimator assumes we can capture all of the �xed e¤ect bias by the long
pre-sample history of patents (back as far as 1963). To check this assumption, we also included
the pre-sample averages of the other independent variables. Since we have a shorter pre-sample
history of these we conditioned on the sample which had at least ten years of continuous time
series data. Only the pre-sample sales variable was signi�cant at the �ve per cent level and
including this initial condition did not change any of the main results.
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cient. Interestingly SPILLSIC is positive and signi�cant in this column whereas

it was insigni�cant in the other columns. This is inconsistent with the simple

model of Section 2, but is consistent with the extended model where patents are

endogenously chosen (Appendix A.3)29.

5.3. Productivity Equation

Table 5 contains the results from the production function. The OLS results in

column (1) suggest that we cannot reject constant returns to scale in the �rm�s own

inputs (the sum of the coe¢ cients on capital, labor and own R&D is 0.995). The

spillover terms are perversely signed however, with negative and signi�cant signs

on both spillover terms. Including �xed e¤ects in column (2) changes the results -

SPILLTECH is positive and signi�cant and SPILLSIC becomes insigni�cant

- this is consistent with the simple theory that the marginal e¤ects of spillovers

on TFP should be zero. The negative sign on SPILLSIC in column (1) could be

due to rival R&D having a negative e¤ect on prices depressing a �rm�s revenue. In

principle, these price e¤ects should be controlled for by the industry price de�ator,

but if there are �rm-speci�c prices then the industry de�ator will be insu¢ cient. If

the deviation between �rm and industry prices is largely time invariant, however,

then the �xed e¤ects should control for this bias. This is consistent with what we

observe in column (2) - when �xed e¤ects are included the negative marginal e¤ect

of SPILLSIC disappears and becomes insigni�cant. The third column drops the

insigni�cant SPILLSIC term and is our preferred speci�cation. These results

are all consistent with the basic theory: R&D by �rms close in technology space

has a positive e¤ect on knowledge (as proxied by TFP), but R&D by product

market rivals has no e¤ect.
29These results do not depend on the variance moment assumption underlying the Negative

Binomial model, as using a GMM estimator that relies only on the �rst moment condition leads
to qualitatively similar results
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One might be concerned that there are heterogeneous technologies across in-

dustries, so we investigated allowing all inputs (labor, capital and R&D) to have

di¤erent coe¢ cients in each two-digit industry. Even in this demanding speci�-

cation SPILLTECH remained positive and signi�cant at conventional levels30.

We also experimented with using an estimate of real value added instead of real

sales as the dependent variable which led to a similar pattern of results31.

5.4. R&D Equation

We now turn to the coe¢ cient estimates for the R&D intensity equation (Table

6). In the static speci�cation without �rm �xed e¤ects (column (1)), we �nd

that both technology and product market spillovers are present32. The positive

coe¢ cient on SPILLSIC indicates that own and product market rivals�R&D are

strategic complements. We control for the level of industry sales, which picks up

common demand shocks and is positively associated with company R&D spending.

When we include �rm �xed e¤ects (column (2)), the coe¢ cient on SPILLSIC

declines substantially (to a quarter of its earlier value) but remains positive and

signi�cant. SPILLTECH by contrast is no longer signi�cant. In column (3) we do

not include �xed e¤ects but allow for dynamics (lagged R&D/sales). SPILLSIC

is signi�cant at the �ve per cent level but the coe¢ cient on SPILLTECH is

small and insigni�cant. In the �nal column we allow for both �xed e¤ects and

30SPILLTECH took a coe¢ cient of 0.101 and a standard error of 0.046 and SPILLSIC
remained insigni�cant (coe¢ cient of 0.008 and a standard error of 0.012). Including a full set of
two digit industry time trends also lead to the same �ndings. The coe¢ cient (standard error)
on SPILLTECH was 0.093 (0.048 ).
31We followed the same method as Timothy Bresnahan et al (2002) in constructing value added

(see Appendix B). When using value added as the dependent variable the coe¢ cient (standard
error) on SPILLTECH was 0.188(0.053 ) and on SPILLSIC was -0.023(0.013 ). Including
materials on the right hand side generated a coe¢ cient (standard error) on SPILLTECH of
0.127(0.039 ) and on SPILLSIC of -0.007(0.010 ).
32The spillover terms are signi�cantly di¤erent in the �xed e¤ects speci�cations compared to

the OLS speci�cations (with industry dummies) at the �ve per cent level.
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dynamics. In this column SPILLSIC is still signi�cant at the ten per cent level

and the implied, long run e¤ect are similar to the static speci�cations (0.103).33

To summarize, we �nd some evidence that R&D spending by a �rm and its

product market rivals are strategic complements, even after we controlling for

industry level demand and �rm �xed e¤ects34.

[Tables 7, 8 about here]

5.5. Implications of the Results

To summarize our main �ndings concisely, Table 7 compares the predictions from

the model with the empirical results from Tables 3-6. The match between the

theoretical predictions and the empirical results is quite close. The only exception

is the positive e¤ects of SPILLSIC in the patents equation, but this is consis-

tent with the extension of the model to allow for endogenous patenting. It gives

some reason for optimism that this kind of approach, based on using multiple

performance measures, can help disentangle the role of technology spillovers and

product market rivalry.

The qualitative implications of our simple theory appear to be supported by

the data. But what are their quantitative implications? We solve the system

33We checked that the results were robust to allowing sales and lagged R&D to be endogenous
by re-estimating the R&D equation using the Richard Blundell and Stephen Bond (1998) GMM
�system�estimator. The qualitative results were the same. We used lagged instruments dated
t-2 to t-8 in the di¤erenced equation and lagged di¤erences dated t-1 in the levels equations.
In the most general dynamic speci�cation of column (4) the coe¢ cient (standard error) on
SPILLSIC was 0.140 (0.023 ) and the coe¢ cient (standard error) on SPILLTECH was -
0.026 (0.018 ). Since the lagged dependent variable took a coe¢ cent of 0.640(0.046) this implies a
larger magnitude of the e¤ect of SPILLSIC on R&D than the main within group speci�cations.
Note that the instruments were valid at the �ve per cent level according to the Hansen-Sargan
test.
34We know of only two papers that empirically test for patent races, one on pharmaceuticals

and the other on disk drives (Iain Cockburn and Rebecca Henderson, 1994; and Josh Lerner,
1997), and the evidence is mixed. However, neither of these papers allows for both technology
spillovers and product market rivalry.
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of equations in the model (see Appendix E) to calculate the long-run equilibrium

response of R&D, patents, productivity and market value to an exogenous stimulus

to R&D.

We begin with a unit stimulus to the R&D spending of all �rms, which we call

�autarky�. This stimulus is then �ampli�ed� by the strategic complementarity

in the R&D equation and the feedback through the production function. The

magnitude of this ampli�cation depends on how closely linked the �rm is to its

product market competitors, i.e. on the size of its average SIC: This long run

response of R&D, for each �rm, then contributes to the value of SPILLTECH

and SPILLSIC; which further ampli�es the impact of the stimulus.

Table 8 summarizes the direct (autarky) e¤ect and the ampli�cation e¤ects

of a one percent R&D stimulus to all �rms on each of the endogenous vari-

ables. As row 1 shows, strategic complementarity ampli�es the original stimulus

by 24.2%, so that the 1% stimulus generates 1.242% more R&D. The relative

ampli�cation e¤ects on patents and productivity are larger because of the large

SPILLTECH e¤ects. The relative ampli�cation e¤ect on market value is smaller

because SPILLSIC has a strong negative e¤ect on market value which o¤sets

much of the positive SPILLTECH e¤ect.

To a �rst approximation, this �nding for productivity suggests that the social

returns to R&D are about 3.5 times larger than the private returns (column (3)

divided by column (1)). Thus when we allow for both technology spillovers and

product market rivalry e¤ects of R&D, we �nd that the former strongly dominate

the latter. Furthermore, the positive ampli�cation e¤ect for market value suggests

that the private sector will under-invest in R&D. This con�rms the conventional

wisdom of a role for policy support for R&D.
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5.6. Alternative Construction of the Spillover Variables

5.6.1. Re-estimating all equations using SPILLSIC constructed from
the BVD Dataset

As discussed in the data section we were concerned that the Compustat Seg-

ment �le may be inaccurate so we also considered calculating SPILLSIC using

the BVD Dataset. We summarize the results for the each of the four dependent

variables (Tobin�s Q, patents, productivity and R&D) for the most general econo-

metric speci�cations with �xed e¤ects and dynamics in Table 9 (full results are

available from authors).

Although the sample size is slightly smaller, qualitatively the results are re-

markably similar to the earlier tables. In the market value equation of column (1)

SPILLTECH is positive and signi�cant at the �ve per cent level and SPILLSIC

is negative and signi�cant at the �ve per cent level. In column (2), the patents

equation, SPILLTECH and SPILLSIC are positive and signi�cant at the �ve

per cent level. In column (3), the productivity equation, SPILLTECH is posi-

tive and signi�cant at the �ve per cent level and SPILLSIC is insigni�cant. In

column (4), the R&D regression, SPILLSIC is positive and signi�cant at the

�ve per cent level and SPILLTECH is insigni�cant. These results are consistent

with the strategic complementarity version of our model where both technology

spillovers and product market rivalry are important.

[Tables 9 and 10 about here]

5.6.2. Alternative Distance Metrics

Table 10 presents some experiments with alternative distance metrics discussed in

Sub-section 3.4. Panel A summarizes the results from Tables 3 through 6 as a base-

line. Panel B presents the results using SPILLSICA, but keeps SPILLTECH
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as in the baseline case. Panel C uses both SPILLSICA and SPILLTECHA

and Panel D considers using our version of the Ellison-Glaeser co-agglomeration

measure, SPILLTECHEG: Panel E uses the four digit patent classes instead of

three digit patent classes, SPILLTECHTFK :

The results appear very robust. Looking over Panels B through E of Table

10 the coe¢ cient on SPILLTECH is positive in all twelve speci�cations of the

value equation, patent equation and production function (and is signi�cant at

the ten per cent level or more in ten cases out of the twelve regressions). The

coe¢ cient on SPILLSIC is always negative and signi�cant at the ten per cent

level or more in the value equation and insigni�cant in the productivity equations.

SPILLSIC is positive in all of the R&D and patent equations, and is signi�cant

at the ten per cent level or greater in Panels B, C and D. The only di¤erence is

for SPILLTECH in the R&D regressions in Panel D where it is signi�cant and

negative (like the baseline it is insigni�cant in the other panels). Since the sign of

SPILLTECH is theoretically ambiguous, this is not much of a problem.

Taking Tables 9 and 10 together, we conclude that the main �ndings are

robust across using a large number of alternative constructions of the distance

metric using di¤erent datasets and di¤erent functional �rms. The weakest result

is the �nding of strategic complementarity. Overall, though, these results give us

more con�dence in our simple model.

5.7. Econometric results for three high-tech industries

We have used both cross �rm and cross-industry variation (over time) to identify

the technology spillover and product market rivalry e¤ects. An obvious criticism is

that pooling across industries disguises heterogeneity and an interesting extension

of the methodology outlined here is to examine particular industries in much

greater detail. This is di¢ cult to do given the size of our dataset. Nevertheless, it
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would be worrying if the basic theory was contradicted in the high-tech sectors,

as this would suggest our results might be due to biases induced by pooling across

heterogenous sectors. To investigate this, we examine in more detail the three most

R&D intensive sectors where we have a reasonable number of �rms to estimate our

key equations - Computer hardware, Pharmaceuticals, and Telecommunications

Equipment. The results from these experiments are summarized in Table 11.

The results from Computer hardware (Panel A) are qualitatively similar to the

pooled results. Despite being estimated on a much smaller sample, SPILLTECH

has a positive and signi�cant association with market value and SPILLSIC a

negative and signi�cant association. There is also evidence of technology spillovers

in the production function and the patenting equation (when we weight by patent

citations35). By contrast, SPILLSIC is not signi�cant in patents, productivity

or R&D.

The pattern in Pharmaceuticals is similar, with signi�cant technology spillovers

and product market rivalry in the market value equation. Technology spillovers

are also found in the production function and the patents equation when we weight

by citations (intellectual property is particularly important in this industry36). As

in the Computer hardware sector, the product market rivalry terms are insignif-

icant in the patents, productivity and R&D equation. The results are slightly

di¤erent in the Telecommunications equipment industry. We do observe signi�-

cant technology spillover e¤ects in the market value equation and cite-weighted

patents equations, but SPILLTECH is insigni�cant (although positive) in the

productivity regressions. Similarly, SPILLSIC is correctly signed (negative) but

insigni�cant in the value equation and also insigni�cant in all other regressions.

35Weighting made no di¤erence to the results in the overall sample, but seems to be more
important in these high-tech sectors.
36For example, Austin (1993) found evidence of rivalry e¤ects through the market value impact

of pharmaceutical patenting. See also Klock and Megna (1993) on semi-conductors.

35



Overall, the results from these high-tech sectors indicate that our main results

are present in precisely those R&D intensive industries where we would expect

our theory to have most bite. There are two caveats. First, we do see some

heterogeneity - although technology spillovers are found in all three sectors, sig-

ni�cant product market rivalry e¤ects of R&D are only evident in two of the

three industries studied. Second, it is di¢ cult to determine whether R&D is a

strategic complement or substitute from these sectors as SPILLSIC tends to

be insigni�cant in the R&D and patent equations (whereas it was positive and

signi�cant in the main, pooled results), possibly due to the smaller sample size.

We leave for future research a more detailed analysis of particular industries using

our approach.

[Tables 11, 12 about here]

6. Policy Simulations

The model can also be used to evaluate the spillover e¤ects of R&D subsidy

policies. Throughout the policy experiments we consider a binary treatment (a

�rm is either eligible or not eligible) and assume that the proportionate increase in

R&D is the same across all the eligible �rms. We alter this proportionate increase

so that it sums to the aggregate increase in the baseline case ($870m). This allows

us to compare the cost e¤ectiveness of alternative policies.

Four policy experiments are considered (Panel A, Table 12). For the �rst

(row 1) each �rm is given a one percent stimulus to R&D. Given the average

R&D spending in the sample this �costs� $870 million. Working out the full

ampli�cation and dynamic e¤ects in the model this generates an extra $755 million

of R&D (for a total R&D increase of $1,625 million). This is associated with an

extra $6,178 million in output. The other three experiments consider a stimulus
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of the same aggregate size ($870m) but distribute it in di¤erent ways.

The second experiment (row 2 in Panel A) is calibrated to a stylized version

of the current U.S. R&D tax credit to determine the eligible group (40% of all

�rms in this case)37. This policy generates very similar spillovers for R&D and

productivity as the overall R&D stimulus in row 1. The reason is that the �rms

eligible for the tax credit have very similar average linkages in the technology and

product markets as those in the sample as a whole (compare rows 1 and 2 in Panel

B, Table 12).

The third experiment gives an equi-proportionate increase in R&D only to

�rms below the median size, as measured by employment averaged over the 1990�s

(about 3,500 employees). The fourth experiment does the same for �rms larger

than the median size. Splitting by �rm size is interesting because many R&D

subsidy and other technology policies are targeted at small and medium sized

enterprises.38 These last two policy simulations show a striking result: the social

returns, in terms of spillovers, of subsidizing �smaller��rms are much lower than

from subsidizing larger �rms. The stimulus to larger �rms generates $6,287 million

of extra output, as compared to only $3,745 million when the R&D subsidy is

targeted on �smaller� �rms. As Panel B shows, this di¤erence arises because

large �rms are much more closely linked to other �rms in technology space and

thus generate (and bene�t from) greater technology spillovers. The average value

37We keep to a simple structure in order to focus on the main policy features rather than
attempt a detailed evaluation of actual existing tax credit systems (see Nick Bloom, Rachel
Gri¢ th and John Van Reenen, 2002, for a detailed analysis of �scal incentives for R&D). We
treat a �rm as eligible in our simulation if it was eligible to receive any R&D tax credit for a
majority of the 1990�s.
38In practice, policies are typically targetted at �rms much smaller than the median �rm in

our sample. We also tried conducting the experiment for the lowest and highest quartiles of the
size distribution, but there was not enough R&D conducted by the lowest employment quartile
to make the analysis sensible (i.e., the required percentage increase in their R&D was too large
to justify the linear approximation of the model used for the simulations).
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of TECH for large �rms is 0.129 as compared to 0.074 for �smaller��rms39. That

is, smaller �rms are more likely to operate in technology niches generating lower

average spillovers.

This �nding should caution against over-emphasis on small and medium sized

�rms by some policy makers. Of course, appropriate policy design would have to

take into account many caveats in terms of the simplicity of the model (e.g. we

have abstracted from credit constraints that might be worse for smaller �rms).

7. Conclusions

Firm performance is a¤ected by two countervailing R&D spillovers: positive ef-

fects from technology spillovers and negative �business stealing�e¤ects from R&D

by product market rivals. We develop a general framework showing that tech-

nology and product market spillovers have testable implications for a range of

performance indicators, and then exploit these using distinct measures of a �rm�s

position in technology space and product market space. Using panel data on U.S.

�rms between 1980 and 2001 we show that both technology and product market

spillovers operate, but social returns still exceed private returns to a large degree.

We also �nd that R&D by product market rivals is (on average) a strategic com-

plement for a �rm�s own R&D. Our �ndings are robust to alternative datasets and

de�nitions of the distance metric. Using the model we evaluate the net spillovers

(social returns) from three R&D subsidy policies which suggested that R&D poli-

cies that were tilted towards the smaller �rms in our sample would be unwise if

39We were concerned that our econometric results may be under-estimating the spillovers
of smaller �rms. For example, relative to large �rms, smaller companies may be less able to
appropriate the bene�ts of technology spillovers, and thus be more likely to pass on technology
spillovers to consumers in the form of lower prices. We tested this idea by interacting the size
dummy with SPILLTECH in the production function (Table 5, column 2). This interaction
was negative, as expected, but small and insigni�cant (coe¢ cient of -0.026 with a standard error
of 0.019).
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the objective is to redress market failures associated with technology spillovers.

There are various extensions to this line of research. First, while we examined

heterogeneity across industries by looking at three high-tech sectors much more

could be done within our framework using detailed industry-speci�c datasets. Sec-

ond, it would be useful to develop and estimate more structural dynamic models

of patent races. Finally, the semi-parametric approach in Joris Pinske, Margaret

Slade and Craig Brett (2002) could be used to construct alternative spillover mea-

sures.

Despite the need for these extensions, we believe that the methodology o¤ered

in this paper o¤ers a fruitful way to analyze the existence of these two distinct

types of R&D spillovers that are much discussed but rarely subjected to rigorous

empirical testing.
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Appendices

A. Generalizations of the Model

In this Appendix we describe three generalizations of the simple model presented
in Section 2. First, we allow for a more general form of interaction between �rms
in technology and product market space (where there can be overlap) and also
consider the N -�rm case (rather than three �rm case). Second, we examine tour-
nament models of R&D (rather than the non-tournament model in the baseline
case). We show, with light modi�cations, that the essential insights of our simply
model carry through to these more complex settings. Third, we allow the patent-
ing decision to be an endogenous choice for the �rm (rather than simply having
patents as simply an empirical indicator of successfully produced knowledge from
R&D). Although our main model predictions are robust, the extension to endoge-
nous patenting implies that the partial derivative of patenting with respect to
product market rivals�R&D (SPILLSIC) will be non-zero (it is zero in the basic
model).

A.1. General form of interactions in technology and product market
space

We begin with the general expression for �ow pro�t

�i = ��(ri; r�i) (A.1)

where r�i is the vector of R&D for all �rms other than i: In this formulation, the
elements of r�i captures both technology and product market spillover e¤ects. To
separate these components, we assume that (A.1) can be expressed as

�i = �(ri; ri� ;rim) (A.2)

where

ri� =
X
j 6=i

!ijrij (A.3)

rim =
X
j 6=i

�ijrij (A.4)
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and the partial derivatives are �1 > 0; �2 � 0; �3 � 0; �12 ? 0; �13 ? 0;and
�23 ? 0:The technology spillover e¤ect is �2 � 0; and the business stealing e¤ect is
�3 � 0:We do not constrain the e¤ect of technology and product market spillovers
on the marginal pro�tability of own R&D. Note that own R&D and product
market spillovers are strategic substitutes if �13 < 0 and strategic complements if
�13 > 0:
Equation (A.2) imposes constraints on (A.1) by partitioning the total e¤ect

of the R&D by each �rm j 6= i into technology spillovers ri� and product market
rivalry spillovers rim and by assuming that the marginal contribution of �rm j
to each pool is proportional to its �distance� in technology and product market
space, as summarized by �ij and !ij (i.e. we assume that @�

�

@rj
can be summarized

in the form �i2!ij + �
i
3�ij for each j 6= i):

Firm i chooses R&D to maximize net value

max
ri
V i = �(ri; ri� ;rim)� ri

Optimal R&D r�i satis�es the �rst order condition

�1(r
�
i ; ri� ;rim)� 1 = 0 (A.5)

We want to study how (exogenous) variations in ri� ; and rim a¤ect optimal
R&D. To do this we begin by choosing any pair of other �rms, say j and k
and make compensating changes in their R&D such that either rim or ri� is held
constant. This allows to to isolate the impact of the spillover pool we are interested
in.
Case 1: drim = 0 implies drj = � �ik

�ij
drk, with associated change in technology

spillovers dri� = (!ik � !ij �ik�ij )drk � �ijkdrk:
Case 2: dri� = 0 implies drj = �!ik

!ij
drk, with associated change in product

market spillovers drim = (�ik � �ij !ik!ij )drk � �ijkdrk:
40

When constraining one spillover pool to be constant, the other pool can either
increase or decline depending on the technology and product market distance
weights.
Di¤erentiating (A.5), allowing only ri; rj and rk to change, we obtain:

�11dri + �12(!ijdrj + !ikdrk) + �13(�ijdrj + �ikdrk) = 0

40We assume that the changes drj = � �ik
�ij
drk and drj = � �ik

�ij
drk do not violate the restriction

rj � 0:
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The �rst bracketed expression is just dri� , and the second is zero by construction
(drim = 0); so we get41

@r�i
@ri�

jdrim=0= �
�12
�11
: (A.6)

Similarly, when we impose the constraint dri� = 0 we obtain:42

@r�i
@rim

jdri�=0= �
�13
�11

(A.7)

These are the key equations. Equation (A.6) says that if we make compen-
sating changes in the R&D of two �rms such that the pool of product market
spillovers is constant, the e¤ect of the resulting change in technology spillovers
has the same sign as �12:This can be either positive or negative depending on
how technology spillovers a¤ect the marginal productivity of own R&D. Equa-
tion (A.7) says that if we make compensating changes in the R&D of two �rms
such that the pool of technology spillovers is constant, the e¤ect of the resulting
change in product market spillovers has the same sign as �13� the sign depends
on whether R&D by product market rivals is a strategic substitute or complement
for the �rm�s own R&D.
Using the envelope theorem, the e¤ects of ri� and rim on the �rm�s market

value are

@Vi
@ri�

j drim=0 = �2 � 0

@Vi
@rim

j dri�=0 = �3 � 0

These equations say that an increase in technology spillovers raises the �rm�s
market value, and an increase in product market rivals�R&D reduces it.
These results easily generalize to the case where we allow any subset of �rms

to change so as to keep constant either ri� ;or rim: Consider a subset denoted by
s 2 S where s 6= i: Impose the constraint that drim =

P
s2S �isdrs = 0: The

implied change in the technology spillovers is dri� =
P
s2S
!isdrs, which in general

will di¤er from zero (it can be either positive or negative depending on the ! and
� weights).

41Another way of seeing this is to note that @r�i
@rk

jdrim=0= �
�ijk�12
�11

; which implies the result
in (A.6) since dri� = �ijkdrk:
42Again, we can also write @r�i

@rk
jdri�=0= �

�ijk�13
�11

which yields (A.7) since drim = �ijkdrk:
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Now totally di¤erentiate the �rst order condition, allowing only rs for s 2 S
to change. This gives

�11dri + �12
P
s2S
!isdrs + �13

P
s2S
�isdrs = 0

But the third summation is zero by construction (drim = 0); and the second
summation is just dri� : So we again get

@r�i
@ri�

jdrim=0= �
�12
�11

By similar derivation we get

@r�i
@rim

jdri�=0= �
�13
�11

The e¤ects on the value function follow immediately using the envelope theorem,
as before.
One remark is in order. There are multiple (in�nite) di¤erent ways to change

R&D in a subset of �rms so as to ensure the constraint drim = 0 is satis�ed.
Each of the combinations of fdrsg that do this will imply a di¤erent value of
dri� =

P
s2S
!isdrs: Thus the discrete impact of such changes will depend on the

precise combination of changes made, but the marginal impact of a change in dri�
does not depend on that choice.

A.2. TournamentModel of R&DCompetition with Technology Spillovers

In this sub-section we analyze a stochastic patent race model with spillovers (see
Section 2 for a non-tournament model). We do not distinguish between competing
�rms in the technology and product markets because the distinction does not make
sense in a simple patent race (where the winner alone gets pro�t). For generality
we assume that n �rms compete for the patent.
Stage 2
Firm 0 has pro�t function �(k0; x0; xm): As before we allow innovation output

k0 to have a direct e¤ect on pro�ts, as well as an indirect (strategic) e¤ect working
through x: In stage 1, n �rms compete in a patent race (i.e. there are n�1 �rms in
the set m): If �rm 0 wins the patent, k0 = 1; otherwise k0 = 0. The best response
function is given by x�0 = argmax �(x0; xm; km). Thus second stage pro�t for �rm
0; if it wins the patent race, is �(x�0; x

�
m; k0 = 1); otherwise it is �(x

�
0; x

�
m; k0 = 0):
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We can write the second stage Nash decision for �rm 0 as x�0 = f(k0; km) and
�rst stage pro�t as �(k0; km) = �(k0; x�0; x

�
m): If there is no strategic interaction

in the product market, �i does not vary with xj and thus x�i and �
i do not

depend directly on kj:Recall that in the context of a patent race, however, only
one �rm gets the patent � if kj = 1; then ki = 0: Thus �i depends indirectly
on kj in this sense. The patent race corresponds to an (extreme) example where
@�i(ki; kj)=@kj < 0:

Stage 1
We consider a symmetric patent race between n �rms with a �xed prize (patent

value) F = �0(f(1; 0); f(0; 1); k0 = 1)� �0(f(0; 1); f(1; 0); k0 = 0): The expected
value of �rm 1 can be expressed as

V 0(r0; rm) =
h(r0; (n� 1)rm)F � r0

h(r0; (n� 1)rm) + (n� 1)h(rm; (n� 1)rm + r0) +R

where R is the interest rate, rm is the R&D spending of each of �rm 00s rivals, and
h(r0; rm) is the probability that �rm 0 gets the patent at each point of time given
that it has not done so before (hazard rate). We assume that h(r0; rm) is increasing
and concave in both arguments. It is rising in rm because of spillovers. We also
assume that hF � R � 0 (expected bene�ts per period exceed the opportunity
cost of funds).
The best response is r�0 = argmax V 0(r0; rm).Using the shorthand h0 =

h(r0; (n � 1)rm) and subscripts on h to denote partial derivatives, the �rst or-
der condition for �rm 0 is

(h1F � 1)fh0 + (n� 1)hm +Rg � (h0F � r1)fh01 + (n� 1)hm2 g = 0

Imposing symmetry and using comparative statics, we obtain

sign

�
@r0
@rm

�
= signfh12(hF (n� 1) + rF �Rg+ fh1(n� 1)(h1F � 1)g

�fh22(n� 1)(hF �R)g � h2f(n� 1)h2F � 1gg

We assume h12 � 0 (spillovers do not reduce the marginal product of a �rm�s
R&D) and h1F � 1 � 0 (expected net bene�t of own R&D is non-negative).
These assumptions imply that the �rst three bracketed terms are positive. Thus
a su¢ cient condition for strategic complementarity in the R&D game ( @r0

@rm
> 0)

is that (n�1)h2F �1 � 0: That is, we require that spillovers not be �too large�. If
�rm 0 increases R&D by one unit, this raises the probability that one of its rivals
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wins the patent race by (n� 1)h2: The condition says that the expected gain for
its rivals must be less than the marginal R&D cost to �rm 0.
Using the envelope theorem, we get @V

0

@rm
< 0: The intuition is that a rise in rm

increases the probability that �rm m wins the patent. While it may also generate
spillovers that raise the win probability for �rm 0, we assume that the direct
e¤ect is larger than the spillover e¤ect. For the same reason, @V

0

@km
jk0 = 0: As in

the non-tournament case, @r0
@rm

> 0 and @V 0

@rm
jr0 < 0: The di¤erence is that with a

simple patent race, @V
0

@km
jk0 is zero rather than negative because �rms only race for

a single patent.43.

A.3. Endogenizing the decision to patent

We generalize the basic non-tournament model to include an endogenous decision
to patent. We study a two-stage game. In stage 1 �rms make two decisions: (1)
the level of R&D spending and (2) the �propensity to patent�. The �rm produces
knowledge with its own R&D and the R&D by technology rivals. The �rm also
chooses the fraction of this knowledge that it protects by patenting. Let � 2 [0; 1]
denote this patent propensity and � � 1 denote patent e¤ectiveness � i.e. the
rents earned from a given innovation if it is patented relative to the rents if it
is not patented. Thus � � 1 represents the patent premium and �k is the rent
associated with knowledge k; where � = �� + (1 � �). There is a �xed cost of
patenting each unit of knowledge, c:
As in the basic model at stage 2, �rms compete in some variable, x, conditional

on their knowledge levels k. There are three �rms, labelled 0, � and m: Firms 0
and � interact only in technology space but not in the product market; �rms 0
and m compete only in the product market.

Stage 2
Firm 00s pro�t function is �(x0; xm; �0k0): We assume that the function � is

common to all �rms. Innovation output k0 may have a direct e¤ect on pro�ts, as
well as an indirect (strategic) e¤ect working through x:
The best response for �rms 0 and m are given by x�0 = argmax �(x0; xm; �0k0)

and x�m = argmax �(xm; x0; �mkm); respectively. Solving for second stage Nash
decisions yields x�0 = f(�0k0; �mkm) and x

�
m = f(�mkm; �0k0): First stage pro�t for

�rm 0 is �(�0k0; �mkm) = �(�0k0; x�0; x
�
m), and similarly for �rm m: If there is no

43In this analysis we have assumed that k = 0 initially, so ex post the winner has k = 1 and
the losers k = 0: The same qualitiative results hold if we allow for positive initial k:
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strategic interaction in the product market, �(�0k0; x�0; x
�
m) does not vary with xm

and thus �0 do not depend on �mkm:We assume that �(�0k0; �mkm) is increasing
in �0k0, decreasing in �mkm and concave.

Stage 1
Firm 00s knowledge production function remains as

k0 = �(r0; r� ) (A.8)

where we assume that �(:) is non-decreasing and concave in both arguments and
common to all �rms. Firm 0 solves the following problem:

max
r0;�0

V 0 = �(�0�(r0; r� ); �mkm)� r0 � c�0�(r0; r� ) (A.9)

The �rst order conditions are

r0 : (�01�0 � c�0)�01 � 1 = 0 (A.10)

�0 : �01�
0(�� 1)� c�0 � 1 = 0 (A.11)

where the subscripts denote partial derivatives and superscripts denote the �rm.
Comparative statics on equations (A.10) and (A.11) yield the following results for
comparison with the baseline model:44

@r�0
@r�

=
V�0�0Vr0r� � V�0r0V�0��

�A ? 0 (A.12)

where Vr0r� � @2V
@r0r�

;etc.

As in the basic model, the sign of @r
�
0

@r�
depends on sign {�12g and the magnitude

of �11:We also obtain:

@r�0
@rm

=
V�0�0Vr0�m � V�0r0V�0�m

�A ? 0 depending on signf�12g (A.13)

@��0
@rm

=
V�0�0Vr0rm � V�0r0V�0rm

�A ? 0 depending on signf�12g (A.14)

In signing the above results, we use the fact that Vr0r0 < 0; V�0�0 < 0; V�0r0 > 0
(provided �11 is �su¢ ciently small�) and A = Vr0r0V�0�0 � V 2r0�0 > 0 by the second
44This is not a full list of the comparative statics results.
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order conditions, and the other cross partials: Vr0r� =
�12
�1
+ �20�

0
1�
0
2�11;Vr0rm =

�0�m�
0
1�
m
1 �12; Vr0�� = 0;Vr0�m = (�� 1)�0km�

0
1�12;

V�0r� = (� � 1)�0k0�
0
2�11;V�0rm = (� � 1)k0�m�

m
1 �12;V�0�� = 0; and V�0�m =

(�� 1)2k0km�02�12.
The basic results of the simpler model go through. First, an increase in tech-

nology spillovers (r� ) has an ambiguous sign on own R&D spending, (equation
(A.12)). Second, after some algebra we can show that signf @r

�
0

@rm
g = signf �12g

provided that �11 is �su¢ ciently small�. An increase in product market rivals�
R&D raises own R&D if they are strategic complements (conversely for strategic
substitutes) [equation (A.13)]. Third, from the knowledge production function
(A.8), it follows that technology spillovers raise �rm 00s knowledge stock, @k

�
0

@r�
� 0;

and product market rivals�R&D has no e¤ect on it, @k
�
0

@rm
= 0: Finally, the impacts

on the value of the �rm follow immediately by applying the envelope theorem to
the value equation (A.9): namely, @V

�
0

@r�
� 0 and@V

�
0

@rm
� 0:

The new result here is that an increase in the R&D by �rm 00s product market
rivals will a¤ect the �rm�s propensity to patent, @�

�
0

@rm
(equation (A.14). After some

algebra, we can show that sign @��0
@rm

= sign�12; provided that �11 is �su¢ ciently
small�. Thus, if there is strategic complementarity (�12 > 0), an increase in prod-
uct market rivals�R&D raises the �rm�s propensity to patent (the opposite holds
for strategic substitution). The intuition is that, under strategic complementarity,
when rivals increase R&D spending (thus their stock of knowledge), this increases
the marginal pro�tability of �rm 0�s R&D and thus the pro�tability of patenting
(given the �xed cost of doing so). Thus R&D by product market rivals raises both
R&D spending and patent propensity of �rm 0:45

B. Data Appendix

B.1. The patents and Compustat databases

The NBER patents database provides detailed patenting and citation information
for around 2,500 �rms (as described in Hall, Ja¤e and Trajtenberg (2005) and
Ja¤e and Trajtenberg (2002)). We started by using the NBER�s match of the

45Since product market rivals�R&D does not a¤ect the production of knowledge by �rm 0;
this result for the propensity to patent also applies to the number of patents taken out by �rm
0:
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Compustat accounting data to the USPTO data between 1970 to 199946, and
kept only patenting �rms leaving a sample size of 1,865. These �rms were then
matched into the Compustat Segment (�line of business�) Dataset keeping only
the 795 �rms with data on both sales by four digit industry and patents, although
these need not be concurrent. For example, a �rm which patented in 1985, 1988
and 1989, had Segment data from 1993 to 1997, and accounting data from 1980
to 1997 would be kept in our dataset for the period 1985 to 1997. The Compustat
Segment Database allocates �rm sales into four digit industries each year using
�rm�s descriptions of their sales by lines of business. See Villalonga (2004) for a
more detailed description.
Finally, this dataset was cleaned to remove accounting years with extremely

large jumps in sales, employment or capital signalling merger and acquisition
activity. When we removed a year we treat the �rm as a new entity and give it a
new identi�er (and therefore a new �xed e¤ect) even if the �rm identi�er (CUSIP
reference) in Compustat remained the same. This is more general than including
a full set of �rm �xed e¤ects as we are allowing the �xed e¤ect to change over
time. We also removed �rms with less than four consecutive years of data. This
left a �nal sample of 715 �rms to estimate the model on with accounting data
for at least some of the period 1980 to 2001 and patenting data for at least some
of the period between 1970 and 1999. The panel is unbalanced as we keep new
entrants and exiters in the sample.

B.2. The Bureau Van Dijk (BVD) Database

Since the BVD dataset has not been widely used by economists we describe it in
more detail than Compustat.

B.2.1. The ICARUS and AMADEUS Datasets

The BVD sales breakdown was calculated using the employment breakdown across
primary and secondary four digit industry classes for enterprises in North America
(US and Canada) and Europe47. BVD provides information on the employment
in the subsidiaries of our Compustat �rms which can then be used to allocate
their activities to standard industrial classi�cation classes. BVD sells a database
called ICARUS which contains 1.8 million enterprise level records for the US and
Canada containing information on sales, employment, industry and ownership. It

46We dropped pre-1970 data as being too outdated for our 1980s and 1990s accounts data.
47We thank Kevin Krabbenhoeft for his excellent help with this.
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is drawn from the complete North American Dunn and Bradstreet database (of
over ten million enterprises) selecting all enterprises that have either twenty or
more employees or $5 million or more in sales. The data is cross-sectional and is
continuously updated. We downloaded the complete database in September 2005.
BVD also sells a database called AMADEUS which contains eight million enter-
prise level records for Europe (broadly de�ned to include Israel, Russia, Turkey,
etc.). This contains cross-sectional information on employment, industry sector
and ownership (plus various types of accounting information). It is constructed
from country-speci�c registries of companies. For example all corporate entities
in Britain have to lodge basic accounts with UK Company House in the UK (i.e.
privately as well as publicly listed �rms). We used the May 2006 AMADEUS disk
which contains industry sector records primarily from 2004 and 2005.

B.2.2. Calculation of the Sales Breakdown �gures

All BVD databases use a common global identi�cation system so that owner-
ship structures can be easily constructed across countries. The ICARUS and
AMADEUS databases were merged into the Compustat database in three stages.
First, all enterprises were accorded an ultimate global parent name, a BVD iden-
ti�cation number and (if relevant) a ticker symbol. Second, the population of
ultimate parents was matched into the Compustat database. This was done �rst
using ticker symbols where these were provided by BVD, then for the unmatched
�rms using company names after standardizing certain generic components (for
example standardizing �Co.�, �Co�and �company�to �Company�), and �nally by
manual inspection for any remaining unmatched �rms. Third, the BVD enterprise-
level information was linked to Compustat through the ultimate parent link to
Compustat.
Activity in each enterprise was then allocated across industries using the four

digit industry information. In ICARUS �rms report one primary four digit in-
dustry code and an ordered set of up to six secondary four digit industry codes.
Employment activity was allocated assuming 75% of activity was in the primary
industry code, 75% of the remainder in the secondary code, 75% of this remainder
in the tertiary industry code and so on, with the �nal industry code containing
100% of the ultimate residual. In AMADEUS �rms report one primary industry
code and as many secondary industry codes as they wish (with some �rms re-
porting over 30) but without any ordering. Employment was allocated assuming
that 75% of employees were in the primary industry code and the remaining 25%
was split equally among the secondary industry codes. Finally, employment was
summed across all industry codes in every enterprise in Europe and the US owned

53



by the ultimate Compustat parent to compute a four digit industry breakdown of
activity.

B.2.3. Matching to Compustat

We successfully matched three quarters of the Compustat �rms in the original
sample. The matched �rms were larger and more R&D intensive than the non-
matched �rms. Consequently, these matched �rms accounted for 84% of all em-
ployment and 95% of all R&D in the Compustat sample, so that judged by R&D
the coverage of the BVD data of the Compustat sample was very good. The
reason appears to be that larger R&D intensive Compustat �rms are less likely
to have died, been taken over or changed their name between 2001 and 2005 (the
gap between the last year of our Compustat sample and the timing of the BVD
data).
The correlation between the Compustat Segment and BVD Dataset measures

is reasonably high. The correlation between the sales share of �rm i in industry k
between the two datasets is 0.503. The correlation of ln(SPILLSIC) across the
two measures is 0.592. The within-�rm over-time variation of ln(SPILLSIC),
which identi�es our empirical results given that we control for �xed e¤ects, reas-
suringly rises to 0.737. In terms of average levels both measures are similar, with
an average SIC of 0.0138 using the Compustat measure and 0.0132 using the
BVD measure. The maximum number of four digit industries for one of our �rms,
General Electric, is 213.
As an example of the extent of similarity between the two measures the Com-

pustat and BVD SIC correlations for the four �rms examines in the Case Study
discussed in appendix D below are presented in Table A1. As can be seen the
two measures are similar, IBM and Apple (PC manufacturers) are highly corre-
lated on both measures and Motorola and Intel (semi-conductor manufacturers)
are also highly correlated. But the correlation across these two pairs is low. There
are also some di¤erences, for example the BVD-based measure of SIC �nds that
IBM is closer in sales space with Intel and Motorola (SIC = 0.07) then the
Compustat-based measure (SIC = 0.01). This is because IBM uses many of its
own semi-conductor chips in its own products so this is not included in the sales
�gures. The BVD based measure picks these up because IBM�s three chip making
subsidiaries are tracked in the ICARUS data even if their products are wholly
used within IBM�s vertically integrated chain.

54



B.2.4. Coverage

The industry coverage was broader in the BVD data than the Compustat Segment
Dataset. The mean number of distinct four digit industry codes per �rm was 13.8
in the BVD data (on average there were 29.6 enterprises, 18.2 in Europe and
11.4 in the US) compared to 4.6 in the Compustat Segment �les. This con�rms
Villalonga�s (2004) �nding that the Compustat Segment Dataset underestimates
the number of industries that a �rm operates in.

B.3. Other variables

The book value of capital is the net stock of property, plant and equipment (Com-
pustat Mnemonic PPENT); Employment is the number of employees (EMP).
R&D (XRD) is used to create R&D capital stocks calculated using a perpetual
inventory method with a 15% depreciation rate (following inter alia Hall et al,
2005). So the R&D stock, G, in year t is: Gt = Rt + (1 � �)Gt�1 where R is
the R&D �ow expenditure and � = 0:15. We use sales as our output measure
(SALE). Material inputs were constructed following the method in Bresnahan et
al. (2002). We start with costs of good sold (COGS) less depreciation (DP) less
labor costs (XLR). For �rms who do not report labor expenses we use average
wages and bene�ts at the four digit industry level (Erik Bartelsman, Randy Becker
and Wayne Gray, 2000, until 1996 and then Census Average Production Worker
Annual Payroll by four digit NAICS code afterwards) and multiply this by the
�rm�s reported employment level. This constructed measure of materials is highly
correlated with independent industry-level materials measures. Obviously there
are problems with this measure of materials (and therefore value added) because
we do not have a �rm speci�c wage bill for most �rms which is why we focus
on the real sales (rather than value added) based production functions. Industry
price de�ators were taken from Bartelsman et al (2000) until 1996 and then the
BEA four digit NAICS Shipment Price De�ators thereafter.
For Tobin�s Q, �rm value is the sum of the values of common stock, preferred

stock and total debt net of current assets (Mnemonics MKVAF, PSTK, DT and
ACT). Book value of capital includes net plant, property and equipment, invento-
ries, investments in unconsolidated subsidiaries and intangibles other than R&D
(Mnemonics PPENT, INVT, IVAEQ, IVAO and INTAN). Tobin�s Q was win-
sorized by setting it to 0.1 for values below 0.1 and at 20 for values above 20 (see
Jenny Lanjouw and Mark Schankerman (2004)).
The construction of the spillover variables is described in Section 3 above in

detail. About 80% of the variance of SPILLTECH and SPILLSIC is between
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�rm and 20% is within �rm. When we include �xed e¤ects we are, of course, rely-
ing on the time series variation for identi�cation. Industry sales were constructed
from total sales of the Compustat database by four digit industry code and year,
and merged to the �rm level in our panel using each �rm�s distribution of sales
across four digit industry codes.

B.4. Speci�c High Tech Industry Breakdown

In Table 11 the industries we consider are the following. Computer hardware in
Panel A covers SIC 3570 to 3577 (Computer and O¢ ce Equipment (3570), Elec-
tronic Computers (3571), Computer Storage Devices (3572), Computer Terminals
(3575), Computer Communications Equipment (3576)and Computer Peripheral
Equipment Not Elsewhere classi�ed (3577). Pharmaceuticals in Panel B includes
Pharmaceutical Preparations (2834) and In Vitro and In Vivo Diagnostic Sub-
stances (2835). Telecommunications Equipment covers Telephone and Telegraph
Apparatus (3661), Radio and TV Broadcasting and Communications Equipment
(3663) and Communications Equipment not elsewhere classi�ed (3669).

C. Alternative Distance Metrics

Some general issues regarding construction of spillover measures are discussed
in section 3 (especially 3.4). In this Appendix we o¤er one justi�cation of the
SPILLSICA measure in the �rst sub-section (C.1) and then adapt the Ellison-
Glaeser (1997) co-agglomeration/spillover measure in the next sub-section (C.2).

C.1. Model-based SPILLSICA

Consider a relationship between Tobin�s Q, Qli (this could be any performance
outcome, of course) for �rm i which operates in industry l (l = 1,...., L). We
abstract away from other covariates (including SPILLTECH and the �rm�s own
R&D) for notational simplicity. Strategic interaction in the product market means
that Qli is a¤ected by the R&D of other �rms in industry l. Part of each rival
�rm�s total R&D across all the industries it operates in, rj; is �assigned� to a
particular industry l and will in�uence Qli: R&D is not broken down by industry
l at the �rm level in any publicly available dataset that we know of. Consider the
equation:

Qli = �
X
j;j 6=i

!ljrj (C.1)
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where the weights !lj determine the part of �rm j�s total R&D that is assigned
to industry l (we discuss what these weights might be below). Next, note that
industry-speci�c information does not exist for Qli (market value is a company
level measure and is not industry-speci�c). Consequently we have to aggregate
across the industries in which �rm i operates:

Qi � �
X
l

hliQ
l
i = �

X
l

hli
X
j;j 6=i

!ljrj (C.2)

where hli are the appropriate aggregation weights. Substituting (C.2) into (C.1)
gives

Qi = �
X
j;j 6=i

X
l

hli!
l
jrj (C.3)

We write this compactly as:

Qi = �
X
j;j 6=i

dijrj (C.4)

where dij is the distance metric between �rm i and �rm j which will depend on
the weights hli and !

l
j. Di¤erent approaches to these weights give the di¤erent

empirical measures of the distance metrics and therefore di¤erent measures of
SPILLSIC.
For the weight on hli it seems very natural to use the share of �rm�s total sales

(sli) in an industry l as the weight. Theoretically, Q
l
i is the ratio of the �rm�s

market value to its capital assets (V=A) of �rm i at the industry level and we
observe the weighted sum (summing across all �industry V �s�and �industry A�s�
at the parent �rm level). If we knew the �rm�s industry-speci�c value (V ) and
capital (A) then we would have better weights but these are unobservable.
The weights, !lj; are far more di¢ cult to determine as they represent the

�assignment� of rival R&D to a speci�c industry. Under the baseline method
in this paper we assume that dij is the uncentered correlation coe¢ cient as in
Ja¤e (1986) except using the sales distribution across four digit industries. This
is SPILLSIC so:

Qi = �SPILLSICi (C.5)

The use of the uncentered correlation could be considered ad hoc, so alterna-
tively consider !lj = s

l
j, the share of �rm j�s sales in industry l. One justi�cation

for this procedure is that what matters is total rival R&D in industry l. If a �rm�s
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R&D intensities across industries are similar then using sales weights correctly
estimates the R&D of �rm j in industry l: An alternative justi�cation is that �rm
i does not know in which industry �rm j�s R&D will generate innovations (indeed
�rm j may also not know). Under this assumption using equation (C.3) we then
obtain, SPILLSICAi

SPILLSICAi =
X
j;j 6=i

 X
l

slis
l
j

!
rj =

X
j;j 6=i

SICAijrj (C.6)

Note that SICAi is the numerator in the Ja¤e-based measure. The results
from using SPILLSICAi (and the analogous SPILLTECH

A
i ) as an alternative

measure are contained in Table 10 Panels B and C. The results are robust to this
experiment.

C.2. The Ellison-Glaeser (1997) Co-agglomeration measure

Ellison and Glaeser (1997, henceforth EG) propose measures of agglomeration
and co-agglomeration. In their model they are interested in reasons why some
industries appear to be concentrated in geographical areas. One reason for this
concentration is that some areas have �natural advantages�such as the fact that
shipbuilding and tuna canning industries are co-located in areas near coastlines.
But another reason may be spillovers between geographically local plants gener-
ating an incentive for �rms to locate their plants in similar places even in the
absence of natural advantage. They propose a simple theoretical model which
generates an equilibrium degree of agglomeration (the regional concentration of
industries) and co-agglomeration (the tendency of di¤erent industries to co-locate
together) and propose empirical measures to consistently estimate the theoretical
concepts.
We can construct analogous measure for technological distance instead of geo-

graphical distance. Consider two �rms (instead of two industries in EG) deciding
which technology classes to locate their innovations (instead of their plants in EG).
If there are potential spillovers between the inventions of the two �rms we would
expect to see their innovations (measured by patents in our case) to be clustered
in the same technological classes. EG o¤er a theoretical model to justify their em-
pirical spillover/co-agglomeration measures. Unfortunately, their procedure will
not work for SPILLSIC as their model assumes that (at least potentially) there
is a positive pro�tability bene�t of having another �rm located close. In the case
of product market rivalry this will be a negative e¤ect as having more plants of a
rival to �rm i close will hurt not help �rm i�s pro�tability.
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The EG co-agglomeration measure can be adapted to a distance metric be-
tween �rm i and �rm j as:

ij = (1� w2i � w2j )�1

X
�

(Ti[j;� � x� )2

1�
X
�

x2�
� w2i

X
�

(Ti� � x� )2

1�
X
�

x2�
� w2j

X
�

(Tj� � x� )2

1�
X
�

x2�

=

0BB@
1�

X
k

x2�

1� w2i � w2j

1CCA
 X

�

(Ti[j;� � x� )2 � w2i
X
�

(Ti� � x� )2 � w2j
X
�

(Tj� � x� )2
!

where Ti� is the share of patents of �rm i in technology class � , x� is the
aggregate share of patents in technology class � ; Ti[j;� is the patent share of the
hypothetical combination of �rms i and j in technology class � and wi(wj) is
the weight of �rm i�s (j�s) patents in the combined �rm of i and j (i.e. wi =
PATENTSi=(PATENTSi + PATENTSj) = 1� wj:

D. Case Studies of particular �rms location in technology
and product space

There are numerous case studies in the business literature of how �rms can be
di¤erently placed in technology space and product market space. Consider �rst
�rms that are close in technology but sometimes far from each other in product
market space (the bottom right hand quadrant of Figure 1). Table A1 shows IBM,
Apple, Motorola and Intel: four high highly innovative �rms in our sample. We
show results for SPILLSIC measured both by the Compustat Segment Database
and the BVD Database. These �rms are close to each other in technology space
as revealed by their patenting. IBM, for example, has a TECH correlation of 0.76
with Intel, 0.64 with Apple and 0.46 with Motorola (the overall average TECH
correlation in the whole sample is 0.13 - see Table 12). The technologies that IBM
uses for computer hardware are closely related to those used by all these other
companies. If we examine SIC, the product market closeness variable, however,
there are major di¤erences. IBM and Apple are product market rivals with a SIC
of 0.65 (the overall average SIC correlation in the whole sample is 0.05 - see Table
12). They both produced PC desktops and are competing head to head. Both
have presences in other product markets of course (in particular IBM�s consultancy
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arm is a major segment of its business) so the product market correlation is not
perfect. By contrast IBM (and Apple) have a very low SIC correlation with
Intel and Motorola (0.01) because the latter �rms mainly produce semi-conductor
chips not computer hardware. IBM produces relatively few semi-conductor chips
so is not strongly competing with Intel and Motorola for customers. The SIC
correlation between Intel and Mototrola is, as expected, rather high (0.34) because
they are both competitors in supplying chips. The picture is very similar when
we look at the measures of SIC based on BVD instead of Compustat, although
there are some small di¤erences. For example, IBM appears closer to Intel (BVD
SIC = 0.07) because IBM produces semi-conductor chips for in-house use. This
is largely missed in the Compustat Segment data, but will be picked up by the
BVD data (through IBM�s chip-making a¢ liates).
At the other end of the diagonal (top left hand corner of Figure 1) there

are many �rms who are in the same product market but using quite di¤erent
technologies. One example from our dataset is Gillette and Valance Technologies
who compete in batteries giving them a product market closeness measure of 0.33.
Gillette owns Duracell but does no R&D in this area (its R&D is focused mainly
personal care products such as the Mach 3 razor and Braun electronic products).
Valence Technologies uses a new phosphate technology that is radically improving
the performance of standard Lithium ion battery technologies. As a consequence
the two companies have little overlap in technology space (TECH = 0.01).
A third example is the high end of the hard disk market, which are sold to

computer manufacturers. Most �rms base their technology on magnetic technolo-
gies, such as the market leader, Segway. Other �rms (such as Phillips) o¤er hard
disks based on newer, holographic technology. These �rms draw their technologies
from very di¤erent areas, yet compete in the same product market. R&D done
by Phillips is likely to pose a competitive threat to Segway, but it is unlikely to
generate useful knowledge spillovers for Segway.
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E. Policy Experiments

The general speci�cation of the empirical model can be written

ln(R=Y )it = e�1 ln(R=Y )it�1 + e�2 lnX
j 6=i

TECHijGj;t�1 + e�3 lnX
j 6=i

SICijGj;t�1

+e�4X1;it

lnPit = e�0 lnPit�1 + e�1 lnGit�1 + e�2 lnX
j 6=i

TECHijGj;t�1 + e�3 lnX
j 6=i

SICijGj;t�1

+e�4X2it + e�5 lnYi;t�1
ln(V=A)it = e1 ln(G=A)it + e2 lnX

j 6=i

TECHijGj;t�1 + e3 lnX
j 6=i

SICijGj;t�1 + e4X3;it

lnYit = e'1 lnGit + e'2 lnX
j 6=i

TECHijGj;t�1 + e'3 lnX
j 6=i

SICijGj;t�1 + e'4X4;it

where R is the �ow of R&D expenditures, Y is output, G is the R&D stock, P
is patent �ow, V=A is Tobin�s Q, and X1; X2; X3 and X4 are vectors of control
variables (that for ease of exposition we treat as scalars). We actually use a sixth
order series in ln(G=A);but suppress that here for notational simplicity.
We examine the long run e¤ects in the model, setting Rit = Rit�1; Yit =

Yit�1; Pit = Pit�1; and Gj =
Rj
r+�

where r is the discount rate and � is the depreci-
ation rate used to construct G: Then the model is

lnRi = �2 ln
X
j 6=i

TECHijRj + �3 ln
X
j 6=i

SICijRj + �4X1i + lnYit (E.1)

lnPi = �1 lnRi + �2 ln
X
j 6=i

TECHijRj + �3 ln
X
j 6=i

SICijRj (E.2)

+�4X2i + �5 lnYit

ln(V=A)i = 1 ln(R=A)i + 2 ln
X
j 6=i

TECHijRj + 3 ln
X
j 6=i

SICijRj + 4X3i(E.3)

lnYit = '1 lnRi + '2 ln
X
j 6=i

TECHijRj + '3 ln
X
j 6=i

SICijRj + '4X4i (E.4)

where �k =
e�k

(1�e�1) , �k = e�k
(1�e�1) ; k = ek and 'k = e'k:
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We then solve out the cross equation links with Yit by substituting equation
(E.4) into equations (E.1) and (E.2). This yields

lnRi = �02 ln
X
j 6=i

TECHijRj + �
0
3 ln
X
j 6=i

SICijRj + �
0
4X1i (E.5)

lnPi = �01 lnRi + �
0
2 ln
X
j 6=i

TECHijRj + �
0
3 ln
X
j 6=i

SICijRj + �
0
4X2i(E.6)

ln(V=A)i = 1 ln(R=A)i + 2 ln
X
j 6=i

TECHijRj + 3 ln
X
j 6=i

SICijRj (E.7)

+4X3i

lnYit = '1 lnRi + '2 ln
X
j 6=i

TECHijRj + '3 ln
X
j 6=i

SICijRj (E.8)

+'4X4i

where �0i =
�i+�5'i
1��5'1

= e�i
(1�'1)(1�e�1) + 'i

(1�'1)
and �0i = �i + �5'i =

e�i+e�5'i
(1�e�1) .

We take a �rst order expansion of ln [
P

j 6=i TECHijRj] and ln [
P

j 6=i SICijRj]

in order to approximate them in terms of lnR around some point, call it lnR0.Take
�rst f i = ln [

P
j 6=i TECHijRj] = ln [

P
j 6=i TECHij exp(lnRj)]:Approximating

this nonlinear function of lnR;

f i ' f ln
X
j 6=i

TECHijR
0
j �

X
j 6=i

(
TECHijR

0
jP

j 6=i TECHijR
0
j

) lnR0jg

+
X
j 6=i

(
TECHijR

0
jP

j 6=i TECHijR
0
j

) lnRj

� ai +
X
j 6=i

bij lnRj

where ai re�ects the terms in large curly brackets and bij captures the terms in
parentheses in the last terms.
Now consider the term gi = ln [

P
j 6=i SICijRj]:By similar steps we get

gi ' f ln
X
j 6=i

SICijR
0
j �

X
j 6=i

[
SICijR

0
jP

j 6=i SICijR
0
j

] lnR0jg+
X
j 6=i

(
SICijR

0
jP

j 6=i SICijR
0
j

) lnRj

� ci +
X
j 6=i

dij lnRj
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De�ne

�i = �02ai + �
0
3ci

�ij = �02bij + �
0
3dij

Using these approximations, we can write the R&D equation (E.5)as

lnRi = �i +
X
j 6=i

�ij lnRj + �
0
4X1i

Let �; lnR and X be Nx1 vectors, and de�ne the NxN matrix

H =

0BBBBBB@
0 �12 �13 : : �iN
�21 0 �23 �2N
�31 �32 0 �34 : �3N
: :
; :
�N1 �N2 : : : 0

1CCCCCCA
Then the R&D equation can be expressed in matrix form

lnR = 
�1�+ �04

�1X1

=)
d lnR = 
�1�04dX1

where 
 = I �H:

E.1. Deriving the Ampli�cation E¤ects

E.1.1. R&D equation

Using the restriction
P

j 6=i bij; it can be shown that H � i = �02 + �03 where i is a
column vector of ones. Thus 
� i = 1� �02 + �03, so the macro R&D response to
a unit stimulus to R&D of each �rm (equal to �04dX1 ) is


�1 � i = 1

1� �02 � �03
In the absence of technology and product market spillovers, R&D would increase
by one percent. Thus we de�ne the ampli�cation e¤ect as 1

1��02��03
� 1:
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E.1.2. Patents equation

Using the approximations above, the patents equation (E.6) is48

lnPi = �
0
1 lnRi +

X
j 6=i

�ij lnRj + �
0
4X2i

where �ij = �
0
2bij + �

0
3dij: By similar reasoning, we de�ne the NxN matrix

G =

0BBBBBB@
0 �12 �13 : : �iN
�21 0 �23 �2N
�31 �32 0 �34 : �3N
: :
; :
�N1 �N2 : : : 0

1CCCCCCA
Letting d lnR and d lnP be Nx1 vectors, we get

d lnP = �01d lnR + [G� d lnR]

Using the result from the R&D ampli�cation e¤ect d lnR = 1
1��02+�03

� i; we
get the macro response of patents to a unit stimulus to R&D of each �rm

d lnP =
1

1� �02 � �03
(�01 � i� i0 +G)� i

=
1

1� �02 � �03
(�01 + �

0
2 + �

0
3)� i

Thus the ampli�cation e¤ect on patents equals 1
1��02��03

(�01 + �
0
2 + �

0
3)� �01.

E.1.3. Tobin�s-Q and productivity equations

The calculations are completely analogous to those for the patent equation. For
brevity, we do not repeat the details here.

48In this experiment we assume that the only forcing variable is X1: If X2 in the patents
equation is the same as X1 (e.g. industry sales), then we need to add the direct e¤ect of the
change in X1 on patents as well as the induced e¤ect via R&D.
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FIGURE 1 – SIC AND TECH CORRELATIONS 

 
 

Notes: This figure plots the pairwise values of SIC (closeness in product market space between two firms) and TECH (closeness in technology 
space) for all pairs of firms in our sample. 
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TABLE 1 - 
THEORETICAL PREDICTIONS FOR MARKET VALUE, PATENTS AND R&D UNDER DIFFERENT ASSUMPTIONS OVER 

TECHNOLOGICAL SPILLOVERS AND STRATEGIC COMPLEMENTARITY/SUBSTITUTABILITY OF R&D 
 

(1) (2) (3) (4) (5) (6) (7) (8) 
Equation Comparative 

static prediction 
Empirical  
counterpart 

No Technology 
Spillovers 

No Technology 
Spillovers 

No Technology 
Spillovers 

Technology 
Spillovers 

Technology 
Spillovers 
 

   No Product 
Market Rivalry 

Strategic 
Complements 

Strategic 
Substitutes 

Strategic 
Complements 

Strategic 
Substitutes 
 

Market value ∂V0/∂rτ Market value with 
SPILLTECH 
 

Zero Zero Zero Positive Positive 

Market value ∂V0/∂rm Market value with 
SPILLSIC 
 

Zero Negative Negative Negative Negative 

Patents (or 
productivity)  

∂k0/∂rτ Patents with 
SPILLTECH 
 

Zero Zero Zero Positive Positive 

Patents (or 
productivity)  

∂k0/∂rm Patents with 
SPILLSIC 
 

Zero Zero Zero Zero Zero 

R&D ∂r0/∂rτ  R&D with 
SPILLTECH 
 

Zero Zero Zero Ambiguous Ambiguous 

R&D ∂r0/∂rm R&D with 
SPILLSIC 
 

Zero Positive Negative Positive Negative 

Notes: See text for full derivation of these comparative static predictions. Note that the empirical predictions for the (total factor) productivity 
equation are identical to the patents equation 



 67

 
TABLE 2 - 

 DESCRIPTIVE STATISTICS 
 
Variable Mnemonic Mean Median Standard 

deviation 
 

Tobin’s Q V/A 2.36 1.41 2.99 
Market value V 3,913 412 16,517 
R&D stock G 605 28.7 2,722 
R&D stock/fixed 
capital 

G/A 0.48 0.17 0.95 

R&D flow R 104 4.36 469 
Technological 
spillovers 

SPILLTECH 22,419 17,914 17,944 

Product market 
rivalry 

SPILLSIC 6,494 2,006.8 10,114 

Patent flow P 16.2 1 75 
Sales Y 2,879 456 8,790 
Fixed capital A 1,346 122 4,720 

 
Employment N 18,379 3,839 52,826 
     
 

Notes: The means, medians and standard deviations are taken over all non-missing 
observations between 1981 and 2001; values measured in 1996 prices in $million.
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TABLE 3 – 
COEFFICIENT ESTIMATES FOR TOBIN’S-Q EQUATION 

 
 (1) (2) (3) (4) 

Dependent variable: 
Ln (V/A) 

No individual 
Effects 

Fixed Effects Fixed Effects 
(drop 

SPILLSIC) 
 

Fixed Effects 
(drop 

SPILLTECH) 

Ln(SPILLTECHt-1) -0.042 
(0.012) 

0.242 
(0.105) 

0.186 
(0.100) 

 

Ln(SPILLSICt-1) 0.051 
(0.007) 

-0.072 
(0.032) 

 -0.050 
(0.031) 

Ln(Industry Salest) 0.425 
(0.068) 

0.300 
(0.044) 

0.294 
(0.044) 

0.305 
(0.044) 

Ln(Industry Salest-1) -0.503 
(0.067) 

-0.173 
(0.045) 

-0.178 
(0.045) 

-0.166 
(0.045) 

 
Polynomial terms in lagged (R&D Stock/Capital Stock) 
 

 

Ln(R&D Stock/Capital 
Stock)t -1 

0.842 
(0.154) 

0.799 
(0.197) 

0.794 
(0.198) 

0.799 
(0.198) 

[Ln(R&D Stock/Capital 
Stock)t -1]2 

-0.172 
(0.215) 

-0.384 
(0.222) 

-0.377 
(0.222) 

-0.374 
(0.222) 

[Ln(R&D Stock/Capital 
Stock)t -1]3 

-0.024 
(0.111) 

 0.120 
(0.103) 

0.116 
(0.103) 

0.115 
(0.104) 

[Ln(R&D Stock/Capital 
Stock)t -1]4 

-0.013 
(0.025) 

-0.021 
(0.022) 

-0.020 
(0.022) 

-0.020 
(0.022) 

[Ln(R&D Stock/Capital 
Stock)t -1]5 

-0.002 
(0.003) 

-0.002  
(0.002) 

0.002  
(0.002) 

0.002  
(0.002) 

[Ln(R&D Stock/Capital 
Stock)t -1]6 

0.006 a 
(0.009) 

-0.007a 
(0.008) 

-0.006a 
(0.008) 

-0.006 a 
(0.008) 

     
Year dummies Yes Yes Yes Yes 
Firm fixed effects  No Yes Yes Yes 
No. Observations 9,944 9,944 9,944 9,944 
     
 

a coefficient and standard error have been multiplied by 100 
 
Notes: Tobin’s Q = V/A is defined as the market value of equity plus debt, divided by the stock of 
fixed capital. The equations are estimated by OLS (standard errors in brackets are robust to 
arbitrary heteroskedacity and first order serial correlation using the Newey-West correction). A 
dummy variable is included for observations where lagged R&D stock equals zero.  
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TABLE 4 -  

COEFFICIENT ESTIMATES FOR THE PATENT EQUATION 
 
 (1) (2) (3) 
Dependent variable: 
Patent Count 

No Initial 
Conditions: Static 
 

Initial Conditions: 
Static 

Initial Conditions: 
Dynamics 

Ln(SPILLTECH)t-1 0.406 
(0.086) 

0.295 
(0.066) 

0.192 
(0.038) 

Ln(SPILLSIC)t-1 0.037 
(0.031) 

0.051 
(0.029) 

0.032 
(0.016) 

Ln(R&D Stock)t-1 0.492 
(0.044) 

0.280 
(0.046) 

0.104 
(0.027) 

Ln(Sales)t-1 0.340 
(0.052) 

0.259 
(0.048) 

0.138 
(0.027) 

Ln(Patents)t-1   0.550 
(0.026) 

Pre-sample fixed effect  0.452 
(0.050) 

0.176 
(0.028) 

    
Over-dispersion (alpha) 0.955 

(0.062) 
0.815 
(0.046) 

0.402 
(0.029) 

Year dummies Yes Yes Yes 
Firm fixed effects  No Yes Yes 
4 digit industry dummies Yes Yes Yes 
No. Observations 9,023 9,023 9,023 
Log Pseudo Likelihood -20,499 -20,116 -18,636 
    
 
Notes: Estimation is conducted using the Negative Binomial model. Standard errors (in brackets) 
are robust to arbitrary heteroskedacity and allow for serial correlation through clustering by firm. 
A full set of four digit industry dummies are included in all columns. A dummy variable is 
included for observations where lagged R&D stock equals zero (all columns) or where lagged 
patent stock equals zero (column (3)). The initial conditions effects in column (3) is estimated 
through the “pre-sample mean scaling approach” of Blundell, Griffith and Van Reenen (1999) – 
see text. 
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TABLE 5 –  
COEFFICIENT ESTIMATES FOR THE PRODUCTION FUNCTION 

 
 (1) (2) (3) 
Dependent variable: 
 Ln(Sales) 
 

No Fixed Effects 
 

Fixed Effects Fixed Effects 

Ln(SPILLTECH) t-1 -0.030 
(0.009) 

0.103 
(0.046) 

0.111 
(0.045) 

Ln(SPILLSIC) t-1 -0.016 
(0.004) 

0.010 
(0.012) 

 

Ln(Capital) t-1 0.286 
(0.009) 

0.161 
(0.012) 

0.161 
(0.012) 

Ln(Labour) t-1 0.650 
(0.012) 

0.631 
(0.015) 

0.631 
(0.015) 

Ln(R&D Stock) t-1 0.059 
(0.005) 

0.044 
(0.007) 

0.045 
(0.007) 

Ln(Industry Sales) t 0.230 
(0.040) 

0.200 
(0.021) 

0.201 
(0.021) 

Ln(Industry Sales) t-1 -0.118 
(0.040) 

-0.039 
(0.022) 

-0.038 
(0.022) 

    
Year dummies Yes Yes Yes 
Firm fixed effects  No Yes Yes 
No. Observations 10,009 10,009 10,009 
R2 0.948 0.990 0.990 

 
Notes: Estimation is by OLS. Standard errors (in brackets) are robust to arbitrary heteroskedacity 
and allow for first order serial correlation using the Newey-West procedure.  Industry price 
deflators are included and a dummy variable for observations where lagged R&D equals to zero.  
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TABLE 6 – 
COEFFICIENT ESTIMATES FOR THE R&D EQUATION 

 
 (1) (2) (3) (4) 

Dependent variable: 
ln(R&D/Sales) 

No Fixed 
Effects 

Fixed Effects No Fixed 
Effects+ 

Dynamics 

Fixed Effects + 
Dynamics 

Ln(SPILLTECH)t-1 0.092 
(0.017) 

0.117 
(0.074) 

0.001 
(0.004) 

-0.036 
(0.040) 

Ln(SPILLSIC) t-1 0.371 
(0.013) 

0.088 
(0.035) 

0.017 
(0.002) 

0.033 
(0.019) 

Ln(R&D/Sales) t-1   0.969 
(0.004) 

0.681 
(0.015) 

Ln(Industry Sales) t 0.523 
(0.082) 

-0.036 
(0.029) 

-0.023 
(0.022) 

-0.031 
(0.022) 

Ln(Industry Sales) t-1 -0.893 
(0.081) 

0.065 
(0.031) 

0.009 
(0.022) 

 0.078 
(0.022) 

     
Year dummies Yes Yes Yes Yes 
Firm fixed effects  No Yes No Yes 
No. Observations 8,579 8,579 8,387 8,387 
R2 0.776 0.973 0.945 0.986 

 
Notes: Estimation is by OLS. Standard errors (in brackets) are robust to arbitrary heteroskedacity 
and serial correlation using Newey-West corrected standard errors. The sample includes only 
firms which performed R&D continuously in at least two adjacent years.  
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 TABLE 7 –  
COMPARISON OF EMPIRICAL RESULTS TO MODEL WITH TECHNOLOGICAL 

SPILLOVERS AND STRATEGIC COMPLEMENTARITY 
 
 
 Partial 

correlation of: 
 

Theory Empirics Consistency? 

∂V0/∂rτ Market value 
with 
SPILLTECH 
 

Positive 0.242** Yes 

∂V0/∂rm Market value 
with SPILLSIC 
 

Negative -0.072** Yes 

∂k0/∂rτ Patents with 
SPILLTECH 
 

Positive 0.192** Yes 

∂k0/∂rm Patents with 
SPILLSIC 
 

Zeroa  0.032* No a  

∂y0/∂rτ Productivity with 
SPILLTECH 
 

Positive 0.103** Yes 

∂y0/∂rm Productivity with 
SPILLSIC 
 

Zero 0.010 Yes 

∂r0/∂rτ  R&D with 
SPILLTECH 
 

Ambiguous -0.036 - 

∂r0/∂rm R&D with 
SPILLSIC 

Positive 0.033* Yes 

 
a The extension of the model in Appendix A3 that allows for strategic patenting generates a 
positive effect under strategic complementarity. 
 
Notes: The theoretical predictions are for the case of technological spillovers with product market 
rivalry (strategic complements and non-tournament R&D) - this is column (7) of Table 1. The 
empirical results are from the most demanding specifications for each of the dependent variables 
(i.e. dynamic fixed effects for patents and R&D, and fixed effects for market value). ** denotes 
significance at the 5% level and ** denotes significance at the 10% level (note that coefficients 
are as they appear in the relevant tables, not marginal effects). 
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TABLE 8 –  
SPILLOVER AND TOTAL EFFECTS OF AN R&D SHOCK 

 
   (1) (2) (3) 
 Variable Amplification Mechanism Autarky Effect Amplification 

Effect  
Total Effect 

(Amplification + 
Autarky) 

 
1 R&D  1 

 
0.242 

(0.059) 
1.242 

(0.053) 
2 Patents TECH, SIC and R&D 0.231 

(0.032) 
0.562 

(0.100) 
0.793 

(0.082) 
3 Market Value TECH, SIC and R&D 0.726 

(0.161) 
0.248 

(0.111) 
0.975 

(0.208) 
4 Productivity TECH, SIC and R&D 0.045 

(0.007) 
0.124 

(0.049) 
0.169 

(0.049) 
 
Notes: Calculated in response to a 1% direct stimulus to R&D in all firms – see text. All numbers 
are percentages. Results are calculated using preferred estimation results (i.e. Table 3 column (2), 
Table 4 column (3), Table 5 column (3) Table 6 column (4)). Standard errors in brackets 
calculated using the delta method.   
 
“Autarky effect” (in column (1)) refers to the impact on the outcomes solely from the firm’s 
initial increase in R&D. “Amplification Effects” (in column (2)) reports the additional impact 
from product market and technology space spillovers. “Total effect” (column (3)) reports the total 
effect from summing autarky and spillover effects (i.e. column (1) plus column (2)).  
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TABLE 9 – ALTERNATIVE CONSTRUCTION OF SPILLSIC USING BVD 
INFORMATION INSTEAD OF COMPUSTAT SEGMENT DATASET  
 

 (1) (2) (3) (4) 
Dependent variable: 

 
Tobin’s Q Patents Ln(Real Sales) Ln(R&D/Sales)

 Fixed Effects Initial 
Conditions: 
Dynamics 

Fixed effects  Fixed Effects 
+ Dynamics 

 
Ln(SPILLTECHt-1) 0.310 

(0.108) 
0.185 

(0.049) 
0.100 

(0.052) 
-0.048 
(0.041) 

Ln(SPILLSICt-1) -0.060 
(0.034) 

0.031 
(0.014) 

0.001 
(0.014) 

0.048 
(0.017) 

Ln(Industry Salest) 0.235 
(0.049) 

 0.194 
(0.025) 

-0.049 
(0.026) 

Ln(Industry Salest-1) -0.142 
(0.050) 

 -0.042 
(0.026) 

0.094 
(0.026) 

Ln(R&D Stock) t-1  0.118 
(0.032) 

0.057 
(0.008) 

 

Ln(R&D/Sales) t-1    0.697 
(0.017) 

Ln(Capital) t-1   0.169 
(0.014) 

 

Ln(Labor) t-1   0.625 
(0.018) 

 

Ln(R&D Stock/Capital 
Stock)t -1 

0.901 
(0.221) 

   

[Ln(R&D Stock/Capital 
Stock)t -1]2 

-0.393 
(0.244) 

   

[Ln(R&D Stock/Capital 
Stock)t -1]3 

0.106 
(0.111) 

   

[Ln(R&D Stock/Capital 
Stock)t -1]4 

-0.017 
(0.023) 

   

[Ln(R&D Stock/Capital 
Stock)t -1]5 

0.002 
(0.002) 

   

[Ln(R&D Stock/Capital 
Stock)t -1]6 

-0.006 a 
(0.008) 

   

Ln(Sales)t-1  0.107 
(0.032) 

  

Ln(Patents)t-1  0.545 
(0.029) 

  

Pre-sample fixed effect  0.203 
(0.035) 

  

     
Year dummies Yes Yes Yes Yes 
Firm fixed effects  Yes Yes (BGVR) Yes Yes 
No. Observations 7,269 6,699 7,364 6,325 
     

 
a coefficient and standard error have been multiplied by 10 
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Notes: This table summarizes the results from the “preferred specifications” using the alternative 
method of constructing SPILLSIC based on BVD data (see Appendix B). The market value 
equation in column (1) corresponds to the specification in Table 3 column (2); the patents 
equation in column (2) corresponds to the specification in Table 4 column (3); the productivity 
equation in column (4) corresponds to the specification in Table 5 column (2) and the R&D 
equation in column (3) corresponds to the specification in Table 6 column (4).  
 



 76

TABLE 10 – ALTERNATIVE CONSTRUCTION OF SPILLOVER VARIABLES 
 
A. Baseline (Summarized from Tables 3-6 above) 
 
 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Patents Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.242 

(0.105) 
0.192 
(0.038) 

0.103 
(0.046) 

 -0.036 
(0.040) 

Ln(SPILLSIC)t-1 -0.072 
(0.032) 

 0.032 
(0.016) 

 0.010 
(0.012) 

0.033 
(0.019) 

Lagged dependent 
variable 

 0.402 
(0.029) 

 0.681 
(0.015) 

Observations 9,944 9,023 10,009 8,387 
 

B. Alternative Based on SPILLSICA (and SPILLTECH unchanged) 

 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Patents Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.239 

(0.104) 
0.192 
(0.038) 

0.106 
(0.046) 

 -0.041 
(0.040) 

Ln(SPILLSIC)t-1 -0.068 
(0.032) 

0.049 
(0.017) 

0.004 
(0.010) 

0.036 
(0.019) 

Lagged dependent 
variable 

 0.550 
(0.026) 

 0.681 
(0.015) 

Observations 9,958 9,046 10,023 8,387 
 

C. Alternative Based on SPILLSICA  and SPILLTECHA   

 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Patents Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.188 

(0.193) 
0.241 
(0.049) 

0.085 
(0.040) 

 -0.032 
(0.036) 

Ln(SPILLSIC)t-1 -0.069 
(0.032) 

0.041 
(0.017) 

0.004 
(0.012) 

0.036 
(0.019) 

Lagged dependent 
variable 

 0.540 
(0.026) 

 0.681 
(0.015) 

Observations 9,958 9,046 10,023 8,387 
 

D. Alternative Based on  SPILLTECH EG  (see Ellison-Glaeser, 1997) 

 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Patents  Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.886 

(0.184) 
0.653 
(0.273) 

0.061 
(0.075) 

-0.167 
(0.075)  

Ln(SPILLSIC)t-1 -0.076 
(0.031) 

0.039 
(0.010) 

0.017 
(0.013) 

0.035 
(0.017) 

Lagged dependent 
variable 

 0.637 
(0.027) 

 0.680 
(0.015) 

Observations 9,944 9,023 10,009 8,387  
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E. Alternative Based on SPILLTECH TFK  (see Thompson and Fox-Kean, 2005) 
 
 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Patents Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.105 

(0.062) 
0.223 
(0.032) 

0.059 
(0.025) 

 0.023 
(0.029) 

Ln(SPILLSIC)t-1 -0.063 
(0.033) 

 0.023 
(0.017) 

 0.002 
(0.013) 

0.021 
(0.019) 

Lagged dependent 
variable 

 0.547 
(0.026) 

 0.680 
(0.015) 

Observations 9,848 8,923 9,913 8,386 
 

 
Notes: This table summarizes the results from the “preferred specifications” using the alternative 
methods of constructing the distance metrics (see text).  The market value equation in column (1) 
corresponds to the specification in Table 3 column (2); the patents equation in column (2) 
corresponds to the specification in Table 4 column (3); the productivity equation in column (4) 
corresponds to the specification in Table 5 column (2) and the R&D equation in column (3) 
corresponds to the specification in Table 6 column (4).  Panel A summarizes the results in Tables 
3-6 using the standard methods where ∑
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=
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,
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(with SPILLTECHA  defined analogously). Panel D uses a variant of the the Ellison-
Glaeser (1997) co-agglomeration measure of distance for SPILLTECH ( Panel E uses a 
more disaggregated version of technology classes,  SPILLTECHTFK, as suggested by 
Thompson and Fox-Kean, 2005). See section 3.4 and Appendix C for more details. 
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TABLE 11 –   ECONOMETRIC RESULTS FOR SPECIFIC HIGH TECH INDUSTRIES 

 
A. Computer Hardware  
 (1) (2) (3) (4) (5) 
Dependent variable Tobin’s Q Patents Cite-

weighted 
patents 

Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 1.302 
(0.613) 

0.013 
(0.158) 

0.427 
(0.176) 

0.457 
(0.222) 

-0.158 
(0.164) 

Ln(SPILLSIC)t-1 -0.472 
(0.159) 

 0.532 
(0.433) 

-0.193 
(0.525) 

-0.046 
(0.226) 

0.091 
(0.095) 

Lagged dependent 
variable 

 0.696 
(0.065) 

0.488 
(0.088) 

 0.648 
(0.059) 

Observations 358 277 277 343 388 
 
B. Pharmaceuticals 
 (1) (2) (3) (4) (5) 
Dependent variable Tobin’s Q Patents Cite-

weighted 
patents 

Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 1.611 
(0.674) 

-0.273 
(0.326) 

1.056 
(0.546) 

0.638 
(0.279) 

0.154 
(0.243) 

Ln(SPILLSIC)t-1 -1.324 
(0.612) 

-0.106 
(0.194) 

-0.089 
(0.174) 

-0.396 
(0.339) 

 0.359 
(0.532) 

Lagged dependent 
variable 

 0.218 
(0.091) 

0.269 
(0.089) 

 0.660 
(0.117) 

Observations 334 265 265 313 381 
 
C. Telecommunication Equipment  
 (1) (2) (3) (4) (5) 
Dependent variable Tobin’s Q Patents Cite-

weighted 
patents 

Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 2.299 
(0.869) 

0.290 
(0.175) 

0.651 
(0.364) 

0.477 
(0.339) 

0.217 
(0.208) 

Ln(SPILLSIC)t-1 -0.118 
(0.456) 

0.064 
(0.073) 

-0.025 
(0.217) 

0.154 
(0.182) 

-0.049 
(0.085) 

Lagged dependent 
variable 

 0.645 
(0.093) 

0.476 
(0.098) 

 0.598 
(0.059) 

Observations 405 
 

353 353 390 429 

Notes: Each Panel (A, B, C) contains the results from estimating model on the specified separate 
industries (see Appendix B for exact details). Each column corresponds to a separate equation for 
the industries specified. The regression specification is the most general one used in the pooled 
regressions. Tobin’s Q (column 1) corresponds to the specification in column (2) of Table 3; 
Patents (column 2) corresponds to column (3) of Table 4; cite-weighted patents (column 3) is 
identical to the previous column but replaces all patent counts with their forward cite weighted 
equivalents; real sales (column 4) corresponds to column (2) of Table 5; R&D/Sales (column (5)) 
corresponds to column (4) of Table 6.  
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TABLE 12 –  POLICY SIMULATIONS: SPILLOVER IMPACTS ACROSS DIFFERENT 
GROUPS OF FIRMS 

Panel A 
 
 (1) (2) (3) (4) 
Target Group Short-run R&D 

Stimulus, $m 
Additional R&D 
Dynamics and 
Spillovers,  $m 

Total R&D Increase 
(columns 1+2), $m  

Total Output 
Increase, $m  
 

1. All Firms 870 755 1,625 6,178 
2. US R&D Tax 
Credit (firms 
eligible in median 
year) 

870 779 1,650 5,982 

3. Smaller Firms 
(smallest 50%) 

870 513 1,384 3,745 

4. Larger Firms 
(largest 50%) 

870 765 1,636 6,287 

 
Panel B 
 
 (1) (2) (3) 
Target Group % firms Average SIC 

 
Average TECH 
 

1. All Firms 100 0.046 0.127 
2. US R&D Tax Credit (firms 
eligible in median year) 

40 0.052 0.131 

3. Smaller Firms (smallest 50%) 50 0.041 0.074 
4. Larger Firms (largest 50%) 50 0.047 0.129 
 
Notes: All numbers in 1996 prices and simulated across all firms who reported non-zero R&D at 
least once over the 1990-2001 period. We use our “preferred” systems of equations as in Table 8  
Details of calculations are in Appendix E. In Panel A we consider four different experiments. The 
first row gives every firm 1% extra R&D. Given average R&D spending in the sample this 
“costs” $870m in the short-run (column (1)). We predict (column (2)) that incorporating 
dynamics and spillovers this will generate an extra $755m of R&D giving a total of total of 
$1,625m in column (3). This is associated with an extra $6,178m increase in production (column 
4) in the long-run).  
The other rows consider a stimulus of the same aggregate size ($870m) but distributed in different 
ways (column (1) of Panel B gives the proportion of firms affected). Row 2 is calibrated to a 
stylized version of the current US R&D tax credit (see text for details) and assumes all eligible 
firms (40% under our stylized scheme) increase R&D by the same proportionate amount (capping 
the total at $870m). Row 3 considers an experiment that gives an equi-proportionate increase in 
R&D to the smallest 50% of firms (by mean 1990s employment size). Row 4 does the same for 
the largest 50% of firms. 
In Panel B, the SIC and TECH average values have been calculated after weighting by the R&D 
of the spillover receiving firm times the R&D of the spillover generating firm. This accounts for 
the average closeness of difference groups of firms and also the absolute size of the spillovers.  
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APPENDIX TABLES 
TABLE A1 –  

AN EXAMPLE OF SPILLTEC AND SPILLSIC FOR FOUR MAJOR FIRMS 
 
 Correlation IBM Apple Motorola Intel 
IBM SIC Compustat 

SIC BVD 
TECH  

1 
1 
1 

0.65 
0.55 
0.64 

0.01 
0.02 
0.46 

0.01 
0.07 
0.76 

Apple SIC Compustat 
SIC BVD 
TECH 

 1 
1 
1 

0.02 
0.01 
0.17 

0.00 
0.03 
0.47 

Motorola SIC Compustat 
SIC BVD 
TECH 

  1 
1 
1 

0.34 
0.47 
0.46 

Intel SIC Compustat 
SIC BVD 
TECH 

   1 
1 
1 

 
Notes: The cell entries are the values of SICij = (Si S’j)/[(Si Si’)1/2(Sj S’ j)1/2] (in normal script) 
using the Compustat Line of Business sales breakdown (“SIC Compustat”) and the Bureau Van 
Dijk database (“SIC BVD”), and TECHij = (Ti T’j)/[(Ti Ti’)1/2(Tj T’ j)1/2] (in bold italics) between 
these pairs of firms. 


