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1. Introduction

We prove the existence of a greatest and a least interim pure-strategy Bayesian Nash
equilibrium for supermodular games of incomplete information. Here is a summary of
the main result.

Consider the following:
• The interim formulation of a Bayesian game, with type spaces and with

each individual’s beliefs given by a mapping from her set of types to beliefs
about the other players’ sets of types and the state of nature.

(This is in contrast to the ex ante formulation, in which beliefs are given
by a common prior and conditional beliefs.)

• The interim formulation of a Bayesian Nash equilibrium, in which each
player and each type maximizes her expected payoff.

(This is in contrast to the ex ante formulation as the Nash equilibrium of
an ex ante game, in which each player maximizes her expected payoff for
almost every type.)

We place no assumptions on each set of types, other than that it is endowed with
a sigma-field. Suppose that the following hold for each player:
1. Her set of actions is a compact metric lattice.
2. Her payoff is measurable in the types, continuous in the actions, bounded,

and supermodular in own action, and has increasing differences between
her own action and the other players’ actions.

3. Her interim belief about each event is measurable in her own type.
Then there exist a greatest and a least pure-strategy equilibrium.

Vives (1990) and Milgrom and Roberts (1990) also obtain existence of a pure-strategy
Bayesian Nash equilibrium for supermodular games of incomplete information. The
main differences are that (a) we use the interim formulation of a Bayesian game, in
which each player’s beliefs are part of his or her type rather than being derived from
a prior; (b) we use the interim formulation of a Bayesian Nash equilibrium, in which
each player and every type (rather than almost every type) chooses a best response to
the strategy profile of the other players; (c) we assume that the action spaces are com-
pact metric lattices, whereas they assume that each action set is a compact sublattice of
Euclidean space. The proof in Milgrom and Roberts (1990) applies a general existence
theorem for supermodular games to the ex-ante normal form of the Bayesian game; the
proof in Vives (1990) uses a Cournot tatônnement that is also the basis of the proof in
this paper.

Like those authors, we are exploiting the fact that the game is supermodular. Because
there is uncertainty and the players are maximizing expected payoff, each player’s un-
derlying payoff function must be truly supermodular in own action and have increasing
differences between own action and other actions (properties that are preserved by in-
tegration) rather than merely satisfy ordinal quasi-supermodularity and single-crossing
properties (which are not preserved by integration). For example, a Bayesian game with
log-supermodular payoffs need not have a pure-strategy equilibrium.
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There are various papers on existence of BNE in monotone-in-type pure strategies, in
which the type spaces are also partially ordered (unlike in this paper). Since monotone-
in-type is a stronger property than we seek here, those papers need additional assump-
tions on complementarity between actions and types and on monotonicity of beliefs.
Leaving these assumptions aside, here is how the models compare. Van Zandt and Vives
(2006) use the same set-up as in this paper and rely on this paper’s existence result. Athey
(2001), McAdams (2003), and Reny (2006) obtain successively more general results for
games that might not have strategic complementarities. In this way, the set of games
may be more general. In the most general result, Reny (2006), the assumption on the
action set is just slightly stronger than in this paper (the difference is that the lattice is
locally complete). Reny’s assumptions on types and beliefs are more restrictive: the type
spaces are a cube in Euclidean space; the game is studied in its ex ante form; and the
common prior must be atomless.

We can also compare our results with those for general Bayesian games (i.e., not
necessarily supermodular). In the basic theory of static complete-information games,
there are general theorems on the existence of mixed-strategy Nash equilibria; strategic
complementarities allows one to obtain existence of pure-strategy equilibria. However,
for Bayesian games, existence results for mixed-strategy (or behavioral strategy) equi-
libria require some technical restrictions. The state-of-the-art for games with continuous
payoffs remains Milgrom and Weber (1985), who prove existence of equilibrium in be-
havioral strategies using an ex ante formulation of types, beliefs, and strategies. They
assume that the type spaces are complete separable metric spaces and that the actions
spaces are compact metric spaces, and then add an equicontinuity assumption on payoffs
and an absolute continuity assumption on the prior with respect to the marginal distri-
butions of types. These restrictions are not needed for the existence of pure-strategy
Bayesian Nash equilibria in supermodular games.

The title of this paper refers to interim Bayesian Nash equilibrium on universal type
spaces. The construction of universal type spaces in Mertens and Zamir (1985) and
Brandenburger and Dekel (1993) yields (starting with a state space that is a complete
separable metric space) type spaces that are complete separable metric spaces. In that
sense, such type spaces are already covered by Milgrom and Weber (1985). Heifetz and
Samet (1998) extend such construction to arbitrary measure spaces, but such type spaces
are already covered by the existence proofs for supermodular games in Vives (1990) and
Milgrom and Roberts (1990). However, intrinsic in the construction of universal type
spaces is that there is no common prior and that the appropriate notion of equilibrium
is interim, as in this paper. It is this combination of universal type spaces and interim
Bayesian Nash equilibrium that is new to our existence proof, though it is made possi-
ble by the assumption that the game is supermodular and that such complementarity is
common knowledge.

2. Overview of the analysis

We prove the existence of a greatest interim BNE equilibrium. The proof for a least
interim BNE is omitted because it has analogous steps. In parallel, as a point of compar-
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ison, we sketch a proof of existence of a greatest ex ante BNE (different from the proof
in Vives (1990)).

We begin by defining a Bayesian game and a Bayesian Nash equilibrium, both for
the interim model (Section 3) and the ex ante model (Section 4). We also explain the
relationship between the two models.

Section 5 states the topological and order assumptions on actions (that each set of
actions is a compact metric lattice) and the implications for each set of strategies (in
particular, that the set of strategies is a lattice, that such lattice is typically not complete
in the interim model, and that such lattice is complete in the ex ante model if actions sets
are Euclidean).

We then proceed to the proofs of existence. Both proofs (interim and ex ante) have
broadly two steps:

Step 1. Show, using complementarity assumptions and methods of optimization on
lattices, that each player has a greatest best reply (GBR) and that the GBR mapping is
an increasing function of the other players’ strategies.

Step 2. Apply a lattice fixed-point theorem to the profile of GBR mappings.

We take up these steps in reverse order: Step 2 in Section 6 and Step 1 in Section 7.
Section 8 concludes. An Appendix contains standard order definitions and results,

for convenience.

3. The interim formulation of the Bayesian game

We use an interim or incomplete-information formulation of a Bayesian game and of a
Bayesian Nash equilibrium (BNE). This formulation is based on type-dependent beliefs
(rather than a common prior and conditional beliefs) and interim best replies (rather than
ex ante best replies).

The game has the following components.

1. The set of players is N , indexed by i ∈ N .
2. The set of types of player i ∈ N is Ti , endowed with a sigma-field Fi .
3. For some models, it is convenient to have a component of the state space that rep-

resents (a) residual uncertainty not observed by any player or (b) the set of possible
payoffs, so that individual type spaces capture only beliefs. Denote this state space
by T0 and endow it with a sigma-field F0 .

Notation. Let T := ∏k∈{0}∪N Tk . For i ∈ N , let T−i := ∏k �=i Tk and let F−i be
the product sigma-field

⊗
k �=i Fk .

4. Player i’s type-dependent beliefs are given by a function pi : Ti → M−i , where M−i

is the set of probability measures on (T−i, F−i) .
Notation. We denote the probability of a set F−i ∈ F−i , given beliefs pi(ti) , by

pi(F−i | ti) . However, the mapping pi need not represent conditional beliefs derived
from a prior on T .

5. The action set of player i is Ai , endowed with a sigma-field to be specified later.
Notation. The set of action profiles is A := ∏i∈N Ai . Let A−i := ∏ j �=i A j .

6. The payoff function of player i is ui : A × T → R .
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Type spaces and action sets are non-empty.
A strategy for player i is a measurable function σi : Ti → Ai . Let Σi denote the set

of strategies for player i . Let Σ := ∏i∈N Σi denote the set of strategy profiles and let
Σ−i := ∏ j �=i Σ j denote the profiles of strategies for players other than i . For notational
simplicity, a strategy profile is viewed as a map from T to A , even though it does not
depend on T0 .

A BNE is a strategy profile σ such that each player and each type chooses a best
response to the strategy profile of the other players. This is formalized as follows. When
player i’s type is ti and the strategy profile of the other players is σ−i , her expected
payoff from choosing action ai is

Πi(ai, ti; σ−i) :=
∫

T−i

ui(ai, σ−i(t−i), ti, t−i) d pi(t−i | ti) . (1)

The integral is over the possible types of the other players (and over T0 ) given player i’s
beliefs pi(· | ti) . Let ϕi(ti; σ−i) be the set of actions for i that maximize this payoff:

ϕi(ti; σ−i) := arg max
ai∈Ai

Πi(ai, ti; σ−i) . (2)

With this notation, we have the following definition of a Bayesian Nash equilibrium.

Definition 1. A Bayesian Nash equilibrium is a strategy profile σ ∈ Σ such that, for
i ∈ N and ti ∈ Ti , σi(ti) ∈ ϕi(ti; σ−i) .

Let Βi : Σ−i → Σi denote player i’s best-reply correspondence in terms of strategies:

Βi(σ−i) = {σi ∈ Σi | ∀ti ∈ Ti : σi(ti) ∈ ϕi(ti; σ−i)}. (3)

Then, equivalently, a BNE is a strategy profile σ such that σi ∈ Βi(σ−i) for i ∈ N .

4. Ex ante formulation of a Bayesian game

For comparison, we provide the following ex ante formulation of a Bayesian game and
of a Bayesian Nash equilibrium.

The components of a game are the same, except that the belief mappings are replaced
by a common prior µ on T . Strategies are taken to be equivalence classes, modulo being
equal µ -a.e.

(We overload notation by using the same symbols to denote corresponding—but not
identical—components of the two models. For example, in the interim model, σi is a
function and Σi is a set of functions; in the ex ante model, σi is an equivalence class of
functions and Σi is a set of such equivalence classes.)

In the interim formulation of BNE, each type of each player chooses an action in
order to maximize expected utility, given the beliefs for that type. In the ex ante formu-
lation, each player chooses a strategy before observing his type in order to maximize
unconditional expected utility. That is, σ ∈ Σ is an ex ante BNE if, for all i ∈ N , σi

solves

max
σ′

i∈Σi

∫
T

ui(σ
′
i (ti), σ−i(t−i), t) dµ(t) . (4)
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The interim formulation of a Bayesian game and of a BNE is the correct one for in-
terpreting a game as one of incomplete rather than imperfect information. Furthermore,
as we will now remark, the class of interim games is broader than the class of ex ante
games (with a mild restriction) and the notion of interim BNE is stronger than the notion
of ex ante BNE. Therefore, the results of this paper are stronger than if we had used an
ex ante formulation of Bayesian games and BNE (again, with a mild restriction).

Correspondence between interim and ex ante games. Consider an interim game
and an ex ante game that have the same components (players, type spaces, utilities),
except that the ex ante game has a common prior µ and the interim game has interim
beliefs {pi}i∈N . We say that the games correspond if, for all F−i ∈ F−i , pi(F−i | ti) is a
conditional probability of F−i given ti for the prior µ . This means that pi is a regular
conditional probability for µ conditional on ti .

The class of interim games is broader than the class of ex ante games, if we restrict
attention to the case in which each Tk is a complete separable metric space and the
sigma-algebra of Tk is its Borel field. Then, for any prior on T , a regular conditional
probability given ti always exists—that is, an ex ante game always has a corresponding
interim game. (See, for example, Dellacherie and Meyer (1978, III.70 and 71).) The
regular conditional probabilities are unique up to equivalence; we can take one member
of the equivalence class for each player as that player’s beliefs in the interim game. The
converse does not hold: an interim game need not have a corresponding ex ante game
because a player’s beliefs in an interim game might not be consistent with a prior.

Interim BNE is stronger than ex ante BNE. Consider an ex ante game and an interim
game that correspond. For any interim BNE of the interim game, the equivalence class
of strategy profiles containing the interim BNE is an ex ante BNE of the ex ante game.
The converse does not quite hold. For an ex ante BNE of the ex ante game, any member
σ of the equivalence class is an “almost everywhere” interim BNE, meaning that, for
every player i and µ -a.e. type ti ∈ Ti , σi(ti) is a best response to σ−i (whereas for an
interim BNE, this should hold for every ti ∈ Ti ).

Remark 1. The important commonality of a common prior is that players agree ex ante
on which events have probability zero and they do not care what happens on such events.
In our definition of an ex ante game, we could have allowed players to have different
priors as long as these shared the same null sets, that is, were mutually absolutely con-
tinuous. However, this would be a false generalization. From such a game, we could
construct an equivalent game with a common prior by letting the common prior be the
prior µ1 of player 1; then, if fi is the Radon–Nikodým derivative of the prior µi of player
i �= 1 with respect to µ1 , we redefine player i’s utility to be (a, t) �→ ui(a, t) fi(t) .

5. Topological and order structure of actions and strategies

5.1. Assumptions on actions

We impose no further assumptions on the sets of types, but we assume that each set of
actions is a lattice and has a compatible compact metrizable topology.
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Assumption 1. For each player i , Ai is a compact metric lattice (its sigma-field is the
Borel field).

We use the symbol ≥ for all partial orders. Expressions such as “greater than” and
“increasing” mean “weakly greater than” and “weakly increasing”. See the Appendix
for standard definitions and results about partial orders and lattices that are used in this
paper.

Remark 2. We use the following properties of a compact metric lattice such as Ai

(see, for example, Reny (2006)):

1. The binary operators sup and inf from Ai × Ai to Ai are continuous (this is what
defines a topological lattice) and hence measurable.

2. Ai is a complete lattice.
3. Every increasing (resp., decreasing) sequence in Ai converges topologically to its

order limit.
4. Any order interval in Ai is closed.

5.2. The order structure of strategies and best replies

Because Ai is a complete lattice, the product space ATi

i (the set of all functions from Ti

to Ai ) is a complete lattice under the product (pointwise) partial order: “σ′
i ≥ σi if and

only if σ′
i(ti) ≥ σi(ti) for all ti ∈ Ti ”. The supremum of a subset of ATi

i is the pointwise
supremum; e.g., if σi, σ′

i ∈ Ai , then σi ∨ σ′
i is the function defined by ti �→ σi(ti) ∨ σ′

i (ti) .
For the set Σi of measurable functions to be a lattice, i.e., to be a sublattice of ATi

i ,
we just have to be sure that the pointwise supremum of two measurable functions is
measurable. This is true because the lattice operations sup and inf are measurable.

For the ex ante model, Σi is also a lattice, but when defining the partial order we
need to add the quantifier “for µ -a.e.”, as in “σ′ ≥ σi if and only if σ′

i(ti) ≥ σi(ti) for
µ -a.e. ti ∈ Ti ”.

The greatest-best-reply (GBR) mapping for player i , if well-defined, is the function
Β̄ : Σ−i → Σi given by

Β̄i(σ−i) := max Βi(σ−i) .

(Such usage of “max” denotes the supremum of the set when this is also a member
of the set.) Assuming that Β̄i is well-defined for i ∈ N , we define Β̄ : Σ → Σ by
Β̄(σ) :=

〈
Β̄i(σ−i)

〉
i∈N

. The greatest fixed point of Β̄(σ) , if it exists, is the greatest
BNE.

With this notation, we can restate steps 1 and 2 of the proof as follows.

Step 1. Show that Β̄i is well-defined and increasing for i ∈ N .
Step 2. Show that Β̄ : Σ → Σ has a fixed point.

5.3. Completeness of the strategy sets

Theorems on optimization and fixed points on a lattice commonly assume that the lattice
is complete. In this paper, the lattices we need to worry about are Σi for i ∈ N .
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For the ex ante model, completeness of Σi and hence of Σ holds if we assume that
Ai is a compact sublattice of Euclidean space. This follows from Schaefer (1974, Propo-
sition II.8.3); we state the proof of this fact because previous references to it are incom-
plete.

Lemma 1. Let A ⊂ Rn be a compact sublattice. Let (Ω, F ,µ) be a probability space.
Let V be the set of equivalence classes of measurable functions from (Ω, F ,µ) to A.
Let ≥ be the partial order on V defined by “ f ≥ g if and only if f (ω) ≥ g(ω) µ -a.e.”
Then V is a complete lattice.

Proof. Let L1(Rn) be the set of integrable functions from (Ω, F ,µ) into Rn , so that
V ⊂ L1(Rn) .

That V is a lattice was explained in Section 5.2. To show that V is complete, we
use Schaefer (1974, Proposition II.8.3), which states that every norm-bounded directed
subset of L1(Rn) is convergent in the L1 norm. Let’s recall what this means.

A subset D ⊂ V is directed increasing if, for all f , g ∈ D , there is h ∈ D such
that h ≥ f and h ≥ g . We then say that D converges to h ∈ D if, for all ε > 0 , there
is f ∈ D such that, for g ∈ D with g ≥ f , we have ‖h − g‖ < ε . The definition
of directed decreasing set is analogous. Observe that the limit of a convergent directed
subset D ⊂ L1(Rn) is the supremum of D .

Let X ⊂ V . Define, recursively, D0 = X and, for k = 0, 1, . . . ,

Dk+1 := { f ∨ g | f ∈ Dk, g ∈ Dk} .

Let D :=
⋃∞

k=0 . Observe that D is directed increasing; in fact, f ∨ g ∈ D for all
f , g ∈ D . Therefore, D is convergent; let h be the limit. Recall that h is the supremum
of D . Observe that an upper bound on X is also an upper bound on D and vice versa.
Therefore, the supremum of D is the supremum of X . �

Typically Σi not complete in the interim model. To see this, suppose that Ai = {0, 1},
so that all functions from Ti to Ai are indicator functions. Suppose also that all single-
ton subsets of Ti are measurable and there is a subset F ⊂ Ti that is not measurable.
(For example, Ti = [0, 1] , with the Borel field.) Since each singleton is measurable,{

1{ti}
∣∣ ti ∈ F

}
is a subset of Σi . The obvious candidate for its supremum is the point-

wise supremum 1F , but this is not measurable. Any measurable upper bound 1G is such
that F � G . Then, letting G′ := G \ {ai} for some ai ∈ G \ F , 1G′ is another measur-
able upper bound that is less than 1G . It follows that the set

{
1{ti} | ti ∈ F

}
of functions

has no supremum in Σi . Note, however, that any countable set has a supremum and
infimum. This fact will be used implicitly in what follows.

The incompleteness of Σi is the only distinction between the two models in step 2 of
the proof; it requires that, in the interim model, we use an alternate fixed-point theorem
that does not assume completeness of the lattice. For step 1, there is another distinction.
In the ex ante model, the GBR is a solution to a single optimization problem; in the
interim model, the GBR is pieced together from the solutions to many problems, one for
each type. This “piecing together” has to be done in a measurable way, which turns out
to be tricky—the more so because of the incompleteness of Σi as a lattice.
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6. The fixed-point theorem

We begin with step 2, which is easier. For now, then, we take as given that Β̄i is well-
defined and increasing.

6.1. Ex ante model

Consider first the ex ante model. We assure that Σi is complete with the following
assumption.

Assumption 2. (Ex ante) For i ∈ N , Ai is a compact sublattice of Euclidean space.
The σ -field on Ai is the Borel field.

We could apply Tarski’s fixed-point theorem, but we state a related result, due to
Abian and Brown (1961), for partially ordered sets. It is more general than what we
need, but it provides a better point of comparison with our approach for the interim
model.

Let (X ,≥) be a partially-ordered set. A chain C is a totally-ordered subset of X .
X is chain-complete if every chain in X has a supremum. E.g., a complete lattice is
chain-complete.

Theorem 1. (Abian–Brown1) Suppose that X is a chain-complete partially-ordered
set, that f : X → X is an increasing function, and that there is x ∈ X such that x ≤ f (x)
(e.g., X has a least element). Then f has a greatest fixed point.

Corollary 1. (Ex ante) Assume that Β̄i is well-defined and increasing for i ∈ N .
Then Β̄ has a greatest fixed point and hence the ex ante game has a greatest BNE.

6.2. Interim model

For the interim model, we cannot apply Theorem 1 because Σi is not chain complete.
However, Σi is ω -chain complete; i.e., countable chains have a supremum. It is there-
fore possible to construct a fixed point using a countable iterative method, yielding the
Tarski–Kantorivich Theorem (see Granas and Dugundji (2003, Theorem 2.1.2)).2 We
state this as Theorem 2 below and provide both intuition and a full proof in order (a) to
highlight the proof’s practical iterative nature (amenable to numerical calculation, sim-
ilar to the computation of a fixed point of a contraction mapping) and (b) to show its
similarity to the Cournot tatônnement used in Vives (1990, Theorem 6.1) and Van Zandt
and Vives (2006, Lemma 6).

The iteration starts at the greatest element (the greatest strategy profile); one obtains

1. See Markowsky (1976) for a converse. Abian and Brown assume that each well-ordered subset, rather
than each totally-ordered subset, has a supremem. However, these two conditions are equivalent because a
totally-ordered set has a well-ordered cofinal subset.
2. Heikkilä and Reffett (2006a, 2006b) have related fixed-point theorems that do not assume chain complete-
ness.
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a decreasing sequence (of best responses to the previous profile in the sequence). One
has to show that the limit of this sequence is a fixed point (a BNE). To obtain the result,
one assumes that decreasing sequences have an infimum and that the function (the GBR
mapping) is “continuous” with respect to such limits. (These are assumptions in the
general statement of the fixed-point theorem; they are results for the model in this paper
to which we apply the fixed-point theorem.)

Note another difference between the Abian–Brown and Tarski–Kantorivich theo-
rems. To merely obtain existence of a fixed point, we could use an increasing tatôn-
nement. To get started, we would need an x such that x ≤ f (x) . We would need a
countable version of chain-completeness of X ensure that the tatônnement converged.
However, to find the greatest fixed point, we have to start at the top and move downward.

Definition 2. A partially ordered set is downward sequentially complete if every de-
creasing sequence has an infimum.

Suppose (X ,≥) and (Y,≥) are partially-ordered sets that are downward sequentially
complete. An increasing function f : X → Y is downward sequentially continuous if,
for every decreasing sequence {x1, x2, . . .}, inf{ f (xn)} = f (inf{xn}) .

Theorem 2. (Tarski–Kantarovich) Suppose that (X ,≥) is a partially-ordered set that
is downward sequentially complete and that has a greatest element. Suppose that
f : X → X is increasing and downward sequentially continuous. Then f has a greatest
fixed point.

Proof. Let x0 be the greatest element of X . Define recursively, for n = 1, 2, . . . , xn =
f (xn−1) . Since x0 is the greatest element of X , x1 ≤ x0 . Since f is increasing, f (x1) ≤
f (x0) , i.e., x2 ≤ x1 . By induction, xn ≤ xn−1 for all n . Since (X ,≥) is downward
sequentially complete, the decreasing sequences {xn} and { f (xn)} have an infimum
x∗ (the same for both since the sequences are the same except that {xn} has an extra
first term). Since f is downward sequentially continuous, f (x∗) = inf{ f (xn)}, i.e.,
f (x∗) = x∗ . Hence, x∗ is a fixed point of f .

Suppose that x′ is another fixed point of f . Since x′ ≤ x0 , f (x′) ≤ f (x0) , i.e.,
x′ ≤ x1 . By induction, x′ ≤ xn for all n . Therefore, x′ is a lower bound on {xn}, so
x′ ≤ x∗ . Thus, x∗ is the greatest fixed point of f . �

Lemma 2. (Interim) Σi is downward sequentially complete.

Proof. Let {σn
i } be a decreasing sequence in Σi . Then, for all ti , σ∗

i (ti) is a decreasing
sequence; hence, it is order and topologically convergent (see Remark 2). Let σ∗

i (ti) be
its limit. σ∗

i is the infimum of {σn
i } in ATi

i . We have only to show that σ∗
i is measurable

and hence in Σi so that it is also the infimum of {σn
i } in Σi . This is true because the

pointwise limit of a sequence of measurable functions from a measure space to a metric
space is measurable. �

Remark 3. Lemma 2 does not use Ai ’s lattice structure. Instead, each Ai need only be
a downward sequentially complete partially-ordered topological space.
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Corollary 2. (Interim) Suppose that Β̄i is well-defined, increasing, and downward
sequentially continuous for i ∈ N . Then Β̄ has a greatest fixed point and hence the
interim game has a greatest BNE.

7. Existence of the GBR mapping

Working backward, we take up step 1, showing that the GBR mapping Β̄ is well-defined
and increasing.

7.1. Assumptions

We impose the following assumption for each player in both the interim and the ex ante
models.

Assumption 3. For each player i , ui : A × T → R

1. is continuous in a ,
2. is measurable in t ,
3. is bounded,
4. is supermodular in ai ,
5. has increasing differences in (ai, a−i) .

We also assume the following in the interim model.

Assumption 4. For each player i , for F−i ∈ F−i , ti �→ pi(F−i | ti) is measurable.

If the interim game has a corresponding ex ante game, then the beliefs in the interim
game satisfy this assumption.

7.2. Overview

Fix i ∈ N . That Β̄i (if well defined) is decreasing in σ−i is a straightforward consequence
of the fact that ui is supermodular in ai and has increasing differences in (ai, a−i) . This
is true for both the ex ante and the interim models. The details are standard, so we do
not repeat them.

The challenge is to show that Β̄i is well-defined, with such challenge due mainly to
measurability problems.

However the result is straightforward in the ex ante model. Recall that Σi is a com-
plete lattice given the assumption that Ai is a compact sublattice of Euclidean space
(Assumption 2). The ex ante utility function, defined as the expected utility given a pro-
file of strategies, is order upper semicontinuous and supermodular given the assumptions
on ui . Then Lemma A.1 immediately tells us that the set of best replies is a complete
lattice and that greatest and least ex ante best replies exist. We also omit the details of
this now-standard proof.
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For the rest of this section, we show the result for the interim model. To simplify
notation, we fix σ−i ∈ Σ−i ; we write Πi(ai, ti) instead of Πi(ai, ti; σ−i) for type ti ’s interim
expected payoff function; and we write ϕi(ti) instead of ϕi(ti; σ−i) for type ti ’s optimal
actions given σ−i .

We begin, in Section 7.3, by showing that ϕ̄i(ti) := maxϕi(ti) is well-defined for
each ti . Then we have to show that ti �→ ϕ̄i(ti) is measurable, so that this strategy is thus
Β̄i(σ−i) . There are two main steps, given in Section 7.5:

• We use the Measurable Maximum Theorem to show that ϕi : Ti � Ai is a measur-
able correspondence.

• Then ϕi has a Castaing representation: a set of measurable selections that is point-
wise dense in ϕi . From the Castaing representation, we can construct the GBR in a
measurable way.

To apply the Measurable Maximum Theory, we have to demonstrate that Πi is measur-
able in ti ; this we do in Section 7.4.

7.3. Each type has a greatest best reply

We check that the interim payoff function Πi(ai, ti) is well-defined, i.e., that the function
that is integrated in equation (1) is measurable and integrable. We do not constrain
the beliefs of the player, so integrability is assured by the assumption (3.3) that ui is
bounded.

Proposition 1. Let ai ∈ Ai and ti ∈ Ti . Then

t−i �→ ui(ai, σ−i(t−i), ti, t−i)

is measurable and bounded. Hence, Πi(ai, ti) is well-defined.

Proof. Since σ−i is measurable and the composition of measurable functions is mea-
surable,

t−i �→ ui(ai, σ−i(t−i), ti, t−i)

is measurable. This function is also bounded because ui is bounded. Thus, its expected
value Πi(ai, ti) with respect to the measure pi(ti) on T−i is well-defined. �

The existence of a greatest best response then follows from the supermodularity of
ui in ai .

Proposition 2. Πi is supermodular and continuous in ai . Therefore, for ti ∈ Ti , ϕi(ti)
is a non-empty complete lattice and has a greatest element ϕ̄i(ti) .

Proof. Supermodularity and continuity are preserved by integration. (Continuity is also
shown in the proof of Proposition 4.) Then apply Lemma A.1. �
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7.4. Interim expected utility is measurable in type

Proposition 3. Πi : Ai × Ti → R is measurable in ti .

Proof. Fix ai ∈ Ai and define Ui(ti, t−i) := ui(ai, σ−i(t−i), ti, t−i) , so that

Πi(ai, ti) =
∫

T−1

Ui(ti, t−i) d pi(t−i | ti) .

That is, Πi(ai, ti) is the expected value of Ui(ti, t−i) when ti is known and the probability
measure on t−i is pi(ti) .

Ely and Peski (2006, Lemma 9) show that such an expectation is measurable in ti
when (a) Ui is jointly measurable, (b) T−i is a complete separable metric space and F−i

is its Borel field, and (c) pi : Ti → M−i is measurable when M−i is endowed with the
Borel field of the topology of convergence in measure.

We state and prove, as Lemma 3 below, a version of their lemma that fits our slightly
more general assumptions: (a) Ui is jointly measurable, (b) (T−i, F−i) is an arbitrary
measurable space, and (c) ti �→ pi(F−i | ti) is measurable for all F−i ∈ F−i .

To apply Lemma 3 to this proof of Proposition 3, we let (X , F ) of the lemma be
(Ti, Fi) ; we let (Y, G ) be (T−i, F−i) ; we let U : X × Y → R be Ui : Ti × T−i → R ;
we let M be M−i ; we let p : X → M be pi : Ti → M−i ; and we let Π(x) :=
∫Y U (x, y) d p(y | x) be Πi(ai, ti) := ∫T−i

Ui(ti, t−i) d pi(t−i | ti) . Assumption 4 is that ti �→
pi(F−i | ti) is measurable. Furthermore, we have shown that Ui is bounded and measur-
able (see the proof of Proposition 1). Therefore, according to Lemma 3, ti �→ Πi(ai, ti)
is Fi -measurable. �

Lemma 3. Let (X , F ) and (Y, G ) be two measurable spaces. Let U : X × Y → R be
F ⊗ G -measurable and bounded. Let M be the set of probability measures on (Y, G ) .
Let p : X → M . Suppose that, for G ∈ G , x �→ p(G | x) is F -measurable. Then
Π : X → R , defined by

Π(x) :=
∫

Y
U (x, y) d p(y | x) ,

is F -measurable.

Proof of Lemma 3. We build up the result by showing that it holds for successively
larger classes of U .

Lemma 3 holds if U is an indicator function on a measurable rectangle. Suppose
H ∈ F ⊗ G is a rectangle, equal to F × G for some F ∈ F and G ∈ G . Then
∫ 1H d p(y | x) = 1F p(G | x) , which is a measurable function of x because p(G | x) is
assumed to be a measurable function of x .

Lemma 3 holds if U is any indicator function. This is the most difficult part of the
proof. We use the following lemma, which is related to the monotone class theorem.
See, for example, Billingsley (1995, p. 42) for a proof of this result.

Lemma 4. Let P and L be two sets of subsets of a set Z . Suppose P has the
following property:
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(µ) A, B ∈ P ⇒ A ∩ B ∈ P .

Suppose L has the following properties:

(λ1) Z ∈ L .
(λ2) A ∈ L ⇒ Ac ∈ L .
(λ3) If A1, A2, . . . ∈ L are pairwise disjoint, then

⋃∞
n=1 An ∈ L .

Suppose also that P ⊂ L . Then σ(P ) ⊂ L , where σ(P ) is the sigma-algebra
generated by P .

We apply Lemma 4 as follows. Let Z = X × Y . Let P be the set of all measurable
rectangles in F⊗G . Then P satisfies property (µ) . Let L be the class of sets in F⊗G

for which Π is F -measurable when U is an indicator function on the set. Clearly L

satisfies properties λ1 and λ2 . It also satisfies property λ3 , as follows.
For any H ∈ F⊗G , denote by ΠH the function Π when U = 1H . Let A1, A2, . . . ∈ L

be pairwise disjoint. Let A∞ :=
⋃∞

n=1 An . By the definition of L , ΠAn is measurable
for n ∈ N . We have to show that ΠA∞ is measurable. For m = 1, 2, . . . , let Bm :=⋃m

n=1 An . Since 1Bm = ∑m
n=1 1An , we have that ΠBm = ∑m

n=1 ΠAn and hence ΠBm is also
measurable. We now show that ΠA∞ is the pointwise limit of the sequence {ΠBm}m∈N and
hence is measurable. Fix x ∈ X and consider 1Bm as a function of y . Then {1Bm}n∈N
is an increasing sequence of G -measurable functions that converges pointwise to 1A∞ .
Therefore, {ΠBm (x) = ∫Y 1Bm d p(y | x)}m∈N is an increasing sequence that converges to
ΠA∞ (x) = ∫Y 1A∞ d p(y | x) . We have shown that {ΠBm} is an increasing sequence of F -
measurable functions on X that converges pointwise to ΠA∞ , as desired. Therefore, ΠA∞

is F -measurable and A∞ ∈ L .
Earlier we showed that ΠA is measurable for any measurable rectangle A ; that is,

P ⊂ L . Therefore σ(P ) ⊂ L . Since σ(P ) = F ⊗ G , we have that L = F ⊗ G .
That is, Lemma 3 holds if U is any indicator function.

Lemma 3 holds if U is simple. Suppose U is simple and equal to ∑m
n=1 αn1Hn , where

{H1, . . . , Hm} is an F ⊗ G -measurable partition of X × Y . Then

Π(x) =
m

∑
n=1

αn

∫
1Hn d p(y | x) ,

which is F -measurable since we have shown that each function x → ∫ 1Hn d p(y | x) is
F -measurable.

Lemma 3 holds for all measurable U . Since U is measurable, there is a sequence
{Un}n∈N of simple functions converging pointwise to U . We can take all functions in
this sequence to have the same bound as U . Then, for each x , {y �→ Un(x, y)}n∈N is a
uniformly bounded sequence of functions on Y that converges pointwise to y �→ U (x, y) .
It follows from dominated convergence that

lim
n→∞

∫
Y

Un(x, y) d p(y | x) =
∫

Y
U (x, y) d p(y | x) .

Therefore, if we define Πn(x) := ∫Y Un(x, y) d p(y | x) , then {Πn}n∈N is a sequence of
functions on X that converges pointwise to Π . Each Πn is measurable since Un is simple;
therefore Π is measurable.
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This concludes the proof of Lemma 3. �

7.5. The type-to-GBR selection is measurable

We thus have shown that Π is a Carathéodory function: continuous in ai and measur-
able in ti . Since we also assume that Ai is a compact metric space, it follows from the
Measurable Maximum Theorem (e.g., Aliprantis and Border (1999, Theorem 17.18))
that the solution correspondence

ti �−→
ϕi

arg max
ai∈Ai

Πi(ai, ti)

is measurable. (Let (Y, G ) be a measurable space and let X be a topological space. A
correspondence ϕ : Y � X is measurable if {y ∈ Y | ϕ(y) ∩ F �= ∅} ∈ G for all closed
F ⊂ X .)

Therefore, ϕ has a Castaing representation (see Castaing and Valadier (1977, Chap-
ter 3)). We construct from it the greatest best reply in a measurable way. We state this
step as an independent result.

Lemma 5. Let (Y, G ) be a measurable space and let X be a compact metric lattice.
Let ϕ : Y � X be a measurable correspondence with values that are non-empty,
topologically closed, and lattices. Then, for all y ∈ Y , ϕ(y) contains a greatest element
ϕ̄(y) and the function ϕ̄ : Y → X is measurable.

Proof. We have that ϕ is measurable, X is a Polish space, and ϕ has non-empty closed
values. Therefore, ϕ has a Castaing representation: A sequence { fn : Y → X}n∈N of
measurable selections such that ϕ(y) = cl { fn(y) | n ∈ N} for all y ∈ Y .

Define recursively, for n ∈ N , f̄n(y) = sup{ fn(y), f̄n−1(y)} for y ∈ Y . Since ϕ(y) is
a lattice, f̄n is a selection of ϕ . Because sup is measurable for a topological lattice, f̄n

is measurable. Since { f̄n(y)}n∈N is an increasing sequence, it converges topologically to
its least upper bound f̄ (y) , which is in ϕ(y) since ϕ(y) is closed. Since f̄ : Y → X is
the pointwise limit of { f̄n|n ∈ N}, it is measurable—that is, it is a measurable selection
of ϕ . We have left to show that f̄ (y) = supϕ(y) .

Since order intervals are closed, {x ∈ X | x ≤ f̄ (y)} is a closed set that contains the
dense subset { fn(y) | n ∈ N} of ϕ(y) and thus contains ϕ(y) . Thus, f̄ (y) is an upper
bound on ϕ(y) and is thus the greatest element of ϕ(x) . �

Corollary 3. ti → ϕ̄i(ti) is a measurable selection of ϕi , so it is the greatest element
of Βi(σ−i) .

7.6. The GBR mapping is downward sequentially continuous

First we establish (topological) sequential continuity of Πi(ai, ti; σ−i) in both ai and σ−i .

Proposition 4. Let i ∈ N and ti ∈ Ti . If {an
i }n∈N and {σn

−i}n∈N are sequences in
Ai and Σ−i , respectively, such that {an

i }n∈N converges to a∞i and {σn
−i}n∈N converges
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pointwise (for all t−i ) to σ∞
−i , then

lim
n→∞
Πi(a

n
i , ti; σ

n
−i) = Πi(a

∞
i , ti; σ

∞
−i) . (5)

In particular, Πi(ai, ti; σ−i) is continuous in ai .

Proof. Because ui is continuous and bounded, the sequence of measurable functions

t−i �→ ui(a
n
i , σn

−i(t−i), ti, t−i)

is bounded and converges pointwise to

t−i �→ ui(a
∞
i , σ∞

−i(t−i), ti, t−i) .

Thus, by dominated convergence, their integral with respect to pi(ti) converges:

lim
n→∞

∫
T−i

ui(a
n
i , σn

−i(t−i), ti, t−i) d pi(t−i | ti) =
∫

T−i

ui(a
∞
i , σ∞

−i(t−i), ti, t−i) d pi(t−i | ti) .

This is equation (5). �

Proposition 5. Β̄i is downward sequentially continuous.

Proof. Let {σn
−i}n∈N be a decreasing sequence in Σ−i , with infimum σ−i . Then {Β̄i(σn

−i)}
is a decreasing sequence (since Β̄i is increasing); let σi be its infimum. The fact that
σi ∈ Βi(σ−i) follows from the sequential continuity of Πi shown in Proposition 4. Specif-
ically, for each ti ∈ Ti and each ai ∈ Ai , Πi(ai, ti; σn

−i) ≤ Πi( Β̄i(σn
−i)(ti), ti; σn

−i) , and such
inequality is preserved in the limit: Πi(ai, ti; σ−i) ≤ Πi(σi(ti), ti; σ−i) . Thus, σi(ti) is an
optimal response by type i to σ−i for each type ti ∈ Ti . Hence, σi ∈ Βi(σ−i) . We just
have to show that σi ≥ Β̄i(σ−i) , so that indeed σi is the greatest best response and is
equal to Β̄i(σ−i) . For all n , σ−i ≤ σn

−i and hence Β̄i(σ−i) ≤ Β̄i(σn
−i) . Thus, Β̄i(σ−i) is

also a lower bound on {Β̄i(σn
−i)} and hence is less than or equal to the greatest lower

bound σi . �

8. Conclusion

We have thus proved the following.

Theorem 3. Consider the interim formulation of a Bayesian game as stated in
Section 3. Assume the following for each player i:

1. Ai is a compact metric lattice.
2. ui is bounded, is measurable in ti , is continuous and supermodular in ai , and has

increasing differences in (ai, a−i) .
3. For F−i ∈ F−i , ti �→ pi(F−i | ti) is measurable.

Then the game has a greatest and a least interim Bayesian Nash equilibrium.
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In Section 7, we showed that the greatest-best-reply, Β̄i , is well defined for each
player i ; furthermore, it is an increasing function and it is decreasing sequentially con-
tinuous. (This part used all the assumptions of Theorem 3.) Therefore, according to
Corollary 2, Β̄ has a greatest fixed point; this is the greatest equilibrium of the game.

In games of perfect information with quasi-supermodular payoffs and strategic com-
plementarities, it is possible to dispense with the assumption that the action set is topo-
logically compact and rely instead on the completeness of the lattice to ensure that each
player always has a best response. We can also rely on completeness of the lattice to
obtain that each type has a best response. However, the compactness of the strategy
sets played a role when showing that the greatest best response is measurable in type.3

Specifically, it is needed to apply the Measurable Maximum Theorem to ensure that the
type-to-best-replies correspondence is measurable. Without compactness, it is still easy
to show that such correspondence has a measurable graph; however, this weaker condi-
tion is not sufficient to obtain a Castaing representation of the correspondence. That said,
it remains an open question whether there might be alternative way to relax topological
compactness.

Appendix: Summary of order definitions

For the convenience of the reader and to fix some notation and terminology that may vary
from author to author, we include a few definitions about order and lattices. Throughout,
we use terms like “greater than” and “increasing” to mean “weakly greater than” and
“weakly increasing”.

Let (X ,≥) be a partially ordered set.
Let D ⊂ X . The greatest and least elements of D , when they exist, are denoted

max D and min D , respectively. A supremum (resp., infimum) of D is a least upper
bound (resp., greatest lower bound); it is denoted sup D (resp., inf D ).

Let (T,≥) be another partially ordered set. A function f : X → T is increasing if,
for x, y in X , x ≥ y implies that f (x) ≥ f (y) .

A functional g : X × Y → R has increasing differences in (x, t) if g(x′ , t) − g(x, t)
is increasing in t for x′ > x or, equivalently, if g(x, t ′) − g(x, t) is increasing in x for
t ′ > t .

(X ,≥) is a lattice if any two elements have a supremum and an infimum. A lattice
(X ,≥) is complete if every non-empty subset has a supremum and an infimum.

A functional g : X → R on a lattice X is supermodular if, all x, y in X , g(inf(x, y))+
g(sup(x, y)) ≥ g(x) + g(y) .

Supermodularity is a stronger property than increasing differences: If T is also a
lattice and if g is supermodular on X × T , then g has increasing differences in (x, t) .

If X is the product of linearly ordered sets X1, . . . , Xk , then X is a lattice and g : X →
R is supermodular if and only if g has increasing differences in (xi, x j) for i �= j .

A chain C ⊂ X is a totally ordered subset of X . A function f : X → R is order
upper semicontinuous if limx∈X ,x↓inf(C) ≤ f (inf(C)) and limx∈X ,x↑sup(C) ≥ f (sup(C)) for

3. Sigma-compactness would suffice.
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any chain C .
The main comparative-statics tool applied in this paper is the following; see Milgrom

and Roberts (1990, Section 1).

Lemma A.1. Let X be a complete lattice and let T be a partially ordered set. Let
u : X × T → R be a function that is supermodular and upper order continuous on the
lattice X for each t ∈ T . Let ϕ(t) = arg maxx∈X u(x, t) . Then ϕ(t) is a non-empty
complete sublattice for all t ; hence maxϕ(t) and minϕ(t) exist.

Assume also that u has increasing differences in (x, t) . Then t �→ supϕ(t) and
t �→ inf ϕ(t) are increasing selections of ϕ .
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