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Abstract

This paper studies when and by how much the Fed and the ECB change their target

interest rates. I develop a new nonlinear bivariate framework, which allows for elaborate

dynamics and potential interdependence between the two countries, as opposed to linear

feedback rules, such as a Taylor rule, and I use a novel real-time data set. A Bayesian

estimation approach is particularly well suited to the small data sample. Empirical results

support synchronization between the central banks and non-zero correlation between mag-

nitude shocks, but they do not support follower behavior. Institutional factors and inflation

represent relevant variables for timing decisions of both banks. Inflation rates are important

factors for magnitude decisions, while output plays a major role in US magnitude decisions.
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1 Introduction

This paper focuses on the Federal Reserve (Fed) and the European Central Bank (ECB) interest

rate feedback rules. In particular, it develops an econometric model that empirically analyzes

when a target rate change is adopted (timing), as well as by how much the rate is changed

(magnitude change). While central banks’ behavior has typically been described with the use of

univariate linear interest-rate feedback rules, such as Taylor rules, I exploit a nonlinear bivariate

framework, which allows for elaborate dynamics and for potential interactions between the two

central banks.

This study is appealing for several reasons. The most important way the Fed and the ECB

express their monetary policy goals is by setting, respectively, the Federal Funds Target Rate

(FFTR) and the Main Refinancing Operation (MRO) rate.1 These policy rates are important

because they signal the stance of monetary policy, affect investment decisions, and often have

considerable impact on financial markets. Understanding the way the two central banks set

their target rates and identifying the variables taken into account in the process is of great

interest. Since it started to operate at the beginning of 1999, the ECB, together with the Fed,

has been meticulously scrutinized in the way it conducts monetary policy. Bartolini and Prati

(2003) analyze the Fed and the ECB with particular attention to institutional structures, policy

frameworks, and operational procedures. Cecchetti and O’Sullivan (2003) compare the central

banks’ approaches to the execution of monetary policy. US and EMU policy rates followed a

roughly similar pattern over the period January 1st, 1998 to March 25th, 2005 - see Figure 1.

The EMU rate fluctuates over a narrower range than the US rate; both rates are characterized

by frequent changes in the first half of the sample and sporadic changes in the middle part of the

sample; the FFTR displays frequent changes also in the last part of the sample, while the EMU

rate is held constant for a long period of time.2 In addition, the size and sign of interest rate

changes display some similarities. My analysis addresses these issues by studying when interest

rate changes are implemented and by examining the size and sign of those changes, with the

idea that the two decisions could carry distinct information and might be triggered by different

variables.

Open questions in the monetary policy debate are whether in an open economy interest rate

feedback rules should include the exchange rate, in addition to inflation and output, and, more

1 In particular, the Federal Open Market Committee (FOMC) implements its monetary policy decisions by
changing its target for the federal funds rate (FFR), which is the rate at which depository institutions borrow and
lend reserves to and from each other overnight. Although the Federal Reserve does not control the FFR directly,
it can do so indirectly by varying the supply of reserves available to be traded in the market. On the other hand,
the key policy rate set by the Governing Council of the ECB is the rate applied to main refinancing operations,
which provide the bulk of liquidity to the financial system.
For more information about how the Fed and the ECB operate, see the appendix
2Please note that the sample only includes the first part of the 2004 through 2006 tightening cycle .
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generally, how optimal interest rate feedback rules should be designed within an international

framework - see, among others, Clarida et al. (2002), Benigno (2002), and Pappa (2004).

While the theoretical literature has focused on optimality issues, this papers introduces a new

methodology to provide evidence about the interaction between the Fed and the ECB. It does

not address issues related to cooperation or potential gains from cooperation. This paper only

provides stylized facts about Fed and ECB interest rate feedback rules, exploring the possibility

that interdependence could play a role in describing timing and magnitude of interest rate

changes.

Moreover central bank behavior is a building block of dynamic equilibrium models, together

with production and consumption. It is not clear that conventional linear interest rate feedback

rules are sufficient to explain the complexity of central banks’ behavior, especially in the presence

of potential interdependences. I therefore investigate the possibility that a nonlinear model could

better describe interest rate decisions.

Methodologically, one novelty of the paper is to provide a Bivariate Autoregressive Condi-

tional Hazard (BACH) model to study the timing of interest rate changes and a Conditional

Bivariate Ordered (CBO) Probit model to analyze the magnitude of interest rate changes. The

BACH model extends the Autoregressive Conditional Hazard (ACH) model of Hamilton and

Jordà (2002) in order to account for interdependence between the two central banks. The

timing/duration framework is based on the Autoregressive Conditional Duration (ACD) model

developed by Engle and Russell (1998a, 1998b) and Engle (2000). Bergin and Jordà (2003)

analyze empirical evidence of monetary policy interdependence within a set of 14 OECD coun-

tries, making use of the Hamilton and Jordà (2002) model, but they do not analyze the EMU.

They study interdependence by investigating whether the probability of a change in the domestic

target rate at time t depends on a similar decision by a “leading country” at time t−1 (US, Ger-
many or Japan). This implies a hierarchy between banks and assumes that the leading central

bank’s decision is known by the other central bank. Moreover, their setup does not allow them

to recover a joint hazard probability for the two central banks. My model differs from Bergin

and Jordà (2003) because it is a truly bivariate model which converts the marginal hazards to

a joint hazard probability through the use of a conditional discrete copula-type representation.

This allows me to treat the Fed and ECB symmetrically and to study interdependence in the

form of decision synchronization and follower behaviors. The CBO Probit model represents a

special case of a Bivariate Ordered Probit model, where I rescale the probability mass to con-

dition on the timing decision. It differs from Bergin and Jordà (2003) because, by rescaling, I

am able to study the exact magnitude of the change (basis points change) as opposed to merely

the direction of change (strong increase, increase, decrease, strong decrease).

According to the Taylor-type rule literature, past interest rates, inflation, output gaps, and

exchange rate movements are relevant factors in choosing the level of interest rate changes. I
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analyze whether these variables are important in determining when the Fed and ECB change

their interest rates, as well as whether they play a role in explaining the magnitude of the change.

Moreover, I study whether the Fed and the ECB synchronize their policies, whether one follows

the other, and whether there exists a contemporaneous correlation in the magnitude of their

interest rate changes. Timing synchronization of policies is analyzed with the odds ratio, which

indicates how much the odds of one bank changing its target rate move when the other bank

changes its target. Follower behavior is studied with dummy variables that capture the effect

of one country’s interest rate decision on the subsequent decisions of the other country. A test

on the coefficient of this dummy variable can be interpreted as a test of one country (Granger)

causing the other country’s interest rate decision, and hence one country following the other

country’s decision. The correlation between interest rate changes captures the correlation which

is left unexplained after traditional explanatory variables have been considered. This paper shows

whether the traditional variables that have commonly been used in the literature, are sufficient

in explaining timing and magnitude changes of policy rates, and whether the interdependence

could be a factor in explaining monetary policies. However, it does not provide a complete

answer to the underlying problem about what is in fact the source of the interdependence and

whether interdependence is optimal.

Another novel feature of the paper is the empirical application with the use of a real-time

data set and the Bayesian estimation. Persuaded that the available information set that central

banks observe is of great importance to the decisions they make, I construct and use a real-time

data set that includes output and inflation measures, exchange rates and data on target rates

and duration between changes. This real time approach to monetary policy has been studied,

among others, by Orphanides (2001), who demonstrates that real-time policy recommendations

differ from those derived with ex-post revised data. Bayesian estimation is not new to monetary

policy studies (see Cogley and Sargent 2002, Schorfheide 2006, and Sims and Zha 1998), but, to

the best of my knowledge, it has never been applied to ACD- or ACH-type models. The methods

used in the paper generally require fairly large samples to produce results. Because of the youth

of the ECB and the type of data, the sample used in the paper is small. The Bayesian framework

is particularly well suited to this small sample problem, because it allows me to incorporate pre-

sample information to better evaluate the available information. I use ten years of data for the

Fed and the Bundesbank to elicit the prior, following the view that the German central bank is,

among the European central banks, the one that most closely resembles the ECB. Although the

Bayesian approach facilitates the estimation, it does not completely eliminate the small sample

problem.

Estimation results confirm that ACH-type models need long data samples. However, the

timing model results seem to support the hypothesis that institutional factors, such as scheduled

meetings of the FOMC and the Governing Council, as well as inflation rates, are important
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variables in determining timing decisions. Timing synchronization between the two central

banks is supported, even after removing the September 2001 coordination attempt. On the

other hand, follower behaviors are not supported, rejecting therefore the hypothesis that the

ECB follows the Fed or vice versa. Estimation results for the magnitude model illustrate the

importance of inflation rates as explanatory variables for both countries. Output turns out to

be a major determinant of Fed but not of ECB magnitude decisions, confirming the idea that

the ECB’s primary objective is to maintain price stability. I find evidence supporting non-zero

correlation between the magnitude shocks. The positive correlation suggests that the interest

rate feedback rules containing inflation, output, and the exchange rate might not capture the

interdependence in the level decisions.

The paper is organized as follows. The next section describes the model. Section 3 describes

the data. Section 4 describes the Bayesian implementation and presents empirical results. Sec-

tion 5 presents a comparison with a traditional Vector Autoregression approach. Section 6

concludes.

2 The Model

For simplicity I refer to the US and the EMU as countries a and b. The basic idea is to separate

timing and magnitude of interest rate changes, and to derive a model capable of accounting for

the specific features of both decisions. I describe timing by binary variables that take the value

one when the target interest rate is changed. Consequently, magnitude variables take non-zero

values only when the timing binary variable is one.

More precisely, let xit be a binary variable that takes values {0, 1} according to whether the
target rate of country i ∈ {a, b} has changed at calendar time t :

xit =

(
1 target rate of country i is changed

0 otherwise
(1)

and let yit be the interest rate change that takes place whenever event x
i occurs (i.e. whenever

xi = 1).

I am interested in studying whether the two central banks decide to change their target rate

(x) and by how much (y); hence I want to study the joint probability f
¡
xat , x

b
t , y

a
t , y

b
t |Ft−1

¢
,

where Ft−1 is the information set available at time t − 1. The joint probability can be rewrit-
ten as the product of the marginal distribution of

¡
xa, xb

¢
and the conditional distribution of¡

ya, yb| xa, xb
¢
:

f
³
xat , x

b
t , y

a
t , y

b
t |Ft−1; θ

´
= g

³
xat , x

b
t |Ft−1; θ1

´
· q
³
yat , y

b
t |xat , xbt ,Ft−1; θ2

´
(2)
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so that the resulting log-likelihood can be decomposed into two parts

L (θ1, θ2) = L1 (θ1) + L2 (θ2) (3)

where

L1 (θ1) =
TX
t=1

log g
³
xat , x

b
t |Ft−1; θ1

´
Timing Model (4)

L2 (θ2) =
TX
t=1

log q
³
yat , y

b
t |xat , xbt ,Ft−1; θ2

´
Level Model. (5)

As pointed out by Engle (2000), if θ1 and θ2 have no parameters in common and are variation

free, the maximization of L (θ1, θ2) is equivalent to maximizing L1 (θ1) and L2 (θ2) separately.
I refer to the first part of the likelihood as the Timing Model and to the second part as

the Level Model. The former is characterized as a Bivariate Autoregressive Conditional Hazard

(BACH) model, while the latter is a Conditional Bivariate Ordered (CBO) Probit model.

I describe both models below.

2.1 Bivariate Autoregressive Conditional Hazard (BACH) Model

The Timing model hinges on the joint probability of type a and b events occurring, where type i

event occurring means that country i, i ∈ {a, b}, has decided to change its target rate. Marginal
probability distributions for individual interest rate decisions have been modeled in the literature

with Autoregressive Conditional Hazard (ACH) models - see Hamilton and Jordà (2002). The

ACH model is derived from the Autoregressive Conditional Duration (ACD) model proposed

by Engle and Russell (1998a, 1998b) and Engle (2000). The ACD model is developed in event

time3 and aims to explain the duration of spells between events (between two consecutive trades

or quotes, for example). It is called autoregressive conditional duration because the conditional

expectation of the duration depends upon past durations. Within this duration framework,

bivariate models have been studied, but none of them is suitable to the present framework.

Engle and Lunde (2003), for example, model the joint likelihood function for trade and quote

arrivals, but they include the possibility that an intervening trade censors the time between a

trade and the subsequent quote.4 Thus their model does not serve my purpose. Moreover, unlike

them, I adopt calendar time because it readily allows me to incorporate updated explanatory

variables.
3Event time is defined by a sequence {t0, t1, .., tn, ...} with t0 < t1 < ... < tn < ... representing the arrival time

of an event. Calendar time is simply t = 0, 1, 2, 3, ..., n, ...
4 In particular, they analyse the elapsed times between two consecutive trades and between a trade and a quote.
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I develop a bivariate model which converts the marginal distribution information, modelled

following Hamilton and Jordà (2002), into a joint distribution, by using a conditional discrete

copula-type representation.

2.1.1 Marginal Hazard Rates

Define Na(t) and N b(t) to be, respectively, the cumulative number of country a and b events

as of time t, i.e. the number of target rate changes of country a and b as of time t. Following

Hamilton and Jordà (2002), I rewrite the ACD(r,m) model from Engle and Russel (1998) as

ψi
N i(t) =

miX
ji=1

αiji u
i
Ni(t)−ji +

riX
ji=1

βiji ψ
i
N i(t)−ji (6)

i = a, b

where αi and βi are country specific parameters, ψi
Ni(t) is the expected duration for country i at

calendar time t when N i(t) events have occurred and uiNi(t)−ji is the duration for country i when

N i(t) − ji events have occurred, i.e. uiNi(t)−ji is the time elapsed between event N
i(t) − ji − 1

and event N i(t)− ji. Viewed as a function of time, ψi
Ni(t) is a step function that changes only

when a new event occurs, i.e. when N i(t) 6= N i(t− 1).
Define the hazard rate hit as the probability of a country i event occurring at time t (the

probability that the central bank of country i decides to change its target rate), given the

information available up until time t− 1, i.e. Pr
¡
xit = 1|Ft−1

¢
. The country i marginal hazard

rate can be written as

hit|t−1 = Pr
£
N i (t) 6= N i (t− 1) |Ft−1

¤
= Pr

£
xit = 1|Ft−1

¤
(7)

=
1

ψi
Ni(t−1) + δ0izt−1

where

ψi
Ni(t−1) = αi uiNi(t−1)−1 + βiψi

Ni(t−1)−1 (8)

r = m = 1

zt−1 is a vector of variables known at t− 1 and δi is a parameter vector.

Using the above marginal distributions for the Bernoulli variables xi, i = a, b, I want to con-

struct a joint distribution for
¡
xa, xb

¢
. The following section gives some theoretical background

about the discrete copula-type representation that will allow me to recover the joint hazard of

countries a and b.
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2.1.2 Conditional Discrete Copula-Type Representation and Joint Hazard Rates

When marginal distributions are continuous, a joint distribution can be recovered from the

marginal distributions with the use of a copula. The beauty of a copula is that for bivariate

(multivariate) distributions, the univariate marginals and the dependence structure can be sepa-

rated, with the copula containing all the dependence information. Since the marginals considered

here are discrete, problems arise since copulas are not unique in this case. The way I solve the

problem follows Tajar et al. (2001). As the copula contains the dependence information, Tajar

et al. disentangle the dependence structure from the Bernoulli marginals.

In addition, I extend the existing results to allow for conditioning variables. For the purpose

of exposition I will assume below that F represents the conditioning set (it might contain one

or more variables).

Let
¡
xa, xb

¢
be random Bernoulli variables for which the marginal conditional distributions

Pr [xat |F ] and Pr
£
xbt |F

¤
are known. Associate

¡
xa, xb

¢
|F to a random couple

¡
ua, ub

¢
|F with

discrete uniform marginals such that

Pr [ua = 0|F ] = Pr [ua = 1|F ] = Pr
h
ub = 0|F

i
= Pr

h
ub = 1|F

i
=
1

2
. (9)

Therefore the joint distributions of
¡
xa, xb

¢
|F and

¡
ua, ub

¢
|F can be written as follows

xa|F Â xb|F 0 1

0 h00|F h01|F 1− ha|F
1 h10|F h11|F ha|F

1− hb|F hb|F

(10)

ua|FÂ ub|F 0 1

0 γ00|F γ01|F 1/2

1 γ10|F γ11|F 1/2

1/2 1/2

. (11)

The joint probabilities of
¡
xa, xb

¢
|F and

¡
ua, ub

¢
|F are such that

hlk|F =
³
pal|F

´
·
³
pbk|F

´
·
³
γlk|F

´
, l, k = 0, 1 (12)

where pal|F and pbk|F depend only on the marginals, while γlk|F contains the dependence infor-

mation.
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I compute the p0s from the marginals as

pa0|F =

³
1− ha|F

´
nf1

, pa1|F =
ha|F
nf2

(13)

pb0|F =

³
1− hb|F

´
nf3

, pb1|F =
hb|F
nf4

(14)

where nfp, p = 1, 2, 3, 4 are normalizing factors that guarantee h00 + h01 = 1− ha, h10 + h11 =

ha, h00 + h10 = 1− hb, h01 + h11 = hb.

Let the odds ratio r ∈ R+ be

r =
h00|F · h11|F
h01|F · h10|F

=
γ00|F · γ11|F
γ01|F · γ10|F

. (15)

The odds ratio is a measure of association for binary random variables. For ease of interpre-

tation, it can be rewritten as r = (γ11|F/γ10|F)
(γ01|F/γ00|F)

, where the numerator gives the “odds” of country

b event occurring versus not occurring given that country a event occurs, while the denominator

gives the “odds” of country b event occurring given that country a event does not occur. Thus

the odds ratio indicates how much the odds of country b changing its target rate increase when

country a changes its target. Independence is r = 1.

For a pair of binary random variables with uniform marginals the following property holds:

γ01|F =
1

2
− γ00|F , γ10|F =

1

2
− γ00|F , γ11|F = γ00|F . (16)

Therefore, γ00|F can be obtained as the solution
5 to the following quadratic equation

γ200|F (r − 1)− r γ00|F +
r

4
= 0. (17)

Hence hij|F i, j = 0, 1 can be computed.

This copula-type representation allows me to construct the joint hazard rates to be used in

the likelihood.

Some assumptions must be made. First, in my setup, both marginals depend on t. According

to equation (15), the odds ratio should also depend on t. I instead assume that rt = r, ∀t. Second,
I define the conditioning set F as the information available as of time t − 1. The conditioning
set must be the same for both marginal distributions.6

5Only one of the two roots belongs to [0, 1/2) and is therefore admissible. The root γ+00,t /∈ [0, 1/2).
6Thus in principle the marginal hazard rate for process a, ha, depends on all the conditioning variables (even

the one from process b). I will impose the restriction that process b variables have no effect on the duration. The
same applies to hb.
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Therefore, the joint probability of events a and b occurring (given Ft−1) is:

g
³
xat x

b
t |Ft−1; θ1

´
= (h00,t|t−1)

1[xat=0,xbt=0](h10,t|t−1)
1[xat=1,xbt=0] (18)

(h01,t|t−1)
1[xat=0,xbt=1](h11,t|t−1)

1[xat=1,xbt=1]

where 1[·, ·] is an indicator function. Equation 18 yields the following likelihood function:

L1 (θ1) =
TX
t=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
£
xat = 0, x

b
t = 0

¤
log
¡
h00,t|t−1

¢
+1
£
xat = 1, x

b
t = 0

¤
log(h10,t|t−1)

+1
£
xat = 0, x

b
t = 1

¤
log(h01,t|t−1)

+1
£
xat = 1, x

b
t = 1

¤
log(h11,t|t−1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (19)

2.2 Conditional Bivariate Ordered (CBO) Probit

I use a special bivariate ordered Probit model to analyze the interest rate magnitude changes

(yat and ybt ).

My framework is a special case of the standard bivariate ordered Probit, because I am inter-

ested in the distribution of yat and ybt conditioned on the information set Wt−1 and conditioned

on the timing decision
¡
xat , x

b
t

¢
.

Assume there are two latent variables, one for each country, representing the optimal (but

unobserved) target change

eyat = wa
t−1

0
πa + εat (20)

eybt = wb
t−1

0
πb + εbt (21)

where πa and πbare parameter vectors, wa
t−1 and wb

t−1 ∈Wt−1 are vectors of variables observed

as of time t− 1, and
¡
εat , ε

b
t

¢
|wt−1,∼ N (0,Σ) with Σ =

"
1 ρ

ρ 1

#
.

If the observable target change yit could assume the discrete values s
i ∈ {−50,−25, 0, 25, 50}

measured in basis points (bps), i = a, b, then it would be related to the unobservable optimal

target change, so that

yit =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s1 = −50 if eyit ∈ (−∞ = ci0, c
i
1]

s2 = −25 if eyit ∈ (ci1, ci2]
s3 = 0 if eyit ∈ (ci2, ci3]
s4 = 25 if eyit ∈ (ci3, ci4]
s5 = 50 if eyit ∈ ¡ci4, ci5 =∞¢ .

(22)

I observe xat and xbt and am interested in the conditional distribution of yat and ybt given xat

and xbt . The questions I want to address are: what is the joint probability of y
a
t and ybt taking
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values sm, sn ∈ {−50,−25, 25, 50}, respectively, given xat = xbt = 1 and given Wt−1? What is

the probability of yat being equal to sm ∈ {−50,−25, 25, 50} when ybt = 0 (no change for country
b occurs)? What is the probability of ybt being equal to sn ∈ {−50,−25, 25, 50} when yat = 0?

Thus, starting from the bivariate normal distribution that characterizes
¡yat
ybt

¢¯̄̄
Wt−1, I want

to retrieve f
¡eyat , eybt ¯̄wt−1, xat , x

b
t

¢
. Conditional on xat and xbt , the bivariate normal density that

characterizes the distributions of
¡
εat , ε

b
t

¢
and

¡eyat , eybt¢ is rewritten so as to redistribute the
probability mass. Figure 3 contains a visual illustration of the necessary rescaling.

The log likelihood relative to the magnitude decision can be written as

L2 (θ2) =
TX
t=1

⎧⎪⎨⎪⎩
1
£
xat = 1, x

b
t = 0

¤
logP10

+1
£
xat = 0, x

b
t = 1

¤
logP01

+1
£
xat = 1, x

b
t = 1

¤
logP11

⎫⎪⎬⎪⎭ (23)

where P10 denotes the probability of yat being equal to sm ∈ {−50,−25, 25, 50} when ybt = 0

(no change for country b occurs), once I have rescaled to condition on the timing decision¡
xat = 1, x

b
t = 0

¢
. A similar interpretation is given to P01 and P11.

7 A detailed derivation of

these probabilities is presented in the appendix.

3 Data

The raw data that I use to analyze Fed and ECB decisions are the dates and size of changes in the

FFTR and the MRO rate. Table 1 displays the FFTR level, dates on which it was changed, and

the size of the change. Table 2 displays similar data for the Eurosystem. Dummies for FOMC

and Governing Council meetings have also been included. Due to the youth of the EMU, my

sample spans the period January 1st, 1999 to March 25th, 2005 for a total of 325 weeks.

As is clear from both table 1 and table 2, the Fed has changed rates more frequently than

the ECB. The average duration for the US is about 89 days as opposed to 108 in the EMU.

Figure 2 shows that there have been a total of 26 changes in the US and 15 in the EMU. In the

US, nine were -50 bps changes, four were -25 bps changes, twelve were +25 bps changes, and

one was a +50 bps change. In the EMU, five were -50 bps changes, three were -25 bps changes,

five were +25 bps changes, and two were +50 bps changes.

Table 2 deserves a few comments. The first three dates refer to the period in which the market

was adapting to the new system. In order to limit volatility, the corridor was narrowed from 250

basis points to 50 basis points on January 4th, 1999. On January 22nd, the corridor was set again

at 250 bps, but since April 9th, it has been kept at 200 bps. Main refinancing operations which

settled before June 28th, 2000 were conducted on the basis of fixed-rate tenders, in which the

7Note that, given xit = 0, i = a, b, then yi = 0 with probability 1. Thus logP00 = 0.
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ECB would specify the interest rate in advance and participating counterparties would bid the

amount of money (volume) they were willing to transact at that rate. A side effect of the system

was chronic overbidding by financial institutions On June 8th, 2000, the ECB announced that,

starting with the operation to be settled on June 28th, 2000, the main refinancing operations

would be conducted as variable-rate tenders, in which counterparties would specify both the

amount and the interest rate at which they want to transact.

Together with these key policy rates, I create dummy variables to control for the FOMC

schedule in the United States and the Governing Council schedule in the EMU. These dummies

are important since the majority of interest rate changes happen on these scheduled meetings.

The Fed has made three inter-meeting changes (January, April and September 2001), while

the ECB has changed rates on a non-meeting day only once, in the immediate aftermath of

September 11th, 2001.

Moreover, I construct a weekly real time data set.8 US variables include the CPI and GDP

deflator as inflation measures, GDP growth, industrial production and the unemployment rate

as output measures, and the euro/dollar exchange rate. EMU variables include the euro-zone

CPI9 and GDP deflator as inflation measures, GDP growth, industrial production and the

unemployment rate as output measures, and the euro/dollar exchange rate - see Table 3.10 I

take weekly average exchange rate data. Notice that some of these variables are released at a

frequency which is lower than weekly, and therefore the latest number can potentially be quite

old and stale. This might explain why variables that are updated more frequently, such as

the CPI, IP and the unemployment rate, will be preferred to GDP and GDP deflator in the

estimation results. Evans (2005) and Aruoba et al. (2006), among others, have focused on

deriving daily or weekly estimates of GDP and other macroeconomic variables. Including those

“sophisticated” variables might be a way to overcome this problem, but it goes beyond the scope

of this paper.

The aim of collecting real-time data is to consider all the available information that the ECB

and the Fed have at the beginning of week t. I am interested in knowing all estimates, provisional

or final data released up until the end (Friday) of week t−1. In order to construct the Euro-zone
GDP and CPI series, I make use of actual released data as well as flash estimates. Euro-zone

CPI11 data for month t are released in the second half of month t+1. The same release schedule
8The original data is available daily. That is, on a given day I observe whatever data is released, and for

variables for which there is no release on that day, I consider the latest available number. To make this a weekly
dataset, I am forced to cut off the information on Fridays prior to the meetings. For the ECB, Governing Council
meetings are only on Thursdays, so I disregard all the information that arrives thereafter. FOMC meetings
are normally held on Tuesdays, thus considering information until the Friday of the previous week is not very
restrictive.

9Euro-zone inflation is measured by the Monetary Union Index of Consumer Prices (MUICP).
10 Inflation and output variables, together with their released dates, are taken from Bloomberg.
11To compute the MUICP flash estimates, Eurostat uses early price information for the reference month from

Member States for which data are available as well as early information about energy prices. The estimation
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also applies to the United States. CPI flash estimates represent a considerable enhancement in

the available information because they are released within 5 to 10 days from the end of month

t. Thus I include flash estimates as soon as they become available and substitute those with

final data when they are released. Whereas in the United States GDP data for the quarter

ending in month t become available as early as the end of month t + 1, in the euro area they

used to become available at the beginning of month t+3. Flash estimates improve the available

information because flash GDP estimates are now released as early as the middle of month t+2.

Flash estimates for the CPI started being released in November 2001, for the October 2001 CPI.

Flash estimates for GDP only began in May 2003, for 2003:Q1 GDP.12 Unemployment data

relative to month t are released in the first week of month t+1 in the United States and in the

first week of month t+ 2 in the EMU.

I also construct two decision dummy variables that will be used to assess interdependence

in timing decisions. The United States dummy variable takes the value one from the last EMU

interest rate change until the first FOMC meeting. The EMU dummy variable takes the value

one from the last US interest rate change until the second subsequent Governing Council meeting.

The asymmetry comes from the fact that Governing Council meetings are more frequent than

FOMC meetings (especially in the first part of the sample, when the Governing Council was

meeting every two weeks; the FOMCmeets only eight times a year), and I want to allow sufficient

time for both central banks to react to policy changes.

4 Estimation Strategy and Empirical Results

4.1 Bayesian Implementation13

I conduct the estimation in a Bayesian framework. A Bayesian model is characterized by the

probability distribution of the data, p(Y T |θ), and by the prior distribution p (θ). I look at the

probability of θ given the realized Y T :

p
¡
θ|Y T

¢
=

p
¡
Y T |θ

¢
p (θ)Z

p (Y T |θ) p (θ) dθ
(24)

so that the parameters θ are treated as random. Equation 24 simply shows how to recover

the posterior distribution of θ by applying Bayes Theorem. The prior belief, which is chosen

by the researcher based on economic considerations, can be thought of as an augmentation of

procedure for the MUICP flash estimate combines historical information with partial information on price devel-
opments in the most recent months to give a total index for the euro-zone. No detailed breakdown is available.
12Thus I do not use flash estimates but only provisional and final estimates before those dates.
13 I thank Frank Schorfheide for providing GAUSS code for the Bayesian estimation, which can be found at

http://www.ssc.upenn.edu/~schorf/programs/gauss-bayesdsge.zip.
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the data set which is particularly useful when there are many parameters to be estimated from

a short data sample. Bayesian analysis is therefore particularly well suited to my framework

because it allows me to augment the data set by including pre-sample information, about the

US and Germany, into the prior.14 ACD- and ACH-type models generally require fairly large

data sets.15 Because of the youth of the ECB and the type of events I analyze, the data set is

small. Bayesian estimation helps in this respect, although it does not completely eliminate the

problem.16

I use the posterior odds test to select between models. Let H0 be the null hypothesis with

prior probability π0,0. The posterior odds of H0 versus H1 are

π0,T
π1,T

=

µ
π0,0
π1,0

¶Ã
p
¡
Y T |H0

¢
p (Y T |H1)

!
(25)

where
µ
p(Y T |H0)
p(Y T |H1)

¶
is the Bayes factor containing the sample evidence and p

¡
Y T |Hi

¢
is the data

density, which I approximate with a modified harmonic mean estimation.17

4.1.1 Choice of Priors

I choose the priors for the parameters according to a number of considerations. I assume pa-

rameters are a priori independent of each other. Parameter restrictions are implemented by

appropriately truncating the distribution or by redefining the parameters to be estimated.

Table 4 describes the distributional form, means and 90% confidence intervals of the BACH

model priors. According to the Taylor rule literature, policy rates depend on their lagged values,

on some measures of inflation and output deviations, and on exchange rate depreciation. Thus I

assume that the probability of a rate change depends on the absolute deviation of inflation and

output from a norm, and on the absolute exchange rate depreciation. I take absolute deviations

because I want the probability of an interest rate change to increase with large deviations,

regardless of their signs.

Let Rt, πt, yt and ert be, respectively, the interest rate, inflation rate, a measure of output

14 I use data on the German Bundesbank because it is the central bank in Europe that most closely resembles
the ECB. Faust et al. (2001) study the monetary policy of the ECB and compare it with a simple empirical
representation of the monetary policy of the Bundesbank before 1999.
15Omitted simulation results show that the BACH model, as well as all ACD and ACH type models, need a

long data sample to identify the expected duration parameters (α and β) and the constants.
16This data problem could have been avoided by analyzing the Fed and the Bank of Japan, or the Fed and the

Bank of Canada. However, I believe that investigating the Fed and the ECB is more interesting.
17 Interpretation of the posterior odds is as follows: π0,T /π1,T > 1 null hypothesis is supported; 1 > π0,T /π1,T >

10−1/2 evidence against H0; 10−1/2 > π0,T /π1,T > 10−1 substantial evidence against H0; 10−1 > π0,T /π1,T >
10−3/2 strong evidence againstH0; 10−3/2 > π0,T /π1,T > 10−2 very strong evidence againstH0; π0,T /π1,T < 10−2

decisive evidence against H0.
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growth, and nominal exchange rate depreciation. Also, let π∗ and y∗ be the optimal level of

inflation and output growth, and 0 < ρR < 1 be the smoothing term. Then we can write the

Taylor rule as18

∆Rt =
¡
ρR − 1

¢
Rt−1 +

¡
1− ρR

¢
[b1 (πt − π∗) + b2 (yt − y∗) + b3ert] + εt. (26)

I should also include the lagged interest rate among the covariates. However, the duration

in the model generates the dynamics that a lagged interest rate would normally generate. I will,

however, verify that this is in fact the case. FOMC and Governing Council meeting dummies

have also been included as covariates, following Hamilton and Jordà (2002).

I choose priors for α, β and the constant w in equation 8, so that the marginal hazard

rate, when all the covariates are at their average value,19 matches the probability of an interest

rate change over the ten-year pre-sample period January 1st, 1989 to December 31st, 1998. I

approximate this probability by dividing the number of changes by the number of periods. Since

I do not have any pre-sample data for the ECB, I use information about the German Lombard

rate. I choose α, β and w such that

hUS =
1

αUS uUS + βUS ψ
US
+wUS

=
39

552
= 0.07 (27)

hEMU =
1

αG uG + βG ψ
G
+ wG

=
19

552
= 0.035 (28)

where u and ψ represent the average values for duration and expected duration over the pre-

sample period 1989-1998. With this approach, of course, I cannot identify the three parameters

involved in each equation. Thus I decide to fix α and β to values close to those that have been

estimated in the literature (see Hamilton and Jordà 2002 for US) and I vary w to match the

probability.

I choose priors for the covariates z using the following relationships:

hUS =
1n

αUSuUS + βUSψ
US
+ wUS − δUS |zUS |

o (29)

hEMU =
1n

αGuG + βGψ
G
+wG − δEMU |zEMU |

o . (30)

In particular, assuming all the other variables are at their average value, the prior for US

inflation implies a 0.1 increase in the probability (from 0.07 to 0.17) when the inflation rate

18See Lubik and Schorfheide.
19 I actually assume that π∗ and y∗ are the average inflation and output growth rates over the sample period.
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increases or decreases by 100 basis points.20 Similarly, the prior on the output growth implies

that a 100 basis point change increases the probability by 0.04. These probability changes might

seem small compared to the Taylor rule coefficients that have been used in the literature. How-

ever, due to the non-linearity in the model, when taken together, they have a considerable effect.

The asymmetry in treating inflation and output is justified by the fact that inflation always has

a greater coefficient in the Taylor rule literature. Very similar priors are given to EMU inflation

and output. The meeting dummy coefficients (di, i = US, EMU) are not treated equally in

the two countries, due to the greater number of EMU meetings. Notice that, since I expect all

the coefficients to be positive,21 I parameterized them as Gamma distributions.

I compute the mean of the odds ratio prior (η) by using the pre-sample proportions for

scenarios (0, 0), (0, 1), (1, 0) and (1, 1), over the period January 1st, 1989 to December 31st, 1998.

Again, I use Germany instead of the EMU. The pre-sample odds ratio is about 5.

I also choose priors for the Conditional Bivariate Ordered Probit based on pre-sample in-

formation. The means of the cut points are those that I would expect if I were to estimate

an ordered Probit with no covariates, based on the data 1989-1998 for US and Germany. The

first cut point c1 ∈ R, hence the Normal distribution. The other coefficients are appropriately

redefined so as to guarantee that the cut points are ordered. Priors for US inflation and output

coefficients are centered at values that have been commonly estimated for Taylor-type rules -

see equation 26 . Table 5 describes the distributional form, means and 90% confidence intervals

of the priors of the CBO Probit model.

4.2 BACH Estimates

I estimate a number of different specifications in order to asses which variables are in fact relevant

for US and EMU timing decision. Table 3 shows the covariates I have considered. The basic

specification I have selected includes meeting dummies, and inflation and unemployment absolute

deviations.22 Table 6 reports 90% posterior probabilities intervals and posterior means as point

estimates. Figure 4 shows prior and posterior densities. As expected, the estimates confirm

the need of a longer sample for ACD-type models,23 showing that the information contained

in the data is not always adequate to significantly amend the prior. Duration and expected

duration parameters (αi and βi, i = US, EMU), in particular, confirm this result. While

tables 6 and 8 display means and posterior probability intervals for α and β, figure 4 exhibits

20For computational convenience the covariates data have been rescaled, so that 10 and 100 basis point changes
read as 1 and 10 respectively.
21That is, I expect −δ < 0.
22Thus unemployment and the CPI dominate GDP and GDP deflator measures. Intuitively, unemployment

and the CPI are monthly statistics and therefore more promptly incorporate new information.
23Both the univariate Autoregressive Conditional Hazard (ACH) model and the Bivariate Autoregressive Con-

ditional Hazard (BACH) require long data series to estimate ACD-type parameters (α and β).
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their prior and posterior densities under a parameterization that shows the relevance of both

coefficients in terms of duration persistence.24 The constant parameters for both the US and the

EMU turn out to have a higher value compared to the prior means, possibly meaning a lower

average probability over the sample. The increased value of the constant terms goes together

with a smaller value for the coefficients of the other covariates. Nevertheless, the FOMC meeting

dummy has a bigger coefficient than the Governing Council meeting dummy (GC): given that

FOMC meetings are less frequent than Governing Council meetings, I expect a bigger increase

in the probability of a rate change when the FOMC meets. For both countries inflation seems

to play a bigger role than unemployment in determining the timing of a rate change.

An interesting by-product of the BACH model is that it generates persistence in the interest

rate without including past interest rates. The basic specification with meeting dummies, infla-

tion and output has been tested against a specification that also includes lagged interest rates,

and the former has been selected.25 I have also tested for a specification that includes exchange

rate data in the covariates. Once again the specification with meeting dummies, inflation and

output has been favoured.26 Finally, unemployment is favoured over industrial production and

GDP growth as a measure of output, and the CPI is preferred to the GDP deflator as a measure

of inflation (results omitted).

4.3 Conditional Bivariate Ordered Probit Estimates

The basic specification of the CBO Probit model that I estimate includes inflation, output

and exchange rates. Table 7 reports 90% posterior probabilities intervals and posterior means

as point estimates, figure 5 shows prior and posterior densities of the estimated parameters.

Exchange rates do not play a very significant role. On the other hand, inflation and industrial

production results exhibit interesting features. While inflation was a major factor in explaining

US interest rate timing decisions, it is industrial production that seems to play the foremost

role in explaining the size of changes in the US interest rate. Industrial production and inflation

posterior means are, respectively 1.67 and 0.82. EMU magnitude results show that, as for the

timing results, inflation is crucial and industrial production has a minor role. This is expected

in view of the fact that the ECB primary objective is to maintain price stability; a policy of

targeting output growth would probably be more problematic, given the intrinsic differences in

the economies of the EMU countries. The correlation coefficient has a posterior mean of 0.28,

with a 90% interval equal to [ 0.13, 0.55 ].

24Persistence is measured as α+ β.
25The marginal data density for the former is -160.3, while for the latter is -165.45.
26The marginal data density of the specification that includes meeting dummies, inflation, output and exchange

rates is 162.57.
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4.4 Interdependence

The interdependence test of US and EMU timing decisions is twofold: on the one hand, I am

interested in assessing “contemporaneous” interdependence, after controlling for each countries’

macroeconomic conditions, which I refer to as synchronization; on the other hand I investigate

the possibility of follower behaviors, after controlling for each countries’ macroeconomic condi-

tions. Assessing synchronization involves testing whether the odds ratio is different from 1 (1

meaning independence). The odds ratio indicates how much the odds of one country changing

its target rate increase when the other country changes its target. Columns four and five in

table 6 displays the estimation results for the independence setup. Setting the odds ratio to

1 does not significantly affect the other coefficients: both means and 90% probability intervals

are very similar to the basic specification. However, as shown in table 9, the posterior odds of

the null hypothesis H0 : odds ratio = 1 versus the alternative, shows some evidence against the

null. Thus the model seems to give some indication in favour of synchronization between the

two target rates, after controlling for each countries’ macroeconomic conditions. There was in

fact a clear attempt at coordination after September 11th, 2001, episode after which both the

Fed and the ECB lowered their target rates by 50 basis points.

Follower behaviors are studied by including the two decision dummies to account for the effect

of the other country’s decisions (see chapter 3 for a more detailed explanation of the dummy

variables). Table 8 shows that estimation results are not affected significantly by including the

two dummy variables. Table 9 suggests that the posterior odds ratio supports the null hypothesis

of no follower behaviors. I obtain the same results by including only one dummy variable at a

time. Table 9 displays the posterior odds ratio for these models.

I analyze interdependence in the CBO Probit framework by testing whether the correlation

coefficient between the latent variables in equations (20) and (21) is different from zero. Table 7

presents the estimation results for this scenario. The posterior odds ratio in table 10 shows strong

evidence against the model specification in which the correlation is set to zero. The correlation

coefficient measures the correlation between the shocks27 in the unobservable variable equations

- the omitted factors. The positive correlation seems to suggest that the interest rate feedback

rules containing past interest rates, inflation, output, and the exchange rate might not capture

the interdependence in the level decisions.

The BACH model with the odds ratio set to 1 and the CBO Probit Model with ρ = 1 can

be thought of as the Hamilton and Jordà (2002) univariate model estimated for both the Fed

and the ECB. Please note that results for the US cannot be compared because the sample is

different in term of length and included variables. Moreover Hamilton and Jordà (2002) do not

27By relating these shocks to the VAR literature, it turns out that, given the assumption that interest rates only
depend on past values of output and inflation, the disturbances in equations (20) and (21) are purely monetary
shocks.
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use a real time data set.

4.5 Omitting September 11th

After the terrorist attack of September 11th, 2001, both the Fed and the ECB, as well as other

central banks, lowered their target interest rates by 50 basis points on a non-meeting day,

Monday September 17th, 2001. In my sample, the Fed has made three inter-meeting changes

(January, April and September 2001), while the ECB has changed rates on a non-meeting day

only in this particular occasion. Given the extraordinary nature of the event that triggered the

September 17th rate cuts, it makes sense to check for robustness of the results by excluding the

September 2001 change, which simply represented a contemporaneous reaction to a common

shock.

Results for the BACH model are displayed in table 11. All parameters have posterior means

and 90% intervals very similar to those of the original data set (with 9/17). The odds ratio

displays a lower value, as expected from removing the 9/17 episode. However, the posterior

odds ratio still shows some evidence in favour of a model with positive dependence.

Results for the CBO Probit also suggest a lower correlation once we exclude the September

2001 inter-meeting change from the sample. However the model with positive correlation is still

favoured to a model with zero correlation - see table 12.

5 A Vector Autoregression Comparison

To check the goodness of fit of the model described in the paper, I compare it with a linear

reduced form vector autoregression (VAR) of the form:

xt = B xt−1 + et (31)

et ∼ (0,Σe) (32)

where xt and et are 7 × 1 vectors, and the coefficient matrix B is a 7 × 7 matrix. Our seven
endogenous variables (let M = 7 be the number of endogenous variables) include U.S. and

Euro-zone policy rates (rat , r
b
t ), inflation rates (π

a
t , π

b
t), and output (y

a
t , y

b
t ), and the bilateral

exchange rate depreciation (4ERt).28

To make the VAR structure in (31) comparable to the BACH-CBO Probit model, an iden-

tification scheme that resembles the specification underlying the BACH-CBO Probit equations

should be implemented. This would require the interest rate shock in country b to affect the in-

terest rate in country a and vice versa, consistent with the assumption in the BACH Model that

28 I use monthly data for the VAR. I use monthly averages of the effective Federal Funds rate and Eonia rate as
interest rate variables. The bilateral exchange rate is also a monthly average.
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there could be some contemporaneous relation between the two interest rates. I also implement

exclusion restrictions in the VAR in equation (31), so that the reduced form that I estimate is:

rat = c1 + bπ
a

1 πat−1 + by
a

1 yat−1 + br
b

1 r
b
t−1 + bER1 4ERt−1 + e1t (33)

πat = c2 + bπ
a

2 πat−1 + by
a

2 yat−1 + bER2 4ERt−1 + e2t

yat = c3 + bπ
a

3 πat−1 + by
a

3 yat−1 + bER3 4ERt−1 + e3t

rbt = c4 + br
a

4 rat−1 + bπ
b

4 πbt−1 + by
b

4 y
b
t−1 + bER4 4ERt−1 + e4t

πbt = c5 + bπ
b

5 πbt−1 + by
b

5 y
b
t−1 + bER5 4ERt−1 + e5t

ybt = c6 + bπ
b

6 πbt−1 + by
b

6 y
b
t−1 + bER6 4ERt−1 + e6t

4ERt = c7 + bER7 4ERt−1 + e7t

So for example, US (Euro-zone) inflation, US (Euro-zone) output, and the exchange rate are

included in the US (Euro-zone) interest rate equation together with the other country’s lagged

interest rate. US (Euro-zone) inflation and output only depend on past values of US (Euro-zone)

variables and on the exchange rate. The latter follows an AR(1) process.

The VARmodel can be cast in the form of a seemingly unrelated regression equations (SURE)

model as ⎡⎢⎣ ex1
ex7
⎤⎥⎦

| {z }
x

=

⎡⎢⎢⎣
eX1

. . . eX7

⎤⎥⎥⎦
| {z }

X

α+

⎡⎢⎢⎣
eε1t
...eε7t
⎤⎥⎥⎦

| {z }
ε

(34)

ex = eXα+ eεeε ∼ (0,Σe ⊗ IT )

where the exi, i = 1, ..., 7 denotes the T -dimensional endogenous variable vectors of observations,
so that ex is of dimension TM × 1; eX is of dimension TM × (Mk + 1) where k is the number

of non zero coefficients in A. eX is a block diagonal matrix29, with Xi, i = 1, ..., 7 of length T

containing the vectors of right-hand side variables with a non zero coefficient.30

Under the Litterman prior

ϕ (α,Σα) ∝ |Σ|−
1
2 exp

½
−1
2
(α− α)0Σ

−1
α (α− α)

¾
(35)

29For ease of notation I do not include a constant term, but the estimated version also has a constant term in
each equation.
30So for example X1, given our current specification, will be a T × 4 matrix containing the T -dimensional

vectors ra πa, ya and ∆ER.
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the posterior densities are given by31

α∗ = Σα∗
h eX 0 ¡Σ−1 ⊗ IT

¢ ex+Σ−1α α
i

(36)

Σα∗ =
h³ eX 0 Σ−1e ⊗ IT eX´+Σ−1α i−1 . (37)

I use the posterior odds π0,T
π1,T

=
³
π0,0
π1,0

´µ
p(Y T |M0)
p(Y T |M1)

¶
to compare the BACH-CBO Probit

Models (M0) to the VAR specification (M1). As shown in table 13 the former outperforms the

latter, suggesting that non linear dynamics might be important for understanding the evolution

of policy rates.

6 Conclusions

In this paper I have derived and estimated with Bayesian techniques a bivariate model to account

for interdependence between Fed and ECB decisions. I have operationalized interest rate timing

decisions with a Bivariate Autoregressive Conditional Hazard (BACH) model and magnitude

decisions with a Conditional Bivariate ordered (CBO) Probit model. The timing model yields

evidence supporting the hypothesis that (i) institutional factors (scheduled FOMC and Govern-

ing Council meetings) and inflation rates are relevant variables for both central banks, (ii) output

plays a minor role in timing decisions, and (iii) there exists synchronization but no follower be-

havior. The magnitude model illustrates that (i) inflation rates are the most important variables

in determining interest rate levels, (ii) output plays a prime role for US magnitude decisions,

and (iii) the posterior odds ratio favors a model with correlation in magnitude changes. I also

find that, based on the posterior odds ratio, my model outperforms a linear VAR specification.

My findings are necessarily based on a relatively small sample; however, there seems to

be evidence suggesting that timing and magnitude changes are in fact quite interesting issues.

The paper provides evidence in favor of interaction in US and EMU interest rate timing and

magnitude decisions, after controlling for traditional variables that have commonly been used

in the literature. The paper offers a new methodology to analyze interdependence, however,

it does not provide a complete answer to the underlying problem about what is in fact the

source of the interdependence and whether interdependence is optimal. Identifying where the

interdependence comes from and analyzing whether results are robust to the inclusion of a larger

set of explanatory variables remain important topics for further research.

31See the appendix for the derivation.
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7 Appendix

7.1 Fed and ECB

The Federal Reserve System is composed of the Board of Governors and twelve Federal Reserve

Banks. The Federal Open Market Committee (FOMC) is the policy-making organ of the Fed

system, whose monetary policy decisions are carried out by the Federal Reserve Bank of New

York. The Fed’s policy tools are required reserve ratios, the discount rate and the Federal funds

rate, which is influenced by open market operations. A detailed description of how the Fed

system works can be found in Hamilton and Jordà (2002) and in Piazzesi (2005).

Open market operations are used much more frequently than the other two tools. Required

reserve holdings have declined considerably in the past ten to fifteen years; the discount window

has also had a very limited role in recent years.
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When the Fed implements open market operations, it sells (buys) securities to (from) banks

and debits (credits) the banks’ account at the Fed. This implies an increase (decrease) in the

amount of reserves held by banks at the Fed, and therefore will decrease (increase) the amount of

reserves that they need to borrow from other banks in order to comply with reserve requirements.

The rate at which banks borrow reserves from each other is the effective federal funds rate. When

the FOMC sets the federal funds target rate, the New York Fed implements it through open

market operations as described above. FOMC meetings are normally held eight times a year, or

every five to eight weeks.

The European Central Bank (ECB), together with the national central banks of the European

Monetary Union (EMU) Member States, constitutes the Eurosystem. The Euro-zone consisted

of 11 member states up until 31st December 2000, and comprises 12 members since January 1st,

2001, when Greece joined. The Governing Council of the ECB formulates the monetary policy,

the Executive Board implements this monetary policy and ”to the extent deemed possible and

appropriate and with a view to ensuring operational efficiency, the ECB [has] recourse to the

national central banks to carry out operations which form part of the tasks of the Eurosystem”

(ECB 2002).

The Eurosystem has the primary objective of maintaining price stability. Moreover “the

Eurosystem has to support the general economic policies in the European Community” and, in

order to attain these objectives, it “conducts open market operations, offers standing facilities

and requires credit institutions to hold minimum reserves on accounts with the Eurosystem”

(ECB 2002).

Open market operations are particularly important for signalling the stance of monetary

policy, steering interest rates and controlling market liquidity. They are conducted through five

types of instruments: reverse transactions (main instrument), outright transactions, issuance of

debt certificates, foreign exchange swaps and collection of fixed-term deposits. Open market op-

erations can be sorted in to four categories: main refinancing operations, longer-term refinancing

operations, fine-tuning operations and structural operations.

The marginal lending facility and deposit facility are used, respectively, by national eligi-

ble institutions32 to obtain (overnight) liquidity from the national central banks and to make

overnight deposits with national central banks at pre-specified interest rates. Those interest

rates represent the ceiling and the floor for the overnight interest rate.

Moreover, the ECB requires credit institutions to hold minimum reserves on accounts with

the national central banks. The double aim is to stabilize money market interest rates by giving

institutions an incentive to smooth the effect of temporary liquidity fluctuations, and to improve
32Financially sound institutions that are subject to the minimum reserve requirement and that fulfill operational

criteria satisfy these eligibility requirements. More information about eligible counterparties can be found in
chapter 2 of ECB (2002).
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the ability of the Eurosystem to function as a supplier of liquidity by generating or extending a

liquidity shortage. Reserve requirements are determined on the basis of the end of calendar day

balances over a one-month period (from the twenty-fourth day of a month to the twenty-third

day of the next).

The key policy rate of the ECB is the rate applied to main refinancing operations (MRO). It

has been either the minimum bid rate of variable rate tenders, or the rate applied to fixed rate

tenders. The MRO rate has always been equal to the mid rate of the corridor set by the rates

on the standing facilities. MROs are liquidity-providing repurchase transactions that supply the

bulk of financing to the financial sector. They occur at a weekly frequency, have a two-week

maturity, and are carried out by national central banks on the basis of standard tenders. The

MRO rate is set by the Governing Council, which met on alternate Thursdays until October

2001. Since November 2001, interest rate decisions are discussed only during the meeting held

on the first Thursday of the month. The Governing Council consists of all the members of the

Executive Board and the governors of the national central banks of the Member States that

have adopted the euro. The Executive Board consists of the President, the Vice-President, and

four other members.

7.2 CBO Probit Model

The log likelihood relative to the magnitude decision is

L2 (θ2) =
TX
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7.3 Bayesian Implementation

Following Schorfheide (2000), I compute the mode eθ of the posterior density p
¡
θ|Y T

¢
through

a numerical optimization routine and then evaluate the inverse Hessian eΣ. I use a random walk

Metropolis algorithm to generate nsim draws eθs from the posterior p ¡θ|Y T
¢
.33 At each iteration

s, I draw a candidate parameter vector ϑ from a jumping distribution Js
³
ϑ|θ(s−1)

´
and I accept

the jump from θ(s−1) so that θ(s) = ϑ with probability min(r, 1) where r is defined as

r =
p
¡
Y T |ϑ

¢
p(ϑ)

p
³
Y T |θ(s−1)

´
p(θ(s−1))

(45)

33 I use nsim = 150, 000 for the BACH model and nsim = 100, 000 for the CBO Probit Model.
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and reject otherwise. The Markov chain sequence
n
θ(s)
onsim
s=1

converges to the posterior distrib-

ution as nsim →∞. I use a Gaussian jumping distribution Js ∼ N
³
θ(s−1), c2eΣ´ with c = 0.3.

7.4 Posterior Densities

Let θ = (α,Σα) represent the parameters and y be the data. Consider the Litterman prior

ϕ (θ) ∝ |Σ|−
1
2 exp

n
(α− α)0Σ

−1
α (α− α)

o
(46)

and the SURE likelihood
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FFTR FFTR Change Week Day Duration
in days

17-Nov-98 4.75 Tue
30-Jun-99 5.00 0.25 Wed 225
24-Aug-99 5.25 0.25 Tue 55
16-Nov-99 5.50 0.25 Tue 84
2-Feb-00 5.75 0.25 Wed 78
21-Mar-00 6.00 0.25 Tue 48
16-May-00 6.50 0.25 Tue 56
03-Jan-01 6.00 0.50 Wed 232
31-Jan-01 5.50 -0.50 Wed 28
20-Mar-01 5.00 -0.50 Tue 48
18-Apr-01 4.50 -0.50 Wed 29
15-May-01 4.00 -0.50 Tue 27
27-Jun-01 3.75 -0.25 Wed 43
21-Aug-01 3.50 -0.25 Tue 55
17-Sep-01 3.00 -0.50 Mon 27
2-Oct-01 2.50 -0.50 Tue 15
6-Nov-01 2.00 -0.50 Tue 35
11-Dec-01 1.75 -0.25 Tue 35
6-Nov-02 1.25 -0.50 Wed 330
25-Jun-03 1.00 -0.25 Wed 231
30-Jun-04 1.25 0.25 Wed 371
10-Aug-04 1.50 0.25 Tue 41
21-Sep-04 1.75 0.25 Wed 42
10-Nov-04 2.00 0.25 Wed 50
14-Dec-04 2.25 0.25 Wed 34
02-Feb-05 2.50 0.25 Wed 50
22-Mar-05 2.50 0.25 Wed 48

Table 1: Calendar of Federal Funds Target Rate changes
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Deposit MRO Marg.
Lending

MRO Week Duration

Facility Facility change Day in days
Fix. Rate

Tender
V ar. Rate

Tender

1-Jan-99 2.00 3 - 4.50 Fri
4-Jan-99 2.75 3 - 3.25 Mon
21-Jan-99 2.00 3 - 4.50 Thu
8-Apr-99 1.50 2.5 - 3.50 -0.50 Thu 97
4-Nov-99 2.00 3 - 4.00 0.50 Thu 210
3-Feb-00 2.25 3.25 - 4.25 0.25 Thu 91
16-Mar-00 2.50 3.5 - 4.50 0.25 Thu 42
27-Apr-00 2.75 3.75 - 4.75 0.25 Thu 42
8-Jun-00 3.25 4.25 - 5.25 0.50 Thu 42
28-Jun-00 3.25 - 4.25 5.25 Wed
31-Aug-00 3.50 - 4.50 5.50 0.25 Thu 84
05-Oct-00 3.75 - 4.75 5.75 0.25 Thu 35
10-May-01 3.50 - 4.50 5.50 -0.25 Thu 217
30-Aug-01 3.25 - 4.25 5.25 -0.25 Thu 112
17-Sep-01 2.75 - 3.75 4.75 -0.50 Mon 18
8-Nov-01 2.25 - 3.25 4.25 -0.50 Thu 52
5-Dec-02 1.75 - 2.75 3.75 -0.50 Thu 392
6-Mar-03 1.50 - 2.50 3.50 -0.25 Thu 91
5-Jun-03 1.00 - 2.00 3.00 -0.50 Thu 91

Table 2: Calendar of Main Refinancing Operation rate changes

US Variables EMU Variables
Meeting Dummies

FOMC Governing Council
Inflation Measures

CPI excl FE index YOY% MUCPI YOY%
GDP Deflator YOY% GDP Deflator YOY%

Output Measures
GDP Growth YOY% GDP Growth YOY%
Industrial Production MOM% Industrial Production MOM%
Unemployment Rate Unemployment Rate

Exchange Rate
Eurodollar Rate Weekly Average Eurodollar Rate Weekly Average

Decision Dummies
US decision EMU decision

Table 3: Explanatory variables included in the dataset
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BACH Model - Prior Distribution
Parameter Range Density Mean St. Dev. 90% Interval
αUS [0, 1) Beta 0.16 0.09 [ 0.02, 0.29 ]
βUS [0, 1) Beta 0.64 0.15 [ 0.41, 0.88 ]
wUS R+ Gamma 12.00 4.98 [ 4.24, 19.62 ]
FOMC R+ Gamma 6.00 1.50 [ 3.55, 8.40 ]
CPIUS R+ Gamma 0.80 0.50 [ 0.08, 1.50 ]
−UUS R+ Gamma 0.60 0.70 [ 0.00, 1.50 ]
dUS R+ Gamma 2.00 1.00 [ 0.49, 3.48 ]
αEMU [0, 1) Beta 0.14 0.08 [ 0.02, 0.25 ]
βEMU [0, 1) Beta 0.56 0.14 [ 0.34, 0.80 ]
wEMU R+ Gamma 15.00 4.98 [ 7.83, 23.56 ]
GC R+ Gamma 4.99 1.50 [ 2.50, 7.29 ]
CPIEMU R+ Gamma 0.80 0.40 [ 0.19, 1.38 ]
−UEMU R+ Gamma 0.60 0.40 [ 0.04, 1.15 ]
dEMU R+ Gamma 2.00 1.00 [ 0.47, 3.46 ]
η R+ Gamma 5.00 3.00 [ 0.61, 9.23 ]

Table 4: The table reports information on the BACH parameter priors

CBO Probit Model-Prior Distribution
Parameter Range Density Mean St.Dev. 90%Interval

cUS1 R Normal -2.15 2.00 [-7.00, 2.85]
cUS2 −cUS1 R+ Gamma 0.70 1.98 [0.00, 1.99]
cUS3 −cUS2 R+ Gamma 3.11 1.99 [0.30, 5.90]
cUS4 −cUS3 R+ Gamma 0.67 2.00 [0.00, 1.83]
CPIUS R+ Gamma 1.54 0.50 [0.74, 2.32]
IPUS R+ Gamma 0.25 0.40 [0.00, 0.71]
∆erUSt R+ Gamma 0.25 0.20 [0.00, 0.51]
cEMU
1 R Normal -2.15 2.00 [-7.17, 2.76]
cEMU
2 −cEMU

1 R+ Gamma 0.92 2.01 [0.00, 2.78]
cEMU
3 −cEMU

2 R+ Gamma 4.28 2.00 [1.13, 7.23]
cEMU
4 −cEMU

3 R+ Gamma 0.81 1.97 [0.00, 2.46]
CPIEMU R+ Gamma 1.54 0.50 [0.74, 2.33]
IPEMU R+ Gamma 0.25 0.20 [0.00, 0.52]
∆erUEMU

t R+ Gamma 0.25 0.20 [0.00, 0.52]
ρ [−1, 1] Normal 0.00 0.40 [-0.66, 0.65]

Table 5: The table reports information on the CBO Probit parameter priors
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BACH Parameter Estimation Results
Basic Specification No- Synchronization

Parameter Mean 90% Interval Mean 90% Interval
αUS 0.12 [ 0.02, 0.23 ] 0.12 [ 0.02, 0.22 ]
βUS 0.62 [ 0.36, 0.88 ] 0.58 [ 0.30, 0.87 ]
wUS 16.55 [ 10.71, 22.02 ] 16.58 [ 10.92, 22.49 ]
FOMC 4.83 [ 2.95, 6.69 ] 4.80 [ 2.89, 6.62 ]
CPIUS 0.49 [ 0.07, 0.88 ] 0.50 [ 0.06, 0.90 ]
−UUS 0.16 [ 0.00, 0.39 ] 0.13 [ 0.00, 0.32 ]
dUS - - - -
αEMU 0.18 [ 0.04, 0.30 ] 0.18 [ 0.04, 0.30 ]
βEMU 0.60 [ 0.38, 0.80 ] 0.60 [ 0.39, 0.87 ]
wEMU 21.62 [ 13.86, 29.06 ] 21.46 [ 13.92, 29.17 ]
GC 4.19 [ 2.15,6.10 ] 4.21 [ 2.18, 6.23 ]
CPIEMU 0.52 [ 0.13, 0.87 ] 0.53 [ 0.15, 0.89 ]
−UEMU 0.28 [ 0.04, 0.51 ] 0.28 [ 0.04, 0.51 ]
dEMU - - - -
η 3.74 [ 1.17, 6.16 ] 1 -

Table 6: BACH model posterior means and intervals for (i) the basic specification and (ii) the
specification with the odds ratio fixed at its independence value (odds ratio = 1)

CBO Probit Parameter Estimation Results
Basic Model ρ = 0

Parameter Mean 90% Interval Mean 90% Interval
cUS1 0.17 [-1.30, 1.76] 0.17 [-1.10, 1.47]
cUS2 − cUS1 0.29 [0.05, 0.52] 0.31 [0.05, 0.57]
cUS3 − cUS2 2.42 [0.42, 4.26] 2.11 [0.40, 3.75]
cUS4 − cUS3 1.73 [0.61, 2.76] 1.94 [0.75, 3.07]
CPIUS 0.82 [0.35, 0.81] 0.77 [0.40, 1.14]
IPUS 1.67 [0.56, 1.6] 1.87 [1.03, 2.70]
∆erUSt 0.16 [0.00, 0.26] 0.14 [0.00, 0.27]
cEMU
1 0.45 [-0.93, 1.87] 0.72 [-0.67, 2.08]
cEMU
2 − cEMU

1 0.34 [0.05, 0.63] 0.38 [0.06, 0.70]
cEMU
3 − cEMU

2 2.86 [0.92, 4.77] 2.41 [0.80, 4.03]
cEMU
4 − cEMU

3 0.66 [0.19, 1.13] 0.73 [0.21, 1.23]
CPIEMU 0.64 [0.33, 0.97] 0.65 [0.31, 0.96]
IPEMU 0.36 [0.15, 0.57] 0.35 [0.15, 0.55]
∆erUEMU

t 0.11 [0.00, 0.23] 0.11 [0.00, 0.22]
ρ 0.28 [0.13, 0.55] 0 -

Table 7: CBO Probit model posterior means and intervals for (i) the basic specification and for
(ii) the specification with the correlation coefficient fixed to zero
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BACH Parameter Estimation Results
EMU Follower US Follower Both Dummies

Parameter Mean 90% Interval Mean 90% Interval Mean 90% Interval
αUS 0.12 [0.02, 0.23] 0.12 [0.01, 0.22] 0.13 [0.02, 0.24]
βUS 0.59 [0.33, 0.87] 0.61 [0.35, 0.89] 0.58 [0.31, 0.85]
wUS 16.20 [10.64, 21.75] 17.10 [11.49, 22.96] 17.05 [11.24, 22.61]

FOMC 4.72 [2.84, 6.44] 4.72 [2.92, 6.66] 4.69 [2.84, 6.53]
CPIUS 0.49 [0.07, 0.88] 0.49 [0.08, 0.88] 0.48 [0.07, 0.86]
−UUS 0.11 [0.00, 0.25] 0.15 [0.00, 0.35] 0.15 [0.00, 0.38]
dUS - - 1.91 [0.47, 3.33] 1.93 [0.44, 3.32]
αEMU 0.18 [0.04, 0.30] 0.18 [0.05, 0.31] 0.19 [0.05, 0.32]
βEMU 0.60 [0.39, 0.82] 0.61 [0.40, 0.82] 0.62 [0.41, 0.82]
wEMU 21.94 [14.41, 29.95] 21.78 [13.86, 29.04] 22.10 [14.49, 29.99]
GC 4.20 [2.18, 6.10] 4.18 [2.19, 6.21] 4.14 [2.18, 6.06]

CPIEMU 0.51 [0.14, 0.88] 0.54 [0.15, 0.91] 0.52 [0.15, 0.91]
−UEMU 0.28 [0.04, 0.51] 0.28 [0.04, 0.51] 0.29 [0.04, 0.53]
dEMU 1.89 [0.48, 3.28] - - 1.85 [0.46, 3.26]
η 3.74 [1.11, 6.31] 3.84 [1.12, 6.26] 3.90 [1.16, 6.36]

Table 8: BACH model posterior means and intervals for (i) the specification with the US dummy
variable in the EMU decision variables (EMU follower), (ii) the specification with the EMU
dummy variable in the US decision variables (US follower), and (iii) the specification with both
dummy variables

Marginal Data Densities Posterior Odds

Basic Model −160.3
No Synchronization (η = 1) −160.83 0.58

(H1: Basic Model)

US Leader / EMU Follower34 −160.72 1.53
(H0: Basic Model)

EMU Leader / US Follower35 −160.3 1.00
(H0: Basic Model)

Both US and EMU Dummies −160.53 1.26
(H0: Basic Model)

Table 9: BACH Model posterior odds for the synchronization and the leader/ follower models

Marginal Data Densities Posterior Odds
Basic Model −66.11
ρ = 0 −66.62 0.60

(H0: ρ=0)

Table 10: CBO Probit Model posterior odds for the correlation in magnitude hypothesis
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BACH Parameter Estimation Results - Excl. 9/11
Basic Specification No- Synchronization

Parameter Mean 90% Interval Mean 90% Interval
αUS 0.13 [ 0.02, 0.24 ] 0.12 [ 0.02, 0.23 ]
βUS 0.63 [ 0.37, 0.90 ] 0.61 [ 0.36, 0.88 ]
wUS 16.67 [ 10.85, 22.75 ] 16.68 [ 10.69, 22.42 ]
FOMC 4.92 [ 2.94, 6.85 ] 4.92 [ 3.03, 6.78 ]
CPIUS 0.48 [ 0.08, 0.87 ] 0.48 [ 0.07, 0.88 ]
−UUS 0.16 [ 0.00, 0.42 ] 0.16 [ 0.00, 0.39 ]
αEMU 0.19 [ 0.05, 0.33 ] 0.19 [ 0.04, 0.31 ]
βEMU 0.60 [ 0.39, 0.81 ] 0.60 [ 0.40, 0.88 ]
wEMU 21.70 [ 13.45, 29.73 ] 21.48 [ 13.65, 29.10 ]
GC 4.16 [ 2.15,6.10 ] 4.20 [ 2.14, 6.18 ]
CPIEMU 0.51 [ 0.14, 0.86 ] 0.53 [ 0.13, 0.88 ]
−UEMU 0.30 [ 0.03, 0.55 ] 0.28 [ 0.03, 0.52 ]
η 3.49 [ 1.03, 5.82 ] 1 -

Marginal Data Densities
-155.30 -155.01

Posterior Odds (H0 : η = 1) 0.75

Table 11: BACH model posterior means and intervals for the basic specification in which the
September 2001 inter-meeting change has been removed
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CBO Probit Parameter Estimation Results - Excl. 9/11
Basic Model ρ = 0

Parameter Mean 90% Interval Mean 90% Interval
cUS1 0.21 [-1.21, 1.64] 0.18 [-1.12, 1.49]
cUS2 − cUS1 0.30 [0.06, 0.54] 0.33 [0.06, 0.58]
cUS3 − cUS2 2.23 [0.40, 3.91] 2.06 [0.34, 3.56]
cUS4 − cUS3 1.86 [0.72, 2.88] 1.92 [0.82, 3.03]
CPIUS 0.83 [0.41, 1.24] 0.77 [0.38, 1.15]
IPUS 1.70 [0.85, 2.50] 1.83 [0.99, 2.67]
∆erUSt 0.14 [0.00, 0.28] 0.16 [0.00, 0.32]
cEMU
1 0.46 [-0.90, 1.83] 0.57 [-0.77, 1.91]
cEMU
2 − cEMU

1 0.39 [0.05, 0.73] 0.44 [0.07, 0.81]
cEMU
3 − cEMU

2 2.70 [0.87, 4.42] 2.40 [0.82, 3.93]
cEMU
4 − cEMU

3 0.67 [0.18, 1.14] 0.76 [0.23, 1.26]
CPIEMU 0.69 [0.34, 1.03] 0.68 [0.33, 1.02]
IPEMU 0.34 [0.13, 0.54] 0.33 [0.13, 0.53]
∆erUEMU

t 0.15 [0.00, 0.31] 0.13 [0.00, 0.26]
ρ 0.25 [-0.02, 0.54 ] 0 -

Marginal Data Densities
-64.14 -64.35

Posterior Odds (H0 : ρ = 0) 0.81

Table 12: CBO Probit model posterior means and intervals for the basic specification in which
the September 2001 inter-meeting change has been removed

Marginal Data Densities Posterior Odds
BACH-CBO Probit (M0) −226.41
VAR (M1) −228.82 11.3

Table 13: VAR Comparison: posterior odds
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Figure 1: Evolution of the Federal Funds Target Rate (FFTR) and of the Main Refinancing
Operation (MRO) rate from the beginning of 1999 until March 25th, 2005
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Figure 2: Basis point change distribution in the US and in the EMU
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Figure 3: The above panels show the rescaling necessary to condition on
¡
xat , x

b
t

¢
. In particular,

the shaded areas of the top left panel show the feasible regions for
¡
yat , y

b
t

¢
when

¡
xat = 1, x

b
t = 1

¢
;

the top right panel shows the feasible region for ya when
¡
xat = 1, x

b
t = 0

¢
, in which case yb = 0

with probability 1; the bottom left panel shows the feasible region for yb when
¡
xat = 0, x

b
t = 1

¢
,

in which case ya = 0 with probability 1; and the bottom right panel shows the feasible region
when

¡
xat = 0, x

b
t = 0

¢
, in which case ya = yb = 0 with probability 1

38



Figure 4: Prior and posterior densities for the basic specification of the BACH model
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Figure 5: Prior and posterior densities for the basic specification of the CBO Probit model
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