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Abstract
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ory. Some properties of multiplier preferences are generalized to the broader

class of variational preferences, recently introduced by Maccheroni, Mari-

nacci and Rustichini (2006). The paper also establishes a link between the
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1 Introduction

The concept of uncertainty has been studied by economists since the work of

Keynes (1921) and Knight (1921). As opposed to risk, where probability is well

specified, uncertainty, or ambiguity, is characterized by the decision maker’s inabil-

ity to formulate a single probability or by his lack of trust in any unique probability.

Indeed, as demonstrated by Ellsberg (1961), people often make choices that

cannot be justified by a unique probability, thereby exhibiting a preference for risky

choices over choices involving ambiguity. Such ambiguity aversion has been one

of the central issues in decision theory, motivating the development of axiomatic

models of such behavior.1

The lack of trust in a single probability has also been a source of concern

in macroeconomics. In order to capture concern about model misspecification,

Hansen and Sargent (2001) formulated an important model of multiplier prefer-

ences. Thanks to their great tractability, multiplier preferences are now being

adopted in applications.2

Despite their importance in macroeconomics, multiplier preferences have not

been fully understood at the level of individual decision making. Although Mac-

cheroni et al. (2006a) showed that they are a special case of the variational pref-

erences that they axiomatized, an axiomatization of multiplier preferences has so

far been elusive. Indeed, some authors even doubted the existence of behaviorally

meaningful axioms that would pin down the multiplier preferences within the very

broad class of variational preferences.

The main contribution of this paper is precisely a set of axioms satisfying this

property. The proposed axiomatic characterization is important for three reasons.

First, it provides a set of testable predictions of the model that allow for its empir-

ical verification. This will help evaluate whether multiplier preferences, which are

useful in modeling behavior at the macro level, are an accurate model of individual

behavior. Second, the axiomatization establishes a link between the parameters

of the multiplier criterion and the observable behavior of the agent. This link en-

1See Gilboa and Schmeidler (1989); Schmeidler (1989); Ergin and Gul (2004); Klibanoff, Mari-
nacci, and Mukerji (2005); Maccheroni, Marinacci, and Rustichini (2006a) among others.

2See, e.g. Woodford (2006); Barillas, Hansen, and Sargent (2007); Karantounias, Hansen, and
Sargent (2007); Kleshchelski and Vincent (2007).
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ables measurement of the parameters on the basis of observable choice data alone,

without relying on unverifiable assumptions. Finally, the axiomatization is helpful

in understanding the relation between multiplier preferences and other axiomatic

models of preferences and ways in which they can and cannot be used for modeling

Ellsberg-type behavior.

1.1 Background and Overview of Results

The Expected Utility criterion ranks payoff profiles f according to

V (f) =

∫
u(f) dq, (1)

where u is a utility function and q is a subjective probability distribution on the

states of the world. A decision maker with such preferences is considered ambiguity

neutral, because he is able to formulate a single probability that governs his choices.

In order to capture lack of trust in a single probability, Hansen and Sargent

(2001) formulated the criterion

V (f) = min
p

∫
u(f) dp+ θR(p‖q), (2)

where θ ∈ (0,∞] is a parameter and the function R(p‖ q) is the relative entropy

of p with respect to q. Relative entropy, otherwise known as Kullback–Leibler

divergence, is a measure of “distance” between two probability distributions. An

interpretation of equation (2) is that the decision maker has some best guess q of the

true probability distribution, but does not fully trust it. Instead, he considers many

other probabilities p to be plausible, with plausibility diminishing proportionally to

their “distance” from q. The role of the proportionality parameter θ is to measure

the degree of trust of the decision maker in the reference probability q. Higher

values of θ correspond to more trust; in the limit, when θ =∞, the decision maker

fully trusts his reference probability and uses the expected utility criterion (1).
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Multiplier preferences (2) also belong to the more general class of variational

preferences studied by Maccheroni et al. (2006a), which have the representation

V (f) = min
p

∫
u(f) dp+ c(p), (3)

where c(p) is a “cost function”. The interpretation of (3) is like that of (2),

and multiplier preferences are a special case of variational preferences with c(p)=

θR(p ‖ q). In general, the conditions that the function c(p) in (3) has to satisfy

are very weak, which makes variational preferences a very broad class. In addition

to expected utility preferences and multiplier preferences, this class also nests the

maxmin expected utility preferences of Gilboa and Schmeidler (1989), as well as

the mean-variance preferences of Markowitz (1952) and Tobin (1958).

An important contribution of Maccheroni et al. (2006a) was to provide an ax-

iomatic characterization of variational preferences. However, because variational

preferences are a very broad class of preferences, it would be desirable to establish

an observable distinction between multiplier preferences and other subclasses of

variational preferences. Ideally, an axiom, or set of axioms, would exist that, when

added to the list of axioms of Maccheroni et al. (2006a), would deliver multiplier

preferences. This is, for example, the case with the maxmin expected utility pref-

erences of Gilboa and Schmeidler (1989): a strengthening of one of the Maccheroni

et al.’s (2006a) axioms restricts the general cost function c(p) to be in the class

used in Gilboa and Schmeidler’s (1989) model. The reason for skepticism about

the existence of an analogous strengthening in the case of multiplier preferences

has been that the relative entropy R(p ‖ q) is a very specific functional-form as-

sumption, which does not seem to have any behaviorally significant consequences.

The main finding of this paper is that these consequences are behaviorally

significant. Moreover, the main theorem shows that standard axioms characterize

the class of multiplier preferences within the class of variational preferences. This

is possible because, as the main theorem shows, the class of multiplier preferences

is precisely the intersection of the class of variational preferences, of Maccheroni

et al. (2006a), and the class of second order expected utility preferences, of Ergin

and Gul (2004) and Neilson (1993). Figure 1 depicts the relationships between

those classes.
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Figure 1: Relations between classes of preferences: VP—variational preferences,
MP—multiplier preferences, SOEU—second order expected utility preferences,
EU—expected utility preferences, MEU—maxmin expected utility preferences,
CP—constraint preferences.

As mentioned above, the axioms used in the characterization are standard in

the literature and are behaviorally meaningful. Interestingly, none of the axioms

is directly related to the—very specific—functional form of relative entropy. It is,

rather, the interaction between the axioms that delivers the representation.

1.2 Ellsberg’s Paradox and Measurement of Parameters

Ellsberg’s (1961) experiment demonstrates that most people prefer choices involv-

ing risk (i.e., situations in which the probability is well specified) to choices involv-

ing ambiguity (where the probability is not specified). Consider two urns contain-

ing colored balls. The decision maker can bet on the color of the ball drawn from

each urn. Urn I contains 100 red and black balls in unknown proportion, while

Urn II contains 50 red and 50 black balls.

In this situation, most people are indifferent between betting on red from Urn I

and on black from Urn I. This reveals that, in the absence of evidence against

symmetry, they view those two contingencies as interchangeable. Moreover, most

people are indifferent between betting on red from Urn II and on black from Urn II.
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This preference is justified by their knowledge of the composition of Urn II. How-

ever, most people strictly prefer betting on red from Urn II to betting on red from

Urn I, thereby displaying ambiguity aversion.

Ambiguity aversion cannot be reconciled with an expected utility model with

a single probability governing the distribution of draws from Urn I. For this rea-

son, expected utility preferences are incapable of explaining the pattern of choices

revealed by Ellsberg’s experiment. Such pattern can, however, be explained by

multiplier preferences. Recall that

V (f) = min
p

∫
u(f) dp+ θR(p‖q). (2)

The curvature of the utility function u measures the decision maker’s risk aversion

and governs his choices when probabilities are well specified—for example, choices

between bets on red and black from Urn II. In contrast, the parameter θ measures

the decision maker’s attitude towards ambiguity, and influences his choices when

probabilities are not well specified—for example, choices between bets on red and

black from Urn I.

Formally, betting $100 on red from Urn II corresponds to an objective lottery rII

paying $100 with probability 1
2

and $0 with probability 1
2
. Betting $100 on black

from Urn II corresponds to lottery bII , which is equivalent to rII . The decision

maker values rII and bII at

V (rII) = V (bII) =
1

2
u(100) +

1

2
u(0).

Moreover, let x denote the certainty equivalent of rII and bII , i.e., the amount of

money that, when received for sure, would be indifferent to rII and bII . Formally

V (x) = u(x) = V (rII) = V (bII). (4)

On the other hand, betting $100 on red from Urn I corresponds to rI , which

pays $100 when a red ball is drawn and $0 otherwise. Similarly, betting $100 on

black from Urn I corresponds to bI , which pays $100 when a black ball is drawn
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and $0 otherwise. The decision maker values rI and bI at

V (rI) = V (bI) = min
p∈[0,1]

pu(100) + (1− p)u(0) + θR(p‖q)

where q is the reference measure, assumed to put equal weights on red and black.

Moreover, let y be the certainty equivalent of rI and bI , i.e., the amount of money

that, when received for sure, would be indifferent to rI and bI . Formally,

V (y) = u(y) = V (rI) = V (bI). (5)

In Ellsberg’s experiments most people prefer objective risk to subjective un-

certainty, implying that y < x. This pattern of choices is implied by multiplier

preferences with θ < ∞. The equality y = x holds only when θ = ∞, i.e., when

preferences are expected utility and there is no ambiguity aversion.

Ellsberg’s paradox provides a natural setting for experimental measurement of

parameters of the model. The observable choice data reveals the decision maker’s

preferences over objective lotteries, and hence his aversion toward pure risk em-

bodied in the utility function u. The observed value of the certainty equivalent x

allows to infer the curvature of u.3 Similarly, decision maker’s choices between un-

certain gambles reveal his attitude toward subjective uncertainty, represented by

parameter θ. The observed “ambiguity premium” x − y enables inferences about

the value of θ: a big difference x− y reveals that the decision maker has low trust

in his reference probability, i.e., θ is low.4

The procedure described above suggests that simple choice experiments could

be used for empirical measurement of both u and θ. Such revealed-preference

measurement of parameters would be a useful tool in applied settings, where it

is important to know the numerical values of parameters, and would be com-

plementary to the heuristic method of detection error probabilities developed by

Anderson, Hansen, and Sargent (2000) and Hansen and Sargent (2007).

3For example, let u(z) = (w+z)1−γ , where w is the initial level of wealth. Then (4) establishes
a 1-1 relationship between x and γ. The value of γ can be derived from observed values of x
and w.

4Continuing the example from footnote 3, holding γ and w fixed, (5) establishes a 1-1 rela-
tionship between y and θ. Thus, the value of θ can be derived from observed values of y, x, and
w.
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1.3 Outline of the Paper

The paper is organized as follows. After introducing some notation and basic con-

cepts in Section 2, Section 3 defines static multiplier preferences, discusses their

properties in the classic setting of Savage, and indicates that richer choice domains

are needed for axiomatization. Section 4 uses one of such richer domains—the clas-

sic Anscombe–Aumann setting—and discusses the class of variational preferences,

which nests multiplier preferences. Section 4 presents axioms that characterize the

class of multiplier preferences within the class of variational preferences. Section 5

studies a different enrichment of choice domain and presents an axiomatization of

multiplier preferences in a setting introduced by Ergin and Gul (2004), thereby

obtaining a fully subjective axiomatization of multiplier preferences. Section 6

concludes.

2 Preliminaries

Decision problems considered in this paper involve a set S of states of the world,

which represents all possible contingencies that may occur. One of the states,

s ∈ S, will be realized, but the decision maker has to choose the course of action

before learning s. His possible choices, called acts, are mappings from S to Z, the

set of consequences. Each act is a complete description of consequences, contingent

on states.

Formally, let Σ be a sigma-algebra of subsets of S. An act is a finite-valued,

Σ-measurable function f : S → Z; the set of all such acts is denoted F(Z). If

f, g ∈ F(Z) and E ∈ Σ, then fEg denotes an act with fEg(s) = f(s) if s ∈ E
and fEg(s) = g(s) if s /∈ E. The set of all finitely additive probability measures

on (S,Σ) is denoted ∆(S); the set of all countably additive probability measures

is denoted ∆σ(S); its subset consisting of all measures absolutely continuous with

respect to q ∈ ∆σ(S) is denoted ∆σ(q).

The choices of the decision maker are represented by a preference relation %,

where f % g means that the act f is weakly preferred to the act g. A functional

V : F(Z) → R represents % if for all f, g ∈ F(Z) f % g if and only if V (f) ≥
V (g).
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An important class of preferences are Expected Utility (EU) preferences, where

the decision maker has a probability distribution q ∈ ∆(S) and a utility function

which evaluates each consequence u : Z → R. A preference relation % has an EU

representation (u, q) if a functional V : F(Z) → R represents %, where V (f) =∫
S
(u ◦ f) dq.

Risk aversion is the phenomenon where sure payoffs are preferred to ones that

are stochastic but have the same expected monetary value. Let Z = R, i.e., acts

have monetary payoffs. Risk averse EU preferences have concave utility functions

u. Likewise, one preference relation is more risk averse than another if it has a

“more concave” utility function. More formally, a preference relation represented

by (u1, q1) is more risk averse than one represented by (u2, q2) if and only if q1 = q2

and u1 = φ ◦ u2, where φ : R→ R is an increasing concave transformation.

A special role will be played by the class of transformations φθ, indexed by

θ ∈ (0,∞]

φθ(u) =

− exp
(
− u

θ

)
for θ <∞,

u for θ =∞.
(6)

Lower values of θ correspond to “more concave” transformations, i.e., more risk

aversion.

3 Multiplier Preferences

3.1 Model Uncertainty

A decision maker with expected utility preferences formulates a probabilistic model

of the world, embodied by the subjective distribution q ∈ ∆(S). However, in many

situations, a single probability cannot explain people’s choices, as illustrated by

the Ellsberg paradox.

Example 1 (Ellsberg Paradox). Consider two urns containing colored balls; the

decision maker can bet on the color of the ball drawn from each urn. Urn I contains

100 red and black balls in unknown proportion, while Urn II contains 50 red and

50 black balls.

In this situation, most people are indifferent between betting on red from Urn I
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and on black from Urn I. This reveals that they view those two contingencies as

interchangeable. Moreover, most people are indifferent between betting on red from

Urn II and on black from Urn II. This preference is justified by their knowledge of

the composition of Urn II. However, most people strictly prefer betting on red from

Urn II to betting on red from Urn I, thereby avoiding decisions based on imprecise

information. Such a pattern of preferences cannot be reconciled with an expected

utility model with a single probability distribution, hence the paradox. N

In addition to this descriptive failure, a single probabilistic model of the world

may also be too strong an assumption from a normative, or frequentist point of

view. In many situations the decision maker may not have enough information to

formulate a single probabilistic model. For example, it may be hard to statistically

distinguish between similar probabilistic models, and thus hard to select one model

and have full confidence in it. Hansen and Sargent (2001) and Hansen, Sargent,

Turmuhambetova, and Williams (2006) introduced a way of modelling such sit-

uations. In their model the decision maker does not know the true probabilistic

model p, but has a “best guess”, or approximating model q, also called a reference

probability. The decision maker thinks that the true probability p is somewhere

near to the approximating probability q. The notion of distance used by Hansen

and Sargent is relative entropy.

Definition 1. Let a reference measure q ∈ ∆σ(S) be fixed. The relative entropy

R(·‖q) is a mapping from ∆(S) into [0,∞] defined by

R(p‖q) =


∫
S
(log dp

dq
) dp if p ∈ ∆σ(q),

∞ otherwise.

A decision maker who is concerned with model misspecification computes his

expected utility according to all probabilities p, but he does not treat them equally.

Probabilities closer to his “best guess” have more weight in his decision.

Definition 2. A relation % has a multiplier representation if it is represented by

V (f) = min
p∈∆(S)

∫
S

(u ◦ f) dp+ θR(p‖q),
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where u : Z → R, q ∈ ∆σ(S) is nonatomic, and θ ∈ (0,∞]. In this case, % is called

a multiplier preference.

The multiplier representation of % may suggest the following interpretation.

First, the decision maker chooses an act without knowing the true distribution

p. Second, “Nature” chooses the probability p in order to minimize the decision

maker’s expected utility. Nature is not free to choose, but rather it incurs a “cost”

for using each p. Probabilities p that are farther from the reference measure q have

a larger potential for lowering the decision maker’s expected utility, but Nature

has to incur a larger cost in order to select them.5

This interpretation suggests that a decision maker with such preferences is

concerned with model misspecification and makes decisions that are robust to

such misspecification. He is pessimistic about the outcome of his decision which

leads him to exercise caution in choosing the course of action. Such cautious

behavior is reminiscent of Ellsberg’s paradox from Example 1. However, as the

following section shows, in the Savage setting considered so far such caution is

formally equivalent to increased risk aversion. This observation is not a critique

of the multiplier preferences per se, but rather an indication that richer choice

domains—such as the one of Anscombe and Aumann—are needed to behaviorally

distinguish the concern for model misspecification from risk aversion.

3.2 Link to Increased Risk Aversion

The following variational formula (see, e.g., Proposition 1.4.2 of Dupuis and Ellis,

1997) plays a critical role in the analysis and applications of multiplier preferences

min
p∈∆S

∫
S

(u ◦ f) dp+ θR(p‖q) = −θ log

(∫
S

exp

(
− u ◦ f

θ

)
dq

)
. (7)

5Hansen and Sargent also study a closely related class of constraint preferences, represented by
V (f) = min{p|R(p‖q)≤η}

∫
S

(u ◦ f) dp, which are a special case of Gilboa and Schmeidler’s (1989)
maxmin expected utility preferences; see Figure 1. Due to their greater analytical tractability,
multiplier—rather than constraint—preferences are used in the analysis of economic models (see,
e.g., Woodford, 2006; Barillas et al., 2007; Karantounias et al., 2007; Kleshchelski and Vincent,
2007).
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This formula links model uncertainty, as represented by its left hand side, to in-

creased risk aversion, as represented by its right hand side. Jacobson (1973), Whit-

tle (1981), Skiadas (2003), and Maccheroni, Marinacci, and Rustichini (2006b)

showed that in dynamic settings this link manifests itself as an observational

equivalence between dynamic multiplier preferences and a (subjective analogue

of) Kreps and Porteus (1978) preferences. As a consequence, in a static Savage

setting multiplier preferences become expected utility preferences.

Observation 1. The relation % has a multiplier representation (θ, u, q) if and

only if % has an EU representation

V (f) =

∫
S

(φθ ◦ u ◦ f) dq, (8)

where the transformation φθ is defined by (6).

Corollary 1. If % has a multiplier representation with θ ∈ (0,∞) then it has an

EU representation with utility bounded from above. Conversely, if % has an EU

representation with utility bounded from above then for any θ ∈ (0,∞] preference

% has a multiplier representation with that θ.6

This observation suggests that multiplier preferences do not reflect model un-

certainty, because the decision maker bases his decisions entirely on a single, well

specified probability distribution. For the same reason such preferences cannot be

used for modeling Ellsberg’s paradox in the Savage setting.

Furthermore, given a multiplier preference %, only the function φθ ◦ u is iden-

tified in absence of additional assumptions. Because of this lack of identification,

there is no way of disentangling risk aversion (curvature of u) from concern about

model misspecification (value of θ).

Example 2 (Lack of Identification). Consider a multiplier preference %1 with

u1(x) = − exp(−x) and θ1 = ∞. This representation suggests that the decision

6It can be verified that % has an EU representation with utility bounded from above if and
only if % has an EU representation and the following axiom is satisfied: There exist z ≺ z′ in
Z and a non-null event E, such that wEz ≺ z′ for all w ∈ Z. According to Corollary 1, in the
Savage setting this axiom is the only behavioral consequence of multiplier preferences beyond
expected utility.
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maker %1 is risk averse, while not being concerned about model misspecification

or ambiguity. In contrast, consider a multiplier preference %2 with u2(x) = x

and θ2 = 1. This representation suggests that the decision maker with %2 is risk

neutral, while being concerned about model misspecification or ambiguity.

Despite the apparent differences between the representations of %1 and %2, it

is true that φθ1 ◦ u1 = φθ2 ◦ u2, so, by Observation 1, the two preference relations

are identical. Hence, the two decision makers behave in exactly the same way and

there are no observable differences between them: %1=%2. N

This lack of identification means that, within this class of models, choice data

alone is not sufficient to distinguish between risk aversion and ambiguity. As a con-

sequence, any econometric estimation of a model involving such decision makers

would not be possible without additional ad-hoc assumptions about parameters.

Likewise, policy recommendations based on such a model would depend on a some-

what arbitrary choice of the representation. Different representations of the same

preferences could lead to different welfare assessments and policy choices, but such

choices would not be based on observable data.7

Sections 4 and 5 present two ways of enriching the domain of choice and thereby

making the distinction between model uncertainty and risk aversion based on ob-

servable choice data. In both axiomatizations the main idea is to introduce a

subdomain of choices where, either by construction or by revealed preference, the

decision maker is not concerned about model misspecification. This subdomain

serves as a point of reference and makes it possible to distinguish between the

concern for model misspecification (and related to it Ellsberg-type behavior) and

expected utility maximization, thereby solving the aforementioned identification

problem.

4 Axiomatization with Objective Risk

This section discusses an extension of the domain of choice to the Anscombe–

Aumann setting, where objective risk coexists with subjective uncertainty. In this

setting a recent model of variational preferences (introduced and axiomatized by

7See, e.g., Barillas et al. (2007), who study welfare consequences of eliminating model uncer-
tainty. The evaluation of such consequences depends on the value of parameter θ.
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Maccheroni et al., 2006a) nests multiplier preferences as a special case. Despite

this classification, additional axioms that, together with the axioms of Maccheroni

et al. (2006a), would deliver multiplier preferences have so far been elusive. This

section presents such axioms. It is also shown that in the Anscombe–Aumann

setting multiplier preferences can be distinguished from expected utility on the

basis of Ellsberg-type experiments.

4.1 Introducing Objective Risk

One way of introducing objective risk into the present model is to replace the set

Z of consequences with (simple) probability distributions on Z, denoted ∆(Z).8

An element of ∆(Z) is called a lottery. A lottery paying off z ∈ Z for sure is

denoted δz. For any two lotteries π, π′ ∈ ∆(Z) and a number α ∈ (0, 1) the lottery

απ + (1− α)π′ assigns probability απ(z) + (1− α)π′(z) to each prize z ∈ Z.

Given this specification, preferences are defined on acts in F(∆(Z)). Every

such act f : S → ∆(Z) involves two sources of uncertainty: first, the payoff of f

is contingent on the state of the world, for which there is no objective probability

given; second, given the state, fs is an objective lottery.

The original axioms of Anscombe and Aumann (1963) and Fishburn (1970)

impose the same attitude towards those two sources. They imply the existence of

a utility function u : Z → R and a subjective probability distribution q ∈ ∆(S)

such that each act is evaluated by

V (f) =

∫
S

(∑
z∈Z

u(z)fs(z)

)
dq(s). (9)

Thus, in each state of the world s the decision maker computes the expected utility

of the lottery fs and then averages those values across states. By slightly abusing

notation, define the affine function u : ∆(Z)→ R by u(π) =
∑

z∈Z u(z)π(z). Using

this definition, the Anscombe–Aumann Expected Utility criterion can be written

as

V (f) =

∫
S

u(fs) dq(s).

8This particular setting was introduced by Fishburn (1970); settings of this type are usually
named after Anscombe and Aumann (1963), who were the first to work with them.
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4.2 Multiplier Preferences

In this environment, the representation of multiplier preferences takes the form

V (f) = min
p∈∆S

∫
S

u(fs) dp+ θR(p‖q). (10)

The decision maker with such preferences makes a distinction between objective

risk and subjective uncertainty: he uses the expected utility criterion to evaluate

lotteries, while using the multiplier criterion to evaluate acts.

4.3 Variational Preferences

To capture ambiguity aversion, Maccheroni et al. (2006a) introduce a class of

variational preferences, with representation

V (f) = min
p∈∆S

∫
S

u(fs) dp+ c(p), (11)

where c : ∆S → [0,∞] is a cost function.

Multiplier preferences are a special case of variational preferences where c(p) =

θR(p‖ q). The variational criterion (11) can be given the same interpretation as

the multiplier criterion (10): Nature wants to reduce the decision maker’s expected

utility by choosing a probability distribution p, but she is not entirely free to choose.

Using different p’s leads to different values of the decision maker’s expected utility∫
S
u(fs) dp, but comes at a cost c(p).

In order to characterize variational preferences behaviorally, Maccheroni et al.

(2006a) use the following axioms.

Axiom A1 (Weak Order). The relation % is transitive and complete.

Axiom A2 (Weak Certainty Independence). For all f, g ∈ F(∆(Z)), π, π′ ∈
∆(Z), and α ∈ (0, 1),

αf + (1− α)π % αg + (1− α)π ⇒ αf + (1− α)π′ % αg + (1− α)π′.

Axiom A3 (Continuity). For any f, g, h ∈ F(∆(Z)) the sets {α ∈ [0, 1] | αf +

(1− α)g % h} and {α ∈ [0, 1] | h % αf + (1− α)g} are closed.
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Axiom A4 (Monotonicity). If f, g ∈ F(∆(Z)) and f(s) % g(s) for all s ∈ S, then

f % g.

Axiom A5 (Uncertainty Aversion). If f, g ∈ F(∆(Z)) and α ∈ (0, 1), then

f ∼ g ⇒ αf + (1− α)g % f.

Axiom A6 (Nondegeneracy). f � g for some f, g ∈ F(∆(Z)).

Axiom A7 (Unboundedness). There exist π′� π in ∆(Z) such that, for all α ∈
(0, 1), there exists ρ ∈ ∆(Z) that satisfies either π � αρ+(1−α)π′ or αρ+(1−α)π �
π′.

Axiom A8 (Weak Monotone Continuity). If f, g ∈ F(∆(Z)), π ∈ ∆(Z), {En}n≥1 ∈
Σ with E1 ⊇ E2 ⊇ · · · and

⋂
n≥1En = ∅, then f � g implies that there exists

n0 ≥ 1 such that πEn0f � g.

Maccheroni et al. (2006a) show that the preference % satisfies Axioms A1–A6 if

and only if % is represented by (11) with an affine and non-constant u : ∆(Z)→ R
and c : ∆S → [0,∞] that is convex, lower semicontinuous, and grounded (achieves

value zero). Moreover, Axiom A7 implies unboundedness of the utility function u,

which guarantees uniqueness of the cost function c, while Axiom A8 guarantees

that function c is concentrated only on countably additive measures.

The conditions that the cost function c satisfies are very general. For example,

if c(p) = ∞ for all measures p 6= q, then (11) reduces to (9), i.e., preferences are

expected utility. Axiomatically, this can be obtained by strengthening Axiom A2

to

Axiom A2’ (Independence). For all f, g, h ∈ F(∆(Z)) and α ∈ (0, 1),

f % g ⇔ αf + (1− α)h % αg + (1− α)h.

Similarly, setting c(p) = 0 for all measures p in a closed and convex set C and

c(p) =∞ otherwise, denoted c = δC , reduces (11) to

V (f) = min
p∈C

∫
S

(∑
z∈Z

u(z)fs(z)

)
dp,

which is a representation of the Maxmin Expected Utility preferences introduced
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by Gilboa and Schmeidler (1989). Axiomatically, this can be obtained by strength-

ening Axiom A2 to

Axiom A2” (Certainty Independence). For all f, g ∈ F(∆(Z)), π ∈ ∆(Z) and

α ∈ (0, 1),

f % g ⇔ αf + (1− α)π % αg + (1− α)π.

As mentioned before, multiplier preferences also are a special case of variational

preferences. They can be obtained by setting c(p) = θR(p‖ q). However, because

relative entropy is a specific functional form assumption, Maccheroni et al. (2006a)

were skeptical that a counterpart of Axiom A2’ or Axiom A2” exists that would

deliver multiplier preferences:

[. . . ] we view entropic preferences as essentially an analytically convenient
specification of variational preferences, much in the same way as, for exam-
ple, Cobb–Douglas preferences are an analytically convenient specification
of homothetic preferences. As a result, in our setting there might not exist
behaviorally significant axioms that would characterize entropic preferences
(as we are not aware of any behaviorally significant axiom that characterizes
Cobb–Douglas preferences).

Despite this seeming impasse, the next section shows that pinning down the func-

tional form is possible with behaviorally significant axioms. In fact, somewhat

unexpectedly, they are the well known Savage’s P2 and P4 axioms (together with

his technical axiom of continuity—P6).9

4.4 Axiomatization of Multiplier Preferences

Axiom P2 (Savage’s Sure-Thing Principle). For all E ∈ Σ and f, g, h, h′ ∈
F(∆(Z))

fEh % gEh⇒ fEh′ % gEh′.

Axiom P4 (Savage’s Weak Comparative Probability). For all E,F ∈ Σ and

π, π′, ρ, ρ′ ∈ ∆(Z) such that π � ρ and π′ � ρ′

πEρ % πFρ⇒ π′Eρ′ % π′Fρ′.

9Those axioms, together with axioms A1-A8, imply other Savage axioms.
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Axiom P6 (Savage’s Small Event Continuity). For all acts f � g and π ∈ ∆(Z),

there exists a finite partition {E1, . . . , En} of S such that for all i ∈ {1, . . . , n}

f � πEig and πEif � g.

Theorem 1. Suppose % is a variational preference. Then Axioms P2, P4, and

P6, are necessary and sufficient for % to have a multiplier representation (10).

Moreover, two triples (θ′, u′, q′) and (θ′′, u′′, q′′) represent the same multiplier pref-

erence % if and only if q′ and q′′ are identical and there exist α > 0 and β ∈ R
such that u′ = αu′′ + β and θ′ = αθ′′.

The two cases: θ = ∞ (lack of concern for model misspecification) and θ <

∞ (concern for model misspecification) can be distinguished on the basis of the

Independence Axiom (Axiom A2’).10 In the case when θ is finite, its numerical

value is uniquely determined, given u. A positive affine transformation of u changes

the scale on which θ operates, so θ has to change accordingly. This is reminiscent

of the necessary adjustments of the CARA coefficient when units of account are

changed.

Alternate axiomatizations are presented in Appendix A.2.9. It is shown there

that Axiom A7 can be dispensed with in the presence of another of Savage’s

axioms—P3. Also, Savage’s axiom P6 can be be dispensed with if Axiom A8

is strengthened to Arrow’s (1970) Monotone Continuity axiom and an additional

axiom of Nonatomicity is assumed.

In addition to the above possibilities, it should be mentioned that there ex-

ists a, formally unrelated, axiomatization by Wang (2003) of a class of preferences

that includes multiplier preferences as a special case. However, his work cannot

be regarded as a behavioral foundation because the uncertainty in that model is

objective and the probabilities are given to the decision maker as a description of

the alternatives; see a critique in Maccheroni et al. (2006a). Moreover, his axioms

are quite complex and they lack a clear interpretation in terms of actual choices.

10The weaker Certainty Independence Axiom (Axiom A2”) is also sufficient for making such
a distinction. Alternatively, Machina and Schmeidler’s (1995) axiom of Horse/Roulette Replace-
ment or Grant and Polak’s (2006) axiom of Betting Neutrality could be used.
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4.5 Discussion

Any Anscombe–Aumann act can be viewed as a Savage act where prizes have

an internal structure: they are lotteries. Because of this, an Anscombe–Aumann

setting with the set of prizes Z can be viewed as a Savage setting with the set of

prizes ∆(Z). Thus, compared to a Savage setting, more choice observations are

available in the Anscombe–Aumann setting. This additional information makes it

possible to distinguish the multiplier preferences from the EU preferences.

To understand this distinction focus on the case θ < ∞ and notice that by

Observation 1 multiplier preferences have the representation

V (f) =

∫
S

φθ

(∑
z∈Z

u(z)fs(z)

)
dq(s). (12)

Because of the introduction of objective lotteries, this equation does not reduce

to (8). The existence of two sources of uncertainty enables a distinction between

purely objective lotteries, i.e., acts which pay the same lottery π ∈ ∆(Z) irrespec-

tively of the state of the world and purely subjective acts, i.e., acts that in each

state of the world pay off a degenerate lottery δz for some z ∈ Z.

From the representation (12) it follows that for any two purely objective lot-

teries π′ % π if and only if∑
z∈Z

u(z)π′(z) ≥
∑
z∈Z

u(z)π(z).

On the other hand, each purely subjective act f induces a lottery πf (z) = q(f−1(z)).

However, for any two such acts f ′ % f if and only if∑
z∈Z

φθ(u(z))πf ′(z) ≥
∑
z∈Z

φθ(u(z))πf (z).

This means that the decision maker has a different attitude toward objective

lotteries and toward subjective acts. In particular, he is more averse toward subjec-

tive uncertainty than toward objective risk. The coexistence of those two sources

in one model permits a joint measurement of those two attitudes.

It has been observed in the past that differences in attitudes towards risk and

uncertainty lead to Ellsberg-type behavior. Neilson (1993) showed that the follow-
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ing Second-Order Expected Utility representation

V (f) =

∫
S

φ

(∑
z∈Z

u(z)fs(z)

)
dq(s), (13)

can be obtained by a combination of von Neumann–Morgenstern axioms on lotter-

ies and Savage axioms on acts.11 A similar model was studied by Ergin and Gul

(2004), see Section 5 of this paper. From this perspective, multiplier preferences are

a special case of (13) where φ = φθ. Theorem 1 shows that this specific functional

form of the function φ is implied by Weak Certainty Independence (Axiom A2)

and by Uncertainty Aversion (Axiom A5).12 Section 5 shows how multiplier prefer-

ences can be obtained as a special case of second-order expected utility preferences

in the subjective setting of Ergin and Gul (2004) by assuming the subjective ana-

logues of Axioms A2 and A5. This observation means that the class of multiplier

preferences is the intersection of the class of variational preferences and the class

of second-order expected utility preferences. This provides a formal justification

of the diagram in Figure 1.

It is worthwile to notice that the decision maker behaves according to EU on

the subdomain of objective lotteries and also on the subdomain of purely subjec-

tive acts. What leads to the Ellsberg-type behavior are violations of EU across

those domains: the decision maker’s aversion towards objective risk (captured by

u) is lower than his aversion towards objective risk (captured by φθ ◦ u). This

phenomenon is called Second Order Risk Aversion.13 The following example shows

that, because of this property, multiplier preferences can be useful for modelling

Ellsberg-type behavior.

Example 3 (Ellsberg’s Paradox revisited). Suppose Urn I contains 100 red and

black balls in unknown proportion, while Urn II contains 50 red and 50 black balls.

Let the state space S = {R,B} represent the possible draws from Urn I. Betting

$100 on red from Urn I corresponds to an act fR = (δ100, δ0) while betting $100

on black from Urn I corresponds to an act fB = (δ0, δ100). On the other hand,

11I am grateful to Peter Klibanoff for this reference.
12This stems from the fact that, as elucidated by Grant and Polak (2007), variational prefer-

ences display constant absolute ambiguity aversion,
13This notion was introduced by Ergin and Gul (2004) in a setting with two subjective sources

of uncertainty (see Section 5).
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betting $100 on red from Urn II corresponds to a lottery πR = 1
2
δ100 + 1

2
δ0, while

betting $100 on black from Urn II corresponds to a lottery πB = 1
2
δ0 + 1

2
δ100.

These correspondences reflect the fact that betting on Urn I involves subjective

uncertainty, while betting on Urn II involves objective risks. Note in particular,

that πR = πB.

Consider the two multiplier preferences from Example 2: %1 with u1(x) =

− exp(−x) and θ1 = ∞, and %2 with u2(x) = x and θ2 = 1. Suppose also, that

they both share the probability assessment q(B) = q(R) = 1
2
.

As explained in Example 2, the representation of %1 suggests that the decision

maker is not concerned about model misspecification or ambiguity. Indeed, his

choices reveal that πB ∼ πR ∼ fR ∼ fB. This decision maker is indifferent between

objective risk and subjective uncertainty, avoiding the Ellsberg paradox.

In contrast, the representation of %2 suggests that the decision maker is con-

cerned about model misspecification or ambiguity. And indeed, his choices reveal

that πB ∼ πR � fR ∼ fB. This decision maker prefers objective risk to probabilis-

tically equivalent subjective uncertainty, displaying behavior typical in Ellsberg’s

experiments.

This means that introducing objective uncertainty makes it possible to disen-

tangle risk aversion from concern about model misspecification and thus escape

the consequences of Observation 1. As a consequence, the interpretations of rep-

resentations of %1 and %2 become behaviorally meaningful. N

4.6 Second-Order Variational Preferences

Multiplier preferences are an example of variational preferences having two repre-

sentations:

V1(f) = min
p∈∆(S)

∫
S

u(f) dp+ θR(p‖q) (10)

and

V2(f) =

∫
S

φθ
(
u(f)

)
dq. (12)

One interpretation of this dichotomy is that model uncertainty in (10) manifests
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itself as second order risk aversion in (12). This motivates the following definition.

Definition 3. Preference relation % is a Second-Order Variational Preference if

% is a variational preference with representation

V1(f) = min
p∈∆S

∫
S

u(f) dp+ c1(p)

and it also has representation

V2(f) = min
p∈∆S

∫
S

φθ
(
u(f)

)
dp+ c2(p)

for θ ∈ (0,∞) and some grounded, convex, and lower semicontinous cost function

c2.

The following theorem characterizes this class of variational preferences. This

characterization is helpful in understanding to what extent multiplier preferences

have a non-unique representation in the Savage setting where lotteries do not exist

and only φθ ◦ u is identified.

Theorem 2. Suppose that S is a Polish space and that % satisfies A1-A8. Prefer-

ence % is a second-order variational preference if and only if c1(p) = minq∈Q θR(p‖
q) for some closed and convex set of measures Q ⊆ ∆σ(S). In this case c2 can be

chosen to satisfy c2 = δQ, i.e., V2(f) = minp∈Q
∫
S
φθ
(
u(fs)

)
dp.14

5 Axiomatization within the Ergin–Gul model

This section discusses another enrichment of the domain of choice, which does not

rely on the assumption of objective risk. Instead, it is assumes that there are

two sources of subjective uncertainty, towards which the decision maker may have

different attitudes. This type of environment was discussed by Chew and Sagi

(2008), Ergin and Gul (2004), and Nau (2001, 2006); for an empirical application

see Abdellaoui, Baillon, and Wakker (2007).

14The function c2 in representation V2 may be non-unique. Uniqueness is guaranteed if the
function u is unbounded from below.
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5.1 Subjective Sources of Uncertainty

Assume that the state space has a product structure S = Sa × Sb, where a and

b are two separate issues, or sources of uncertainty, towards which the decision

maker may have different attitudes. In comparison with the Anscombe–Aumann

framework, where objective risk is one of the sources, here both sources are sub-

jective. Let Aa be a sigma algebra of subsets of Sa and Ab be a sigma algebra

of subsets of Sb. Let Σa be the sigma algebra of sets of the form A × Sb for all

A ∈ Aa, Σb be the sigma algebra of sets of the form Sa ×B for all B ∈ Ab, and Σ

be the sigma algebra generated by Σa∪Σb. As before, F(Z) is the set of all simple

acts f : S → Z. In order to facilitate the presentation, it will be assumed that

certainty equivalents exist, i.e., for any f ∈ F(Z) there exists z ∈ Z with z ∼ f .

The full analysis without this assumption is contained in Appendices A.4 and A.5.

Ergin and Gul (2004) axiomatized preferences which are general enough to

accommodate probabilistic sophistication and even second-order probabilistic so-

phistication. An important subclass of those preferences are second-order expected

utility preferences represented by

V (f) =

∫
Sb

φ

(∫
Sa

u(f(sa, sb)) dqa(sa)

)
dqb(sb) (14)

where u : Z → R, φ : R→ R is a strictly increasing and continuous function, and

the measures qa ∈ ∆(Sa) and qb ∈ ∆(Sb) are nonatomic.

To characterize preferences represented by (14), Ergin and Gul (2004) assume

Axioms A1, A6, and P3, together with weakenings of P2 and P4 and a strength-

ening of P6. There is a close relationship between (14) and Neilson’s (1993) rep-

resentation (13). The role of objective risk is now taken by a subjective source:

issue a. For each sb, the decision maker computes the expected utility of f(·, sb)
and then averages those values using function φ.

5.2 Second-Order Risk Aversion

In the Anscombe–Aumann framework, concavity of the function φ is responsible

for second-order risk aversion, i.e., higher aversion towards subjective uncertainty

than towards objective risk. This property is a consequence of the axiom of Un-
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certainty Aversion (Axiom A5).15 Similarly, in the present setup, concavity of

function φ is responsible for higher aversion towards issue b than towards issue a.

This property was introduced by Ergin and Gul (2004) who formally defined it in

terms of mean-preserving spreads. However, this definition refers to the probabil-

ity measures obtained from the representation and hence is not directly based on

preferences. Theorems 2 and 5 of Ergin and Gul (2004) characterize second-order

risk aversion in terms of induced preferences over induced Anscombe–Aumann

acts and an analogue of Axiom A5 in that induced setting. However, just as with

mean-preserving spreads, those induced Anscombe–Aumann acts are constructed

using the subjective probability measure derived from the representation. As a

consequence, the definition is not expressed directly in terms of observables.

In the presence of other axioms, the following purely behavioral axiom is equiv-

alent to Ergin and Gul’s (2004) definition.

Axiom A5’ (Second Order Risk Aversion). For any f, g ∈ Fb and any E ∈ Σa if

f ∼ g, then fEg % f .

This axiom is a direct subjective analogue of Schmeidler’s (1989) axiom of

Uncertainty Aversion (Axiom A5).

Theorem 3. Suppose % has representation (14). Then Axiom A5’ is satisfied if

and only if the function φ in (14) is concave.

5.3 Axiomatization of Multiplier Preferences

The additional axiom that delivers multiplier preferences in this framework is Con-

stant Absolute Second Order Risk Aversion.

Axiom A2’’’(Constant Absolute Second Order Risk Aversion). There exists a

non-null event E ∈ Σa such that for all f, g ∈ Fb(Z), x, y ∈ Z

fEx % gEx⇒ fEy % gEy.

In addition, two technical axioms, similar to Axioms 7 and 8, are needed.

Axiom A7’ (Fa-Unboundedness). There exist x � y in Z such that, for all non-

null Ea ∈ Σa there exist z ∈ Z that satisfies either y � zEax or zEay � x.

15This follows from the proof of Theorem 1, see section A.2.6 in Appendix A.2.
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Axiom A8’ (Fb-Monotone Continuity). If f, g ∈ F(Z), x ∈ Z, {En}n≥1 ∈ Σb

with E1 ⊇ E2 ⊇ · · · and
⋂
n≥1En = ∅, then f � g implies that there exists n0 ≥ 1

such that xEn0f � g.

Theorem 4. Suppose % has representation (14). Then Axioms A2’’’, A5’, A7,

and A8 are necessary and sufficient for % to be represented by V , where

V (f) = min
pb∈∆Sb

∫
Sb

(∫
Sa

u(f(sa, sb)) dqa(sa)

)
dpb(sb) + θR(pb‖qb)

and u : Z → R, θ ∈ (0,∞], and qa, qb are nonatomic measures.

6 Conclusion

One of the challenges in decision theory lies in finding decision models that would

do better than Expected Utility in describing individual choices, but would at the

same time be easy to incorporate into economic models of aggregate behavior.

This paper studies the model of multiplier preferences which is known to satisfy

the latter requirement. By obtaining an axiomatic characterization of this model,

the paper studies its individual choice properties, which helps to determine whether

it also satisfies the first requirement mentioned above.

The axiomatization provides a set of testable implications of the model, which

will be helpful in its empirical verification. By decomposing the mathematical

criterion of multiplier preferences into a list of behavioral patterns that can be

easily tested, it provides a sort of a coordinate system that makes it possible to

detect in which directions experimental subjects deviate from the model.

The axiomatization also enables measurement of the parameters of the model

on the basis of observable choice data alone, thereby providing a useful tool for

applications of the model.
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A Appendix: Proofs

Let B0(Σ) denote the set of all real-valued Σ-measurable simple functions and let

B0(Σ, K) be the set of all functions in B0(Σ) that take values in a convex set

K ⊆ R.

A.1 Proof of Observation 1

Because θ−1 · (u ◦ f) is a bounded measurable function on (S,Σ), from Proposition

1.4.2 of Dupuis and Ellis (1997) it follows that

min
p∈∆S

∫
S

(u ◦ f) dp+ θR(p‖q) = −θ log

(∫
S

exp

(
− u ◦ f

θ

)
dq

)
.

Thus, % is a multiplier preference with θ, u, and q iff it is represented by U with

U(f) = −θ log

(∫
S

exp

(
− u ◦ f

θ

)
dq

)
.

Rewrite using the definition of φθ:

U(f) = φ−1
θ

(∫
S

(φθ ◦ u ◦ f) dq

)
.

Since φθ is a monotone transformation, % is also represented by V := φθ ◦ U , i.e.,

V (f) =

∫
S

(φθ ◦ u ◦ f) dq.

A.2 Proof of Theorem 1

A.2.1 Niveloidal Representation

By Lemmas 25 and 28 of Maccheroni et al. (2006a), Axioms A1-A7 imply that

there exists an unbounded affine function u : ∆(Z)→ R and a normalized concave

niveloid I : B0(Σ, u(∆(Z))) → R such that for all f % g iff I(u ◦ f) ≥ I(u ◦
g). Moreover, within this class, u is unique up to positive affine transformations.
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Define U := u(∆(Z)). After normalization, there are three possible cases: U ∈
{R+,R−,R}.

A.2.2 Utility Acts

For each act f , define the utility act associated with f as u ◦ f ∈ B0(Σ,U). The

preference on acts induces a preference on utility acts: for any ξ′, ξ′′ ∈ B0(Σ,U)

define ξ′ %u ξ
′′ iff f ′ % f ′′, for some ξ′ = u ◦ f ′ and ξ′′ = u ◦ f ′′. The choice of

particular versions of f ′ and f ′′ is irrelevant, because ξ′ %u ξ
′′ iff I(ξ′) ≥ I(ξ′′).

By Lemma 22 in Maccheroni, Marinacci, and Rustichini (2004), for all k ∈ U
and ξ ∈ B0(Σ,U) we have I(ξ + k) = I(ξ) + k. Thus, ξ′ %u ξ

′′ iff I(ξ′) ≥ I(ξ′′) iff

I(ξ′ + k) ≥ I(ξ′′ + k) iff ξ′ + k %u ξ
′′ + k for all k ∈ U and ξ′, ξ′′ ∈ B0(Σ,U).

A.2.3 Savage’s P3

In order to show that % have an additive representation (12), Savage’s theorem

will be used in A.2.4. To do this, it is necessary to show that his P3 axiom holds.

Definition 4. An event E ∈ Σ is non-null if there exist f, g, h ∈ F such that

fEh � gEh.

Axiom P3 (Savage’s Eventwise Monotonicity). For all x, y ∈ Z, h ∈ F , and

non-null E ∈ Σ

x % y ⇔ xEh % yEh.

Lemma 1. Axioms A1–A7, together with Axiom P2 imply axiom P3.

Proof. First, suppose that x % y. It follows from Axiom A4 (Monotonicity) that

xEh % yEh for any h ∈ F and any E. Second, suppose that y � x. It follows from

Monotonicity that yEh % xEh for any h ∈ F and any E. Towards contradiction,

suppose that yEh ∼ xEh for a non-null E ∈ Σ and some h ∈ F .

Because E is non-null, there exist f, g ∈ F such that fEh � gEh. Let

{E1, . . . , En, E} be a partition of S with respect to which both fEh and gEh

are measurable. Let y′ be the most preferred element among {f(Ei) | i = 1, . . . , n}
and let x′ be the least preferred element among {g(Ei) | i = 1, . . . , n}. By Mono-

tonicity, y′Eh % fEh and gEh % x′Eh. Thus y′Eh � x′Eh.
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Observe that there exist a, a′ ∈ U and k, k′ > 0, such that a = u(x), a + k =

u(y), a′ = u(x′) and a′ + k′ = u(y′). Thus there exists ξ ∈ B0(Σ,U), such that

aEξ = u ◦ (xEh), (a + k)Eξ = u ◦ (yEh), a′Eξ = u ◦ (x′Eh), and (a′ + k′)Eξ =

u ◦ (y′Eh). It follows that

I((a+ k)Eξ) = I(aEξ) (15)

I((a′ + k′)Eξ) > I(a′Eξ). (16)

Suppose that U = R+. By translation invariance, it follows from (15) that

I((a+ 2k)E(ξ+ k)) = I((a+ k)E(ξ+ k)) and by P2, that I((a+ 2k)Eξ) = I((a+

k)Eξ). Hence, I((a + 2k)Eξ) = I(aEξ). By induction I((a + nk)Eξ) = I(aEξ)

for all n ∈ N, and by Monotonicity I((a + r)Eξ) = I(aEξ) for all r ∈ R+. In

particular, letting r = k′, we have

I((a+ k′)Eξ) = I(aEξ). (17)

Suppose that a′ ≥ a. By translation invariance, I((a′+k′)E(ξ+a′−a) = I(a′E(ξ+

a′ − a)) and by P2, I((a′ + k′)Eξ) = I(a′Eξ). Contradiction with (17). Thus,

it must be that a > a′. By translation invariance, it follows from (16), that

I((a+ k′)E(ξ + a− a′)) > I(aE(ξ + a− a′)) and by P2, I((a+ k′)Eξ) > I(aEξ).

Contradiction with (17). The proof is analogous in case when U = R− or U =

R.

A.2.4 Application of Savage’s Theorem

It follows from Chapters 1-5 of Savage (1972) that there exists a (not necessarily

affine) function ψ : ∆(Z)→ R and a measure q ∈ ∆S, such that for any f, g ∈ F ,

f % g iff
∫
S
(ψ ◦ f) dq ≥

∫
S
(ψ ◦ g) dq. Moreover, ψ is unique up to positive affine

transformations. From Theorem 1 in Section 1 of Villegas (1964) it follows that

Axiom A8 implies that q ∈ ∆σ(S).
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A.2.5 Proof of representation (13)

By A.2.2, f % g iff
∫
S
(ψ◦f) dq ≥

∫
S
(ψ◦g) dq. In particular, x % y iff ψ(x) ≥ ψ(y).

From axioms A1-A6 it follows that x % y iff u(x) ≥ u(y). Thus, there exists a

unique strictly increasing function φ : R → R such that ψ = φ ◦ u. Thus, f % g

iff
∫
S
(φ ◦ u ◦ f) dq ≥

∫
S
(φ ◦ u ◦ g) dq. This leads to the following representation of

%u: ξ
′ %u ξ

′′ iff
∫
S
(φ ◦ ξ′) dq ≥

∫
S
(φ ◦ ξ′′) dq.

A.2.6 Concavity of φ

Let a, b ∈ U . Let π, ρ ∈ ∆(Z) be such that a = u(π) and b = u(ρ). Because q

is range convex, there exists a set E with q(E) = 1
2
. Let f = πEρ and g = ρEπ

and observe that V (f) = 1
2
φ(a) + 1

2
φ(b) = V (g); thus, f ∼ g. By Axiom A5,

1
2
f + 1

2
g % f , i.e., φ

(
1
2
a+ 1

2
b
)

= V
(

1
2
f + 1

2
g
)
≥ V (f) = 1

2
φ(a) + 1

2
φ(b). Thus,

φ

(
1

2
a+

1

2
b

)
≥ 1

2
φ(a) +

1

2
φ(b). (18)

Let α ∈ (0, 1). Let the sequence {αn} be a dyadic approximation of α. By

induction, inequality (18) implies that φ
(
αna+ (1−αn)b

)
≥ αnφ(a) + (1−αn)φ(b)

for all n. By continuity of φ, limn→∞ φ
(
αna+(1−αn)b

)
= φ

(
αa+(1−α)b

)
. Thus,

φ
(
αa+ (1− α)b

)
≥ αφ(a) + (1− α)φ(b).

A.2.7 Proof that φ = φθ

By defining φk(x) := φ(x+ k) for all k, x ∈ U , it follows from A.2.2 and A.2.5 that∫
S
φk ◦ξ′ dq ≥

∫
S
φk ◦ξ′′ dq iff

∫
S
φ◦ξ′ dq ≥

∫
S
φ◦ξ′′ dq . Thus, (φ, q) and (φk, q) are

EU representations of the same preference on B0(Σ,U). By uniqueness, φ(x+k) =

α(k)φ(x) + β(k) for all k, x ∈ U . This is a generalization of Pexider’s equation

(see equation (3) of Section 3.1.3, p. 148 of Aczél, 1966). If U ∈ {R,R+}, then by

Corollary 1 in Section 3.1.3 of Aczél (1966), up to positive affine transformations,

the only strictly increasing concave solutions are of the form φθ, for θ ∈ (0,∞]. It

is easy to prove that the same is true for U = R−.
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A.2.8 Conclusion of the Proof

Combining Steps 4 and 5, f % g iff
∫
S
(φθ ◦ u ◦ f) dq ≥

∫
S
(φθ ◦ u ◦ g) dq. Because

q ∈ ∆σ, by Observation 1, it follows that f % g iff minp∈∆S

∫
S
(u ◦ f) dp + θR(p‖

q) ≥ minp∈∆S

∫
S
(u ◦ g) dp+ θR(p‖q).

A.2.9 Alternative Axiomatizations

Removing P6

Instead of Axiom P6, the following two axioms could be assumed:

Axiom A8” (Arrow’s Monotone Continuity). If f, g ∈ F , x ∈ Z, {En}n≥1 ∈ Σ

with E1 ⊇ E2 ⊇ · · · and
⋂
n≥1En = ∅, then f � g implies that there exists n0 ≥ 1

such that xEn0f � g and f � xEn0g.

Axiom A9 (Nonatomicity). Every nonnull event can be partitioned into two non-

null events.

Axiom A8” is stronger than Axiom A8 and is necessary to obtain a countably

additive probability. Axiom A9 (see Villegas, 1964) is needed to obtain fineness

and tightness of the qualitative probability.

This leads to the following theorem: Axioms A1-A7, A8”, together with P2,

P4, and A9 are necessary and sufficient for % to have a multiplier representation.

The proof is analogous, but instead of Savage’s Theorem, as in A.2.4, Arrow’s

(1970) theorem is used (cf. Chapter 2 of his book).

Removing Unboundedness

Instead of Axiom A7, Savage’s axiom P3 could be assumed. as verified by Klibanoff

et al. (2005) in the proof of their Proposition 2, the family of functions φθ remains

to be the only solution of Pexider’s functional equation when domain is restricted

to an interval.

Savage Axioms Only on Purely Objective Acts

If the existence of certainty equivalents for lotteries is assumed, i.e., for any π ∈
∆(Z) there exists z ∈ Z with z ∼ π, then the Savage axioms can be weakened in
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the following sense. In Theorem 1 Axioms P2, P4, and P6 were assumed to hold

on all (Anscombe–Aumann) acts. Assuming the existence of certainty equivalents

makes it possible to impose Savage axioms only on Savage acts, i.e., acts paying

out a degenerate lottery in each state.

A.3 Proof of Theorem 2

Lemma 2 establishes that c1(p) = minq∈Q θR(p‖ q) is a legitimate cost function.

Lemma 3 is the main step in proving necessity. The rest of the proof deals with

sufficiency.

Lemma 2. Suppose S is a Polish space. For any convex closed set Q ⊆ ∆σ(S) the

function c1(p) = minq∈Q θR(p ‖ q) is nonnegative, convex, lower semicontinuous,

and {p ∈ ∆(S) | c1(p) ≤ r} ⊆ ∆σ(S) for each r ≥ 0. Moreover, the function c1 is

grounded and {p ∈ ∆(S) | c1(p) = 0} = Q.

Proof. Nonnegativity follows from R(p‖q) being nonnegative for any p, q ∈ ∆(S).

By Lemma 1.4.3 (b) in Dupuis and Ellis (1997), R(·‖ ·) is a convex, lower semi-

continuous function on ∆σ(S)×∆σ(S). Thus, arg minq∈Q θR(p‖q) is a nonempty

compact and convex set for any p ∈ ∆σ(S). Let λ ∈ (0, 1) and p′, p′′ ∈ ∆σ(S). Let

q′ ∈ arg minq∈Q θR(p′‖q) and q′′ ∈ arg minq∈Q θR(p′′‖q). Convexity follows from:

c1(λp′ + (1− λ)p′′) = min
q∈Q

θR(λp′ + (1− λ)p′′‖q)

≤ θR
(
λp′ + (1− λ)p′′‖λq′ + (1− λ)q′′

)
≤ λθR(p′‖q′) + (1− λ)θR(p′′‖q′′)

= λc1(p′) + (1− λ)c1(p′′).

For lower semicontiuniuty define Proj : ∆σ(S) × Q × R → ∆σ(S) × R to be a

projection Proj(p, q, r) = (p, r). Let Epi(R) = {(p, q, r) ∈ ∆σ(S) × Q × R | R(p‖
q) ≤ r} be the epigraph of R and Epi(c1) = {(p, r) ∈ ∆σ(S) × R | c1(p) ≤ r} be

the epigraph of c1. Observe that, by lower semicontinuity of R, the set Epi(R) is

closed. Next, observe that Epi(c1) = Proj
(
Epi(R)

)
.

To verify that, let (p, r) ∈ Epi(c1). Then c1(p) ≤ r; thus minq∈QR(p‖ q) ≤ r.

Let q′ ∈ arg minq∈QR(p‖q). It follows, that R(p‖q′) ≤ r; thus, (p, q, r) ∈ Epi(R).
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Conclude that (p, r) ∈ Proj
(
Epi(R)

)
. Conversely, let (p, r) ∈ Proj

(
Epi(R)

)
. Then

there exists q′ such that (p, q′, r) ∈ Epi(R), so that R(p‖ q′) ≤ r. Thus, c1(p) =

minq∈QR(p‖q) ≤ R(p‖q′) ≤ r. Conclude that (p, r) ∈ Epi(c1).

Finally, observe that Proj(C) is closed for any closed set C ∈ ∆σ(S)×Q× R.

Let (pn, rn) be a sequence in Proj(C) with limit (p, r). Because (pn, rn) ∈ Proj(C),

there exists a sequence qn in Q such that (pn, qn, rn) ∈ C. Because Q is a compact

set subset of a metric space, limn→∞ qn = q ∈ Q by passing to a subsequence. By

closedness of C, it follows that limn→∞(pn, qn, rn) = (p, q, r) ∈ C. Thus, (p, r) ∈ C.

To see that {p ∈ ∆(S) | c1(p) ≤ r} ⊆ ∆σ(S) for each r ≥ 0, observe that

{p ∈ ∆(S) | R(p ‖ q) ≤ r} ⊆ ∆σ(S) and that by compactness of Q and lower-

semicontinuity of R(p‖·)

{p ∈ ∆(S) | c1(p) ≤ r} =
⋃
q∈Q

{p ∈ ∆(S) | R(p‖q) ≤ r}.

For groundedness, recall that by Lemma 1.4.1 in Dupuis and Ellis (1997) R(p‖
q) = 0 iff p = q. Thus, c1(q) ≤ R(q‖q) = 0 for any q ∈ Q. Conversely, if c1(p) = 0,

then minq∈QR(p‖ q) = 0. By lower semincontinuity of R, there exists q ∈ Q such

that 0 = c1(p) = R(p‖q). Thus, by Lemma 1.4.1 in Dupuis and Ellis (1997), p = q;

hence, p ∈ Q.

Lemma 3. Suppose % is a variational preference and Q ⊆ ∆σ(S) is a closed and

convex set. Then V1 with c1(p) = minq∈Q θR(p‖ q) represents % if and only if V2

with c2 = δQ represents %.

Proof. Observe that
V1(f) = min

p∈∆S

∫
S

u(fs) dp+ min
q∈Q

θR(p‖q)

= min
p∈∆S

min
q∈Q

∫
S

u(fs) dp+ θR(p‖q)

= min
q∈Q

min
p∈∆S

∫
S

u(fs) dp+ θR(p‖q)

= min
q∈Q

φ−1
θ

(∫
S

φθ
(
u(fs)) dq

)
= φ−1

θ

(
min
q∈Q

∫
S

φθ
(
u(fs)) dq

)
,

32



where the fourth inequality follows from Proposition 1.4.2 in Dupuis and Ellis

(1997) and the fifth from strict monotonicity of φ−1
θ . Thus, V1 is ordinally equiv-

alent to V2(f) = minq∈Q
∫
S
φθ
(
u(fs)) dq = V2(f) = minp∈∆S

∫
S
φθ
(
u(fs)) dp +

c2(p).

Proof of Theorem 2. Suppose that V1 with c1(p) = minq∈Q θR(p‖ q) represents

%. By Lemma 2 an by Theorems 3 and 13 of Maccheroni et al. (2006a), V1(f) =

minp∈∆S

∫
S
u(fs) dp+c1(p) is a representation of a preference % that satisfies axioms

A1-A8. By Lemma 3, V2 with c2 = δQ represents %.

Conversely, suppose that % is a variational preference represented by

V2(f) = min
p∈∆S

∫
S

φθ
(
u(fs)

)
dp+ c2(p).

Define niveloid I : B0(Σ, φθ(U))→ R by I(ξ) = minp∈∆S

∫
S
ξ dp+c2(p) and observe

that V2(f) = I
(
φθ(u(f))

)
. Therefore,

V2(αf + (1− α)π) = I

(
φθ
(
αu(f) + (1− α)u(π)

))
= I

(
− φθ

(
(1− α)u(π)

)
· φθ
(
αu(fs)

))
(19)

for any f ∈ F(∆(Z)), π ∈ ∆(Z), and α ∈ (0, 1).

Niveloid I is homogeneous of degree one. To verify, suppose that U = u(∆(Z)) =

R+. (The case of U ∈ {R−,R} is analogous.) Let ξ ∈ B0(Σ, φθ(R+)) and b ∈ (0, 1]

(the case b ≥ 1 follows from this). Let scalar r = b−1I(bξ); observe that I(br) =

I(I(bξ)) = I(bξ). Let f ∈ F(∆(Z)) be such that φθ(
1
2
u(f)) = ξ and π ∈ ∆(Z) be

such that φθ(
1
2
u(π)) = r. Their existence is guaranteed by unboundedness of U .

Furthermore, let ρ, ρ′ ∈ ∆(Z) be such that b = −φθ(1
2
u(ρ)) and u(ρ′) = 0. (In the

case of U = R−, prove homogeneity for b ≥ 1 and deduce for b ∈ (0, 1].) By (19),

I(bξ) = I(br) this implies V2

(
φθ(

1
2
u(f)+ 1

2
u(ρ))

)
= V2

(
φθ(

1
2
u(π)+ 1

2
u(ρ))

)
. Because

% satisfies Axiom A2, this implies V2

(
φθ(

1
2
u(f)+ 1

2
u(ρ′))

)
= V2

(
φθ(

1
2
u(π)+ 1

2
u(ρ′))

)
,

which, by (19), implies I(ξ) = I(r). Thus, I(bξ) = I(br) = bI(r) = bI(ξ).

If U = R+ or U = R−, then I is defined on B0(Σ, [−1, 0)) or B0(Σ, (−∞,−1]),

respectively. Extend I to B0(Σ,R−) by homogeneity. Note that I is monotone,

homogeneous of degree one, and vertically invariant on B0(Σ,R−). If U = R, then
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I is already defined on B0(Σ,R−) and enjoys those properties.

By Lemma 23 of Maccheroni et al. (2004), I is niveloid on B0(Σ,R−). By

Lemmas 21 and 22 of Maccheroni et al. (2004), the unique vertically invariant

extension of I to B0(Σ), defined by Ĩ(ξ + k) = I(ξ) + k for any ξ + k ∈ B0(Σ,R)

such that ξ ∈ B0(Σ,R−) is monotonic. Note that Ĩ is monotone homogeneous of

degree one on B0(Σ,R).

Therefore, Ĩ satisfies the assumptions of Lemma 3.5 of Gilboa and Schmeidler

(1989). Thus, there exists a closed, convex set Q ⊆ ∆(S) such that Ĩ(ξ) =

minp∈Q
∫
ξ dp. Hence, I(ξ) = minp∈Q

∫
ξ dp for all ξ ∈ B0(Σ, φθ(U)).

Let En be a vanishing sequence of events and let x < y be elements of φθ(U).

Observe that by Axiom A8, for any k there exists a N such that I(xEny) > I(y− 1
k
)

for all n ≥ N . Thus, minp∈Q
∫
xEny dp > y− 1

k
. Therefore, (x−y) maxp∈Q p(En) >

1
k
. Hence, p(En) < (k(y − x))−1 for any p ∈ Q. Therefore limn→∞ p(En) = 0 for

any p ∈ Q. Thus, Q ⊆ ∆σ(S).

Finally, by Lemma 3, c1(p) = minq∈Q θR(p‖q).

A.4 Proof of Theorem 3

In order to relax the assumption of existence of certainty equivalents, the following

definition will be used.

Definition 5. Act f ∈ Fa(Z) is symmetric with respect to E ∈ Σa if for all z ∈ Z

fEz ∼ zEf.

Symmetric acts have the same expected utility on each “half” of the state

space.16

Axiom A5” (Second Order Risk Aversion). If acts f, g ∈ Fa are symmetric with

respect to E ∈ Σa, then for all F ∈ Σb

fFg ∼ gFf ⇒ (fFg)E(gFf) % fFg.

16Symmetric acts are acts that can be “subjectively mixed”. Such subjective mixtures are
different from subjective mixtures studied by Ghirardato, Maccheroni, Marinacci, and Siniscalchi
(2003), whose construction relies on range-convexity of u. In the present setting, subjective
mixtures are not needed under range-convexity of u.
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The proof of Theorem 3 follows from the proof of the following stronger theorem

Theorem 5. Suppose % has representation (14). Then Axiom A5” is satisfied if

and only if the function φ in (14) is concave.

Proof.

A.4.1 Necessity

Suppose f ∈ Fa(Z) is symmetric with respect to E ∈ Σa. Let α = qa(E). Axiom

A6 and representation (14) imply that there exist z′, z′′ ∈ Z with z′ � z′′. Thus,

fEz′ ∼ z′Ef and fEz′′ ∼ z′′Ef imply that∫
E

(u ◦ f) dqa + (1− α)u(z′) = αu(z′) +

∫
Ec

(u ◦ f) dqa, (20)∫
E

(u ◦ f) dqa + (1− α)u(z′′) = αu(z′′) +

∫
Ec

(u ◦ f) dqa. (21)

By subtracting (21) from (20)

(1− α)[u(z′)− u(z′′)] = α[u(z′)− u(z′′)];

thus, α = 1
2

and therefore∫
E

(u ◦ f) dqa =

∫
Ec

(u ◦ f) dqa.

Let f, g ∈ Fa(Z). Denote U(f) =
∫
Sa

(u ◦ f) dqa and U(g) =
∫
Sa

(u ◦ g) dqa.

Because f and g are symmetric with respect to E ∈ Σa,∫
E

(u ◦ f) dqa =

∫
Ec

(u ◦ f) dqa =
1

2
U(f)∫

E

(u ◦ g) dqa =

∫
Ec

(u ◦ g) dqa =
1

2
U(g).

Let F ∈ Σb and β = qb(F ). If fFg ∼ gFf , then

βφ
(
U(f)

)
+ (1− β)φ

(
U(g)

)
= βφ

(
U(g)

)
+ (1− β)φ

(
U(f)

)
.

35



Thus,

(2β − 1)φ
(
U(f)

)
= (2β − 1)φ

(
U(g)

)
.

If β 6= 1
2
, then U(f) = U(g) and trivially

V
(
(fFg)E(gFf)

)
= βφ

(
1

2
U(f) +

1

2
U(g)

)
+ (1− β)φ

(
1

2
U(g) +

1

2
U(f)

)
= βφ

(
U(f)

)
+ (1− β)φ

(
U(g)

)
= V (fFg).

If β = 1
2
, then

V
(
(fFg)E(gFf)

)
=

1

2
φ

(
1

2
U(f) +

1

2
U(g)

)
+

1

2
φ

(
1

2
U(g) +

1

2
U(f)

)
= φ

(
1

2
U(f) +

1

2
U(g)

)
≥ 1

2
φ
(
U(f)

)
+

1

2
φ
(
U(g)

)
= V (fFg),

where the inequality follows from concavity of φ.

A.4.2 Sufficiency

Convexity of Domain of φ

Let Dφ be the domain of function φ, i.e., Dφ = {U(f) | f ∈ Fa}. Suppose

k, l ∈ Dφ and α ∈ (0, 1). Wlog k < l. Let f, g ∈ Fa be such that k = U(f) and

l = U(g). Define A = mins∈S f(s) and B = maxs∈S g(s) and let x, y ∈ Z be such

that u(x) = A and u(y) = B. By nonatomicity of qa, there exists E ∈ Σa with

qa(E) =
(
B − [αk + (1− α)l]

)
(B − A)−1. Verify, that U(xEy) = αk + (1 − α)l.

Hence, Dφ is a convex set.

Dyadic Convexity of φ

Suppose k, l ∈ Dφ and let f, g ∈ Fa be such that k = U(f) and l = U(g). Define

k = mins∈S f(s), k̄ = maxs∈S f(s), l = mins∈S g(s), and l̄ = maxs∈S g(s). Let

x, x̄, y, ȳ be such that u(x) = k, u(x̄) = k̄, u(y) = l, u(ȳ) = l̄. Also, define κ = k̄−k
k̄−k

and λ = l̄−l
l̄−l . By nonatomicity of qa there exist partitions {Eκ

1 , E
κ
2 , E

κ
3 , E

κ
4 } and

{Eλ
1 , E

λ
2 , E

λ
3 , E

λ
4 } of Sa such that Eκ

1∪Eκ
2 = Eλ

1∪Eλ
2 , qa(E

κ
1∪Eκ

2 ) = qa(E
λ
1∪Eλ

2 ) = 1
2
,

qa(E
κ
1 ∪ Eκ

3 ) = κ
2
, and qa(E

λ
1 ∪ Eλ

3 ) = λ
2
.

36



Define acts f = xEκ
1 x̄E

κ
2 xE

κ
3 x̄E

κ
4 and g = yEλ

1 ȳE
λ
2 yE

λ
3 ȳE

λ
4 . Verify that f

and g are symmetric with respect to E = Eκ
1 ∪Eκ

2 = Eλ
1 ∪Eλ

2 and satisfy U(f) = k

and U(g) = l. By nonatomicity of qb, there exists F ∈ Σb with qb(F ) = 1
2
. Verify

that V (fFg) = 1
2
φ(k) + 1

2
φ(l) = V (gFf). Hence, by Axiom A5’,

φ

(
1

2
k +

1

2
l

)
=

1

2
φ

(
1

2
k +

1

2
l

)
+

1

2
φ

(
1

2
l +

1

2
k

)
= V

(
(fFg)E(gFf)

)
≥ V (fFg) =

1

2
φ(k) +

1

2
φ(l).

As a consequence,

φ

(
1

2
k +

1

2
l

)
≥ 1

2
φ(k) +

1

2
φ(l) (22)

for all k, l ∈ Dφ.

Limiting argument

Let α ∈ [0, 1]. From A.4.2 it follows that αk+(1−α)l ∈ Dφ. Let the sequence {αn}
be a dyadic approximation of α. By induction, inequality (22) implies that φ(αnk+

(1− αn)l) ≥ αnφ(k) + (1− αn)φ(l) for all n. By continuity of φ, limn→∞ φ(αnk +

(1− αn)l) = φ(αk + (1− α)l). Thus, φ(αk + (1− α)l) ≥ αφ(k) + (1− α)φ(l).

A.5 Proof of Theorem 4

By Theorem 3 of Ergin and Gul (2004), Axioms A1, A6, P2’, P3, P4’, and P6’

guarantee the existence of nonatomic measures qa ∈ ∆Sa and qb ∈ ∆Sb, function

u : Z → R, and a continuous and strictly increasing φ : R → R such that % is

represented by V with

V (f) =

∫
Sb

φ

(∫
Sa

u(f(sa, sb)) dqa(sa)

)
dqb(sb). (23)

Let x, y be as in Axiom A7’. Wlog u(y) = 0, thus u(x) > 0. Nonatomicity of qa

guarantees that there exists a sequence of events {En}n≥1 in Σa with qa(En) = 1
n
.

Axiom A7’ guarantees that there exist a sequence {z′n}n≥1 with φ
(
0
)
> φ

(
1
n
u(z′n)+

n−1
n
u(x)

)
or a sequence {z′′n}n≥1 with φ

(
1
n
u(z′′n)

)
> φ

(
u(x)

)
(or both such sequences

exist). By strict monotonicity of φ if follows that, in the first case, −(n−1)u(x) >
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u(z′n); thus u(z′n) → −∞; hence, u is unbounded from below. In the second case,

u(z′′n) > nu(x); thus, u(z′′n) → +∞; hence, in this case u is unbounded from

above. Define U := u(Z). After normalization, there are three possible cases:

U ∈ {R+,R−,R}.
Let E ∈ Σa be as in Axiom A2’’’ and let p := qa(E). For any k ∈ U define

a preference %k on Fb as follows. Let z ∈ Z be such that u(z) = k and for any

f, g ∈ Fb(Z) define f %k g iff fEz % gEz. (Because of Axiom A2’’’, the choice of

particular z does not matter.) Define φk(u) := φ(u+(1−p)k). From representation

(23), it follows that %k is represented by V k with

V k(f) =

∫
Sb

φk
(∫

E

u(f(sa, sb)) dqa(sa)

)
dqb(sb).

By Axiom A2’’’, %k=%0 for all k ∈ U . Hence, φk and φ0 are equal up to positive

affine transformations, i.e., φ(u+ (1− p)k) = α(k)φ(u) + β(k) for all u, k ∈ U . By

changing variables: k′ := (1 − p)k, α′(k′) = α(k
′

p
), and β′(k′) = β(k

′

p
), it follows

that φ(k′+ u) = α′(k′)φ(u) + β′(k′) for all u, k′ ∈ U , which is is a generalization of

Pexider’s equation (see equation (3) of Section 3.1.3, p. 148 of Aczél, 1966). By

Theorem 3, φ is concave. By Corollary 1 in Section 3.1.3 of Aczél (1966), up to

positive affine transformations, the only strictly increasing quasiconcave solutions

are of the form φθ, for θ ∈ (0,∞].

It follows from Theorem 1 in Section 1 of Villegas (1964) that Axiom A8’

delivers countable additivity of qb. A reasoning similar to Observation 1 of this

paper concludes the proof.
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