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Abstract

Individuals with identical preferences each receive a signal about
the unknown state of the world and separately decide upon a utility-
maximizing recommendation on the basis of that signal. The group’s
decision maximizes the common utility function based on perfect pool-
ing of individual information. With no restrictions on the information
structure, the individual recommendations place no constraints on the
group’s decision. In a monotone environment in which individuals re-
ceive conditionally independent signals, the paper presents conditions
under which polarization does and does not arise. Journal of Eco-
nomic Literature Classification Numbers: A12, D01; Keywords: sta-
tistical decision problem; group polarization; behavioral economics;
psychology.
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1 Introduction

Group polarization refers to the tendency of groups to make decisions that are
more extreme than some average of the individual positions of the members
of the group. The phenomenon, first observed in experiments reported by
Stoner (1968), has been widely replicated.! This paper is an attempt to
understand group polarization as a natural outcome of information sharing.

The literature implicitly assumes that rationality imposes restrictions on
the relationship between decisions based on individual information and the
collective decision and that polarization is evidence that group decision mak-
ing is prone to systematic errors. My first goal is to present a framework in
which one can evaluate whether a particular group decision is not ratio-
nal merely by comparing it to recommendations made independently by the
members of the group.

I study the problem assuming that groups aggregate information. Individ-
uals have common preferences but different information.? Individuals observe
a signal and independently recommend an action. The group then pools the
individual signals and makes a decision based on the pooled information.
I assume that there is no conflict of interest between group members and
that the group perfectly aggregates the information of its members. In this
setting, I investigate whether there are conditions under which the group’s
optimal decision is constrained by the recommendations of the individuals.
One would be able to use these results to conclude whether experimental
evidence necessarily was inconsistent with rationality.

I model differences in information by assuming that there is an under-
lying state of the world and individuals receive private signals that convey
information about the state. The information structure describes the rela-
tionship between states of the world and signals. By asking individuals to
make recommendations separately and then as a group, one observes a profile
of actions (consisting of a recommendation from each individual and a sepa-
rate group decision). I characterize the set of action profiles that arise with

IBrown (1986) devotes 50 pages of a textbook to the topic of group polarization. Isen-
berg (1986), Myers and Lamm (1976), and Turner (1991) also review the psychological
literature.

2In experiments, individuals receive standardized information. The variation in their
reaction to the information suggests that they interpret the information differently. I
assume heterogeneous information, which can be viewed as a reduced form of a more
elaborate model.



positive probability for some information structure. The results in Section 2
demonstrate that with no restrictions on the information structure, any ac-
tion profile that avoids dominated actions is possible. In other words, there
is an information structure in which individuals receive signals that induce
any given profile of actions with positive probability. This result means that
without further assumptions it is impossible to conclude that a group deci-
sion is irrational by observing individual recommendations. In fact, I show
a stronger result. A belief profile is a collection of distributions over states
of the world, one for each member of the group and one for the group taken
together. For any finite collection of belief profiles there is an information
structure such that each belief profile in the collection can be induced by
some signals (one for each individual). Consequently, when beliefs determine
recommendations, any action profile is consistent with rationality.

The constructions in Section 2 rely strongly on the ability to fine tune
individual and collective information using correlated signals. I next make
strong restrictions on the information structure. First, I assume that indi-
vidual signals are independent conditional on the state of the world. With
this restriction, individual beliefs completely determine the group’s beliefs.
On the other hand, when many different beliefs can induce the same rec-
ommendation, it is still typically the case that individual recommendations
place no constraints on the group’s decision.

In Section 3, I assume that individuals receive independent and identi-
cally distributed signals about the state of the world and, further, that the
decision problem is monotone. In a monotone decision problem, states, ac-
tions, and signals are all linearly ordered so that higher signals are associated
with higher actions and the optimal action is an increasing function of the
signal. This environment is common in economic applications. The mono-
tone structure does place restrictions on the set of action profiles that can be
observed. For example, if one observes two action profiles and, in the first,
each individual recommendation is at least as great as the corresponding
recommendation in the second profile, then the group decision must also be
greater in the first profile. Nevertheless, I find that even with these strong
assumptions on the information structure, group decisions are generally not
constrained by individual recommendations. Given any profile of actions,
there exists an information structure that gives rise to signals inducing these
actions with positive probability.

The general analysis suggests strongly that polarization need not be irra-
tional. My second goal is to identify useful conditions under which one should



expect to find group decisions that are moderate (bounded by individual rec-
ommendations) and alternative conditions under which polarization arises.
For this purpose, it is useful to contrast problems of information aggregation
with problems of preference aggregation. When aggregating preferences, it
is standard (and usually not controversial) to assume a variation on Ar-
row’s (1963) Pareto Principle. If every member of the group ranks choice
X higher than choice Y, then the group should do so as well. In problems
of information aggregation, this property is quite strong, and likely to be
inappropriate in realistic settings. Separate individuals may, on the basis
of limited private information, prefer a moderate recommendation to an ex-
treme one. When these individuals pool their information, they may become
more confident. Their confidence may shift their decision to an extreme.?
Section 4 gives conditions under which the group’s decision is bounded by
individual recommendations. A necessary condition for this is a property
that I call invariance. Assume that every member of the group receives a
signal that, conditional on the true state, is independent and identically dis-
tributed. In an invariant decision problem, when the realization of the signal
is the same for all members of the group, the group’s decision is the same
as the decision of any single individual. That is, the problem is invariant
if when all agents individually prefer recommendation X, then so does the
group.

Section 5 investigates conditions under which polarization should be ex-
pected. I distinguish between two classes of monotone decision problems.
In single-crossing models, a perfectly informed decision maker would select
between one of two decisions. Polarization is likely in this kind of model. On
the basis of more precise information, groups make extreme choices. If all
individuals favor recommendations that are close to one of the two actions,
then the aggregate decision will be even closer to that action. An example
of a problem of this kind is a simple allocation decision in which an investor
must choose how to divide her wealth between a safe and risky investment.
With limited information, it might be wise for a risk-averse investor to place
only a small fraction of her wealth in the risky option, even when its mean
return exceeds that of the safe option. On the other hand, if most members
of the group obtain information that suggests that the mean return of the

3In a non-Bayesian framework, Baurmann and Brennan (2005) give examples that
illustrate potential difficulties of the Pareto Principle for problems involving aggregation
of beliefs.



risky investment is high, then it may be optimal for the group to concentrate
investments in the risky asset.

In the alternative class of models, individuals have supermodular utility
functions. In these problems the optimal decision can take on many different
values even under complete information. An example of a problem of this
sort is trying to guess the number of balls in an urn. I identify conditions on
the distribution of signals that characterize when groups make recommen-
dations that are less extreme than individual guesses. These conditions are
restrictive and polarization arises under a variety of natural conditions. If,
for example, it is more costly to overestimate the number of balls than to
overestimate, and the signals indicate that the urn contains more than the
(ex ante) expected number of balls, then the group’s guess will be higher
than the average individual guess. The group’s decision is shaded upward
because it has superior information. On one hand, this causes the group to
place less weight on the prior estimate of the mean. On the other hand, it
causes the group to be more confident of its guess and so less inclined to
reduce its guess to avoid losses.

There is an alternative interpretation of the model.* Imagine that a single
decision maker requests the opinion of I informed experts prior to making
a decision. Each expert observes a signal and recommends an action to the
decision maker. The decision maker, knowing the information structure and
the experts’ signals, selects an action. The experts are assumed to report
truthfully (or make recommendations consistent with the decision maker’s
preferences). Under these assumptions my results show that in general it
may be rational for the decision maker to select an action different from
the advice of the experts. In particular, I give conditions under which the
decision maker takes a more extreme action than suggested by any of his
advisors.

Eliaz, Ray, and Razin (2005) present the first, and to my knowledge only
other, theoretical model of choice shifts. Groups must decide between a safe
and a risky choice. The paper summarizes group decision making by a pair
of probabilities: the probability that an individual’s choice will be pivotal
(determine the group’s decision) and the probability distribution over out-
comes in the event that the individual is not pivotal. In this framework,
choice shifts arise if an individual would select a different recommendation
alone than as part of a group. If individual preferences could be represented

4Douglas Bernheim suggested this interpretation.



by von Neumann-Morgenstern utility functions, then choice shifts do not
arise. Eliaz, Ray, and Razin (2005) prove that systematic choice shifts do
arise if individuals have rank-dependent preferences consistent with observed
violations of the Allais paradox. Moreover, the choice shifts they identify are
consistent with experimental results.® Assuming that an individual is indif-
ferent between the safe and risky actions in isolation, as a pivotal member of
the group, she will choose the safe action if and only if the probability that the
group would otherwise choose the safe action is sufficiently high. Unlike my
approach, this model does not rely on information aggregation. Eliaz, Ray,
and Razin (2005) concentrates on how preferences revealed within groups
may differ from preferences revealed individually, but it is not designed to
study how deliberations may influence individual recommendations. An ap-
pealing aspect of the Eliaz, Ray, and Razin (2005) approach is the connection
it makes between systematic shifts in group decisions and systematic viola-
tions of the expected utility hypothesis.

Section 6 discusses other related research and contains concluding com-
ments.

2 A Benchmark Model

There are I > 1 individuals. Individual ¢ has a utility function that depends
on an action® @ € A and the state of the world, # € ©. Denote the utility
function by w;(-). Individuals receive a private signal s € S about the state of
the world. I assume in this section that ©, A, and S are finite sets. Let 7(6)
be the prior probability of state . Assume that w(6) > 0 for all 6 € ©. Let
P(0;s) be the joint probability that the state is § and the profile of signals
s = (81,...,5r); and p(A|Z) the conditional probability that the state is 6
given the information Z.” Tt is straightforward to represent p(-) in terms of
P(-) and 7(-). I refer to (O, S, 7, p, P) as the information structure.

I compare two situations. When individuals act privately, they each select
a;(s;) to maximize ), o ui(a, 0)p(f]s;). When individuals act collectively,
they select af(s). In general, af(s) will depend on the institution by which

5Because the set of actions is binary, Eliaz, Ray, and Razin cannot explain situations
in which group actions are strictly more extreme than individual actions.

61 refer to action choices of individuals as recommendations and action choices of groups
as decisions.

7T will be one signal s or a profile s.



agents share information. When preferences differ, it is not clear how the
group should decide upon its collective decision. Even when preferences
coincide, psychological or strategic considerations may prevent the group
decision from being optimal given available information.

I focus on the benchmark case in which the interests of the individuals
are the same, u;(-) = u(-) for all 4, and that a(s) is chosen optimally so that
ag(s) solves:

max Y u(a,d)p(f]s). (1)

acA
[2SC)

When w;(-) is independent of i, a}(-) is also independent of i for ¢ > 0.
aj(+) is a distinct function because it is a function of signal profiles not of
individual signals.

If group polarization is evidence of irrationality, then the optimal group
choice must be constrained by the vector of individual choices. Assume that
individual recommendations are chosen optimally. An observer knows the
actions taken at the group and individual level (but not the information
structure). Is it possible for the observer to conclude that a particular collec-
tive decision is not optimal? If so, then observing that decision is evidence
of irrationality. If not, then the argument that polarization (or any other
characteristic of the group decision) is irrational must be re-examined.

The first result describes a property of aggregate beliefs obtained from
information aggregation. Proposition 1, stated formally below, says that
essentially any finite set of belief profiles can be described by a single in-
formation structure. Suppose the observer managed to elicit the beliefs of
the group before and after information aggregation in a finite number of
situations. Further suppose that all of the beliefs elicited placed positive
probability on all of the states. The proposition asserts that there is an in-
formation structure that is consistent with these observations in the sense
that there are signal profiles that induce all of the observed beliefs. Hence
individual beliefs place no constraints on group beliefs.

To state the proposition, define a belief profile to be a vector q =
(qo; q1, - - -, qr) such that each g; is a probability distribution on ©. The belief
profile q is interior if ¢;(6) > 0 for all ¢ and 6.

Proposition 1 Let QQ be a finite set of interior belief profiles. There exists
a signal set S and a joint probability distribution P(6;sy,...,s;) such that
for q = (qo;q1,---,q1) € Q there exist a signal profile s = (s1,...,s7) with
P(0;8) > 0 such that qo(0) = p(0 | s) and ¢;(0) = p(0 | s;) foralli=1,...,1.

6



The existence of a signal profile s satisfying the conclusion of the propo-
sition is, mathematically, the statement that there exists an information
structure for which a family of linear inequalities has a solution. The proof
of Proposition 1 constructs an information structure with the appropriate
characteristics.® There is a signal for each belief profile g € @ and one
other residual signal. The signal associated with g* is sent to all agents with
probabilities that make gf the posterior or to exactly one agent (while the
others receive the residual signal) with the probability necessary to guarantee
that when the individual i receives signal s* she updates her beliefs to gF.
Such a signaling technology satisfies the conditions of the proposition and is
not difficult to construct.

A consequence of Proposition 1 is that individual recommendations place
no constraints on the group’s recommendation. Let a = (ag;a1,...,a7) €
A*1 denote an action profile. Interpret ag as the joint action and each a;,
1=1,...,1 as an action of individual 7. Call a decision a € A undominated
if there exists ¢; € int(A) such that a solves: maxaea Y e t(a, 0)g;(0). The
signal profile s = (s1,...,s7) induces a if ap = aj(s) and a; = a}(s;) for all
1=1,...,1. ais possible if there exists a signal vector s that induces a.

Proposition 2 There exists a signal set S and a joint probability distribu-
tion P(0;s1,...,87) such that for all profiles of undominated actions a =
(ap;aq, ... ,ay) there exists a signal profile s = (s1,...,s7) with P(0;s) > 0
such that s induces a.

Proposition 2 states that any undominated action profile is possible. Con-
sequently, there need not be any connection between individually optimal
and collectively optimal actions. The proposition implies that group deci-
sions that are “extreme” relative to individual choices need not be a sign of
irrationality. In particular, if A is ordered, then nothing prevents ag from
being greater than all of the other components of a. Therefore it is prema-
ture to assume that the group decision is not optimal even when collective
decisions differ systematically from individual recommendations.

Proposition 2 is an immediate consequence of Proposition 1. Since A is
finite, only a finite number of distinct action profiles exist. If a is one of these

8The Appendix contains the proof of Proposition 1 and all subsequent results requiring
proof.

9The definition rules out degenerate cases in which action a maximizes the expected
payoff only if one or more states is assigned probability zero.



profiles, then there exists a belief profile q such that a; is a best response to
q; foreach i =0,1,... 1.

The conclusion that no group decision is inconsistent with individual rec-
ommendations does not depend on the assumption that agents select a rec-
ommendation that maximizes expected utility. The result continues to hold
provided that beliefs determine actions (so the preferences can be described
by a non-expected utility functional or a behavioral rule of thumb).

Proposition 2 indicates that for general information structures, individ-
ual choices place no constraints on the optimal decision of the group. It is
possible that these results rely on “strange” information structures. Propo-
sitions 1 and 2 depend on the assumption that signals can be correlated. A
polar opposite assumption is that individuals receive signals that are condi-
tionally independent. Henceforth, I assume that the information structure
can be described by functions «; : S x © — [0,1], where a;(s | ) is the
probability that individual i receives signal s given that the state is 6 (so
that > _o,(s | 0)=1 for all 6 and 7).

This environment is considerably more restrictive than the general frame-
work. Proposition 1 asserted that essentially any collection of individual and
group posteriors is consistent with some information structure. On the con-
trary, if individuals receive conditionally independent signals, then the group
posterior is determined by the individual posteriors.

Proposition 3 If the individual signals are conditionally independent, then
the group posterior distribution is completely determined given individual con-
ditional beliefs. In particular, if individual © has beliefs q;, then the group’s
beliefs are q, where

m(0)11_y (¢:(0)/7(0))
> (W) (gi(w)/m(w))

q(0) =

Proposition 3 follows directly from the Bayes’s Rule and the independence
assumption.

Although Proposition 3 rules out the strong conclusions of Propositions 1
and 2, Example 1 demonstrates that it is still may be difficult to draw infer-
ences about group decisions from individual recommendations.

Example 1 Suppose that I > 1; @ = (04,...,0;); individual i observes
s; = 0; (that is, individual i observes the i*" component of 8 without error);



each component of 6 is independently and uniformly distributed on {—1,1};
and u;(a,0) = —(a — [[/_, 6;)% An individual sets a?(s;) = 0. The group
sets af(s) = [ si-

Information obtained by an individual (or, in fact, any proper subset
of the group) is useless — it conveys no information that improves making
decisions while the entire group’s information perfectly reveals the state. In-
dividual recommendations therefore do not depend on private information
while the group decision does. Knowing everything about individual recom-
mendations provides no information about the group’s preferred action. Also,
the group’s decision is both more variable and more extreme than individual
recommendations. 0

Unlike the example, the construction in Proposition 2 does permit an
observer to draw inferences from individual recommendations. The example
differs from the construction because it requires a particular specification of
the utility function.

It is possible to generalize the logic of the example.

Proposition 4 If I > 1, then given any finite A, there exists preferences
and an information structure such that individual recommendations convey
no information about the group decision and all group decisions are possible.

Example 1 and Proposition 4 are perverse because information from any
proper subset of the agents does not lead to better decisions. In the next
section, I make further restrictions on the information structure and prefer-
ences. | revisit the basic question in a standard, but restrictive, economic
environment.

3 Monotone Problems

Since my objective is to show that individual recommendations make weak
restrictions on the group decision, I will make strong assumptions on the
information structure. Without restrictions on preferences, individual rec-
ommendations still place few restrictions on the optimal group decision.
Proposition 5 demonstrates that there are restrictions across problems: if
the action profile a is possible, then some other action profiles are ruled out.
Propositions 6 and 7 demonstrate that the optimal group decision is only
weakly constrained by individual recommendations. Essentially all action

9



profiles are possible. Subsequent sections present restrictions on preferences
might organize findings on polarization.

I concentrate on monotone information structures, which satisfy the fol-
lowing conditions.!® Assume that A is the unit interval. Assume that o;(s | )
is independent of i so that signals are identically (as well as independently)
distributed. Assume that S has more than one element and that signals
are distinct in the sense that if s’ # s, then p(0 | s) # p(@ | §'). Further
assume that the information structure and the utility function have a mono-
tone structure: the signals satisfy the monotone-likelihood ratio property, so
that a(s | 0)/a(s' | §) is decreasing in 6 for all s’ > s;'' and that for all
a’ > a, the function v(#;a,da’) = u(a’,0) — u(a, ) is either increasing in ¢
(supermodular incremental utility) or there exists 6y such that v(f) < 0 for
6 < 6y and v(f) > 0 for 6 > 6y (single-crossing incremental utility). These
conditions guarantee that optimal actions are increasing in signals, mean-
ing that a}(s’) > a;(s) whenever s > s. I will refer to these cases as the
supermodular and single-crossing models, respectively.

Proposition 2 cannot hold for this restricted class of problems because
the monotonicity condition imposes a restriction across problems. If one
observes two action profiles a and a’ such that a’; > a_g, then a; > ao.
Hence there does not exist a single monotonic information structure that
makes all undominated action profiles possible.

Proposition 5 For a fized monotonic information structure, if a and a’ are
possible and a’_y > a_g, then aj > ay.

Proposition 5 is a special case of an observation in Milgrom and We-
ber (1982, Theorem 5). It is a straightforward implication of the the mono-
tone information structure. If an individual makes a higher recommendation,
then she must have received a higher signal. If all signals are higher, then
the group decision must also be higher.

To make the subsequent discussion concrete, consider two leading special
cases. A monotone model is an urn model if u(a,d) = —(a — f(6))? for
some strictly increasing function f(-).!? Here v(f) is increasing so the urn

10Athey and Levin (2000) provide an analysis of a more general class of monotone
decision problems.

' This condition implies that the posterior distribution of € given s is increasing in s
(in the sense of first-order stochastic dominance).

12 At this point, strictly increasing transformations of the state space © do not change
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model is a supermodular model. In the urn model 6 represents the number
of balls in an urn and () a target determined by the number of balls. The
agents want to make the best estimate of the target f(0).

A monotone model is a portfolio model if u(a, ) = U(af + (1 — a)by)
where U (-) is a concave function defined over monetary outcomes. A portfolio
model is a single-crossing model. The problem is to determine the share of
wealth to allocate over a safe asset, which yields 6y, and a risky one, which
yields #. Individuals must pick the fraction a of the portfolio to invest in the
risky asset. Risk averse agents will typically select a < 1 even when their
information suggests that the mean of 6 exceeds ,. On the other hand, if
sufficiently many agents receive independent information suggesting that the
mean return of the risky asset is high, this will induce higher investments in
the risky asset when information is pooled.

The next results demonstrate that even in monotone models it is difficult
to draw inferences about the group decision merely by observing individual
recommendations. In light of Proposition 3, such a result will not be possible
if the utility function is completely arbitrary. To see this concretely, suppose
that an individual had a utility function with the property that he would
select a recommendation a < @ if and only if the probability of state ¢
was greater than .5. It follows from Proposition 3 that if all individuals
made recommendations less than a, then the group decision must also be
less than a. Consequently, in an environment with independently distributed
messages, strong results that suggest that individual recommendations place
no restrictions on the group decision cannot specify preferences completely.

Proposition 6 For all a = (ag;ay,...,ar) with a; € [0, 1] there exists both
an urn model and a portfolio model such that there exists s such that s induces
a.

Proposition 6 states that an observer who knows the recommendations
of all of the individuals and who knows that a decision problem is either
an urn problem or a portfolio problem (but not the specific form of the
utility function) still cannot conclude that the group has made an irrational
decision. This result is weaker than Proposition 2 for three reasons. First,
Proposition 2 constructed one information structure that was compatible
with any given (finite) set of recommendation profiles. Proposition 6 instead

the underlying decision problem, so including f(-) in the specification of u(-) adds no
generality. The formulation is useful for subsequent applications.
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constructs a different information structure for each profile. Proposition 5
explains why the stronger result is not possible in a monotone environment.
Second, Proposition 2 holds even if the observer knows the utility function.
In Proposition 6 the utility function is selected to support observed behavior.
The utility function is not arbitrary, however. It is always possible to find
a suitable utility function from the class of urn models and portfolio models
that is consistent with the action profile.!® Finally, the construction requires
that there be more than one signal that leads to the same action in some
circumstances. To understand and relax this restriction, it is useful to explain
the proof of Proposition 6.

To prove Proposition 6, I construct an information structure with the
property that if all but two agents receive the lowest possible signal and two
others receive the next lower signal, the group posterior is higher than the
posterior of individuals who received the second lowest signal. In order for
this to be possible, the individual who receives the second lowest signal must
place high probability that everyone else will receive the lowest signal. When
she learns that this is not true, she (and hence the group) revises her prior
strongly upward. Under the assumptions of Proposition 6 it is possible that
many signals induce the lowest action. Therefore even if all individuals wish
to take the lowest action, they may not have received the lowest signal, and
the group may prefer a higher decision. If the optimal action is a strictly
increasing function of the signal, however, the conclusion of the proposition
must be weakened.

To make a precise statement, let Op(a_g) be the k' largest of the set
a_o = {ay,...,ar} (so that Oy(a_o) = max;—y,_sa;, Oz(a_p) is the second
highest, and so on).

Proposition 7 Ifa = (ag;a1,...,ar) with Os(a_¢) > 0 and Or_1(a_g) < 1,
then there exists both an urn model and a portfolio model with the property
that al(s) is strictly increasing such that a is possible.

The assumptions in Proposition 7 rule out the possibility that individual
information would lead all but one agent to make the same extreme recom-
mendation (either the highest or the lowest). Provided these assumptions
hold, it can be rational for the group to make any decision. For monotone

13In the proof of Proposition 6, U(x) can be taken to be of the form U(x) = 27 for
08 € (0,1). That is, it is possible to satisfy the conclusion of Proposition 6 using a narrow
class of utility functions.
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problems in which optimal actions are strictly increasing in the signal, the
conditions are necessary. If all but individual ¢ wishes to make the low-
est recommendation, learning that all other agents also wish to make the
lowest recommendation must be “bad news,” which makes the group’s de-
cision weakly lower than individual’s ¢ optimal recommendation. Hence an
observer can place bounds on the possible group decision assuming that all
but one individual wants to take the lowest recommendation. Proposition 7
demonstrates that no further restrictions are possible. In particular, the
proposition states that it is possible for the group to want to make a more
extreme decision than any individual in the group.

4 Invariance

The results in Section 3 imply that even in monotone problems it is prema-
ture to conclude that any group decision is irrational given the decisions of
individual group members. While staying within the framework of monotone
problems, I now identify conditions under which group decisions are well be-
haved in the sense that they are guaranteed to be bounded by the individual
recommendations.

Intuition suggests that for a suitable range of information structures, the
group guess in the urn model should be bounded by individual guesses. If
everyone thinks that there are between 100 and 300 balls in the urn, then it
would be surprising if the group’s guess was outside that range.

This section makes the intuition rigorous. To motivate the basic idea, con-
trast the problem of information aggregation with the problem of preference
aggregation. In social choice problems involving aggregation of preferences,
it is typical to assume that if all individuals prefer decision X to decision
Y, then so should the group. In information aggregation problems, this im-
plication is not clear. Consider the portfolio problem. It could be the case
that risk-averse individuals will prefer to invest a substantial fraction of their
portfolio in the safe asset even when informed that the mean of € is greater
than #p. On the other hand, a large enough number of independent signals
that 6 > 6y would be sufficient to convince the group to take a more extreme
position.

This observation suggests a critical difference between the urn and port-
folio models and motivates the following definition.

Imagine a situation in which every member of the group receives the

13



same signal. They would consequently make the same recommendation. Un-
der what conditions would the group decision be the same as the common
recommendation of each individual?

Call a monotone decision problem invariant if

a;(s;) = ay(si,...,s;) for all s;. (2)

That is, a decision problem is invariant if the optimal group decision when all
members of the group independently observe the same signal realization is
that same as the optimal individual recommendation given one observation
of that realization. Proposition 9 provides conditions on the underlying data
of the problem that guarantee that (2) holds.

Proposition 8 In an invariant monotone decision problem, if a is possible,
then

ap € [11;1%1] a;, max a;). (3)

Proposition 8 is a simple consequence of Proposition 5.

Proposition 8 states that invariant monotone problems are well behaved
in the weak sense that the individual recommendations form a bound for the
groups’ decision. Invariance is a necessary condition for the Proposition 8.
If invariance failed, then there would exist a s such that (3) would fail if
everyone in the population received that signal.

The next example exhibits an invariant problem by describing a situation
where (2) holds.

Example 2 Assume that © = S = {0,1/K,...,K — 1/K,1}; «(-) is the
uniform distribution on © and that u(a,) = —(a — 0)? for a € A = [0,1].
Let v € (1/2,1) and

1 ifs=0e{0,1},

o(s.0) = v ifs=0e{l/K,...,(K—-1)/K}, (4)
’ 22 ifs=0+landfe{1/K,....,(K—1)/K},
0 otherwise.

Individuals seek the best estimate of 6. The signal is the true state plus a
symmetric error. Individual ¢ recommends a;(s) = a. If every member of the
group receives the same signal, the recommendation is the same. O

14



One way to get a better understanding of invariance is to think about
the condition when [ is large. If all I members of the population receive the
signal s, then the group’s posterior distribution is given by

ol (s | 0)x(0) 5
2o @' (s [w)m(w)

Let O(s) = argmaxya(s | 0). It follows that the limiting posterior distri-
bution, 7*(6; s) = lim;_.., (6 | s;I), is given by

0 __ fgeco
r*(0;s) = 2 weo(s) T(@) 1 (), ©)
0 if 6 ¢ O(s)

In particular, if a(s | #) has a unique maximum 6*(s), then r*(-;s) is the
point mass on 0*(s). If a decision problem is invariant for all I, then the
optimal response to signal s, a;(s), also maximizes ), g u(a,0)r*(6 | s).
I conclude that it requires strong assumptions to guarantee that individual
recommendations place even mild restrictions on the group decision. Never-
theless, the conditions make sense in the urn model (provided that signals
are symmetric estimates of the true state).

It is possible to generalize Example 2. First, assume that the information
technology is non-degenerate: for each s, a(s | #) has a unique maximizer,
denoted by 6*(s). It follows that r*(s | #) is a point mass on 6*(s) and
equation (2) becomes

E{ua(ai(s),0) | s} = ua(a®(s),07(s)). (7)
Second, assume that

2co (s | 0)07(6)
Y weo (s |w)m(w)

That is, the mean of 6 given s is equal to 6*(s) for all s. Call the information
technology uniformly neutral if equation (8) holds. The first assumption
is mild. The second assumption is restrictive. One would expect that the
highest signal is “good news” so that receiving multiple independent draws
will strictly increase the mean of the distribution. Indeed, while there exist
uniformly neutral information technologies (see Example 2), equation (8)
requires that the extreme signals completely reveal the extreme states.
The following result is immediate from the definitions.

r(0]s;1) =

= 0"(s) for all s. (8)
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Proposition 9 Ifu(a,0) = —(a—0)?, and the information structure is non-
degenerate and uniformly neutral, then the decision problem is invariant.

Propositions 8 and 9 combine to identify a class of decision problems in
which group decisions are bounded by individual recommendations. Even
invariant problems may give rise to apparently extreme behavior, however.
There are natural situations under which the recommendation of the most
extreme individual becomes the recommendation of the group.

Example 3 Recall that the Pareto distribution with strictly positive pa-
rameters fy and [ has the probability density function

e
016 7 — 9B+1 ) when 0 > 90
1 (6160, 8) { 0, when 0 <6,

The following is a standard property of conjugate distributions (see De-
Groot (1970, page 172)).

Fact 1 Suppose that each of the I agents receives a signal from a uniform
distribution on [0, 0] where 0 itself is unknown. Suppose that the prior distri-
bution of 0 is the Pareto distribution with parameters 6y and 3, 0y and 3 > 0.
The posterior distribution of 8 given that individual © receives the signal s; s
a Pareto distribution with parameters s and 3+ I, where

S

max{6y, $1,...,81}

Now assume that u(a,f) = —(a — 6)%. An individual who receives the
signal s; believes that # has a Pareto distribution with parameters s; =
max{6y, s;} and consequently, because maximizing u(-) requires choosing a
equal to the expected value of 6, selects af(s;) = (6 + 1)8;/0 while the
collectively optimal choice is aj(s) = (B + I)s/(B+ 1 —1).

In this example, the highest signal provides a lower bound on # and
therefore is a sufficient statistic for all of the signals. When individuals pool
their information two things happen: the variance of the distribution of 6
decreases, because there is more information;'* and the maximum signal de-
termines the lower bound of the distribution. That is, when the individuals
pool their information, only the signal of the most extreme individual deter-
mines the collective decision. Due to the first effect, the collective decision

14This follows because the exponent in the Pareto distribution increases.
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will be less than the choice of the individual who received the greatest signal,
but the ratio of the collectively rational decision to the maximum individual
recommendation converges to one as § and [ grow.

The specification is special, but could be appropriate for some contexts.
For example, imagine that the signal an individual receives indicates the
minimum amount of damage that could have been done to a plaintiff. When
jurors pool their information, it is only the highest signal that is relevant
for estimating damages. Hence, efficient information aggregation implies
polarization. Notice that if the objective was to take an action equal to the
lowest element of the support of 4, then af(s) = s. O

Some signal structures imply that the recommendations of “extreme”
individuals dominate the group decision. For example, denote by e(j) the
4™ unit vector and suppose that there is one signal for each state. Let
ay = e(N),a; = \je(j) + pjaj41, for appropriate non-negative weights, A;
and p;. In this information structure, higher signals rule out lower states and
the highest signal is a sufficient statistic. Therefore, the group will always
follow the largest individual recommendation. A symmetric construction
creates an information structure in which the group follows the smallest
individual recommendation. This kind of ordering of signals makes sense in
certain applications. For example, if individual information provides a lower
bound to damage, then it is reasonable to assume that the group’s decision
will be largely determined by the individual with the highest individual signal
of damage.

5 Cautious and Risky Shifts

Proposition 8 provides conditions under which the group’s decision is between
the lowest and highest individual recommendations. Polarization is possible
when the decision problem is not invariant. In this section, I present sufficient
conditions under which polarization arises. The nature of the results differ
depending on whether incremental utility is supermodular or satisfies the
single-crossing property.

5.1 Single-Crossing Models

For models like the portfolio problem in which the incremental utility v(6)
is negative for 8§ < 6y and positive for 6 > 6, there is a strong form of
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polarization. Recall that r*(-;s) is the limiting posterior distribution as-
suming that all members of a large population receive the signal s. Let
So ={s:7r*(0;s) =0 for § > 60y} and Sy = {s:7*(0;s) =0 for 6 < 6y}.

Proposition 10 Assume that the decision problem is monotone and the util-
ity function has single-crossing increments. Given any € > 0, there exists N
such that:

1. Cautious Shift. If indwidual signals are all in Sy, then if [ > N the
group decision is less than e.

2. Risky Shift. If individual signals are all in Sy, then if I > N the group
decision greater than 1 — €.

If the group is fairly certain that the state is less than 6y, then the optimal
decision is 0. If the group is large and enough agents receive signals in Sy,
then the group will be confident that the state is less than 6. In the limit, the
group decision is weakly more extreme than any individual recommendation.
In many interesting situations, individuals will not be confident enough to
make extreme recommendations on the basis of one signal. In those cases, the
group decision is strictly more extreme than any individual recommendation.

When individuals with similar biases make a recommendation as a group,
they treat the tendencies of others as independent evidence in support of their
position. Consequently, the group will be more confident in the state of the
world’s value (relative to 6p) and, in single-crossing models, more likely to
make an extreme recommendation. Proposition 10 demonstrates that models
with single-crossing incremental utility exhibit both cautious and risky shifts
as identified in the psychology literature. Shifts to extreme positions arise
if the group consists of individuals with similar, moderate, tendencies. The
form of preferences needed for the result is consistent with the assessments of
damages of expermental juries (Schkade, Sunstein, and Kahneman (2000)),
portfolio choice,'® or election polling.

15Barber and Odean (2000) report that investment clubs tend to make riskier invest-
ments than individuals, which is consistent with the proposition. They also show that
returns of investment clubs are lower than those of individual investors (which in turn
under performed the market). This result runs counter to my approach, which assumes
that groups share information honestly and optimize perfectly. Rather than evidence di-
rectly in favor or against my model, I interpret these results more generally as reasons to
be skeptical about using simple optimizing models as descriptions of behavior in financial
markets.
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Proposition 10 has two large limitations. First, it guarantees choice shifts
only if the group is arbitrarily large. In fact, the convergence is exponential.
For example, assuming a uniform prior, if a single message in Sy implies
that the probability of # < 6 is .6, then when all members of a five-person
group receives messages in Sy, the probability that 6 < 6, increases to more
than .98. Second, the proposition requires that every member of the group
receives a signal in Sy. For large groups, the next result demonstrates that
polarization is the norm.

Proposition 11 Assume that the decision problem is monotone and the util-
ity function has single-crossing increments. For any € > 0, there exists N
such that if I > N, then {s : aj(s) € [e,1 — €|} has probability less than
€+ (o).

Proposition 11 states that if the group is large enough, then the group’s
decision will be polarized “most” of the time. The proposition follows from
the law of large numbers. With high probability, the group’s posterior will
converge to the true state of the world. Provided that the true state of the
world is not 6y, the group will want to take an extreme decision. Hence
(adjusting for the prior probability that the true state is ) large groups
will make extreme decisions with high probability. Unlike Proposition 10,
Proposition 11 provides no information about the direction of polarization.

5.2 Supermodular Models

When members of the group independently receive the same signal, the group
information differs from individual information in two ways. The group is
likely to have a better estimate of the state of nature and the group may have
a different estimate of the mean of 6. In the previous subsection, only the
change in precision was relevant. As the group’s information improves, the
group’s recommendation will almost always converge to a boundary recom-
mendation. The direction of polarization depends on whether 6 is expected
to be less than or greater than 6.

The supermodular case is different because the decision is likely to vary
continuously with the estimated mean of 6 even as the precision of the esti-
mate becomes perfect. There is, however, a simple variation of Proposition 11
that applies to supermodular models provided that perfectly informed groups
make extreme recommendations.

19



Consider the case in which © = {0, 0y} has two elements, with 0, < 0.
In a slight abuse of notation, let a*(6x) be the optimal action given that
the state is 0, for £ = 1 and 2. When the problem is monotone, al(s) €
[a*(01), a*(0y)] for all signals.

Proposition 12 Assume that © has cardinality two and the decision prob-
lem 1s monotone. For any e¢ > 0, there exists a group size N such that if
I > N, then {s: a}(s) € [a*(01) + €,a*(0n) — €]} has probability less than e.

When there are only two possible states of the world, poorly informed in-
dividuals will make intermediate recommendations, but well informed groups
will make decisions close to the optimal decision for one of the two states.

When there are many states, changes in both precision and mean will
influence whether group decisions shift systematically relative to individual
ones. Example 4 illustrates how these two effects interact and provides a
motivation for the main result of this subsection.

Example 4 Suppose that § € R, 7(+) is normal with mean p and precision'6

7 > 0, and that given 6, s is a normal distribution with mean 6 and precision
r > 0. The posterior distribution of 6 given K independent signals s =

(s1,...,8k) is a normal distribution with mean p*(s) and precision 7 + K,
where X
* TR +r Zi: Si
pwi(s) = —. (9)
T+ Kr

In this example, the posterior distribution depends on the average signal.
Furthermore, if u(a, ) = U(a—6), then a*(s) = C'+ p*(s), for some constant
C.'7 Tt follows that the average individual recommendation, a*(s) = C+u*(s)
where s is the average signal.

Consider first the case where U(x) = —z?. The optimal recommendation
is simply the conditional mean of #. The conditional mean is an average of
the prior mean and the signal for an individual and the average of the prior
mean and the average signal for the group. Further, the group places lower
weight on the prior mean. Consequently, the group decision will be more

16The precision of a normal random variable is the inverse of its variance.

17a¥(s) solves: max [U(a — 0)dF(0 | s), where F(6 | s) is the distribution of 6 given s.
By assumption, we can write F'(6 | s) = G(0 — u*(s)), where G(-) is a normal distribution
with mean 0 and precision 7 + r. Hence [U(a —0)dF(0 | s) = [U(a —t— p*(s))dG(t),
which establishes the claim.
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extreme than the average decision because increasing the size of the group
that receives a given average signal leads to a systematic mean shift: The
estimate of the mean (for a fixed average signal) is further from the prior u
the larger the size of the group. Recall that Proposition 9 gave conditions
under which problems with u(a,f) = —(a — 6)*> would be invariant. The
assumption of uniform neutrality fails in this example because receiving two
copies of the same signal leads the group to revise the estimate of the mean.

Proposition 13, stated below, describes the nature of choice shifts when
U(-) is not necessarily quadratic. In this case, the losses associated with
incorrect guesses are asymmetric. If U’(+) is concave, then overestimates are
relatively more costly than underestimates, and individuals (with less precise
information) tend to make lower recommendations than groups. When s > p,
this effect goes in the same direction as the mean-shift described above. As
a result, the group’s recommendation is greater than the average recommen-
dation. If U’(+) is convex and § < p, then the group’s recommendation is less
than the average recommendation.

In this example, it is also possible to show the existence of choice shifts
when the population is finite. The recommendation of an individual if the
signal is s, af(s), is the solution to the equation

/U’(a —0)p(0 ] s)dd = 0. (10)

On the other hand, given the signal profile s = (s1,...,s;), the group’s
decision is the solution to the equation

/U’(a —0)p(0 | s)d = 0. (11)

By equation (9), the distribution of # given one signal s has a higher (lower)
mean than the distribution of 8 given I > 1 signals with average value s if
s < (s> p). It follows that the left-hand sides of equations (10) and (11)
can be ranked using second-order stochastic dominance. Specifically,
/U’(a —0)p(@ | s)do > /U’(a —0)p(f | s) if U'(+) is convex and s <
(12)
while
/U’(a —0)p(f | s)db < /U’(a —0)p( | s) if U'(+) is concave and s > p.
(13)

21



Since the posterior distribution of 6 given s depends on only the mean of s,
aj(s) is characterized by equation (10) with s = s. It follows that if U’(+)
is convex and § < p, then aj(s) < Y.L, ai(s;)/I and if U'(-) is concave
and § > p, then aj(s) > Zle af(s;)/I. That is, the group’s recommenda-
tion is higher than the average individual recommendation when the average
individual recommendation is high and U’(-) is concave and the group’s rec-
ommendation is lower than the average individual recommendation when the
average individual recommendation is low and the U’(+) function is convex.
In the example, agents want to find a good estimate for a function of 6.
Two factors generate choice shifts. First, the group relies less on its prior
information. As a result, its estimate of the mean is more extreme than the
average individual estimate. Second, when U’(-) has the specified second-
order properties, the group’s decision will increase the bias in one direction.
Specifically, if U’(+) is concave, recommendations that are too high are more
costly than recommendations that are too low. This induces individuals to
make lower recommendations than groups (given the same estimate of the
mean). Combined with the first effect, this means that risky shifts arise if
the group’s information favors risky choices. 0

The remainder of this section states and discusses a generalization of
Example 4. The example compares the group decision to the average rec-
ommendation made by individuals in the group. In order to make this kind
of comparison, I must impose structure on the state space © and the signal
space S. Until now, these sets had to be ordered (so that higher states were
associated with higher signals and higher signals induced higher actions),
but they were otherwise arbitrary. For the rest of the section, assume that
the action set is an interval; © and S are connected subsets of the real line;
the joint distribution admits a smooth density; the distribution and utility
function are sufficiently regular so that conditional expected utilities are well
defined; the optimal recommendation function «;(-) is a smooth function;
and that it is permissible to interchange integration and differentiation.'® In
order to relate signals and states, assume that signals are equal to the true
state plus an error, so that s = 6 +17. Assume that the error 7 is independent
of § and has a symmetric density g(-). Further assume that there is an affine
function L(s) = ls+m and a function h(-) such that the posterior probability

181t is sufficient to assume that the third derivative of u(-) is continuous and integrable.
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of 0 given s, p(f | s) can be written

p(6] s) = h(8 — L(s)). (14)

I call information structures that satisfy these conditions additive. The
additivity assumption, which holds in Example 4, implies that the expected
signal given 6 is equal to f. Furthermore, it is possible to compare the average
recommendation to a recommendation made in response to an average signal.

Lemma 1 Assume that the information structure is additive and u(a,0) =
U(a — f(0)) for U three times differentiable and U"(-) < 0 and f(-) strictly
increasing. Individual i’s optimal recommendation function, al(-) is a con-
cave [resp. convex] function of the signal if U'(-) and f(-) are concave [resp.
conver/.

To get some intuition for Lemma 1, note that a simple change of variables
argument (like the one used in Example 4) establishes that a;(-) is linear if
f(+) is linear.

It follows from Lemma 1 that (14) combined with concavity assumptions
implies that a}(s) > SO ai(s;)/I. That is, the regularity assumption makes
it possible to compare the average response of individuals with an individual’s
response to an average signal.

Lemma 1 makes strong assumptions on preferences. If I only made or-
dinal assumptions on the state space, concavity or convexity assumptions
in f(-) can be made without loss of generality. However, assumption (14)
is invariant only with respect to positive affine transformations of #. Con-
cavity and convexity assumptions on U’(-) translate into restrictions on the
third derivative of U(-). These restrictions have sensible interpretations in
the context of the model. Assume that u(a,f) = U(a — ) for an increas-
ing, concave function U(-). The urn model is a special case in which U(+)
is quadratic. In the urn model the costs associated with making an incor-
rect recommendation are symmetric. Mathematically, this property follows
because the second derivative of U(-) is constant. One way to describe sit-
uations in which losses are not symmetric is by making assumptions on the
second derivative of U(-). Straightforward calculus arguments (provided in
the appendix, Lemma 3) guarantee that

e If U"(-) is constant, then for all z > 0, U(0) — U(x) = U(0) — U(—=x).
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o If U”(-) is strictly increasing, then for all z > 0, U(0) — U(z) < U(0) —
U(—x).

o If U"(-) is strictly decreasing, then for all x > 0, U(0) —U(x) > U(0) —
U(—x).

In the first case, losses are symmetric and choice shifts may not arise. In
the second case, choosing a too small is more costly than choosing a too large.
Proposition 13 demonstrates that the group’s decision will be less than the
average individual recommendation in this case. In the third case, choosing
a too large is more costly than choosing a too small. Group decisions will
tend to be larger than the average individual recommendation in this case.

Example 4 illustrated the possibility that choice shifts would arise because
an individual estimate of the mean of the distribution might differ system-
atically from the estimate of a group that receives the same average signal.
Let 6 denote the prior mean of 6 and fi(s) denote the conditional mean of
given s. I assume that the information structure exhibits mean shift if /i(s)
is between 6 and s.!° The mean shift condition holds in Example 4. More
generally, it is straightforward to show that it holds in additive models when
the error distribution g¢(-) is unimodal and symmetric about 0 and the prior
distribution of 6 (7(-)) is unimodal and symmetric about .

Proposition 13 Assume that the decision problem is monotone, u(a, ) =
U(a — f(0)) for U three times differentiable, U"(-) < 0, and f(-) increasing,
and the information structure is additive and exhibits mean shifts. Let 0*
denote the true state of the world.

1. Assume U'(-) and f(-) are convez and 6* < 6. Given e > 0 there exists
N such that if I > N, then the probability that aj(s) < S°1_, ai(s;)/1

15 greater than 1 — e.

2. Assume U'(-) and f(-) are concave and 0* > 0. Given e > 0 there exists
N such that if I > N, then aj(s) > S°1_, ai(s;)/1 is greater than 1 —e.

The proposition states conditions under which the group’s decision is sys-
tematically biased relative to the average recommendation of the individuals.
Situations in which the average decision of the individuals is larger than the

19More precisely, I require that if s > 0, then fi(s) € [0, s] and if s < 6, then i(s) € [s, 6].
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group’s decision arise when U’(-) and f(-) are convex; shifts towards higher
group decisions arise when these functions are concave.?’

The direction of the choice shift depends on whether the state of the world
is greater than or less than the prior mean. When the group is large enough,
the group’s decision will be approximately optimal given 6#*. Hence high
group decisions will be higher than the average individual recommendation
when overestimates more costly than underestimates (convexity) and low
group decisions will be lower than the average individual recommendation
when it is more costly to underestimate the optimal decision.

The first part of the proof of Proposition 13 uses Lemma 1 to relate the
average of the individual recommendations to the individual best response
to the average signal. In the second step of the proof of Proposition 13,
I show that when u,(a,-) is concave (convex),?! the recommendation of an
individual who receives the signal s is less (greater) than the recommenda-
tion if the state were known to be equal to the expected state given s. The
law of large numbers implies that the average signal approximates the con-
ditionally expected signal given the true state of the world. An individual
recommendation based on this signal will be closer to the prior mean than
the recommendation of a group that knew the true state. Hence, the second
step always me to compare the group decision to how an individual would
respond to an average signal, while the first step relates the individual recom-
mendation to an average signal to the average individual recommendation.

When the error distribution ¢(-) is unimodal, it is possible to prove a
finite-sample version of Proposition 13. When the average signal is high
(low) and U’(-) and f(-) are convex (concave) the group’s decision is higher
(lower) than the average individual recommendation.

The conclusions of the proposition are qualitatively different from the
conclusions of Propositions 10 and 11. When utility is single-crossing, choice
shifts in the same decision problem can go in different directions. If informa-
tion suggests that the state is less than 6y, then there is a downward shift;
if information suggests that the state is greater than 6y, then there is an up-

20Motivated by the portfolio model, in Proposition 10 it was natural to describe sit-
uations in which the group made higher decisions than individuals as risky shifts and
ones in which the group selected lower decisions as cautious shifts. Context will determine
whether the choice shifts identified in Proposition 13 could be considered cautious or risky.

2f u(a,0) = U(a — f()) and U(-) is concave, then concavity (convexity) of U’(-) and
f () imply concavity (convexity) of u,(a,#) so the sufficient conditions on preferences used
in Lemma 1 will imply the conditions on preferences imposed in Proposition 13.
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ward shift. In contrast, Proposition 13 gives sufficient conditions for a shift
in any one direction. The direction of the shift depends on properties of the
decision problem.

6 Conclusion

This section discusses some related research, summarizes my contribution,
and suggests further research.

When individuals have the same preferences, there is always a mechanism
that leads to efficient information aggregation. The mechanism designer asks
each individual to report her signal and commits to taking the decision that
maximizes expected utility conditional on the signals reported. Honest re-
porting is an equilibrium. On the other hand, there is no guarantee that insti-
tutions found in the world will work as well. Austen-Smith and Banks (1996)
observe that sincere voting need not be an equilibrium when majority voting
is used to aggregate individual information even when individuals have iden-
tical preferences. Feddersen and Pesendorfer (1997) prove that voting does
aggregate information efficiently when the population is large and preferences
are homogeneous. The literature on informational cascades and observational
learning (for example, Banerjee (1992) and Bikhchandani, Hirshleifer, and
Welch (1992)) identifies situations in which groups will fail to make use of
information efficiently. Studying whether particular institutions for informa-
tion aggregation lead to polarization would be an interesting extension of my
approach.

There is an experimental literature on group decision making that fo-
cuses on topics traditionally studied by economists. A fundamental question
is whether groups make better decisions than individuals. My model as-
sumes perfect information aggregation, common interests, and optimization.
Consequently, the group’s recommendation must be better (ex ante) than
any individual recommendation and at least as good as any function of in-
dividual recommendations. In practice, groups may not perform better than
individuals. Blinder and Morgan (2005) ask individuals to make decisions
separately and then as groups in a setting where decisions makers choose
how much information to obtain. They find that groups tend to make better
decisions than individuals whether the group’s decision is determined by ma-
jority rule or consensus, but that the demand for information did not depend
on whether the decision was made by an individual or a group. In strategic
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contexts, Cooper and Kagel (2005) study a limit pricing game and report
that groups learn equilibrium strategies faster than individuals. Kocher and
Sutter (2005) make a similar finding in an experimental beauty contest.

Several other papers try to identify differences in group and individual
preferences in strategic settings. Bornstein and Yaniv (1998) study individual
versus group behavior in a standard, one-shot ultimatum game, where a fixed
amount of money c is split between a proposer and a responder. Bornstein
and Yaniv compare two treatments, one with individuals playing against
individuals and one with groups (of three subjects each) playing against
groups. Their main result is that groups are more (game-theoretically) ra-
tional players than individuals by demanding more than individuals in the
role of proposer and accepting relatively lower offers in the role of respon-
der.?? Cox (2002) finds that groups behave more like payoff maximizers than
do individuals when they play the role of the second mover (trustee) in the
trust game of Berg, Dickhaut, and McCabe (1995). In a sharp contrast to
these results, Cason and Mui (1997) find that in dictator games groups are
more trusting than individuals.??

Bone, Hey, and Suckling (1999) demonstrate that groups are prone to
the same kinds of systematic violations of the expected utility hypothesis as
individuals. I assume that both individuals and groups maximize expected
utility (although Propositions 2 and 12 do not require this assumption).

This paper compares the decisions of individuals and groups for infor-
mation aggregation problems. I show that generally there is no systematic
relationship between recommendations taken by individuals in isolation and
the decision that the individuals would take as a group. I then provide con-
ditions under which polarization will and will not arise.

I establish my results in a narrow setting. I assume that groups have
no problems aggregating information and reaching a joint decision. Anyone
who has even served on a committee will know that these assumptions are
unrealistic.

Experiments have identified choice shifts in a wide range of settings. This
paper provides a theoretical foundation for the existence of choice shifts in
a model of information aggregation. In future work, I hope to demonstrate

22Bornstein, Kugler and Ziegelmeyer (2004) reach a similar conclusion in a study of the
centipede game.

23Cason and Mui (1997) interpret their results as evidence in favor of the social compari-
son theory since their groups shift in the direction of generous behavior, which is perceived
to be socially desirable.

27



that the model of the paper organizes experimental evidence on polarization.

Appendix
Proof of Proposition 1. Given ¢* and Cj, > 0, define A\¥() by
X5 (0) = Crag (6) (15)
and fori=1,...,1 by
i (0) = Cr (47 (0) — a5(0)) + dig;' (6), (16)

where dy = Ciql/(min; ¢¥(0)). The choice of dj, guarantees that A (+) > 0.
It follows from equation (15) that

k
) = 0G0 (17)
Further, it follows from equations (15) and (16) that
(Ao + CLaE() = () + X0 (13
and so
R (19

2uco(A5(w) + A (W)

Now consider a signaling technology in which there is a signal s* for each
k and an additional signal 5. Let

Q) if s; = s* for all j,
P(g Me(0 if s; = s* and s; = 5 for all j # i,
(:5) =13 1) - (zk NGES Af(&)) if s; = 5 for all j,

0 otherwise.
(20)
By taking C} sufficiently small, it is possible to make P(-) > 0.
If the joint distribution of @ and s is given by P(-), then it follows from
equation (17) that if the group receives the signal profile s = (s*, ..., s¥) for

28



some k, then the group posterior is ¢*(-), while equation (19) implies that if
individual 7 receives s*, then her posterior is ¢F(-). |

Proof of Proposition 3. If individual i has beliefs ¢;(-) given the signal s;,
then it follows from Bayes’s Rule that the probability individual ¢ receives
signal s; given 0, «;(s; | 6), satifies:

4(0)
i(si | 0) = pa(s ; 21
(s 0) = (s 20 (21)
where p;(s;) = > a;(s; | w)m(w) is the probability that individual i receives
s;. Consequently, after any vector of signals s = (s1,...,ss) that gives rise
to the belief profile {qi, ..., q;}, the group’s posterior is
(Hilzlai(si | 9)) 7T(9) o ’/T_(I_I)(G)Hilzlqi(e) (22>

> Myai(si [w)) mlw) 3o, 7= U0 (W)L, gi(w)’

where the equation follows from equation (21) (the normalization factors
;(+) cancel out). This completes the proof. |

Proof of Proposition 4. If A has N elements, let A and S be the inte-
gers 1,...,N. Let © = A x I and 7(-) be the uniform distribution on ©.
For @ = (6y,...,6;) € ©, let f(8) =1+ 3.1, 6; (mod N) and u;(a,8) =
—(a — f(0))?. An individual is indifferent over all a € A while the group sets
ai(s) = £(5). .

Lemma 2 There exists a monotone information structure with the property
that if all but two of the individuals receive the lowest signal and two others
recewve the next lowest signal, then the posterior distribution given the group’s
information is greater (in the sense of first-order stochastic dominance and
the monotone likelihood ratio property) than any individual posterior.

Proof of Lemma 2. Assume that there are only two signals, s_; and sy
and the technology satisfies a(s_; | 0) = b1 forb € (0,1) and k=1,..., N
and a(sry1 | 0k) = 1 — a(s—y | Ox). When the group receives a profile of
individual signals s containing I — 2 copies of the s_; and two copies of the
signal sy, then the posterior distribution satisfies, for k =1,... N,

P(6) | s) = Am(6)p®DI=2) (1 — pF1)? (23)
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where A is a normalization constant selected so that Z,i\;l PO | s) =1.

On the other hand, the posterior probability of state 6, given s;,; (as
an individual signal) is u(1 — v*~1)7(6), where p is another normalization
constant. I claim that if b is sufficiently close to one, then

POy ]s) _ (1N (1= (0 1=t 7(0)
P01 | s) a (b) ( 1 — bk > T(Ot1) = 1 7T<9k:+1>. (24

Inequality (24) is equivalent to

yoa L= 0"

Since the left-hand side of inequality (25) converges to k/(k — 1) as b
approaches one, the claim follows. It follows from inequality (24) that the
profile of signals s leads to a posterior that dominates the individual signal
SI+1- u

Proof of Proposition 6. Add additional signals to the technology con-
structed in Lemma 2 that are mixtures of the signals s_; and s;,;. For
7 =0,...,1 define s; so that s_1 < sp < --- < 5741 and

a*(s; | 0) = A0) (cja(s—1 | 0) + (1 —¢j)a(siiq | 0)) for j=—1,...,1+1,
(26)
where Z]{il_la*(sj | ) = 1forall 6,0 < ¢ < --- < ¢, and ¢ is close
enough to zero so that if the group receives I copies of the signal s;, then the
posterior will still dominate the posterior given only the signal s;y;. This is
possible by continuity.
First, I show that given a profile of actions (ay,...,as) ordered so that
a; < ay < --- < ay, it is possible to pick ¢; and a utility function so that
a’(sj) = a; for j = 1,...,1 and af(s1,...,s71) = 1. Set ap = 0 and let
arv1 € lar, 1]. Let u(a,) = —(a — f(0))?. I claim that it is possible to find
A(0), ¢;, and a strictly increasing f(-) such that for j =0,..., 1+ 1,

I & 1OTO)_pg) — . (27)

*(s5 | w)m(w)

To establish the claim, define A; and B; for i = —1 and I + 1 as:
A=Y arO)m(0)£0) (28)
)
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and

B =Y a(0)n(0). (29)
Using (26), equation (27) can be written:
A1+ (1= ¢j)Arp = a; (¢;B-1 + (1 = ¢)Brya) - (30)
It follows that for j =0,...,1

AI+1 - ajBI+1
c; = . 31
7 A — A1 —aj(Bry — Boy) (31)

The fact that the posteriors are ranked by the monotone likelihood ratio
property and the monotonicity of {a;} guarantee that it is possible to find
f(+) such that the values of ¢; defined in (31) are non-negative and decreasing.
This establishes the claim.

When u(a;, 0) = —(a;— f(0))?, equation (27) guarantees that a}(s;) = a;,
for j =1,..., 1+ 1. Since the posterior distribution given (sq,...,s;) domi-
nates the posterior given sy, a suitable choice of a;y1 € (as, 1) guarantees
that af((s1,...,sr)) = 1.

This construction therefore guarantees that it is possible to create an
information structure in which the group’s decision is 1 no matter what the
individual recommendations are. The same type of construction can be used
to create an information structure in which the group’s decision is 0 given any
individual recommendation. It is straightforward to modify the argument to
information structures that induce group decisions that are inside the range
of individual recommendations.

The construction demonstrated the proposition was true when the util-
ity function took the form: u(a;,0) =—(a; — f(0))* for an increasing func-
tion f(-). One can modify the argument to show that it is possible to take
u(a;, 0) = (a;0 + (1 — a;)0p)° for appropriate choices of 6y > 0 and 3 < 1.

Specifically, let
0)m(6)6
Z *(s0 | w)m(w)
The definition of 6, in (32) and the fact that the distribution generated by
the signal s;,; dominates that of sy guarantees that there exists 5 € (0,1)

such that 0)m(6)6
Z = (1 [ 6)m(0) 0910 — 6,) = 0. (33)

a*(sry1 | w)m(w)
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If u(a;,0) = (a;0 + (1 — a;)0)°, then equation (32) guarantees that the best
response to sg is the action 0 and equation (33) guarantees that the best
response to sy is the action 1. Having constructed the utility function, given
(a1, ...,az) it is routine to find appropriate values of ¢; so that af(s;) = a;
fori=1,...,1. [ |

Proof of Proposition 7. Suppose that a = (ay,...,ar), with 0 < a7 <
-++ < ay and ay_1; > 0. Proposition 6 implies the result unless a; = 0. If
a; = 0, then set s_; = sg = sy, but construct the information structure
as in the proof of Proposition 6 so that a}(s;) = a; and a*(s) = 1 (which,
provided ay_1 > 0, is still possible, since the posterior given s will dominate
the posterior given the signal associated with ar). [

Proof of Proposition 8. Without loss of generality, let a; = min;<;<;a;
and a; = maxj<;<y a;. Let s; satisfy af(s;) = a;. By invariance, a1 = aj(s1) =

ao(s1,...,s1) and ar = aj(sy) = ao(sr,...,sr). By monotonicity, s; > s;
and s; € [s1,s;] for all i. It follows from Proposition 5 that aj(si,...,s;) €
[0’17 CL[]. [ ]

Proof of Proposition 10. I prove the first part of the proposition. The
second part follows from a symmetric argument. Let § be the largest element
of Sy. By monotonicity, the group’s decision given that all signals are in Sy
is less than or equal to the decision given that all signals are s. There exists
0 > 0 such that if the group’s posterior places probability of at least 1 — 9 on
So, then the group’s decision is no larger than e. If all I signals are s, then
the group’s posterior probability that the state is 6, ¢!(6), is

L al(3] 0)e(0)
T = TG [w)r@)

By the definition of §, there exists 6 < 6, such that a(s | §') > «a(s5 | ) for
all @ > 6. It follows from equation (34) that for all 6 > 6y,

(34)

I
G
fm ey = (39)
The proposition follows from equation (35). |
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Proof of Proposition 11. Given any € > 0 there exists § > 0 such that if
the posterior probability of § > 6y given s is less than ¢ then af(s) < € and
if the posterior probability of § < 6 given s is less than § then aj(s) > 1 —e.
The proposition now follows because, by the law of large numbers, with prob-
ability one the posterior probability converges to a degenerate distribution
on the true state.?* [ |

Proof of Proposition 12. By the law of large numbers, with probability
one the posterior probability converges to a degenerate distribution on the
true state. The result follows from continuity:. |

Lemma 3 Suppose that U : R — R is a twice continuously differentiable
function such that U'(0) = 0. If U"() is strictly decreasing [resp. strictly
increasing/, then for all a > 0, U(0) — U(a) > [resp. <] U(0) — U(—a).

Proof of Lemma 1. a(s) is the solution to the equation:

/ wa(a, 0)p(0 | 5)d6 = 0. (36)

Since p(f | s) = h(0 — L(s)) equation (36) can be written (using the charge
of variables p = 0 — L(s))

[ watasp -+ L)hip)do = 0. (37)
Differentiation of equation (37) shows that if u(a,f) = U(a — f(0)), then

JU"(a,p+ L(s))h(p)dp

JU"(a,p+ L(s))h(p)dp’
(38)

where L'(s) = 1. It follows from equation (38) and the concavity of U(-) that

*

af(+) is concave when U’(-) and f(-) are concave and convex when U’(-) and

f(+) are convex.? |

') = [ 1o LN (a7 () - 176))

24DeGroot (1970, pages 202-204) proves precisely this variation of the strong law of
large numbers.
25If f(-) is linear, then linearity of a}(-) follows with no further assumptions on U(-).
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Proof of Lemma 3. By Taylor’s Theorem and U’(0) = 0, it follows that

U(z) - U0) = 2 UQH(”) (39)

for n between 0 and z. Equation (39) implies that for a > 0, U(0) — U(a) >
[resp. <] U(0) - U(-a) provided that for all y,z > 0, U"(y) < [resp. >]
U"(—=z). ]

Proof of Proposition 13. Assume that u,(-) is strictly concave in 6 and
0* > 6. The argument for u,(-) strictly convex is analogous. It follows from
Jensen’s inequality that E{u,(a,6) | s} < uq(a,fi(s)) (where fi(s) is the
conditional mean of # given s) and, in particular,

0 = Efua(aj(s),0) | s} <ualaj(s), i(s)), (40)

where the equation follows from the definition of a}(s).

Because the information structure exhibits mean shifts and 6* > @ it
follows that (6*) < 6*. It follows from supermodularity of u(-) that

ug(a,0) > uq(a, (1(0)). (41)

The law of large numbers implies that S converges to the conditional mean
of s given # = 0*, which, by additivity, is equal to 8* and that the group’s
posterior converges to a point distribution on §*. Therefore, inequalities (40)
and (41) imply that given any € > 0 there exists N such that if 7 > N, then
uq(a}(8),0%) > 0. From concavity of u(-,0) in its first argument,

ag(s) > aj(s) (42)

for a set of signal profiles that has probability at least 1 — e.

Assume now the stronger concavity conditions in Lemma 1 hold. It fol-
lows from Lemma 1 that a}(8) > S°1ai(s;)/1. The proposition now follows
from inequality (42). |
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