
Performance-Sensitive Debt
∗

Gustavo Manso

Bruno Strulovici

Alexei Tchistyi

October 31, 2004

Abstract

This paper studies performance-sensitive debt (PSD), the class of
debt obligations whose interest payments depend on some measure of
the borrower’s performance. For example, step-up bonds compensate
credit rating downgrades with higher interest rates, and reward credit
rating upgrades with lower interest rates. In an endogenous default
setting, we develop an algorithm to value PSD obligations allowing for
general payment profiles, and obtain closed-form pricing formulas in
important special cases, including step-up bonds. Moreover, we pro-
vide a criterion to compare different PSD obligations in terms of their
efficiency. In particular, we find that step-up bonds lead to earlier de-
fault and lower the market value of the issuing firm’s equity, compared
to fixed-coupon bonds of the same market value. Lastly, we analyze
the implications of our results for the policy of credit-rating agencies.
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1 Introduction

This paper studies performance-sensitive debt (PSD), the class of debt obli-
gations whose interest payments depend on some measure of the borrower’s
performance. For instance, step-up bonds compensate credit rating down-
grades with higher interest rates, and credit rating upgrades with lower
interest rates.1 Performance pricing loans, a large fraction of commercial
loans, also tie their interest rates to some measure of the borrower’s credit
quality.2

PSD obligations, including step-up bonds and performance pricing loans,
compensate debtholders for changes in the borrower’s credit risk. Practi-
tioners have not yet reached any consensus on the likely effects of these
risk-compensating PSD schemes. While proponents laud their high-yield,
low-volatility characteristics (some even finding them “too generous”3), crit-
ics argue that risk-compensating PSD schemes generate a vicious circle by
increasing the burden of debt service during financial strains, harming the
issuer even more and, eventually, harming investors.4 Underlying this dis-
agreement is the lack of a theoretical model to value PSD and to assess the
effect of issuing PSD rather than standard debt. This latter difficulty can be
formalized as follows: for a given amount of debt raised, risk-compensating
PSD results in paying higher interest than standard debt in times of low
performance, and lower interest in times of high performance. It is unclear,
then, between the perspective of lighter debt burden in times of high per-
formance and the increased payment strains in times of low performance,
which type of debt is more desirable.

Our goal is to build a valuation model for PSD, and to investigate how
different types of PSD affect the timing of default and the equity value of
the issuing firm.

We develop a pricing algorithm allowing, tractably, for general payment
profiles. We show that the equity value associated with PSD satisfies an
ordinary differential equation with a boundary condition corresponding to
zero value at default, and a “smooth-pasting” condition. We obtain closed-
form pricing of PSD in important special cases, including step-up bonds.

Building on our valuation model, we find that risk-compensating PSD

1Step-up bonds exceed $100bn for both US- and European-based issuers (see Lando
and Mortensen (2003) and “Step lightly,” CFO Magazine (January 2001).

2These loans represent over 70% of commercial loans (see Asquith, Beatty, and Weber
(2002)).

3“The price of protection,” Credit Magazine (September 1st, 2002)
4“Credit ratings can harm your wealth,” Investment Adviser (December 9th, 2002).
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schemes have an overall negative effect on the issuing firm. In particular,
issuing risk-compensating PSD leads to earlier default and, consequently,
lowers the market value of the issuing firm’s equity, holding constant the
amount of cash raised by the obligation.

Our results also bear implications on the behavior of credit-rating agen-
cies. In trying to avoid the “credit-cliff dynamic”, rating agencies are some-
times reluctant to downgrade distressed firms with PSD obligations in their
capital structure.5 Reluctant agencies generate distortions between actual
and theoretical ratings, affecting the reliability of credit rating agencies.

Models of the valuation of risky debt can be divided into two classes.
The first class treats firm’s liabilities as contingent claims on its underlying
assets, and bankruptcy as an endogenous decision of the firm. This set
includes Black and Cox (1976), Fischer, Heinkel, and Zechner (1989), Leland
(1994), Leland and Toft (1996) and Duffie and Lando (2001). In the second
class of models, bankruptcy is not a decision of the firm. There is either
an exogenous default boundary for the firm’s assets (see Merton (1974) and
Longstaff and Schwartz (1995)), or an exogenous process for the timing of
bankruptcy, as in Jarrow and Turnbull (1995), Jarrow, Lando, and Turnbull
(1997), and Duffie and Singleton (1999).

Das and Tufano (1996), Acharya, Das, and Sundaram (2002), Houweling,
Mentink, and Vorst (2003) and Lando and Mortensen (2003) obtain pricing
formulas for credit-sensitive notes using the second class of models of the
valuation of risky debt. Since they consider an exogenous default process,
the costs associated with performance-sensitive debt do not become apparent
in their models.

In order to assess these costs, we work in the setting of Leland (1994),
in which default is an endogenous decision of the firm. Instead of a fixed-
coupon consol bond, we consider debt obligations in which the interest rate is
linked to some performance measure of the borrower. Performance-sensitive
debt is thus fully characterized in this setting by some C : Π 7→ R+ that
maps a performance measure π to the interest rate C(π) charged on the
debt. Typical performance measures are credit ratings and financial ratios
such as debt-to-earnings, leverage, or interest coverage.

For PSD obligations C and D that are based on the same performance
measure, we say that C is more risk-compensating than D if C − D is non-
increasing and non-constant. We prove that if C and D raise the same
amount of cash, and if C is more risk-compensating than D, then C is
less efficient than D, in the sense that it induces an earlier default time,

5See Standard & Poor’s (2001).
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therefore a higher present value of bankruptcy costs, and thus reduces the
initial market value of the issuing equity.

Therefore, it turns out that the trade-off between the opposite effects
of the more risk-compensating scheme – relatively higher coupons in times
of low performance and lower coupons in times of high performance – is
systematically resolved in favor of the less risk-compensating debt.6 We
propose the following interpretation for this result.

At the time of default decision, the more risk-compensating PSD requires
higher interest payments, increasing the firm’s losses. Although it is possible
that this PSD imposes a lighter debt burden in the future, the current
situation has a higher weight on equityholders’ decision, and makes it less
attractive for them to continue running the firm.

The remainder of the paper is organized as follows. In Section 2, we
illustrate several applications. In Section 3, we present the general model
and formalize the notion of PSD. Section 4 analyzes the case of asset-based
PSD obligations, demonstrating their relative efficiency. In section 5, we
explicitly derive the valuation of step-up and linear PSD obligations. Section
6 discusses different performance measures used in practice, and solves for
the case of ratings-based PSD. Section 7 discusses the implications of our
results for rating agencies policy. Section 8 provides additional discussion.
Section 9 concludes.

2 Applications of PSD

This section describes PSD obligations that arise in practice. Some types
of PSD obligations, such as credit-sensitive notes, performance-pricing loans
and catastrophe bonds, have explicit performance-pricing provisions. Other
types of PSD obligations are implicitly performance dependent because the
terms of the debt are subject to renegotiation or are the result of an optimal
dynamic capital strategy.

Credit-sensitive notes. A credit-sensitive note, sometimes called a step-
up bond, pays an interest rate that is contractually linked with the credit
rating of the borrower.

6This result is somewhat related to the finding by Hillion and Vermaelen (2004) that the
issuance of floating-priced convertibles is followed by significant negative abnormal returns.
Hillion and Vermaelen (2004) point out that the design of floating-priced convertibles
encourages speculative short-selling activities by the convertible holders that can hurt the
equityholders. In this paper, we are not considering convertibles or market speculation.
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First issued in the late 1980s, credit-sensitive notes have recently expe-
rienced an upsurge, specially among European telecommunications compa-
nies.7

Performance-pricing loans. Performance-pricing loans explicitly tie their
interest to some pre-specified performance measure of the borrower. Typi-
cal performance measures used for this purpose are credit ratings and such
financial ratios as debt-to-earnings, leverage, or interest coverage.

In an analysis of the Loan Pricing Corporation Database, Asquith, Beatty,
and Weber (2002) found that the proportion of lending agreements includ-
ing performance pricing provisions covered by this database increased from
40% in 1994 to over 70% in 1998.

Put-call provisions. Suppose a debt issue has provisions allowing the
lending bank to put the debt back to the issuer when some performance
measure drops below a contractual threshold. When such a provision is
triggered, the lending bank often renegotiates the initial terms of the loan
in effect, increasing the interest rate.

The borrower may be given an option to call the loan when its credit
quality improves. This permits the borrower to refinance the debt at lower
interest rates after good performance. The outcome of these forms of op-
tionality is effectively PSD.

Reset bonds. A reset bond, sometimes called a payment-in-kind (PIK)
bond, has an interest rate that is adjusted periodically so that the market
value of the bond is the same as its principal. In some cases the new interest
rate is determined by an auction. The associate coupon rate C is thus
decreasing in the credit quality of the borrower and a reset bond is, in
effect, a form of PSD. Default in the junk-bond market may be induced by
the rise in coupon payments of reset bonds.8

Short-term debt. The simplest case of PSD is short-term debt, such as
commercial paper, since the coupon rate rises and falls continuously with
the credit quality of the borrower. Myers (1977) argues that short-term debt
may be used to mitigate agency costs. In Diamond (1991), risky firms do

7Houweling, Mentink, and Vorst (2003) and Lando and Mortensen (2003) study the
pricing of the recent European telecommunications step-up bonds.

8“The Junk-Bond Time Bombs Could Go Off,” Business Week (April 9th, 1990).
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not issue short-term debt in order to avoid early liquidation. Guedes and
Opler (1996) provide empirical evidence supporting both claims.

Catastrophe bonds. Catastrophe (CAT) bonds, usually issued by insur-
ance companies, promises coupons that are reduced in case total losses in
the insurance industry are above a pre-specified threshold.9

Dynamic capital structure. In a setting with taxes and bankruptcy
costs, the optimal amount of debt outstanding varies with asset level. When
the asset level increases, for example, issuers are better off by issuing more
debt, since this gives them higher tax benefits. On the other hand, when
the asset level decreases, debt reductions are optimal, ignoring transaction
costs, as they reduce the present value of bankruptcy costs. The net effect,
under some conditions, is PSD. This setting is studied in Goldstein, Ju, and
Leland (1998).

3 The General Model

We begin by specifying a general model. Further assumptions will be added
in later sections. We consider a generalization of the optimal liquidation
models of Fischer, Heinkel, and Zechner (1989) and Leland (1994)10.

A firm generates cash flows at the rate δt, at each time t. We assume
that δ is a diffusion defined by

dδt = µδ(δt)dt + σδ(δt)dBt, (1)

where µδ and σδ satisfy the classic assumptions for the existence of a unique
strong solution11 to (1) on a fixed probability space (Ω,F , P ) with the infor-
mation filtration (Ft) generated by the standard Brownian motion B. For
simplicity, we assume that all agents are risk-neutral. There is a constant
risk-free interest rate r, with µδ < r − ε for some positive constant ε. The
market value At at time t of the future cash flows of the firm is then

At = Et

[∫ ∞

t

e−r(s−t) δs ds

]
< ∞ (2)

9See Fitch IBCA (2001) for a survey of the market for CAT bonds.
10While previous model specifications are limited to geometric Brownian motion, we

consider here a general diffusion model
11See for example Karatzas and Shreve (1991)
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where Et denotes the Ft-conditional expectation. By the Markov property,
At only depends on {δ}s≤t through δt. Specifically, there exists a smooth
function A : R → R such that At = A(δt), which implies that {At}t≥0 is a
diffusion:

dAt = µ(At)dt + σ(At)dBt. (3)

For the sake of ulterior computations, we assume

Condition 1 µ and σ are smooth and bounded and σ is coercive.12

Since Et [δs] is increasing in δt, A(·) is increasing, which implies the existence
of a continuous inverse function δ : R → R such that δt = δ(At).

We consider a performance measure represented by an Ft-adapted stochastic
process (πt)0≤t<∞ taking values in a totally ordered, topological space Π. In
general, πt can be any statistic that measures the firm’s ability and willing-
ness to serve its debt obligations in the future. Financial ratios and credit
ratings are among commonly used performance measures. A performance-
sensitive debt (PSD) obligation is a claim on the firm that promises a non-
negative payment rate that may vary with the performance measure of the
firm. Formally, a PSD obligation C( · ) is a measurable function C : Π → R,
such that the firm pays C (πt) to the debtholders at time t.13 For exam-
ple, the consol bond of Leland (1994) is a degenerate case of PSD. The
reader should note that, while our earlier sections dealt mostly with “risk-
compensating” PSD (that pay higher coupons when performance worsens),
our definition of PSD encompasses more general kinds of PSD.

Given a PSD obligation C, the firm’s optimal liquidation problem14 is
to choose a default time τ̂ to maximize its initial equity value W C

0 , given
the debt structure C. That is,

12In the one-dimensional case, coerciveness means that there exists a real number σ
¯

such that 0 < σ
¯
≤ σ. Throughout, smoothness means continuous differentiability.

13We are considering perpetual debt, which is a standard simplifying assumption for
the endogenous default framework. See, for example, Leland (1994). However, our model
can be extended to the case of finite average debt maturity, if we assume that debt is
continuously retired at par at a constant fractional rate. See Leland (1998) for more on
this approach. Leland and Toft (1996) use more general finite-maturity debt framework.
However, due to the complexity of their model, most of their results are obtained using
simulations.

14Firms usually have standard fixed-coupon bonds together with different types of PSD
obligations in their capital structure. In this case, the total outstanding debt of the firm
is still PSD, but one has to sum the payment rates of all debt obligations issued by the
firm when determining the total payment rate of the firm, which is the relevant payment
rate for liquidation purposes.
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W C
0 ≡ sup

bτ∈T

E

[∫
bτ

0
e−rt[δt − (1 − θ)C (πt)] dt

]
, (4)

where T is the set of Ft stopping times and θ is the corporate tax rate on
earnings. If τ∗ is the optimal liquidation time, then the market value of the
equity at time t < τ∗ is

W C
t = Et

[∫ τ∗

t

e−r(s−t)[δs − (1 − θ)C (πs)] ds

]
. (5)

Analogously, the market value UC
t of the PSD obligation C at time t is

UC
t ≡ Et

[∫ τ∗

t

e−r(s−t)C (πs) ds

]
+ Et

[
e−r(τ∗−t) (Aτ∗ − ρ(Aτ∗))

]
, (6)

where ρ (.) defines the portion of the asset value lost at bankruptcy. We
assume that ρ is an increasing function such that 0 ≤ ρ(x) ≤ x for all x ≥ 0.
If δt is lower than (1− θ)C(πt), equity holders have a net negative dividend
rate.15 Equity holders will continue to operate a firm with negative dividend
rate if the firm’s prospects are good enough to compensate for the temporary
losses.

4 Asset-Based PSD

In all the applications of PSD listed in the Section 2, the interest rate charged
to the borrower depends on the borrower’s credit quality. Since the market
value A of assets is a time-homogeneous Markov process, the current asset
level At is the only state variable in our model, and any measure of the
borrower’s earnings prospect at time t is solely determined by At.

Therefore, it is natural to consider the asset level At as a performance
measure. An asset-based PSD is a PSD whose coupon rate only depends
on the current asset level. Specifically, an asset-based PSD is a measurable
function C : R+ → R, under which the firm pays coupons at rate C (At) at
time t. Using this definition, we derive valuation and efficiency results for
asset-based PSD.

15Limited liability is satisfied if the negative dividend rate is funded by dilution, for
example through share purchase rights issued to current shareholders at the current val-
uation.
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4.1 Valuation

Given an asset-based PSD, the initial value of the equity is:16

W (A0) ≡ sup
bτ∈T

E

[∫
bτ

0
e−rt [δ(At) − (1 − θ)C (At)] dt

]

.

The Markov property and time homogeneity imply that there exist asset
levels AB and AH with AB < A0 < AH , such that an optimal default
time of the firm is of the form τ∗ = min(τ(AB), τ(AH )), where τ(x) ≡
inf {t : At = x}. Even though the existence of an upper asset boundary AH

above which the firm would default is mathematically possible, we exclude
this unnatural possibility with the following condition.

Condition 2 There exist levels x
¯

< x̄ and a positive constant c
¯

such that

1. (1 − θ)C(x) ≥ δ(x) if and only if x ≤ x̄.

2. (1 − θ)C(x) ≥ δ(x) + c
¯

for x ≤ x
¯
.

The first part of Condition 2 states that for asset levels higher than x̄, the
cash flow rate is higher than the coupon payment rate. It can be easily
verified that, under this condition, AH = +∞, so that the optimal default
time simplifies to τ∗ = τ(AB). Therefore, equity holders’ optimal problem
can be expressed without loss of generality as:

W (x) = sup
y<x

W̃ (x, y), (7)

where

W̃ (x, y) ≡ Ex

[∫ τ(y)

0
e−rt [δ(At) − (1 − θ)C(At)] dt

]

.

In order to derive an ordinary differential equation (ODE) for W , we impose
the following condition on C:

Condition 3 The PSD obligation C is such that:

1. There exist nonnegative constants k1 and k2 that satisfy

0 ≤ (1 − θ)C(y) ≤ k1 + k2y.

16Throughout this section, we omit the superscript C and the subscript 0 whenever
there is no ambiguity.
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2. C is right continuous on [0,∞) and has left limits on (0,∞).

Using the strong Markov property of {At}t≥0,

W̃ (x, y) = f(x) − ξ(x, y)f(y) (8)

where17 for x > y,
ξ(x, y) = Ex[e−τ(y)],

and

f(x) = Ex

[∫ ∞

0
e−rt [δ(At) − (1 − θ)C(At)] dt

]
.

The next lemma shows that, under Condition 2, the default triggering level
AB is strictly positive.

Lemma 1 Under Condition 2, there exists a level x̃ such that any optimal
default time τ satisfies τ ≤ τ(x̃) almost surely.

An important consequence of Lemma 1 is that default occurs with positive
probability. Our next theorem characterizes the solution of the optimal
stopping problem (7).

Theorem 1 If a PSD C satisfies Conditions 1–3, the following statements
are equivalent:

1. AB is an optimal default triggering level:

W (x) = Ex

[∫ τ(AB)

0
e−r(s−t)[δ(As) − (1 − θ)C (As)] ds

]

.

2. W (x) and AB satisfy:

(i) AB ∈ (0, x̄).

(ii) W is continuously differentiable and W ′ is bounded and left and
right differentiable.

(iii) W vanishes on [0, AB ] and satisfies the following ODE at any
point of continuity of C:

1

2
σ2(x)W ′′(x)+µ(x)W ′(x)−rW (x)+δ(x)−(1−θ)C(x) = 0. (9)

17Previous assumptions on µ and σ imply that ξ is well-defined, continuous, increasing
in y and less that 1 (see Karatzas and Shreve (1991)).
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A proof is given in the Appendix.18

The continuous differentiability of W and the fact that W is 0 on [0, AB ]
imply that W ′(AB) = 0, which is known as the smooth-pasting condition.
Theorem 1 provides a method for solving the firm’s optimal liquidation
problem. The proposed algorithm is the following

1. Determine the set of continuously differentiable functions that solve
ODE (9) at every continuity point of C. It can be shown that any
element of this set can be represented with two parameters,19 say L1

and L2.

2. Determine AB , L1, and L2 using the following conditions:

a. W (AB) = 0.
b. W ′ is bounded.
c. W ′(AB) = 0.
d. AB ∈ (0, x̄).

We interpret (a) as the boundary condition on the solution at the point AB

of the ODE. Condition (b) says that W ′(x) remains bounded as x → +∞
and constitutes the second boundary condition on the solution of the ODE.
The smooth-pasting condition (c) is interpreted as the first order optimiza-
tion condition that defines the optimal bankruptcy boundary. Condition (d)
verifies that condition 2.(i) of Theorem 1 is satisfied.

Now that we know how to price the equity associated with PSD, we can
also price the PSD itself. Using the fact that the sum of the equity value,
the PSD value, and the expected losses resulting from the bankruptcy is the
sum of the asset level and the present value of the tax benefits, we obtain
the PSD pricing formula:

U (At) =
1

1 − θ
[At − W (At) − [ρ(AB) + θ(AB − ρ(AB))] ξ(At, AB)] .

18The Appendix also gives two separate equations involving the right and left derivatives
of W ′ at discontinuity points of C (cf. equations (28) and (29)).

19In fact, we really consider here solutions of coupled equations (28) and (29), which
boil down to the ODE (9) at any continuity point of C. One can easily check that the set
of solutions of the coupled equations still is a two-dimensional vector space.
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4.2 The Relative Efficiency of Asset-Based PSD

In this subsection, we study the relative efficiency of alternative asset-based
PSD. Specifically, we derive a partial order, by “efficiency,” among alterna-
tive PSD issues that raise the same amount of cash. We need the following
definitions and condition, that we state in terms of a general performance
measure π. These will also be used in Section 6.2, for the case of credit
ratings.

Definition 1 (Relative Efficiency). Let C and D be PSD that raise the
same funds, UC

0 = UD
0 . We say that C is less efficient than D if it deter-

mines a lower equity price, that is, if W C
0 < W D

0 .

Definition 2 (Risk Compensating). Let C and D be PSD issues based on
the same performance measure. We say that C is more risk-compensating
than D if C − D is a non-increasing, not constant function.

Figure 1 illustrates the “risk-compensating” concept.

Condition 4 (Efficiency Domain). A PSD issue C is said to be in its ef-
ficiency domain if, for any constant α > 0, we have UC−α

0 < UC
0 , where

C − α denotes a PSD issue that pays C (At) − α at time t.

Condition 4 means that it is not possible to raise the same amount of
cash as C by a constant downward shift in its coupon rate. For example,
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a bond paying a fixed coupon rate c raises an increasing amount of cash
as c increases, until c reaches a point at which the loss due to precipitated
default dominates the gain due to the increase of coupon payment (as in
Figure 2). The forms of PSD that we consider are in their efficiency domain,
for otherwise efficiency in the sense of Definition 1 can be trivially improved
by uniformly reducing the interest rate paid.

Theorem 2 Suppose C and D both are asset-based PSD, satisfying UC
0 =

UD
0 and Conditions 1–4. If C is more risk-compensating than D, then C is

less efficient than D.

A proof of the theorem is given in the appendix.

The above result is supported by the following intuition. Equityholders
decide to declare bankruptcy when coupon payments become too high com-
pared to dividends. At this time, the firm pays higher interest rates with C
than with D and, while there is a possibility that the situation be reversed in
the future, the urgency of the current situation increases the firm’s incentive
to declare bankruptcy.

This intuition can be further illustrated by the opposite, extreme exam-
ple of a bond paying a coupon rate equal to the dividend rate C(At) = δ(At).
This coupon rate decreases to zero as the asset level goes to zero. The coupon
payments never exceed the dividends, so the firm never goes bankrupt. Such
a bond transfers all the value of the firm to debtholders, and, if it could qual-
ify as “debt” for tax purposes, would reduce tax payments to zero since the
tax benefit resulting from coupon payments is equal to the tax on the div-
idends. Equityholders could decide to buy all of the debt, in which case
this bond allows them to receive all of their dividends in form of coupon
payments.

Corollary 1 Let C be a PSD issue satisfying Conditions 1–4. If C is non-
increasing and not constant, it is less efficient than the fixed-interest PSD
issue raising the same amount of cash and verifying Condition 4. If C is
non-decreasing and not constant, it is more efficient than any fixed-interest
PSD issue raising the same amount of cash.

The result suggests that, in many settings, the issuer would choose the least
risk-compensating form of debt that qualifies as “debt” for tax treatment.

The following numerical example compares “one-step” PSD issues C that
raise the same amount M , in the class CM of PSD defined by
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C (At) =

{
C1, At ≥ G2

C2, At < G2
,

such that C2 ≥ C1 and UC(A0) = M .
We assume that the asset is a geometric Brownian motion with param-

eters µ = 0.01, σ = 0.1, and that ρ(x) = 0.25x, θ = 0, r = 0.03, A0 = 100,
G2 = 80, and M = 50, M can be raised by issuing a bond that promises
to pay a fixed coupon rate of 2. To see the inefficiency of step-up bonds,
we compute for one-step PSD issues in CM the present value of bankruptcy
losses, which is by definition

Q (C) ≡ 0.25E
[
e−rτ(AC

B)AC
B

]
= 0.25AC

B

(
A0

AC
B

)−γ1

,

where20 γ1 =
m +

√
m2 + 2rσ2

σ2
and m = µ − σ2

2 . According to Definition

2, (C1, C2) is more risk-compensating than (C ′
1, C

′
2) if C2 − C1 > C ′

2 − C ′
1.

Figure 3 shows the relationship between the present value of bankruptcy
losses and the degree of risk-compensation (C2 − C1) associated with the
PSD. One can see that the fixed-coupon PSD results in a bankruptcy cost of
2.8, while being worth of 50. On the other hand, as the difference (C2 − C1)
rises, the bankruptcy cost climbs quickly.

20See Section 5
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5 Examples of Asset-Based PSD

In this section, we solve our model explicitly for two important cases: step-
up and linear PSD issues. Step-up PSD is more likely to be seen in practice,
while linear PSD has a convenient pricing formula. Throughout this section,
we assume that the asset process is a geometric Brownian motion with drift
µ and volatility σ2. This implies that δ(x) = (r − µ)x, and that ξ(x, y) =
(

x
y

)−γ1

, where γ1 =
m +

√
m2 + 2rσ2

σ2
and m = µ − σ2

2 .

5.1 Step-Up PSD

Step-up performance-sensitive debt is defined to be a PSD obligation whose
coupon payment is a non-increasing step function of the asset level. For a
decreasing sequence {Gi}I+1

i=1 of asset levels such that G1 = +∞ and GI+1 =
AB , the coupon rate of a step-up PSD obligation can be represented as

C (At) = C̄i whenever At ∈ [Gi+1, Gi), (10)

where {C̄i}I
i=1 is an increasing sequence of constant coupon rates. With this

coupon structure, the general solution of the ODE (9) is
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W (x) =

{
0, x ≤ AB ,

L
(1)
i x−γ1 + L

(2)
i x−γ2 + x − (1−θ)C̄i

r
, Gi+1 ≤ x ≤ Gi ,

(11)

for i = 2, . . . , I +1, where γ1 =
m +

√
m2 + 2rσ2

σ2
, γ2 =

m −
√

m2 + 2rσ2

σ2
,

m = µ− σ2

2
, and where L

(1)
i and L

(2)
i are constants to be determined shortly.

According to Theorem 1,
W (AB) = 0 (12)

and
W ′ (AB) = 0 , (13)

and W (·) is continuously differentiable. In particular, for i = 2, . . . , I,

W (Gi−) = W (Gi+) , W ′ (Gi−) = W ′ (Gi+) . (14)

Because the market value of equity is non-negative and cannot exceed the
asset value21,

L
(2)
1 = 0. (15)

The system (12)-(15) has 2I + 1 equations with 2I + 1 unknowns (L
(j)
i ,

j ∈ {1, 2}, i ∈ {1, . . . , I}, and AB). Substituting (11) into (12)-(15) and
solving gives

L
(1)
I =

(γ2 + 1) AB − γ2
c2
r

(γ1 − γ2) A−γ1

B

, (16)

L
(2)
I =

− (γ1 + 1) AB + γ1
c2
r

(γ1 − γ2) A−γ2

B

, (17)

L
(1)
j = L

(1)
I +

γ2

(γ1 − γ2)r

I−1∑

i=j

ci+1 − ci

G−γ1

i+1

, j = 2, . . . , I , (18)

L
(2)
j = L

(2)
I − γ1

(γ1 − γ2)r

I−1∑

i=j

ci+1 − ci

G−γ2

i+1

, j = 2, . . . , I , (19)

0 = − (γ1 + 1) AB +
γ1

r

(

cI −
I−1∑

i=1

(ci+1 − ci)

(
AB

Gi+1

)−γ2

)

, (20)

21Since γ1 > 0 and γ2 < 0, the term L2
Kx−γ2 would necessarily dominate the other

terms in the equation (11) violating the inequality 0 ≤ W (x) ≤ x, unless L2
1 = 0.
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where, for convenience, we let ci ≡ (1 − θ)C̄i.
Although we do not have an explicit solution for these parameters, equa-

tions (16)-(19) express L
(i)
j as a function of AB , which, in turn, solves (20).

One can verify that (20) has a unique solution on the interval
(
0, ÂB

)
,22

where ÂB ≡ γ1cI/(r (γ1 + 1)) is the default-triggering level of assets for a
consol bond with the fixed-coupon rate cI .

5.2 Linear PSD

Consider the coupon scheme given by

C (x) = β0 − β1x ,

with β0 > 0.
Applying Theorem 1, the corresponding equity value is

W (x) = λ

(
x − AB

(
x

Ab

)−γ1

)
− β0

r

(
1 −

(
x

AB

)−γ1

)
, (21)

and the optimal bankruptcy boundary is

AB =
γ1β0

λ (1 + γ1) r
,

where λ = r−µ+β1

r−µ
.

When β1 = 0, λ = 1, and the formula (21) for W corresponds to the
fixed coupon case with C = β0. As expected, W is increasing in β1 due to
the reduction in the coupon rate.

22Since γ1 ∈ (0,∞) and γ2 ∈ (−∞, 0), the left-hand-side of (20) converges to
γ1

r
cI > 0

as AB goes to 0, and equals −γ1

r

PI−1

i=1
(ci+1 − ci)

„
AB

Gi+1

«
−γ2

< 0 for AB = bAB, where

bAB ≡ γ1cI

r (γ1 + 1)
.

One can verify that the left-hand-side is a strictly decreasing function of AB. Here, bAB is
the default-triggering level of assets for a consol bond with fixed-coupon cI . Our step-up
PSD pays several different coupon rates, and all of them are greater or equal than cI .
Therefore, AB should be no greater than bAB, and (20) has a unique solution for AB on

the interval
“
0, bAB

”
.
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6 Performance Measures

Earlier, we derived valuation formulas and an inefficiency theorem for PSD
obligations whose coupon payments are determined by the asset level of
the firm. Since, in our model, At incorporates all information about future
earnings of the firm, the asset level is the natural choice for a performance
measure.

In practice, however, PSD contracts are usually written in terms of per-
formance measures such as credit ratings and financial ratios. In this section,
we explicitly consider the valuation and relative efficiency of PSD obligations
based on these other performance measures.

6.1 General performance measures

We assume that performance measures reflect the borrower’s capacity and
willingness to repay the debt. Throughout this section, we assume that
{At}t≥0 follows a geometric Brownian motion with drift µ and volatility σ2

(see Section 5 for the implications of this assumption). With µ and σ given,
the borrower’s asset level At and chosen default triggering boundary AB fully
determine its default characteristics at any time t. Since AB is not directly
observed by outsiders, the performance measure πt is a function π̄(At, ÃB),
where ÃB is the perceived default triggering level of assets. Although we do
not make explicit use of this condition, it is natural to assume that π̄(·, ·) is
nondecreasing in At and nonincreasing in ÃB .

A PSD obligation C therefore pays the coupon C(πt) = C(π̄(At, ÃB)).
The Markov structure and the time homogeneity of the setting imply that
any optimal default time of the firm can be simplified to a default triggering
boundary hitting time τ(AB) (still imposing Condition 2). In this setting,
a consistency problem arises, as the default triggering level chosen by the
firm may depend on the perceived default triggering level. With y denoting
the actual default triggering level of the firm, the value of the equity is

W̃ (x, y, ÃB) = Ex

[∫ τ(y)

0
e−rt

[
(r − µ)At − (1 − θ)C(π̄(At, ÃB))

]
dt

]
.

Knowing that the firm seeks to maximize the value of the equity, the ratings
agency therefore chooses an ÃB that solves the fixed point equation:

AB ∈ arg max
y≤x

W̃ (x, y,AB). (22)

This equation may have one or several solutions, or no solution at all. To
avoid ambiguity, we impose the following condition.
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Condition 5 There exists a unique positive solution of equation (22).

Given Condition 5, the coupon rate paid by the PSD obligation at time
t is C(π̄(At, AB)). Since AB does not change over time, this PSD, which is
defined under performance measure π, is equivalent to an asset-based PSD
C̃, defined by C̃ (At) ≡ C(π̄(At, AB)). Equation (22) implies that C and
C̃ have the same optimal default boundary AB . Hence, provided that C̃
satisfies Conditions 2,3, and 4, we can compare C in terms of efficiency with
asset-based PSD obligations that satisfy the same Conditions by applying
Theorem 2. In particular, if C̃ (At) is a nonincreasing nonnegative function,
then a fixed-coupon bond with the same market value is more efficient than
C.

If π can only take finitely many values, then C̃ (At) satisfies Conditions
2 and 3. Thus, we have proven the following theorem.

Theorem 3 Suppose that a performance measure π can only take a finite
number of values, and that a PSD C is nonincreasing and nonnegative.
Suppose Conditions 4 and 5 are satisfied. Then, a fixed-coupon PSD D that
satisfies Condition 4, and has the same market value as C (UC

0 = UD
0 ), is

more efficient than C.

6.2 Ratings-based PSD

We consider I different credit ratings, 1, . . . , I, with 1 the highest (“Aaa”
in Moody’s ranking) and I the lowest (“C” in Moody’s ranking). We let Rt

denote the issuer’s credit rating at time t. We say that C ∈ R
I is a ratings-

based PSD obligation if it pays interest at the rate Ci whenever Rt = i, with
Ci+1 ≥ Ci > 0, for i in {1, . . . , I − 1}. Thus, a ratings-based PSD is more
risk-compensating than a fixed coupon PSD.

We say that an accurate rating agency is one whose credit ratings are a
function of the probability of default over a given time horizon T . Naturally,
higher ratings correspond to lower default probabilities.

The default time for a ratings-based PSD is a stopping time of the form
τ(AB) = inf{s : As ≤ AB}, for some AB . Therefore, the current asset level
At is a sufficient statistic for P (τ(AB) ≤ T | Ft), for any T ≥ t. A rating
policy is thus given by some G : R 7→ R

I+1 that maps a default boundary
AB into rating transition thresholds, any such that Rt = i whenever At ∈
[Gi+1(AB), Gi(AB)). In our setting, this policy has the form23

G(AB) = AB g, (23)

23Since At is a geometric Brownian motion, its first passage time distribution is an
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where g ∈ R
I is such that g1 = +∞, gI+1 = 1, and gi ≥ gi+1.

The results developed for step-up PSD can be applied to ratings-based
PSD. In particular, the maximum-equity-valuation problem (4) is solved by
τ(AB) = inf{s : As ≤ AB}, where AB solves equation (20).

Plugging (23) into (20), we obtain

AB =
γ1

(γ1 + 1)r
Ĉ, (24)

where

Ĉ =
I∑

i=1

[(
1

gi+1

)−γ2

−
(

1

gi

)−γ2

]
ci,

and ci = (1 − θ)Ci. We note that the ratings-based PSD issue C has the
same default boundary AB as that of a fixed-coupon bond paying coupons
at the rate Ĉ.

Plugging (24) into (16)-(19), (11), and (6), one obtains closed-form ex-
pressions for the market value W of equity and the market value U of debt
for any ratings-based PSD obligation.

We now derive the inefficiency theorem for the case of ratings-based PSD.
We keep the same definitions as in Section 4, except that the performance
measure now corresponds to credit ratings, and not asset levels.

Theorem 4 Suppose C and D are ratings-based PSD, satisfying UC
0 = UD

0

and Condition 4. If C is more risk-compensating than D, then C is less
efficient than D.

The proof of the theorem is given in the appendix.

Corollary 2 Let C be a ratings-based PSD issue satisfying Conditions 2,3,
and 4. If C is not constant, it is less efficient than any fixed-interest PSD
issue raising the same amount of cash and verifying Condition 3.

inverse Gaussian:

P (τ (AB) ≤ T | Ft) = 1 − Φ

„
m(T − t) − x

σ
√

T − t

«
+ e

2mx

σ2 Φ

„
x + m(T − t)

σ
√

T − t

«
,

where, x = ln
“

AB

At

”
, m = µ − 1

2
σ2, At is the current level of assets and Φ is the normal

cumulative distribution function. Since P (τ (AB) ≤ T | Ft) depends on At only through
AB

At
, we have the linearity of G( · ).
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7 Rating Agency Policy

Credit ratings differ from other measures because of the circularity issues
that are imposed. In a ratings-based PSD obligation, the rating determines
the coupon rate, which affects the optimal default decision of the issuer.
This, in turn, influences the rating. We have so far assumed that rating
agencies are accurate, in the sense that they assign credit ratings according
to the probability of default over a time horizon T . In this section, we
discuss what can happen when credit-rating agencies fail to account for the
effect of credit-rating changes on the firm’s financial standing.

Only after recent deteriorations in credit qualities of several major com-
panies did rating agencies begin to worry about the unintended adverse
effects of rating triggers.24 Even after several incidences of default and cas-
cading downgrades related to ratings-based PSD, it is not difficult to find
examples of reluctance by rating agencies to incorporate the negative con-
sequences of ratings-based PSD into credit ratings.25 The following passage
is from Standard & Poor’s (2001):

(. . .) How is the vulnerability of rating triggers reflected all
along in a company’s ratings? Ironically, it typically is not a
rating determinant, given the circularity issues that would be
posed. To lower a rating because we might lower it makes little
sense – specially if that action would trip the trigger!

Another reason that rating triggers may not be incorporated into credit
ratings is that often, due to confidentiality constraints, they are not publicly
disclosed by the issuer. Some steps have already been taken to punish issuers
who refuse to provide information about their rating triggers, although there
is still no legal procedure to enforce disclosure.26

We say that an agency is unresponsive if it ignores, when assigning credit
ratings, the adverse effects of rating triggers on the liquidation of the firm.

We suppose, for purpose of illustration, that a firm having a fixed-coupon
note C refinances its outstanding debt by issuing a ratings-based PSD obli-
gation D. Figure 4 plots the accurate agency policy G( · ), which is obtained
from (23), and equityholders’ optimal default strategies AC

B( · ) and AD
B ( · ),

which are obtained from (20). Points 1 and 5 in the figure yield the solu-
tion to (22) before and after the refinancing of the debt takes place. With

24See Moody’s (2001) and Standard & Poor’s (2001).
25Moody’s adopted a more critical view of ratings trigger after recent default events.

See Moody’s (2001).
26See Moody’s (2002).
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Figure 4: Rationalizing the credit cliff dynamic.

an accurate rating agency, issuance of ratings-based PSD obligations thus
triggers a chain reaction that ceases only when it reaches point 5. This
chain reaction, which we call credit-cliff dynamic, might induce a drastic
downgrade or even immediate default if AC

B > A0.
By ignoring the effects of ratings triggers, an unresponsive rating agency

may avoid the perverse effects associated with the credit-cliff dynamic. In
the context of figure 4, an unresponsive rating agency would interrupt the
chain reaction at point 2, leading to a lower optimal default boundary than
in the case of an accurate rating agency.

One would then be tempted to say that the outcome of a ratings-based
PSD with an unresponsive rating agency is superior to the one with an ac-
curate one. We claim that this is not necessarily true. With unresponsive
rating agencies, credit ratings do not reflect true probabilities of default and
are thus less informative. Moreover, firms may be tempted to issue more
risk-compensating ratings-based PSD, compensating for the unresponsive-
ness of rating agencies.

8 Additional Discussion

Even though our main result is that more risk-compensating PSD obliga-
tions lead to higher inefficiency, companies do issue these obligations in
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practice. In order to understand why this is the case, one could introduce
market frictions such as adverse selection, moral hazard, contracting costs,
or incomplete markets. Since these would complicate the model, we confine
ourselves to an intuitive discussion of these issues.

Performance-sensitive debt may be used to solve the adverse selection
problem, which arises because of information asymmetries at the time of
debt issuance. In order to see this, we assume there are two firms that
are identical except for their initial asset levels. That is, both firms’ future
cash flows are given by (1), but the “high” type has a higher initial level
of assets than the “low” type. Assuming that their initial levels of assets
are not observable by the market, the firm with the high assets may issue
risk-compensating PSD that pays a lower initial coupon but has a higher
associated bankruptcy boundary than that of the low-type firm that issued
the fixed coupon debt. A lower asset level means that the firm is closer
to bankruptcy. A further increase in the bankruptcy boundary would be
costlier for the low-type firm. As a result, “low” type would not be willing
to pool with the “high” type. On the other hand, despite the inefficiencies
related to the risk-compensating PSD, the “high” type firm benefits overall
from revealing its type by reducing its interest payments. Thus, the ineffi-
ciency cost associated with the risk-compensating PSD could be viewed as
a signaling cost paid by the “high” type firm. Numerical examples support
this intuition.

Moral hazard could also justify the use of performance-sensitive debt. By
punishing shareholders with higher interest rates after a bad performance,
PSD obligations may reduce a manager’s ability to shift wealth in favor of
shareholders. We have solved a simple numerical example in which a firm
that has access to high-risk and low-risk technologies issues step-up bonds
in order to avoid losses from the asset-substitution effect.

Contracting costs may be another reason for some types of PSD. When
the credit quality of the borrower changes, the issuer and the investors in
its debt often get involved in costly negotiation over the terms of the debt.
An increase in credit quality may prompt the borrower to seek refinancing
of its debt on better terms. On the contrary, the lender may demand higher
interest payments in compensation for the deterioration in credit quality.
Some types of PSD may resolve the renegotiation problem by automatically
adjusting the interest rates.

Asquith, Beatty, and Weber (2002) and Beatty, Dichev, and Weber
(2002) indeed found empirical evidence that private debt contracts are more
likely to include performance pricing schemes when asymmetric information,
moral hazard or recontracting costs are significant. Our paper, however, es-
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tablishes that solving these problems with PSD comes with a cost.
We have so far assumed that all the agents in the economy are risk-

neutral. It is straightforward, however, to extend our results to the case
of risk-averse agents, in the absence of arbitrage (specifically, assuming the
existence of an equivalent martingale measure).

If markets are incomplete, performance sensitive debt might be issued
to meet the demands of risk-averse investors, providing them with hedge
against credit deterioration of the firm. Our results suggest, however that
financial guarantors, rather than the debt issuing firms, should be providing
this kind of hedge.

Our inefficiency results hold for alternative definitions of financial dis-
tress. If we assume, for example, that default happens when assets do not
generate enough cash flow to meet current obligations27, then it is easy to
see that a more risk-compensating PSD will lead to more inefficiency. In this
flow-based insolvency definition, however, shareholders declare bankruptcy
even though it may be still possible to issue additional equity to cover the
shortage.

9 Conclusion

In this paper, we analyze the properties of performance sensitive debt using
an endogenous default model. Although many types of debt contracts are
performance-sensitive, they have received little attention in the literature.
Endogeneity of the firm’s default decision allows us to analyze the efficiency
of different types of PSD.

Our main finding is that, given the same initial funds raised by sale of
debt, more risk-compensating PSD leads to earlier default and, consequently,
lowers the market value of the issuing firm’s equity. An intuitive explanation
of this result is that higher interest payments from financially distressed
companies lead to higher losses, thus precipitating the default decision.

Catastrophe bonds, whose coupon rate is reduced automatically when
the insurance company experiences hardship due to a high volume of in-
surance claims, are an example of “more” efficient debt. The majority of
PSD issues, however, have an inefficient step-up feature. This leads us to
believe that inefficient PSD is used to solve agency problems arising from
existing market imperfections, such as adverse selection, moral hazard and
contracting costs.

27This setting is studied in Kim, Ramaswamy, and Sundaresan (1993).
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In addition, we develop a convenient method of valuing PSD. We obtain
closed-form expressions for the equity prices associated with step-up, linear
and rating-based PSD.

We also discuss the policy of credit-rating agencies. Inconsistent rating of
PSD can generate a credit-cliff dynamic, as well as hurt market participants
by providing misleading information about default risks.

10 Appendix

Proof of Lemma 1. The proof is based on the following claim:

Claim: There exists a level x̃ such that ∀x ≤ x̃, W (x) = sup
τ

W (x, τ) = 0.

Proof. From Condition 2, there exist positive constants x
¯

and c
¯

such that
(1 − θ)C(x) > δ(x) + c

¯
for all x ≤ x

¯
. Let Ξ = sup

τ
W (x

¯
, τ) < ∞. For any

stopping time τ and x < x
¯
,

W (x, τ) = Ex

[
1τ<τ(x

¯
)

∫ τ

0
e−rt (δ(At) − (1 − θ)C(At)) dt

]
+

Ex

[
1τ>τ(x

¯
)

∫ τ

0
e−rt (δ(At) − (1 − θ)C(At)) dt

]

≤ − c
¯
r
Ex[
(
1 − e−rτ

)
1τ<τ(x

¯
)] +

Ex

{[
− c

¯
r

(
1 − e−rτ(x

¯
)
)

+ ξ(x, x
¯
)Ξ
]
1τ>τ(x

¯
)

}
.

Let x∗ > 0 be the unique solution (in x) of −c
r̄

(
1 − e−rτ(x

¯
)
)
+ ξ(x, x

¯
)Ξ = 0.

Since ξ is nondecreasing in x, we have for all x ≤ x̃ = x
¯
∧ x∗, W (x, τ) ≤

−c
r̄
E[(1 − e−rτ ) 1τ<τ(x̃)] ≤ 0, the optimum W (x, τ) = 0 being reached for

τ ≡ 0. This claim proves that, starting from any level x and for any stopping
time τ , the stopping time τ− = τ ∧ τ(x̃) is at least as good as τ . In other
words, we can restrict ourselves, in our search for optimality, to the set of
stopping times T̃ = {τ s.t. τ ≤ τ(x̃)}.

Proof of Theorem 1. First, we prove the necessary conditions, then the
sufficient conditions.

1. The proof of the necessary conditions is based a series of lemmas:
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Lemma 2 Under Conditions 1–3, f is continuously differentiable and f ′ is
bounded and left and right differentiable. Moreover, f satisfies the following
equations:

1
2σ2(x)f ′′

l (x) + µ(x)f ′(x) − rf(x) + δ(x) − (1 − θ)Cl(x) = 0
1
2σ2(x)f ′′

r (x) + µ(x)f ′(x) − rf(x) + δ(x) − (1 − θ)C(x) = 0
, (25)

where f ′′
l (x) (resp. f ′′

r (x)) is the left (resp. right) derivative of f ′ at x, and
Cl(x) is the left limit of C at x.

Proof From Condition 1, there exists a fundamental solution28 ζ(x, s, y, t)
with the same generator as {At}t≥0, such that for s < t,

Px,s[At ∈ B] =

∫

B

ζ(x, s, y, t)dy

for any Borel subset B of R and

1

2
σ2(x)

∂2ζ

∂x2
(x, s, y, t) + µ(x)

∂ζ

∂x
(x, s, y, t) +

∂ζ

∂s
(x, s, y, t) = 0. (26)

If C is continuous, letting φ(x) = δ(x) − (1 − θ)C(x), Friedman (1975) and
an application of Fubini theorem imply that

f(x) =

∫

R

φ(y)

[∫ ∞

0
e−rtζ(x, 0, y, t)dt

]
dy,

which, by time homogeneity of {At}t≥0, implies that

f(x) =

∫

R

φ(y)

[∫ ∞

0
e−rtζ(x,−t, y, 0)dt

]
dy. (27)

When C is discontinuous, the second part of Condition 3 implies that there
is a countably finite number of discontinuities. A limit argument using ap-
proximating continuous functions then shows that (27) also holds in this
case. To derive an ODE when C is continuous, a straightforward differen-
tiation of (27) using (26) shows (25), which boils down to a single equation
at any continuity point. When C is discontinuous, differentiation applied
to all continuity points of C shows that (25) holds at such points, while
right and left limit arguments at discontinuity points show that (25) holds
at these points as well. The boundedness of f ′ comes from the boundedness
of ∂ζ

∂x
(x, v), proved in Friedman (1975), and the fact that µδ is uniformly

bounded away from r.

28See Friedman (1975).

25



Corollary 3 W satisfies the following equations on [AB ,∞):

1

2
σ2(x)W ′′

l (x) + µ(x)W ′(x) − rW (x) + δ(x) − (1 − θ)Cl(x) = 0 (28)

1

2
σ2(x)W ′′

r (x) + µ(x)W ′(x) − rW (x) + δ(x) − (1 − θ)C(x) = 0, (29)

where W ′′
l (x) (resp. W ′′

r (x)) is the left (resp. right) derivative of W ′ at x,
and Cl(x) is the left limit of C at x. In particular, W solves ODE (9) at
any continuity point of C.

Proof From Lemma 2 and (8), Ŵ (x, y) is continuous with respect to y.
From Lemma 1, and compactness of [0, x] there exists a level AB > 0 such
that W (x) = Ŵ (x,AB). The proof is then straightforward from Lemma 2
and (8).

Corollary 4 W ′ is bounded on [0,∞)

Proof Straightforward, from (8) and the fact that f ′ is bounded on [0,∞).

Corollary 5 If a PSD obligation C satisfies Conditions 1–3, then W̃ (x, y)

is continuously differentiable in both components, and ∂W̃
∂x

is left and right
differentiable in x.

Proof This comes directly from the Lemma 2 and equation (8).

Lemma 3 If a PSD obligation C satisfies Conditions 1–3, then the optimal

default boundary AB verifies ∂W̃
∂x

(AB , AB) = 0.

Proof From (7) and Lemma 1, it follows that AB satisfies ∂W̃
∂A

(x,AB) =

0. Moreover, we have for any y, W̃ (y, y) = 0 (since the firm defaults
immediately). Differentiating this last equation and using the fact that
∂W̃
∂x

(x,AB) = 0 yields ∂W̃
∂x

(AB , AB) = 0.

Combining equation (8), the above lemmas, and using the fact that W (x) =
W̃ (x,AB) concludes the proof of all necessary conditions but one. It remains
to show that AB ≤ x̄, which is immediate since, for At > x

¯
, the cash flow

rate exceeds the coupon rate implying that it is never optimal to default at
this level.
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2. The verification of the sufficient conditions is similar to the proof of
Proposition 2.1 in Duffie and Lando (2001). Define a stochastic process χt

as

χt = e−rtW (At) +

∫ t

0
e−rsφs ds ,

where for x > AB, W (x) is the solution of the ODE that satisfies all the
conditions listed in the theorem, and W (x) = 0 for x ≤ AḂ .

Since W is C1, an application of Itô’s formula leads to

dχt = e−rtd (At) dt + e−rtW ′ (At)σ(At)dBt, (30)

where

d (x) ≡ 1

2
W ′′ (x)σ2(x) + W ′ (x)µ(x) − rW (x) + φ(x).

Since by assumption W ′ is bounded, the second term is a martingale, and

since Ex

[∫∞

0

(
e−rtW ′(At)σ(At)

)2
dt
]

< ∞,
∫ t

0 e−rsW ′ (As) σAs dBs is a uni-

formly integrable martingale, which implies that Ex

[∫ τ

0 e−rsW ′ (As)σAs dBs

]
=

0 for any stopping time τ . By the assumptions of the theorem

φ (AB) ≤ 0. (31)

This inequality means that when the firm declares bankruptcy, its cash flow
δ = (r − x) AB is less than the coupon payment. It is easy to verify that the
drift of χt is never positive: d(x) vanishes for x > AB since W solves the
ODE, and negative for x < AB, because of the inequality (31) and W (x) = 0
for x < AB. Because of the non-positive drift, for any stopping time T ∈ T ,
q0 ≥ E (χT ), meaning

W (A0) ≥ E




T∫

0

e−rsφs ds + e−rT W (AT )



 .

For the stopping time τ , we have

W (A0) = E




τ∫

0

e−rsφs ds



 ≥ E




T∫

0

e−rsφs ds



 ,

where the inequality follows from non-negativity of W . Therefore, the stop-
ping time τ maximizes the value of the equity.

Proof of Theorem 2. The proof is based on the following lemma:
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Lemma 4 Let C and D be asset-based PSD satisfying Conditions 1–3, and
AC

B ≤ AD
B . If h ≡ C − D is not constant on [AD

B ,∞) and changes sign at
most once from positive to negative on [AD

B ,∞), then, W C
0 (x) > W D

0 (x) for
any starting asset level x ∈ (AC

B ,∞).

Proof Without loss of generality, we assume that the tax rate θ is zero.
First, assume that AC

B = AD
B = AB . Since h changes sign at most once

from positive to negative on [AB ,∞), there exist constants A1, A2 verifying
AB ≤ A1 ≤ A2 and such that h > 0 for A ∈ [AB , A1), h = 0 for A ∈ (A1, A2),
and h < 0 for A ∈ (A2,∞).29

We first consider the case where A1 = AB . Then necessarily A2 < ∞,
otherwise h would be constant on [AB ,∞). Thus, h is zero on [AB , A2) and
negative on (A2,∞). It is easy to verify that for any PSD C with initial
asset level x and defaulting boundary AB , we have

UC
0 (x) = Ex

[∫ τ(AB)

0
e−rsC(As) ds

]

+ (AB − ρ (AB))ξ(A0, AB). (32)

Since (A2,∞) has a positive measure, (32) implies that UD
0 (x) > UC

0 (x) for
all x ∈ (AB ,∞). Equation (6) then allows to conclude that W C

0 (x) > W D
0 (x)

for all x ∈ (AB ,∞).
Now we consider the case in which A1 > AB . Thus, h(AB) > 0. We will
first show that W C

0 (x) > W D
0 (x) for all x ∈ (AB , A1). From equations (28)

and (29), we have for H(x) ≡ W C
0 (x) − W D

0 (x):

1

2
H ′′

l (x)σ2(x) + H ′(x)µ(x) − rH(x) − hl(x) = 0 (33)

1

2
H ′′

r (x)σ2(x) + H ′(x)µ(x) − rH(x) − h(x) = 0, (34)

where H ′′
l (x) (resp. H ′′

r (x)) is the left (resp. right) derivative of H ′ at x,
and hl(x) is the left limit of h at x, which exists according to Condition 3
and Theorem 1. Also from Theorem 1, W i(AB) = 0 and (W i)′(AB) = 0 for
i = C,D. Therefore, H(AB) = H ′(AB) = 0. Since h(AB) > 0, it follows
from equation (34) that H ′′

r (AB) > 0. This implies that H ′(x) > 0 and
H(x) > 0 in a right neighborhood of AB . Precisely, there exists η > 0, such
that H ′(x) > 0 and H(x) > 0 for x ∈ (AB , AB + η). We will now prove by
contradiction that H ′(x) > 0 for all x ≤ A1. Letting y denote the first time

29By convention [a,a) and (a,a) equal the empty set. The precise values at A1 and A2

are unimportant.
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when H ′(y) = 0, we have necessarily H(y) > 0. From equation (33) and
the fact that h(y) ≥ 0 for y ≤ A1, it follows that H ′′

l (y) > 0, contradicting
the fact that y was the first time where H ′(y) = 0. Therefore, H ′(x) > 0
and H(x) > 0 on (AB , A1]. Last, we prove that H(x) > 0 on (A1,∞). By
definition of W C , W D, and AB , we have:

W C
0 (x) = EQ

x

[∫ τ∗

0
qt (δt − C (At)) dt

]
and

W D
0 (x) = EQ

x

[∫ τ∗

0
qt (δt − D (At)) dt

]
,

where qt = e−rt, τ∗ = τ(AB). Therefore,

H(x) = −EQ
x

[∫ τ∗

0
qth(At)dt

]

.

It follows that for any x > A1, we have, since τ(A1) < τ(AB) = τ∗ and∫ τ∗

0 =
∫ τ(A1)
0 +

∫ τ∗

τ(A1),

H(x) = −EQ
x

[∫ τ(A1)

0
qth(At)

]

+ EQ
x (e−rτ(Ah))H(A1).

Since h(.) is non-positive on (A1,∞) and we have seen that H(A1) > 0,
it follows that H(x) > 0 ∀x ∈ (AB ,∞), which concludes the proof of the
lemma in the case AC

B = AD
B = AB . Now we consider the case where

AC
B < AD

B . Then, W C
0 (x) > 0 and W D

0 (x) = 0 for x ∈ (AC
B , AD

B ], whence
the claim holds trivially on this interval. The rest of the proof is identical
to the first part for x > AD

B .
From this lemma, we will first conclude the proof of the theorem in the

case of asset-based PSD. We proceed by contradiction. We assume first that
AC

B = AD
B = AB . Then, the pair (C,D) satisfies the conditions of the lemma,

which allows to conclude that W C
0 (x) > W D

0 (x) ∀x > AB . By formula (6),
we conclude in particular that for x = A0, UC

0 < UD
0 , which contradicts

the hypothesis of Theorem 1. We now assume that AC
B < AD

B . Then,
we can lower the value of the interests paid by D uniformly, proceeding
by translation: we consider the PSD Dε that pays the interest function
Dε = D − ε. Then, with the assumption that D is in the efficiency domain
of its translation class (Condition 4), we have UDε

0 < UD
0 = UC

0 . On the
other hand, since the interest payments are getting lower as ε increases,

29



there exists an ε0 > 0 such that A
Dε0+

B ≤ AC
B ≤ A

Dε0−

B . Moreover, since
h = C−D is non-increasing and not constant, so is hε ≡ C−Dε = C−D+ε.
In particular, hε is not constant and changes sign at most once. Since D
satisfies Conditions 2 and 3, it is easy to verify that so does Dε, ∀ε > 0.
Therefore, the pairs (C,Dε) with ε in a left neighborhood of ε0 satisfy the

hypothesis of the lemma, which implies that W C
0 (x) > W

Dε0

0 (x)30 for any
starting asset level x ∈ (AC

B ,∞). By (6), we conclude that UC
0 < UDε

0

for any ε in a right neighborhood of ε0, which contradicts the fact that
UDε

0 ≤ UD
0 = UC

0 for all ε > 0.
Proof of Theorem 4. The proof is based on the proof of Theorem 2. In
the case of ratings-based PSD obligations it is easy to see that Conditions 1–
3 are automatically satisfied. We suppose first that AC

B = AD
B . This implies

that G(AC
B) = G(AD

B ). From Lemma 4, UC
0 > UD

0 . This contradicts the
fact that UC

0 = UD
0 . Now suppose that AC

B < AD
B . Take ε > 0 such that

AC
B = ADε

B . Then G(AC
B) = G(ADε

B ) and Lemma 4 implies that UC
0 < UDε

0 .
Condition 2, on the other hand implies that UDε

0 < UD
0 = UC

0 and we have
a contradiction. Therefore AC

B > AD
B . Since UC

0 = UD
0 , the result follows

from (6).
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