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Abstract

We develop a model of the gambler’s fallacy–the mistaken belief that random sequences

should exhibit systematic reversals. We show that an individual who holds this belief and

observes a sequence of signals can exaggerate the magnitude of changes in an underlying state

but underestimate their duration. When the state is constant, and so signals are i.i.d., the

individual can predict that long streaks of similar signals will continue–a hot-hand fallacy. When

signals are serially correlated, the individual typically under-reacts to short streaks, over-reacts

to longer ones, and under-reacts to very long ones. We explore several applications, showing, for

example, that investors may move assets too much in and out of mutual funds, and exaggerate

the value of financial information and expertise.
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1 Introduction

Many people fall under the spell of the “gambler’s fallacy,” expecting outcomes in random sequences

to exhibit systematic reversals. When observing flips of a fair coin, for example, people believe that

a streak of heads makes it more likely that the next flip will be a tail. The gambler’s fallacy is

commonly interpreted as deriving from a fallacious belief in the “law of small numbers” or “local

representativeness”: people believe that a small sample should resemble closely the underlying

population, and hence believe that heads and tails should balance even in small samples. On the

other hand, people also sometimes predict that random sequences will exhibit excessive persistence

rather than reversals. While several studies have shown the belief to be fallacious, basketball fans

believe that players have “hot hands,” being more likely than average to make the next shot when

currently on a hot streak.1

At first blush, the hot-hand fallacy appears to directly contradict the gambler’s fallacy, because

it involves belief in excessive persistence rather than reversals. Several researchers have, however,

suggested that the two fallacies might be related, with the hot-hand fallacy arising as a consequence

of the gambler’s fallacy.2 Consider an investor who believes that the performance of a mutual fund

is a combination of the manager’s ability and luck. Convinced that luck should revert, the investor

underestimates the likelihood that a manager of average ability will exhibit a streak of above- or

below-average performances. Following good or bad streaks, therefore, the investor will over-infer

that the current manager is above or below average, and so in turn will predict continuation of

unusual performances.

This paper develops a model to examine the link between the gambler’s fallacy and the hot-

hand fallacy, as well as the broader implications of the fallacies for people’s predictions and actions

in economic and financial settings. In our model, an individual observes a sequence of signals

that depend on an unobservable underlying state. We show that because of the gambler’s fallacy,

the individual is prone to exaggerate the magnitude of changes in the state, but underestimate

their duration. We characterize the individual’s predictions following streaks of similar signals, and

determine when a hot-hand fallacy can arise. We study two applications to investor behavior: the

movement of assets in and out of mutual funds, and the belief in financial expertise.
1The representativeness bias is perhaps the most commonly explored bias in judgment research. Section 2 reviews

evidence on the gambler’s fallacy, and a more extensive review can be found in Rabin (2002). For evidence on the
hot-hand fallacy see, for example, Gilovich, Vallone, and Tversky (1985) and Tversky and Gilovich (1989a, 1989b).
See also Camerer (1989) who shows that betting markets for basketball games exhibit a small hot-hand bias.

2See, for example, Camerer (1989) and Rabin (2002). The causal link between the gambler’s fallacy and the hot-
hand fallacy is a common intuition in psychology. Some suggestive evidence comes from an experiment by Edwards
(1961), in which subjects observe a very long binary series and are given no information about the generating process.
Subjects seem, by the evolution of their predictions over time, to come to believe in a hot hand. Since the actual
generating process is i.i.d., this is suggestive that a source of the hot hand is the perception of too many long streaks.
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While providing extensive motivation and elaboration in Section 2, we now present the model

itself in full. An individual observes a sequence of signals whose probability distribution depends

on an underlying state. The signal st in Period t = 1, 2, .. is

st = θt + εt, (1)

where θt is the state and εt an i.i.d. normal shock with mean zero and variance σ2
ε > 0. The state

evolves according to the auto-regressive process

θt = ρθt−1 + (1 − ρ)(μ+ ηt), (2)

where ρ ∈ [0, 1) is the persistence parameter, μ the long-run mean, and ηt an i.i.d. normal shock

with mean zero, variance σ2
η, and independent of εt. As an example that we shall return to often,

consider a mutual fund run by a team of managers. We interpret the signal as the fund’s return,

the state as the managers’ average ability, and the shock εt as the managers’ luck. Assuming that

the ability of any given manager is constant over time, we interpret 1− ρ as the rate of managerial

turnover, and σ2
η as the dispersion in ability across managers.3

We model the gambler’s fallacy as the mistaken belief that the sequence {εt}t≥1 is not i.i.d.,

but rather exhibits reversals: according to the individual,

εt = ωt − αρ

∞∑
k=0

δk
ρεt−1−k, (3)

where the sequence {ωt}t≥1 is i.i.d. normal with mean zero and variance σ2
ω, αρ ≡ αρ, and δρ ≡ δρ,

for some α, δ ∈ [0, 1).4 Intuitively, consistent with the gambler’s fallacy, the individual believes

that high realizations of εt′ in Period t′ < t make a low realization more likely in Period t. The

parameter αρ ∈ [0, 1) measures the strength of the effect, while δρ ∈ [0, 1) measures the relative

influence of realizations in the recent and more distant past. We assume that (αρ, δρ) are linear

functions of ρ. Our motivation for doing so is our interpretation of ρ combined with the notion that

people expect a small sample to resemble closely the underlying population only when all elements

in the sample are drawn from the same intrinsic distribution. This is the case, for example, for the

sample of performances of a fund manager whose ability is constant over time. But we assume that

people do not expect mean reversion across distributions; a good performance by one manager,

for example, does not make another manager due for a bad performance next month. If managers
3Alternatively, we can assume that a fraction 1 − ρ of existing managers get a new ability “draw” in any given

period. Ability could be time-varying if, for example, managers’ expertise is best suited to specific market conditions.
We use the managerial-turnover interpretation because it is easier for exposition.

4We set εt = 0 for t ≤ 0, so that all terms in the infinite sum are well defined.
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turn over frequently (i.e., ρ is small) therefore, the gambler’s fallacy has a small effect. We develop

and motivate these foundations in greater detail in Section 2.5 For expositional ease, from now on

we refer to an individual subject to the gambler’s fallacy (α > 0) as “Freddy,” and to a Bayesian

(α = 0) as “Tommy.”

In Section 3 we examine how Freddy uses the sequence of past signals to make inferences about

the underlying parameters and to predict future signals. We assume that Freddy infers as a fully

rational Bayesian and fully understands the structure of his environment, except for a mistaken and

dogmatic belief that α > 0. From observing the signals, Freddy infers both the underlying state θt

and the values of any parameters of his model (i.e., σ2
η, ρ, σ

2
ω, μ) about which he is uncertain.

When Freddy is certain about all model parameters, his inference about unobservable variables

can be treated using standard tools of recursive (Kalman) filtering, where the gambler’s fallacy

essentially expands the state vector to include not only the state θt but also a statistic of past

luck realizations. When Freddy is uncertain about parameters, recursive filtering can be used to

evaluate the likelihood of signals conditional on parameters. An appropriate version of the law of

large numbers then implies that after observing many signals, Freddy converges with probability

one to parameter values that maximize a limit likelihood. While the maximum likelihood when

α = 0 leads Tommy to limit posteriors corresponding to the true parameter values, Freddy’s abiding

belief that α > 0 leads him generally to false limit posteriors. Identifying when and how these limit

beliefs are wrong is the crux of our analysis.

In Section 4 we consider the case where signals are i.i.d. This case can arise either because

σ2
η = 0 or ρ = 0, e.g., either there is no variance in managerial ability, or all managers are replaced

by new ones in each period. If Freddy is initially uncertain about the values of all parameters,

then irrespective of whether σ2
η = 0 or ρ = 0, he converges to the belief that ρ = 0. Under this

belief he predicts the signals correctly as i.i.d., despite the gambler’s fallacy. The intuition is that

he views each signal as drawn from a new distribution; e.g., new managers run the fund in each

period. Therefore, his belief that any given manager’s performance exhibits mean reversion has no

effect.

We next assume that Freddy knows on prior grounds that ρ > 0; e.g., is aware that managers

stay in the fund for more than one period. This case is consistent with signals being i.i.d. as

long as σ2
η = 0. Ironically, Freddy’s correct belief ρ > 0 can lead him astray. This is because

he cannot converge to the belief ρ = 0, which, while incorrect, enables him to predict the signals

correctly. Instead, he converges to the smallest value of ρ to which he gives positive probability.
5An earlier version of this paper (Rabin and Vayanos (2005)) assumes that (αρ, δρ) are independent of ρ. While we

believe that the new specification is psychologically more plausible, results are similar across the two specifications.
In particular, predictions after streaks of signals exhibit identical error patterns, except in the context of Section 4.2
when in addition δρ > ρ.
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He also converges to a positive value of σ2
η, believing falsely that managers differ in ability, so that

(given turnover) there is variation over time in average ability. This belief helps him explain the

incidence of streaks despite the gambler’s fallacy: a streak of high returns, for example, can be

readily explained through the belief that good managers might have joined the fund recently. Of

course, Freddy thinks the streak might also have been due to luck, and expects a reversal. We

show that the expectation of a reversal dominates for short streaks, but because reversals that do

not happen make Freddy more confident the managers have changed, he expects long streaks to

continue.

In Section 5 we consider the case where signals are serially correlated. As in the i.i.d. case,

Freddy underestimates ρ and overestimates the variance (1 − ρ)2σ2
η of the shocks to the state. He

does not converge, however, all the way to ρ = 0 because he must account for the signals’ serial

correlation. Because he views shocks to the state as overly large in magnitude, he treats signals

as very informative, and tends to over-react to streaks. For very long streaks, however, there is

under-reaction because Freddy’s underestimation of ρ means that he views the information learned

from the signals as overly short-lived. Under-reaction also tends to occur following short streaks

because of the basic gambler’s fallacy intuition.

In summary, Sections 4 and 5 confirm the oft-conjectured link from the gambler’s to the hot-

hand fallacy, and generate novel predictions which can be tested in experimental or field settings.

We summarize the predictions at the end of Section 5.

We conclude this paper in Section 6 by exploring the implications of our model for financial

decisions. We interpret signals as financial returns, and assume that Freddy allocates wealth

between a risky and a riskless asset under CARA preferences. One application concerns the belief

in financial expertise. Because Freddy can end up believing in predictability even in i.i.d. settings,

he can overpay for information on past returns. He can also exaggerate the value of financial

experts if he believes that the experts’ advantage derives from observing market information. This

could help explain why people invest in actively-managed funds in spite of the evidence that these

funds do not outperform their market benchmarks. Our model also generates large flows in and

out of managed funds: in a second application, we show that Freddy’s flows are typically larger

than Tommy’s. Finally, our model could speak to other finance puzzles, such as the presence of

momentum and reversals in stock returns and the value premium.

Our work is related to Rabin’s (2002) model of the law of small numbers. In Rabin, Freddy

draws from an urn with replacement but believes that replacement occurs only every odd period.

Thus, Freddy overestimates the probability that the ball drawn in an even period is of a different

color than the one drawn in the previous period. Because of replacement, the composition of the

urn remains constant over time. Thus, the underlying state is constant, which corresponds to ρ = 1
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in our model. We instead allow ρ to take any value in [0, 1) and show that Freddy’s inferences

about ρ significantly affect his predictions of the signals. Additionally, because ρ < 1, we can study

inference in a stochastic steady state and conduct a true dynamic analysis of the hot-hand fallacy

(showing how the effects of good and bad streaks alternate over time). Because of the steady state

and the normal-linear structure, our model is much more tractable than Rabin. In particular,

we characterize fully predictions after streaks of signals, while Rabin can do so with numerical

examples and only for short streaks. The Finance applications in Section 6 illustrate further our

model’s tractability and applicability. We compute explicitly quantities such as fund flows and

value of information, and study how these are influenced by the gambler’s fallacy.

Our work is also related to the theory of momentum and reversals of Barberis, Shleifer and

Vishny (BSV 1998). In BSV, investors do not realize that innovations to a company’s earnings

are i.i.d. Rather, they believe them to be drawn either from a regime with excess reversals or

from one with excess streaks. If the reversal regime is the more common, the stock price under-

reacts to short streaks because investors expect a reversal. The price over-reacts, however, to

longer streaks because investors interpret them as sign of a switch to the streak regime. This

can generate short-run momentum and long-run reversals in stock returns, consistent with the

empirical evidence, surveyed in BSV. It can also generate a value premium because reversals occur

when prices are high relative to earnings, while momentum occurs when prices are low. Our model

has similar implications because in i.i.d. settings Freddy can expect short streaks to reverse and long

streaks to continue. But while the implications are similar, our approach is different. In particular,

BSV provide a psychological foundation for their assumptions by appealing to a combination of

biases: the conservatism bias for the reversal regime and the representativeness bias for the streak

regime. Our model, by contrast, not only derives such biases from the single underlying bias of

the gambler’s fallacy, but in doing so provides predictions as to which biases are likely to appear

in different informational settings.6

2 The Model

Our model is fully described by Eqs. (1) to (3) presented in the Introduction. In this section we

motivate the model by drawing the connection with the experimental evidence on the gambler’s

fallacy. A difficulty with using this evidence is that most experiments concern sequences that are

binary and i.i.d., such as coin flips. Our goal, by contrast, is to explore the implications of the
6Even in settings where Freddy’s error patterns resemble those in BSV, there are important differences. For

example, within the set of short streaks, Freddy’s expectation of a reversal can increase with streak length, while in
BSV it unambiguously decreases. Evidence supporting the increasing pattern comes from the experimental study of
Asparouhova, Hertzel and Lemmon (2005), who revise and extend an earlier study by Bloomfield and Hales (2002).
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gambler’s fallacy in richer settings. In particular, we need to consider non-i.i.d. settings since the

hot-hand fallacy involves a belief that the world is non-i.i.d. The experimental evidence gives

little direct guidance on how the gambler’s fallacy would manifest itself in non-binary, non-i.i.d.

settings. In this section, however, we argue that our model represents a natural extrapolation of

the gambler’s fallacy “logic” to such settings. Of course, any such extrapolation has an element

of arbitrariness. But, if nothing else, our specification of the gambler’s fallacy in the new settings

can be viewed as a working hypothesis about the broader empirical nature of the phenomenon that

both highlights features of the phenomenon that seem to matter and generates testable predictions

for experimental and field research.

Experiments documenting the gambler’s fallacy are mainly of three types: production tasks,

where subjects are asked to produce sequences that look to them like random sequences of coin

flips, recognition tasks, where subjects are asked to identify which sequences look like coin flips, and

prediction tasks, where subjects are asked to predict the next outcome in coin-flip sequences. In

all types of experiments, the typical subject identifies a switching (i.e., reversal) rate greater than

50% as indicative of random coin flips.7 The most carefully reported data for our purposes comes

from the production-task study of Rapoport and Budescu (1997). Using their Table 7, we estimate

in Table 1 below the subjects’ assessed probability that the next flip of a coin will be heads given

the last three flips.8

7See Bar-Hillel and Wagenaar (1991) for a review of the literature, and Rapoport and Budescu (1992,1997)
and Budescu and Rapoport (1994) for more recent studies. The experimental evidence has some shortcomings. For
example, most prediction-task studies report the fraction of subjects predicting a switch but not the subjects’ assessed
probability of a switch. Thus, it could be that the vast majority of subjects predict a switch, and yet their assessed
probability is only marginally larger than 50%. Even worse, the probability could be exactly 50%, since under that
probability subjects are indifferent as to their prediction.

Some prediction-task studies attempt to measure assessed probabilities more accurately. For example, Gold and
Hester (1987) find evidence in support of the gambler’s fallacy in settings where subjects are given a choice between a
sure payoff and a random payoff contingent on a specific coin outcome. Supporting evidence also comes from settings
outside the laboratory. For example, Clotfelter and Cook (1993) and Terrell (1994) study pari-mutuel lotteries,
where the winnings from a number are shared among all people betting on that number. They find that people avoid
systematically to bet on numbers that won recently. This is a strict mistake because the numbers with the fewest
bets are those with the largest expected winnings.

8Rapoport and Budescu report relative frequencies of short sequences of heads (H) and tails (T) within the larger
sequences (of 150 elements) produced by the subjects. We consider frequencies of four-element sequences, and average
the two “observed” columns. The first four lines of Table 1 are derived as follows

Line 1 =
f(HHHH)

f(HHHH) + f(HHHT)
,

Line 2 =
f(THHH)

f(THHH) + f(HTTH)
,

Line 3 =
f(HTHH)

f(HTHH) + f(HTHT)
,

Line 4 =
f(HHTH)

f(HHTH) + f(HHTT)
.

(The denominator in Line 2 involves HTTH rather than the equivalent sequence THHT, derived by reversing H
and T, because Rapoport and Budescu group equivalent sequences together.) The last four lines of Table 1 are
simply transformations of the first four lines, derived by reversing H and T. While our estimates are derived from
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3rd-to-last 2nd-to-last Very last Prob. next will be H (%)

H H H 30.0
T H H 38.0
H T H 41.2
H H T 48.7
H T T 62.0
T H T 58.8
T T H 51.3
T T T 70.0

Table 1: Assessed probability that the next flip of a coin will be heads (H) given the last three flips
being heads or tails (T). Based on Rapoport and Budescu (1997), Table 7, p. 613.

According to Table 1, the average effect of changing the most recent flip from heads (H) to tails

(T) is to raise the probability that the next flip will be H from 40.1% (= 30%+38%+41.2%+51.3%
4 ) to

59.9%, i.e., an increase of 19.8%. This corresponds well to the general stylized fact in the literature

that subjects tend to view randomness in coin-flip sequences as corresponding to a switching rate

of 60% rather than 50%. Table 1 also shows that the effect of the gambler’s fallacy is not limited

to the most recent flip. For example, the average effect of changing the second most recent flip

from H to T is to raise the probability of H from 43.9% to 56.1%, i.e., an increase of 12.2%. The

average effect of changing the third most recent flip from H to T is to raise the probability of H

from 45.5% to 54.5%, i.e., an increase of 9%.

How would a believer in the gambler’s fallacy, exhibiting behavior such as in Table 1, form

predictions in non-binary, non-i.i.d. settings? Our extrapolation approach consists in viewing the

richer settings as combinations of coins. We first consider settings that are non-binary but i.i.d.

Suppose that in each period a large number of coins are flipped simultaneously and Freddy observes

the sum of the flips, where we set H=1 and T=-1. For example, with 100 coins, Freddy observes

a signal between 100 and -100, and a signal of 10 means that 55 coins came H and 45 came T.

Suppose that Freddy applies his gambler’s fallacy reasoning to each individual coin (i.e., to 100

separate coin-flip sequences), and his beliefs are as in Table 1. Then, after a signal of 10, he assumes

that the 55 H coins have probability 40.1% to come H again, while the 45 T coins have probability

59.9% to switch to H. Thus, he expects on average 40.1%× 55 + 59.9%× 45 = 49.01 coins to come

H, and this translates to an expectation of 49.01 − (100 − 49.01) = −1.98 for the next signal.

The “multiple-coin” story shares many of our model’s key features. To explain why, we specialize

the model to i.i.d. signals, taking the state θt to be known and constant over time. We generate a

relative frequencies, we believe that they are good measures of subjects’ assessed probabilities. For example, a subject
believing that HHH should be followed by H with 30% probability could be choosing H after HHH 30% of the time
when constructing a random sequence.
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constant state by setting ρ = 1 in (2). For simplicity, we also normalize the constant value of the

state to zero. For ρ = 1, (3) becomes

εt = ωt − α
∞∑

k=0

δkεt−1−k. (4)

When the state is equal to zero, (1) becomes st = εt. Substituting into (4) and taking expectations

conditional on Period t− 1, we find

Et−1(st) = −α
∞∑

k=0

δkst−1−k. (5)

Comparing (5) with the predictions of the multiple-coin story, we can calibrate the parameters

(α, δ) and test our model specification. Suppose that st−1 = 10 and that signals in prior periods

are equal to their average of zero. Eq. (5) then implies that Et−1(st) = −10α. According to the

multiple-coin story Et−1(st) should be -1.98, which yields α = −0.198. To calibrate δ, we repeat

the exercise for st−2 (setting st−2 = 10 and st−i = 0 for i = 1 and i > 2) and then again for st−3.

Using the data in Table 1, we find αδ = −0.122 and αδ2 = −0.09. Thus, the decay in influence

between the most and second most recent signal is 0.122/0.198 = 0.62, while the decay between

the second and third most recent signal is 0.09/0.122 = 0.74. The two rates are not identical as our

model assumes, but are quite close. Thus, our geometric-decay specification seems reasonable, and

we can take α = 0.2 and δ = 0.7 as a plausible calibration. Motivated by the evidence, we impose

from now on the restriction δ > α which simplifies our analysis.

Several other features of our specification deserve comment. One is normality: since ωt is

normal, (4) implies that the distribution of st = εt conditional on Period t − 1 is normal. The

multiple-coin story also generates approximate normality if we take the number of coins to be

large. A second feature is linearity: if we double st−1 in (5), holding other signals to zero, then

Et−1(st) doubles. The multiple-coin story shares this feature: a signal of 20 means that 60 coins

came H and 40 came T, and this doubles the expectation of the next signal. A third feature is

additivity: according to (5), the effect of each signal on Et−1(st) is independent of the other signals.

Table 1 generates some support for additivity. For example, changing the most recent flip from

H to T increases the probability of H by 20.8% when the second and third most recent flips are

identical (HH or TT) and by 18.7% when they differ (HT or TH). Thus, in this experiment the

effect of the most recent flip depends only weakly on prior flips.

We next extend our approach to non-i.i.d. settings. Suppose that the signal Freddy is observing

in each period is the sum of a large number of independent coin flips, but where coins differ in

their probabilities of H and T, and are replaced over time randomly by new coins. Signals are
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thus serially correlated: they tend to be high at times where the replacement process brings many

new coins biased towards H, and vice-versa. If Freddy applies his gambler’s fallacy reasoning to

each individual coin, then this will generate a gambler’s fallacy for the signals. The strength of the

latter fallacy, however, depends on the rate at which coins are replaced. If, for example, Freddy

believes that replacement is frequent, then his incorrect belief that the outcomes of a given coin

should average out over time has little effect.

To relate the above story to our model, we recast it in a setting with normal distributions.

Consider a mutual fund that consists of a continuum with mass one of managers, and suppose that

a random fraction 1 − ρ of managers are replaced by new ones in each period. Suppose that the

fund’s return st is an average of returns attributable to each manager, and a manager’s return is

the sum of ability and luck, both normally distributed. Ability is constant over time for a given

manager, while luck is i.i.d. Thus, a manager’s returns are i.i.d. conditional on ability, and the

manager can be viewed as a “coin” with the probability of H and T corresponding to ability. To

ensure that aggregate variables are stochastic despite the continuum assumption, we assume that

ability and luck are identical within the cohort of managers who enter the fund in a given period.9

We next show that if Freddy applies his gambler’s fallacy reasoning to each manager, per our

specification (4) for i.i.d. settings, then this generates a gambler’s fallacy for fund returns, per our

specification (3) for non-i.i.d. settings. Denoting by εt,t′ the luck in Period t of the cohort entering

in Period t′ ≤ t, we can write (4) for a manager in that cohort as

εt,t′ = ωt,t′ − α

∞∑
k=0

δkεt−1−k,t′ , (6)

where {ωt,t′}t≥t′≥0 is an i.i.d. sequence and εt′′,t′ ≡ 0 for t′′ < t′. To aggregate (6) for the fund, we

note that in Period t the average luck εt of all managers is

εt = (1 − ρ)
∑
t′≤t

ρt−t′εt,t′ , (7)

since (1 − ρ)ρt−t′ managers from the cohort entering in Period t′ are still in the fund. Combining

(6) and (7) and setting ωt ≡ (1 − ρ)
∑

t′≤t ρ
t−t′ωt,t′ , we find (3), our specification of the gambler’s

fallacy in non-i.i.d. settings. The difference between (3) and its i.i.d. counterpart (4) is that the

parameters (α, δ) of the gambler’s fallacy are multiplied by ρ. Thus, the fallacy is weaker the larger

managerial turnover is. Intuitively, with large turnover, Freddy’s belief that a given manager’s
9The intuition behind the example would be the same, but more plausible, with a single manager in each period

who is replaced by a new one with Poisson probability 1−ρ. We assume a continuum because this preserves normality.
The assumption that all managers in a cohort have the same ability and luck can be motivated in reference to the
single-manager setting.
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performance should average out over multiple periods has little effect.10

3 Inference–General Results

In this section we formulate Freddy’s inference problem, and establish some general results that

serve as the basis for the more specific results of Sections 4-6. The inference problem consists in

using the signals to learn about the underlying state θt and possibly about the parameters of the

model. Freddy’s model is characterized by the variance (1 − ρ)2σ2
η of the shocks to the state, the

persistence ρ, the variance σ2
ω of the shocks affecting the signal noise, the long-run mean μ, and

the parameters (α, δ) of the gambler’s fallacy. We assume that Freddy does not question his belief

in the gambler’s fallacy, i.e., has a dogmatic point prior on (α, δ). He can, however, learn about

the other parameters. From now on, we reserve the notation (σ2
η, ρ, σ

2
ω, μ) for the true parameter

values, and denote generic values by (σ̃2
η, ρ̃, σ̃

2
ω, μ̃). Thus, Freddy can learn about the parameter

vector p̃ ≡ (σ̃2
η, ρ̃, σ̃

2
ω, μ̃).

3.1 No Parameter Uncertainty

We start with the case where Freddy is certain that the parameter vector takes a specific value p̃.

This case is relatively simple and serves as an input for the parameter-uncertainty case. Freddy’s

inference problem can be formulated as one of recursive (Kalman) filtering. Recursive filtering is

a technique for solving inference problems where (i) inference concerns a “state vector” evolving

according to a stochastic process, (ii) a noisy signal of the state vector is observed in each period,

(iii) the stochastic structure is linear and normal.11

To formulate the recursive-filtering problem, we must define the state vector, the equation

according to which the state vector evolves, and the equation linking the state vector to the signal.

The state vector must include not only the state θt, but also some measure of the past realizations of

luck since according to Freddy luck reverses predictably. It turns out that all past luck realizations

can be condensed into an one-dimensional statistic. This statistic can be appended to the state

θt, and therefore, recursive filtering can be used even in the presence of the gambler’s fallacy. We
10Our specification of the gambler’s fallacy becomes ambiguous in the special case where Freddy believes that

while managers turn over (ρ < 1), they are all of the same ability (σ2
η = 0). In that case, he views the returns of all

managers as generated by a common distribution. Therefore, his fallacious belief on small samples can apply equally
plausibly to the common distribution as to the distribution of a single manager’s returns. In other words, (3) is
equally plausible for (α, δ) as for (αρ, δρ), i.e., ρ can be replaced by one. In what follows we ignore this ambiguity
since in almost all cases we consider Freddy entertains the possibility that σ2

η > 0, thus viewing different managers
as potentially different distributions.

11For textbooks on recursive filtering see, for example, Anderson and Moore (1979) and Balakrishnan (1987). We
are using the somewhat cumbersome term “state vector” because we are reserving the term “state” for θt, and the
two concepts differ in our model.
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define the state vector as

xt ≡
[
θt − μ̃, εδt

]′
,

where the statistic of past luck realizations is

εδt ≡
∞∑

k=0

δk
ρ̃εt−k,

and v′ denotes the transpose of the vector v. Eqs. (2) and (3) imply that the state vector evolves

according to

xt = Ãxt−1 + wt, (8)

where

Ã ≡
[
ρ̃ 0
0 δρ̃ − αρ̃

]
and

wt ≡ [(1 − ρ̃)ηt, ωt]′.

Eqs. (1)-(3) imply that the signal is related to the state vector through

st = μ̃+ C̃xt−1 + vt, (9)

where

C̃ ≡ [ρ̃,−αρ̃]

and vt ≡ (1− ρ̃)ηt +ωt. To start the recursion, we must specify Freddy’s prior beliefs for the initial

state x0. We denote the mean and variance of θ0 by θ0 and σ2
θ,0, respectively. Since εt = 0 for

t ≤ 0, the mean and variance of εδ0 are zero. Proposition 1 determines Freddy’s beliefs about the

state in Period t, conditional on the history of signals Ht ≡ {st′}t′=1,..,t up to that period.

Proposition 1 Conditional on Ht, xt is normal with mean xt(p̃) given recursively by

xt(p̃) = Ãxt−1(p̃) + G̃t

[
st − μ̃− C̃xt−1(p̃)

]
, x0(p̃) = [θ0 − μ̃, 0]′, (10)

and covariance matrix Σ̃t given recursively by

Σ̃t = ÃΣ̃t−1Ã
′ −

[
C̃Σ̃t−1C̃

′ + Ṽ
]
G̃tG̃

′
t + W̃ , Σ̃0 =

[
σ2

θ,0 0
0 0

]
, (11)

where

G̃t ≡ 1
C̃Σ̃t−1C̃ ′ + Ṽ

[
ÃΣ̃t−1C̃

′ + Ũ
]
, (12)
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Ṽ ≡ Ẽ(v2
t ), W̃ ≡ Ẽ(wtw

′
t), Ũ ≡ Ẽ(vtwt), and Ẽ is Freddy’s expectation operator.

Freddy’s conditional expectation evolves according to (10). This is simply a regression equation:

the state vector in Period t is regressed on that period’s signal, conditional on the history up to

Period t − 1. The regression coefficient G̃t depends on Freddy’s conditional variance of the state

Σ̃t−1. Proposition 2 shows that when t goes to ∞, this variance converges to a limit that is

independent of the initial value Σ̃0.

Proposition 2 Limt→∞Σ̃t = Σ̃, where Σ̃ is the unique solution in the set of positive matrices of

Σ̃ = ÃΣ̃Ã′ − 1
C̃Σ̃C̃ ′ + Ṽ

[
ÃΣ̃C̃ ′ + Ũ

] [
ÃΣ̃C̃ ′ + Ũ

]′
+ W̃ . (13)

Proposition 2 implies that there is convergence to a steady state where the conditional variance

Σ̃t is equal to the constant Σ̃, the regression coefficient G̃t is equal to the constant

G̃ ≡ 1
C̃Σ̃C̃ ′ + Ṽ

[
ÃΣ̃C̃ ′ + Ũ

]
, (14)

and the conditional expectation of the state vector xt evolves according to a linear equation with

constant coefficients. This steady state plays an important role in our analysis: it is also the limit in

the case of parameter uncertainty because Freddy eventually becomes certain about the parameter

values.

3.2 Parameter Uncertainty

We next allow Freddy to be uncertain about the parameters of his model. Parameter uncertainty is

a natural assumption in many settings. For example, Freddy might be uncertain about the extent

to which fund managers differ in ability (σ2
η) or turn over (ρ).

Because parameter uncertainty eliminates the normality that is necessary for recursive filtering,

Freddy’s inference problem threatens to be less tractable. Recursive filtering can, however, be

used as part of a two-stage procedure. In a first stage, we fix each model parameter to a given

value and compute the likelihood of a history of signals conditional on these values. Because the

conditional probability distribution is normal, the likelihood can be computed using the recursive-

filtering formulas of Section 3.1. In a second stage, we combine the likelihood with Freddy’s prior

beliefs, through Bayes’ law, and determine Freddy’s posteriors on the parameters. We show, in

particular, that Freddy’s posteriors in the limit when t goes to ∞ can be derived by maximizing a

limit likelihood over all possible parameter values.
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We describe Freddy’s prior beliefs over parameter vectors by a probability measure π0 and

denote by P the closed support of π0.12 As we show below, π0 affects Freddy’s limit posteriors only

through P . To avoid technicalities, we assume from now on that Freddy rules out values of ρ in a

small neighborhood of one. That is, there exists ρ ∈ (ρ, 1) such that ρ̃ ≤ ρ for all (σ̃2
η, ρ̃, σ̃

2
ω, μ̃) ∈ P .

The likelihood function Lt(Ht|p̃) associated to a parameter vector p̃ and history Ht = {st′}t′=1,..,t

is the probability density of observing the signals conditional on p̃. From Bayes’ law, this density

is

Lt(Ht|p̃) = Lt(s1 · · · st|p̃) =
t∏

t′=1

�t′(st′ |s1 · · · st′−1, p̃) =
t∏

t′=1

�t′(st′ |Ht′−1, p̃),

where �t(st|Ht−1, p̃) denotes the density of st conditional on p̃ and Ht−1. The latter density can be

computed using the recursive-filtering formulas of Section 3.1. Indeed, Proposition 1 shows that

conditional on p̃ and Ht−1, xt−1 is normal. Since st is a linear function of xt−1, it is also normal

with a mean and variance that we denote by st(p̃) and σ2
s,t(p̃), respectively. Thus:

�t(st|Ht−1, p̃) =
1√

2πσ2
s,t(p̃)

exp

[
− [st − st(p̃)]2

2σ2
s,t(p̃)

]
,

and

Lt(Ht|p̃) =
1√

(2π)t
∏t

t′=1 σ
2
s,t′(p̃)

exp

[
−

t∑
t′=1

[st′ − st′(p̃)]2

2σ2
s,t′(p̃)

]
. (15)

Freddy’s posterior beliefs over parameter vectors can be derived from his prior beliefs and

the likelihood through Bayes’ law. To determine posteriors in the limit when t goes to ∞, we

need to determine the asymptotic behavior of the likelihood function Lt(Ht|p̃). Intuitively, this

behavior depends on how well Freddy can fit the data (i.e., the history of signals) using the model

corresponding to p̃. To evaluate the fit of a model, we consider the true model according to which

the data are generated. The true model is characterized by α = 0 and the true parameters p ≡
(σ2

η, ρ, σ
2
ω, μ). We denote by st and σ2

s,t, respectively, the true mean and variance of st conditional

on Ht−1, and by E the true expectation operator.

Theorem 1

lim
t→∞

logLt(Ht|p̃)
t

= −1
2

[
log

[
2πσ2

s(p̃)
]
+
σ2

s + e(p̃)
σ2

s(p̃)

]
≡ F (p̃) (16)

12The closed support of π0 is the intersection of all closed sets C such that π0(C) = 1. Any neighborhood B of an
element of the closed support satisfies π0(B) > 0. (Billingsley, 12.9, p.181)
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almost surely, where

σ2
s(p̃) ≡ lim

t→∞σ2
s,t(p̃),

σ2
s ≡ lim

t→∞σ2
s,t,

e(p̃) ≡ lim
t→∞E [st(p̃) − st]

2 .

Theorem 1 implies that the likelihood function is asymptotically equal to

Lt(Ht|p̃) ∼ exp [tF (p̃)] ,

thus growing exponentially at the rate F (p̃). Note that F (p̃) does not depend on the specific

history Ht of signals, and is thus deterministic. That the likelihood function becomes deterministic

for large t follows from the law of large numbers, which is the main result that we need to prove

the theorem. The appropriate large-numbers law in our setting is one applying to non-independent

and non-identically distributed random variables. Non-independence is because the expected values

st(p̃) and st involve the entire history of past signals, and non-identical distributions are because

at any finite time we are not at the steady state.

The growth rate F (p̃) can be interpreted as the fit of the model corresponding to p̃. Lemma 1

shows that when t goes to ∞, Freddy gives weight only to values of p̃ that maximize F (p̃) over P .

Lemma 1 The set m(P ) ≡ argmaxp̃∈PF (p̃) is non-empty. When t goes to ∞, and for almost all

histories, the posterior measure πt converges weakly to a measure giving weight only to m(P ).

Lemma 2 characterizes the solution to the fit-maximization problem under Assumption 1.

Assumption 1 The set P satisfies the cone property

(σ̃2
η, ρ̃, σ̃

2
ω, μ̃) ∈ P ⇒ (λσ̃2

η, ρ̃, λσ̃
2
ω, μ̃) ∈ P, ∀λ > 0.

Lemma 2 Under Assumption 1, p̃ ∈ m(P ) if and only if

• e(p̃) = minp̃′∈P e(p̃′) ≡ e(P )

• σ2
s(p̃) = σ2

s + e(p̃).

The characterization of Lemma 2 is intuitive. The function e(p̃) is the expected squared differ-

ence between the conditional mean of st that Freddy computes under p̃, and the true conditional
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mean. Thus, e(p̃) measures the error in Freddy’s predictions relative to the true model, and a

model maximizing the fit must minimize this error.

A model maximizing the fit must also generate the right measure of uncertainty about the

future signals. Freddy’s uncertainty under the model corresponding to p̃ is measured by σ2
s(p̃), the

conditional variance of st. This must equal to the true error in Freddy’s predictions, which is the

sum of two orthogonal components: the error e(p̃) relative to the true model, and the error in the

true model’s predictions, i.e., the true conditional variance σ2
s .

The cone property ensures that in maximizing the fit, there is no conflict between minimizing

e(p̃) and setting σ2
s(p̃) = σ2

s + e(p̃). Indeed, e(p̃) depends on σ̃2
η and σ̃2

ω only through their ratio

because only the ratio affects the vector G of regression coefficients. The cone property ensures

that given any feasible ratio, we can scale σ̃2
η and σ̃2

ω to make σ2
s(p̃) equal to σ2

s + e(p̃). The cone

property is satisfied, in particular, when the set P includes all parameter values:

P = P0 ≡ {
(σ̃2

η, ρ̃, σ̃
2
ω, μ̃) : σ̃2

η ∈ R
+, ρ̃ ∈ [0, ρ], σ̃2

ω ∈ R
+, μ̃ ∈ R

}
.

Lemma 3 computes the error e(p̃). In both the lemma and subsequent analysis, we denote

matrices corresponding to the true model by omitting the tilde. For example, the true-model

counterpart of C̃ ≡ [ρ̃,−αρ̃] is C ≡ [ρ, 0].

Lemma 3 The error e(p̃) is given by

e(p̃) = σ2
s

∞∑
k=1

(Ñk −Nk)2 + (Nμ)2(μ̃− μ)2, (17)

where

Ñk ≡ C̃(Ã− G̃C̃)k−1G̃+
k−1∑
k′=1

C̃(Ã− G̃C̃)k−1−k′
G̃CAk′−1G, (18)

Nk ≡ CAk−1G, (19)

Nμ ≡ 1 − C̃
∞∑

k=1

(Ã− G̃C̃)k−1G̃. (20)

The terms Ñk and Nk can be given an intuitive interpretation. Suppose that we are in steady

state (i.e., a large number of periods have elapsed) and set ζt ≡ st − st. The shock ζt represents the

“surprise” in Period t, i.e., the difference between the signal st and its conditional mean st under

the true model. The mean st is a linear function of the history {ζt′}t′≤t−1 of past shocks, and Nk
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is the impact of ζt−k, i.e.,

Nk =
∂st

∂ζt−k
=
∂Et−1(st)
∂ζt−k

. (21)

The term Ñk is the counterpart of Nk under Freddy’s model, i.e.,

Ñk =
∂st(p̃)
∂ζt−k

=
∂Ẽt−1(st)
∂ζt−k

. (22)

If Ñk 	= Nk, then the shock ζt−k affects Freddy’s mean differently than the true mean. This

translates into a contribution (Ñk −Nk)2 to the error e(p̃). Since the sequence {ζt}t∈Z is i.i.d., the

contributions add up to the sum in (17).

The reason why (21) coincides with (19) is as follows. Because of linearity, the derivative in

(21) can be computed by setting all shocks {ζt′}t′≤t−1 to zero, except for ζt−k = 1. The shock

ζt−k = 1 raises the mean of the state θt−k conditional on Period t− k by the regression coefficient

G1. This effect decays over time according to the persistence parameter ρ because all subsequent

shocks {ζt′}t′=t−k+1,..,t−1 are zero, i.e., no surprises occur. Therefore, the mean of θt−1 conditional

on Period t− 1 is raised by ρk−1G1, and the mean of st is raised by ρkG1 = CAk−1G = Nk.

The reason why (18) is more complicated than (19) is that after the shock ζt−k = 1, Freddy

does not expect the shocks {ζt′}t′=t−k+1,..,t−1 to be zero. This is both because the gambler’s fallacy

leads him to expect negative shocks, and because he can converge to G̃1 	= G1, thus estimating

incorrectly the increase in the state. Because, however, he observes the shocks {ζt′}t′=t−k+1,..,t−1

to be zero, he treats them as surprises and updates accordingly. This generates the extra terms in

(18). When α is small, i.e., Freddy is close to rational, the updating generated by {ζt′}t′=t−k+1,..,t−1

is of second order relative to that generated by ζt−k. The term Ñk then takes a form analogous to

Nk:

Ñk ≈ C̃ÃkG̃ = ρ̃kG̃1 − αρ̃(δρ̃ − αρ̃)k−1G̃2. (23)

Intuitively, the shock ζt−k = 1 raises Freddy’s mean of the state θt−k conditional on Period t−k by

G̃1, and the effect decays over time at the rate ρ̃k. Freddy also attributes the shock ζt−k = 1 partly

to luck through G̃2. He then expects future signals to be lower because of the gambler’s fallacy,

and the effect decays at the rate (δρ̃ − αρ̃)k ≈ δk
ρ̃ .

We conclude this section by determining Tommy’s limit posteriors. We examine, in particular,

whether Tommy converges to the true parameter values when he initially entertains all values, i.e.,

P = P0. Since Tommy is a Bayesian, his limit posteriors solve the fit-maximization problem for

α = 0.

Proposition 3 Suppose that α = 0.
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• If σ2
η > 0 and ρ > 0, then m(P0) = {(σ2

η, ρ, σ
2
ω, μ)}.

• If σ2
η = 0 or ρ = 0, then

m(P0) =
{

(σ̃2
η, ρ̃, σ̃

2
ω, μ̃) : [σ̃2

η = 0, ρ̃ ∈ [0, ρ], σ̃2
ω = σ2

η + σ2
ω, μ̃ = μ]

or [σ̃2
η + σ̃2

ω = σ2
η + σ2

ω, ρ̃ = 0, μ̃ = μ]

}
.

Proposition 3 shows that Tommy converges to the true parameter values if σ2
η > 0 and ρ > 0.

If σ2
η = 0 or ρ = 0, however, then he remains undecided between the true model and a set of other

models. The intuition is that in both cases signals are i.i.d. in steady state: either because the

state converges to a constant value (σ2
η = 0) or because it is not persistent (ρ = 0). Therefore,

Tommy cannot identify which of σ2
η or ρ is zero. Of course, Tommy’s failure to converge to the true

model is inconsequential because all models he converges to predict correctly that signals are i.i.d.

4 Independent Signals

In this section we consider Freddy’s inference problem when signals are i.i.d. As pointed out in

the previous section, i.i.d. signals can be generated when σ2
η = 0 or ρ = 0. We first study Freddy’s

“free-form” inference when he initially entertains all parameter values (P = P0). We next endow

Freddy with prior knowledge on the true values of some parameters.

4.1 No Prior Knowledge

Proposition 4 characterizes Freddy’s convergent beliefs.

Proposition 4 Suppose that α > 0, and σ2
η = 0 or ρ = 0. Then e(P0) = 0 and

m(P0) = {(σ̃2
η, 0, σ̃

2
ω, μ) : σ̃2

η + σ̃2
ω = σ2

η + σ2
ω}.

Since e(P0) = 0, Freddy ends up predicting the signals correctly as i.i.d., despite the gambler’s

fallacy. Intuitively, the fallacy leads him to exaggerate the extent to which a small sample resembles

the underlying population—provided that the entire sample is generated by the same distribution.

Freddy ends up believing, however, that a different distribution generates the signal in each period.

Indeed, the distribution is linked to the state, and Freddy converges to the belief that ρ̃ = 0, i.e.,

the state in one period has no relation to the state in the next. In the mutual-fund context, Freddy

assumes that managers stay in the fund for only one period. Therefore, his fallacious belief that

a given manager’s performance should average out over multiple periods has no effect. Formally,

when ρ̃ = 0, the strength αρ̃ of the gambler’s fallacy in (3) is αρ̃ = αρ̃ = 0.
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The result of Proposition 4 relies on our interpretation of the gambler’s fallacy as applying to

the distribution generating the signals for a given state, but not to the distribution generating those

distributions, i.e., generating the state. For example, Freddy expects that a mutual-fund manager

who over-performs in one period is more likely to under-perform in the next. He does not expect,

however, that if high-ability managers join the fund in one period, low-ability managers are more

likely to follow. The latter belief could lead to incorrect predictions even under a model in which

ρ̃ = 0, i.e., managers stay in the fund for only one period.

We believe that the gambler’s fallacy for the state is not as psychologically compelling as for the

signals. One reason is that it has a “second-order” flavor, applying to distributions of distributions

rather than distributions of signals. Moreover, while the state follows a stochastic process in

our model, it could instead be evolving deterministically. Putting these issues aside, the result

of Proposition 4 that we wish to emphasize is not Freddy’s correct predictions, since predictions

are incorrect in the more general settings of Sections 4.2 and 5. A more robust result is that

Freddy attempts to explain the absence of systematic reversals by believing that the environment

(distribution generating the signals) changes overly frequently. In Proposition 4 this result takes

the extreme form that Freddy converges to ρ̃ = 0, but in Sections 4.2 and 5 convergence is to ρ̃

between zero and the true value ρ.

4.2 Prior Knowledge

In this section, we allow Freddy to rule out some parameter values based on prior knowledge.

Ironically, prior knowledge can hurt Freddy. Indeed, suppose that he knows with confidence that ρ̃

is bounded away from zero. Then, he cannot converge to the belief ρ̃ = 0, and consequently cannot

predict the signals correctly. Thus, prior knowledge can be harmful because it reduces Freddy’s

flexibility to come up with the incorrect model that eliminates the gambler’s fallacy.

A straightforward example of prior knowledge is when Freddy knows with confidence that the

state is constant over time: this translates to the dogmatic belief that ρ̃ = 1. A prototypical

occurrence of such a belief is when people observe the flips of a coin they know is fair. The state

can be defined as the probability distribution of heads and tails, and is known and constant.

If in our model Freddy has a dogmatic belief that ρ̃ = 1, then he predicts reversals according

the gambler’s fallacy. This is consistent with the experimental evidence presented in Section 2.

Of course, our model matches the evidence by construction, but we believe that this is a strength

of our approach (in taking the gambler’s fallacy as a primitive bias and examining whether the

hot-hand fallacy can follow as an implication). Indeed, one could argue that the hot-hand fallacy

is a primitive bias, either unconnected to the gambler’s fallacy or perhaps even generating it. But
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then one would have to explain why such a primitive bias does not arise in experiments involving

fair coins.

The hot-hand fallacy tends to arise in settings where people are uncertain about the mechanism

generating the data, and where a belief that an underlying state varies over time is plausible a priori.

Such settings are common when human skill is involved. For example, it is plausible–and often

true–that the performance of a basketball player can fluctuate systematically over time because of

mood, well-being, etc. Consistent with the evidence, we show below that our approach can generate

a hot-hand fallacy in such settings, provided that people are also confident that the state exhibits

some persistence.13

More specifically, we assume that Freddy allows for the possibility that the state varies over

time, but is confident that ρ̃ is bounded away from zero. For example, he can be uncertain as to

whether fund managers differ in ability (σ̃2
η > 0), but know with certainty that they stay in a fund

for more than a period (e.g., a month). We take the closed support of Freddy’s priors to be

P = Pρ ≡ {
(σ̃2

η, ρ̃, σ̃
2
ω, μ̃) : σ̃2

η ∈ R
+, ρ̃ ∈ [ρ, ρ], σ̃2

ω ∈ R
+, μ̃ ∈ R

}
,

where ρ is a lower bound strictly greater than zero and smaller than the true value ρ. Note that

since ρ > 0 and signals are assumed i.i.d., the true value σ2
η has to be zero.

To determine Freddy’s convergent beliefs, we must minimize the error e(p̃) over the set Pρ.

The problem is more complicated than in Propositions 3 and 4: it cannot be solved by finding

parameter vectors p̃ such that e(p̃) = 0 because no such vectors exist in Pρ. Instead, we need to

evaluate e(p̃) for all p̃ and minimize over Pρ. Eq. (17) shows that e(p̃) depends on the vector G̃ of

regression coefficients, which in turn depends on p̃ in a complicated fashion through the recursive-

filtering formulas of Section 3.1. This makes it difficult to solve the problem in closed form. But a

closed-form solution can be derived for small α, i.e., Freddy close to rational. We next present this

solution because it provides useful intuition and has similar properties to the numerical solution

for general α.

Proposition 5 Suppose that σ2
η = 0 and ρ ≥ ρ > 0. When α converges to zero, the set

{(
σ̃2

η

ασ̃2
ω

, ρ̃, σ̃2
ω, μ̃

)
:
(
σ̃2

η, ρ̃, σ̃
2
ω, μ̃

) ∈ m(Pρ)

}

13Evidence linking the hot-hand fallacy to a belief in time-varying human skill comes from the casino-betting study
of Croson and Sundali (2005). They show that consistent with the gambler’s fallacy, individuals avoid betting on a
color with many recent occurrences. Consistent with the hot-hand fallacy, however, individuals raise their bets after
successful prior bets.

19



converges (in the set topology) to the point (z, ρ, σ2
ω, μ), where

z ≡ (1 + ρ)2

1 − ρ2δ
. (24)

Proposition 5 implies that Freddy’s convergent beliefs for small α are p̃ ≈ (αzσ2
ω, ρ, σ

2
ω, μ).

Convergence to ρ̃ = ρ is intuitive. Indeed, Proposition 4 shows that Freddy attempts to explain the

absence of systematic reversals by underestimating the state’s persistence ρ̃. The smallest value of

ρ̃ consistent with the prior knowledge that ρ̃ ∈ [ρ, ρ] is ρ.

Freddy’s belief that ρ̃ = ρ leaves him unable to explain fully the absence of reversals. To gen-

erate a fuller explanation, he develops the additional fallacious belief that σ̃2
η ≈ αzσ2

ω > 0, i.e.,

the state varies over time. Thus, in a mutual-fund context, he overestimates both the extent of

managerial turnover and that of differences in ability. Overestimating turnover helps him explain

the absence of reversals in fund returns because he believes that reversals concern only the per-

formance of individual managers. Overestimating differences in ability helps him further because

he can attribute streaks of high or low fund returns to individual managers being above or below

average. We show below that this belief in the changing state can generate a hot-hand fallacy.

The error-minimization problem has a useful graphical representation. Consider Freddy’s ex-

pectation of st conditional on Period t−1, as a function of the past signals. Eq. (22) shows that the

effect of the signal in Period t−k, holding other signals to their mean, is Ñk. Eq. (23) expresses Ñk

as the sum of two terms. Subsequent to a high st−k, Freddy believes that the state has increased,

which raises his expectation of st (term ρ̃kG̃1). But he also believes that luck should reverse, which

lowers his expectation (term −αρ̃(δρ̃ − αρ̃)k−1G̃2). Figure 1 plots these terms (dotted and dashed

line, respectively) and their sum Ñk (solid line), as a function of the lag k. Since signals are i.i.d.

under the true model, Nk = 0. Therefore, minimizing the infinite sum in (17) amounts to finding

( σ̃2
η

σ̃2
ω
, ρ̃) that minimize the average squared distance between the solid line and the x-axis.

Figure 1 shows that Ñk is not always of the same sign. Thus, a high past signal does not lead

Freddy to predict always a high or always a low signal. Suppose instead that he always predicts a

low signal because the gambler’s fallacy dominates the belief that the state has increased (i.e., the

dotted line is uniformly closer to the x-axis than the dashed line). This means that he converges

to a small value of σ̃2
η, believing that the state’s variation is small, and treating signals as not very

informative. But then, a larger value of σ̃2
η would shift the dotted line up, reducing the average

distance between the solid line and the x-axis.

The change in Ñk’s sign is from negative to positive. Thus, a high signal in the recent past leads

Freddy to predict a low signal, while a high signal in the more distant past leads him to predict a
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Figure 1: Effect of a signal in Period t − k on Freddy’s expectation Ẽt−1(st), as a
function of k. The dotted line represents the belief that the state has changed, the
dashed line represents the effect of the gambler’s fallacy, and the solid line is Ñk, the
sum of the two effects.

high signal. This is because the belief that the state has increased decays at the rate ρ̃k, while the

effect of the gambler’s fallacy decays at the faster rate (δρ̃ − αρ̃)k = ρ̃k(δ − α)k. In other words,

after a high signal Freddy expects luck to reverse quickly but views the increase in the state as

more long-lived. The reason why he expects luck to reverse quickly relative to the state is that he

views luck as specific to a given state (e.g., a given fund manager).

We next draw the implications of our results for the hot-hand fallacy. To define the hot-hand

fallacy in our model, we consider a streak of identical signals between Periods t− k and t− 1, and

evaluate its impact on Freddy’s expectation of st. Viewing the expectation Ẽt−1(st) as a function

of the history of past signals, the impact is

Δ̃k ≡
k∑

k′=1

∂Ẽt−1(st)
∂st−k′

.

If Δ̃k > 0, then Freddy expects a streak of k high signals to be followed by a high signal, and

vice-versa for a streak of k low signals. This means that Freddy expects streaks to continue and is

subject to the hot-hand fallacy.14

Proposition 6 Suppose that α is small, σ2
η = 0, ρ ≥ ρ > 0, and Freddy considers parameter values

in the set Pρ. Then, in steady state Δ̃k is negative for k = 1 and becomes positive as k increases.

14Our definition of the hot-hand fallacy is specific to streak length, i.e., Freddy might conform to the fallacy for
streaks of length k but not k′ �= k.

21



Proposition 6 shows that the hot-hand fallacy arises after long streaks while the gambler’s

fallacy arises after short streaks. This is consistent with Figure 1 because the effect of a streak is

the sum of the effects Ñk of each signal in the streak. Since Ñk is negative for small k, Freddy

predicts a low signal following a short streak. But as streak length increases, the positive values of

Ñk overtake the negative values, generating a positive cumulative effect.

Propositions 5 and 6 make use of the closed-form solutions derived for small α. For general α,

the fit-maximization problem can be solved through a simple numerical algorithm and the results

confirm the closed-form solutions: Freddy converges to σ̃2
η > 0, ρ̃ = ρ, and μ̃ = μ, and his predictions

after streaks are as in Proposition 6.15

5 Serially Correlated Signals

In this section we consider Freddy’s inference problem when the signals are serially correlated.

Serial correlation arises when the state varies over time (σ2
η > 0) and is persistent (ρ > 0). To

highlight the new effects relative to the i.i.d. case, we assume that Freddy has no prior knowledge

on parameter values.

Recall that with i.i.d. signals and no prior knowledge, Freddy predicts correctly because he

converges to the belief that ρ̃ = 0, i.e., the state in one period has no relation to the state in the

next. When signals are serially correlated, the belief ρ̃ = 0 obviously generates incorrect predictions.

But predictions are also incorrect under a belief ρ̃ > 0 because the gambler’s fallacy then takes

effect. Therefore, there is no parameter vector p̃ ∈ P0 achieving zero error e(p̃).16

To minimize the error, we proceed as in Section 4.2, evaluating e(p̃) for all p̃ and minimizing

over P0. We solve this problem in closed form for small α and compare with the numerical solution

for general α. In addition to α, we take σ2
η to be small, meaning that signals are close to i.i.d. We

set ν ≡ σ2
η/(ασ

2
ω) and assume that α and σ2

η converge to zero holding ν constant. The case where

σ2
η remains constant while α converges to zero can be derived as a limit for ν = ∞.

Proposition 7 Suppose that ρ > 0. When α and σ2
η converge to zero, holding ν constant, the set

{(
σ̃2

η

ασ̃2
ω

, ρ̃, σ̃2
ω, μ̃

)
:
(
σ̃2

η, ρ̃, σ̃
2
ω, μ̃

) ∈ m(P0)

}

15The result that σ̃2
η > 0 can be shown analytically. The proof is available upon request.

16The proof of this result is available upon request.
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converges (in the set topology) to the point (z, r, σ2
ω, μ), where

z ≡ νρ(1 − ρ)(1 + r)2

r(1 + ρ)(1 − ρr)
+

(1 + r)2

1 − r2δ
(25)

and r solves
νρ(1 − ρ)(ρ− r)
(1 + ρ)(1 − ρr)2

H1(r) =
r2(1 − δ)
(1 − r2δ)2

H2(r), (26)

for

H1(r) ≡ νρ(1 − ρ)
(1 + ρ)(1 − ρr)

+
r(1 − δ)

[
2 − ρr(1 + δ) − r2δ + ρ2r4δ2

]
(1 − r2δ)2(1 − ρrδ)2

,

H2(r) ≡ νρ(1 − ρ)
(1 + ρ)(1 − ρr)

+
r(1 − δ)

(
2 − r2δ2 − r4δ3

)
(1 − r2δ)(1 − r2δ2)2

.

Because H1(r) and H2(r) are positive, (26) implies that r ∈ (0, ρ). Thus, Freddy converges to

a persistence parameter ρ̃ = r that is between zero and the true value ρ. As in Section 4, Freddy

underestimates ρ̃ in his attempt to explain the absence of systematic reversals. But he does not

converge all the way to ρ̃ = 0 because he must explain the signals’ serial correlation. Consistent

with intuition, ρ̃ is close to zero when the gambler’s fallacy is strong relative to the serial correlation

(ν small), and is close to ρ in the opposite case.

Consider next Freddy’s estimate (1 − ρ̃)2σ̃2
η of the variance of the shocks to the state. Section

4.2 shows that when σ2
η = 0, Freddy can develop the fallacious belief that σ̃2

η > 0 as a way to

counteract the effect of the gambler’s fallacy. When σ2
η is positive, we find the analogous result

that Freddy overestimates (1 − ρ̃)2σ̃2
η. Indeed, he converges to

(1 − ρ̃)2σ̃2
η ≈ (1 − r)2αzσ2

ω =
(1 − r)2z
(1 − ρ)2ν

(1 − ρ)2σ2
η,

which is larger than (1 − ρ)2σ2
η because of (25) and r < ρ. Note that (1 − r)2z is decreasing in r.

Thus, Freddy overestimates the variance of the shocks to the state partly as a way to compensate

for underestimating the state’s persistence ρ̃.

The error minimization problem can be represented graphically. Consider Freddy’s expectation

of st conditional on Period t−1, as a function of the past signals. The effect of the signal in Period

t − k, holding other signals to their mean, is Ñk. Figure 2 plots Ñk (solid line) as a function of

k. It also decomposes Ñk to the belief that the state has increased (dotted line) and the effect of

the gambler’s fallacy (dashed line). The new element relative to Figure 1 is that an increase in

st−k also affects the expectation Et−1(st) under the true model. This effect, Nk, is represented by

the solid line with diamonds. Minimizing the infinite sum in (17) amounts to finding ( σ̃2
η

σ̃2
ω
, ρ̃) that
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minimize the average squared distance between the solid line and the solid line with diamonds.
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Figure 2: Effect of a signal in Period t − k on Freddy’s expectation Ẽt−1(st), as a
function of k. The dotted line represents the belief that the state has changed, the
dashed line represents the effect of the gambler’s fallacy, and the solid line is Ñk,
the sum of the two effects. The solid line with diamonds is Nk, the effect on the
expectation Et−1(st) under the true model.

For large k, Ñk is below Nk, meaning that Freddy under-reacts to signals in the distant past.

This is because he underestimates the state’s persistence parameter ρ̃, thus believing that the

information learned from signals about the state becomes obsolete overly fast. Note that under-

reaction to distant signals is a novel feature of the serial-correlation case. Indeed, with i.i.d. signals,

Freddy’s underestimation of ρ̃ does not lead to under-reaction because there is no reaction under

the true model.

Freddy’s reaction to signals in the more recent past is in line with the i.i.d. case. Since Ñk

cannot be below Nk uniformly (otherwise e(p̃) could be made smaller for a larger value of σ̃2
η), it

has to exceed Nk for smaller values of k. Thus, Freddy over-reacts to signals in the more recent

past. The intuition is as in Section 4.2: in overestimating (1 − ρ)2σ2
η, Freddy exaggerates the

signals’ informativeness about the state. Finally, Freddy under-reacts to signals in the very recent

past because of the gambler’s fallacy.

We next draw the implications of our results for the hot-hand fallacy. We consider a streak of

identical signals between Periods t−k and t−1, and evaluate its impact on Freddy’s and Tommy’s

expectation of st. The impact for Freddy is Δ̃k and for Tommy is

Δk ≡
k∑

k′=1

∂Et−1(st)
∂st−k′

.
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If Δ̃k > Δk, then Freddy expects a streak of k high signals to be followed by a higher signal than

Tommy does, and vice-versa for a streak of k low signals. This means that Freddy over-reacts to

streaks and is subject to the hot-hand fallacy.

Proposition 8 Suppose that α and σ2
η are small, ρ > 0, and Freddy has no prior knowledge

(P = P0). Then, in steady state Δ̃k − Δk is negative for k = 1, becomes positive as k increases,

and then becomes negative again.

Proposition 8 shows that Freddy under-reacts to short streaks, over-reacts to longer streaks, and

under-reacts to very long streaks. The under-reaction to short streaks is because of the gambler’s

fallacy. Longer streaks generate over-reaction because Freddy overestimates the signals’ informa-

tiveness about the state. But he also underestimates the state’s persistence, thus under-reacting

to very long streaks.

The numerical results for general α confirm most of the closed-form results. The only excep-

tion is that Ñk − Nk can change sign only once, from positive to negative. Under-reaction then

occurs only to very long streaks. This tends to happen when Freddy underestimates the state’s

persistence significantly (because α is large relative to σ̃2
η). As a way to compensate for his error,

he overestimates (1− ρ̃)2σ̃2
η significantly, viewing signals as very informative about the state. Even

very short streaks can then lead him to believe that the change in the state is large and dominates

the effect of the gambler’s fallacy.

We conclude this section by summarizing the main predictions of the model. These predictions

can readily be tested in controlled experimental settings and possibly in field settings as well.

Prediction 1 follows from our specification of the gambler’s fallacy.

Prediction 1 When individuals are aware that they are observing i.i.d. signals, they expect rever-

sals after streaks of any length. The effect is stronger for longer streaks.

Predictions 2 and 3 follow from the results of Sections 4 and 5. Both predictions require

individuals to observe long sequences of signals so that they can learn sufficiently about the signal-

generating mechanism.

Prediction 2 Suppose that individuals observe i.i.d. signals, but do not exclude on prior grounds

the possibility that the underlying distribution might be changing over time. Then, a belief in

continuation of streaks can arise. Such a belief should be observed following long streaks, while belief

in reversals should be observed following short streaks. Both beliefs should be weaker if individuals

believe on prior grounds that the underlying distribution is changing frequently.
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Prediction 3 Suppose that individuals observe serially correlated signals. Then, relative to the

rational benchmark, they over-react to long streaks, but under-react to very long streaks and possibly

to short ones as well.

6 Finance Applications

In this section we explore the implications of our model for financial decisions. Our goal is to show

that the gambler’s fallacy can have a wide range of implications, and that our normal-linear model

is a useful tool for pursuing them.

Suppose that in Period t − 1 Freddy can invest in a risky asset with return st and a riskless

asset with return r. For simplicity, we assume that Freddy has an one-period horizon, maximizing

expected utility over Period t wealth.17 To keep with the normal-linear structure, we take utility

over wealth to be exponential with coefficient of absolute risk aversion a. Denoting wealth in Period

t′ ∈ {t−1, t} by W̃t′ , and the investment in the risky asset by X̃t−1, Freddy’s maximization problem

is

max
X̃t−1

Ẽt−1

[
− exp(−aW̃t)

]
(27)

subject to the budget constraint

W̃t = (W̃t−1 − X̃t−1)(1 + r) + X̃t−1(1 + st).

Because of normality and exponential utility, the problem is mean-variance and the optimal invest-

ment is

X̃t−1 =
Ẽt−1(st) − r

aṼ art−1(st)
, (28)

where Ṽ ar denotes the variance assessed by Freddy. Note that in steady state the variance

Ṽ art−1(st) is constant (equal to σ2
s(p̃)). We denote this constant by Ṽ ar1, setting more gener-

ally Ṽ ark ≡ Ṽ art−k(st). Using (28), we can compute several quantities of interest.
17A literal interpretation of this assumption is that there are overlapping generations of investors, each of whom

lives for one period but observes the entire history of past signals. Alternatively, we can view the assumption as
a simplification of the infinite-horizon problem that considers only the myopic demand and ignores the demand for
intertemporal hedging (Merton (1971)).
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6.1 Fund Flows

The change in Freddy’s investment between Periods t− 1 and t is

X̃t − X̃t−1 =
Ẽt(st+1) − Ẽt−1(st)

aṼ ar1
. (29)

Thus, Freddy changes his investment if he believes that the expected return has changed. Inter-

preting the risky asset as the return on a mutual fund, we can interpret X̃t − X̃t−1 as Freddy’s net

flow into the fund.18 We consider the absolute value of net flow and define average flow Q̃ as the

unconditional expectation Q̃ ≡ E
[
|X̃t − X̃t−1|

]
. Proposition 9 computes Freddy’s average flow and

compares it to that of a Bayesian investor (Tommy) with the same preferences. The comparison is

made for two settings in which Freddy converges to incorrect predictions: i.i.d. returns and prior

knowledge that ρ̃ is bounded away from zero (as in Section 4.2), and serially correlated returns and

no prior knowledge (as in Section 5).

Proposition 9 Freddy’s average flow is

Q̃ =

√
2
π

σs

aṼ ar1

√√√√ ∞∑
k=1

(Ñk − Ñk−1)2, (30)

where Ñ0 ≡ 0. Tommy’s average flow Q is given by (30) without the tildes and where N0 ≡ 0.

• Suppose that σ2
η = 0 and Freddy has prior knowledge that ρ̃ ≥ ρ > 0. Then Q̃ > Q = 0.

• Suppose that α and σ2
η are small, ρ > 0, and Freddy has no prior knowledge (P = P0). Then

Q̃ > Q if ν ≡ σ2
η/ασ

2
ω is small, and Q̃ < Q if ν is large.

The result in the i.i.d. case is straightforward. Since expected returns are constant, Tommy

generates no flow. But if Freddy has prior knowledge that ρ̃ is bounded away from zero, then he

ends up believing that expected returns are time-varying, and moves assets in or out of the fund.

The result in the serial-correlation case is more subtle than in the i.i.d. case, both because

Tommy’s flow is non-zero and because Freddy is assumed to have no prior knowledge. To explain

the intuition, we return to Figure 2 of Section 5, and plot it for two different values of ν as Figure

3 below. In each plot, the solid line represents the effect Ñk of the return k − 1 periods ago on
18Our definition of flow assumes that the return st is due solely to dividends. Suppose that st = sd

t + sc
t , where

sd
t is due to dividends and sc

t to capital gains. Then if Freddy buys shares worth X̃t−1 in Period t − 1, he receives a
dividend X̃t−1s

d
t in Period t, and his shares are worth X̃t−1s

c
t . Thus, his net flow in Period t is X̃t − X̃t−1(1 + sc

t)
and coincides with X̃t − X̃t−1 only when sc

t = 0. When sc
t �= 0, X̃t − X̃t−1 represents the component of net flow due

to changes in expectations about future returns.
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Freddy’s forecast of next period’s return, and the solid line with diamonds represents the effect

Nk for Tommy. Note that Ñk is also the effect on Freddy’s investment, because the investment is

linear in the forecast. Moreover, Ñk − Ñk−1 is the effect on Freddy’s net flow, provided that we set

Ñ0 ≡ 0 to cover the case k = 1.
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Figure 3: The solid line represents the effect Ñk of the return k − 1 periods ago on
Freddy’s forecast of next period’s return. The solid line with diamonds represents the
effect Nk for Tommy. The plot to the left is for small ν ≡ σ2

η/ασ
2
ω, and the plot to

the right is for large ν.

Consider now Freddy’s net flow in Period t as a function of the history of past returns. This

function is linear, and the coefficient of the return innovation ζt−k+1 is Ñk−Ñk−1. Since innovations

are i.i.d., the variance of net flow can be derived by squaring the coefficients and adding them up.

The average flow is equal to the square root of the variance (times a constant) because of normality.

Thus, comparing Freddy’s average flow to Tommy’s amounts to comparing the average squared

slope of the lines in Figure 3, where the average is taken over k, the slope for k is defined as the

value for k minus the value for k − 1, and the value for k = 0 is taken to be zero.

The plot to the left in Figure 3 is for small ν, i.e., for a gambler’s fallacy that is strong relative

to serial correlation. In that case, Freddy converges to a small value ρ̃ of the persistence parameter

and a large value (1 − ρ̃)2σ̃2
η of the variance of the shocks to the state (Proposition 7). Thus, he

treats returns as very informative about managerial ability, but also believes that such information

fast becomes obsolete. Following a high return, Freddy’s flows are as follows. In the short run,

he responds with a smaller inflow that Tommy because he expects luck to reverse. Once the

expectation of the reversal subsides, he builds his position to a level larger than Tommy because

he treats the return as very positive news about the manager’s ability. But he also believes that
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shocks to ability are short-lived, and unwinds the position rapidly. Because of the large position

and the rapid unwinding, Freddy’s flows are large, and the sum of squared slopes is larger than

for Tommy. On the other hand, when ν is large, as in the plot to the right, Freddy builds and

unwinds the position slowly. The sum of squared slopes is then smaller than for Tommy because

of Tommy’s larger initial inflow.

A calibration exercise in Appendix B suggests that plausible parameter values generate the plot

to the left, where Freddy’s average flow is larger than Tommy’s. Together with the result in the

i.i.d. case, our analysis therefore implies that flows by investors who believe in the gambler’s fallacy

are larger than in the rational benchmark. An additional implication concerns the time pattern of

flows: relative to the rational benchmark, Freddy’s flows under-react to returns in the short run,

but their delayed response is stronger.

The literature on mutual-fund flows (e.g., Chevalier and Ellison (1997), Sirri and Tufano (1998))

documents a strong relationship between flows and lagged returns. This is often viewed as puzzling

since lagged returns do not appear to be strong predictors of future returns (e.g., Carhart (1997)).19

Our model deepens this puzzle if flows and returns are evaluated over one period because their

relationship is then weaker than in the rational benchmark. But the relationship can become

stronger if the evaluation is over longer periods because of the strong delayed response of flows

to returns.20 We next turn to an additional channel that could strengthen the flow-performance

relationship: Freddy’s overestimation of the value of financial information.

6.2 Value of Information

Our analysis so far assumes that signals are freely available. We next examine how much Freddy

would be willing to pay for them, and how this compares to Tommy’s valuation. We denote by

Ũ1(W̃t−1, Ẽt−1(st)) the maximum in (27), i.e., Freddy’s maximum utility when he observes all

returns up to Period t− 1. We also denote by Ũk(W̃t−1, Ẽt−k(st)) Freddy’s maximum utility when
19Baquero and Verbeek (2006) find a similar puzzle for hedge funds. They regress hedge-fund flows on lagged

returns and a proxy for the lagged returns’ true predictive power about future returns. They find that lagged returns
have an effect above and beyond their ability to predict future returns.

Berk and Green (2004) propose a rational explanation for the puzzle. They assume that ability differs across
managers and can be inferred from returns. Able managers perform well and receive inflows, but because of decreasing
returns to managing a large fund, their performance drops to that of average managers. This explanation requires
large ability differentials to match the empirical flow-performance relationship: the standard deviation of the ability
distribution must correspond to an annual return of 6%, meaning that in the absence of decreasing returns, top-
quartile managers would outperform bottom-quartile ones by more than 15%.

20The effect of the return in Period t − 1 on the change in Freddy’s investment between Periods t − 1 and t is
characterized by Ñ1. This is smaller than N1, both under i.i.d. returns and prior knowledge (Figure 1) and under
serially correlated returns and no prior knowledge (Figure 3). Suppose instead that flows and returns are evaluated
over two periods (e.g., a period is six months while flows and returns are yearly). Then, the effect of the cumulative
return over Periods t−2 and t−1 on the change in Freddy’s investment between Periods t−1 and t+1 is Ñ2+(Ñ3−Ñ1).
This is larger than N2 + (N3 − N1) in both Figures 1 and 3.
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he chooses investment in Period t − 1 but observes returns up to Period t − k only (in which

case his expectation of st is Ẽt−k(st)).21 If Freddy pays Ĩk to observe the k most recent returns

{st′}t′=t−k,..,t−1, then he receives the utility Ũ1(W̃t−1 − Ĩk, Ẽt−1(st)). Therefore, Freddy’s assessed

value Ĩk of the information in the k most recent returns is given by

Ũk+1(W̃t−1, Ẽt−k−1(st)) = Ẽt−k−1Ũ1(W̃t−1 − Ĩk, Ẽt−1(st)). (31)

Because of normality and exponential utility, Ĩk takes a very simple form. In particular, it does

not depend on the realization of Ẽt−k−1(st), nor on Freddy’s wealth.

Proposition 10 Freddy’s value of observing the k most recent returns is

Ĩk =
1

2a(1 + r)
log

(
Ṽ ark+1

Ṽ ar1

)
=

1
2a(1 + r)

log

(
1 +

k∑
k′=1

(C̃Ãk′−1G̃)2
)
. (32)

Tommy’s value Ik is given by (32) without the tildes.

• Suppose that σ2
η = 0 and Freddy has prior knowledge that ρ̃ ≥ ρ > 0. Then Ik = 0 for all

k ≥ 1, and Ĩk > 0 for all k ≥ 2.

• Suppose that α and σ2
η are small, ρ > 0, and Freddy has no prior knowledge (P = P0). Then

there exists k such that Ĩk > Ik. Moreover, Ĩ∞ < I∞ if ν is small, and Ĩ∞ > I∞ if ν is large.

The result in the i.i.d. case is straightforward. Since past returns do not predict future ones,

Tommy’s value of information is zero. But if Freddy has prior knowledge that ρ̃ is bounded away

from zero, then he ends up believing that returns are non-i.i.d. and treats past returns as valuable

information.

To understand the intuition in the serial-correlation case, consider again Figure 3, which rep-

resents the effect of past returns on Freddy’s and Tommy’s forecast of next period’s return. Intu-

itively, the larger the effect is, the larger the value of observing past returns should be. Eq. (32)

confirms this intuition. For example, Tommy’s value of information is an increasing function of∑k
k′=1(CA

k′−1G)2. This term is equal (from (19)) to
∑k

k′=1N
2
k′ , i.e., the sum of squared effects of

the k most recent returns on Tommy’s forecast. Freddy’s value of information is the same increas-

ing function of
∑k

k′=1(C̃Ã
k′−1G̃)2, and for small α this term is approximately equal (from (23))

to
∑k

k′=1 Ñ
2
k′ .22 Thus, for small α, comparing the value of information for Freddy and Tommy

amounts to comparing the average squared height of the first k points of the lines in Figure 3.
21The utilities Ũ1 and Ũk are perceived rather than actual in the sense that they involve expectations under Freddy’s

model rather than the true model.
22The intuition why the equality for Freddy is approximate is that his value of information involves the effects

under his model (C̃Ãk−1G̃) and not under the true model (Ñk). For small α, the effects coincide approximately.
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Proposition 10 shows that for some values of k, the average height of the first k points on

Freddy’s line is larger than for Tommy’s line. Thus, Freddy overestimates the informational value

of recent return histories, and this is because he overestimates the information that returns convey

about the state. But because he believes that information fast becomes obsolete, he underestimates

the value of returns in the distant past. This can lead him to undervalue the full return history.

Such undervaluation occurs for small ν, i.e., strong gambler’s fallacy relative to serial correlation,

which is when Freddy underestimates significantly the state’s persistence. Figure 3 provides a

graphical interpretation: because Freddy’s line in the plot to the left converges to zero quickly, its

average height is smaller than for Tommy’s line.

Turning to applications, suppose that st is the i.i.d. return on a traded asset, such as a stock

or bond. Suppose also that Freddy is uncertain about the i.i.d. property, but is confident that if

expected returns vary over time they are persistent (ρ̃ ≥ ρ > 0). Then, because he ends up treating

returns as non-i.i.d. (σ̃2
η > 0), he can believe in technical analysis (chartism), whereby past returns

are used to predict the future. Moreover, he can exaggerate the value of financial experts if he

believes that the experts’ advantage derives from observing market information. This could help

explain why people invest in actively-managed funds in spite of the evidence that these funds do not

outperform their market benchmarks.23 Note that if Freddy develops a belief in financial expertise,

he can also believe in large ability differences between managers (i.e., believe on prior grounds that

σ2
η is larger than the value derived in Section 4.1). This could strengthen the flow-performance

relationship.24

Our analysis above takes asset returns as given. A comprehensive analysis of the general-

equilibrium effects that would arise if Freddies constitute a large fraction of the market is beyond

the scope of this paper—not least because our results suggest that Freddies might be investing

through actively-managed funds. We can sketch, however, some implications that would follow if

Freddies invest in the market directly. Suppose that Freddies observe a company’s earnings and

price the stock as the expected discounted value of future earnings. Suppose that earnings growth

is i.i.d. and that while Freddies are uncertain about the i.i.d. property, they are confident that if

expected growth varies over time it is persistent (ρ̃ ≥ ρ > 0). Then, because Freddies expect short

streaks to reverse and long streaks to continue, prices would exhibit momentum and reversals as

well as a value premium. These results are similar to Barberis, Shleifer and Vishny (1998), although

the mechanism is different.

23See Fama (1991) for a survey of the evidence.
24The implications on financial expertise rely on Freddy’s confident belief that ρ̃ ≥ ρ > 0. Without such a belief,

Freddy predicts correctly in an i.i.d. environment, and can underestimate the informational value of the return history
under serial correlation. A result that does not rely on beliefs about ρ̃ is the overestimation of the value of recent
returns. Thus, investors could be overpaying for newsletters that analyze the recent performance of stocks or mutual
funds, while underpaying for long-horizon studies.
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A Proofs

Proof of Proposition 1: Our formulation of the recursive-filtering problem is as in standard

textbooks. For example, (8) and (9) follow from (4.1.1) and (4.1.4) in Balakrishnan (1987) if xn+1

is replaced by xt, xn by xt−1, An by Ã, Un by 0, N s
n by wt, vn by st − μ̃, Cn by C̃, and N0

n by vt.

Eq. (10) follows from (4.6.14), if the latter is written for n + 1 instead of n, and xn+1 is replaced

by xt, xn by xt−1, and AKn +Qn by G̃t. That G̃t so defined is given by (12), follows from (4.1.29)

and (4.6.12) if Hn−1 is replaced by Σ̃t−1, GnG
′
n by Ṽ , and Jn by Ũ . Eq. (11) follows from (4.6.18)

if the latter is written for n+ 1 instead of n, Pn is substituted from (4.1.30), and FnF
′
n is replaced

by W̃ .

Proof of Proposition 2: It suffices to show (Balakrishnan, p.182-184) that the eigenvalues of

Ã− Ũ Ṽ −1C̃ have modulus smaller than one. This matrix is⎡
⎣ σ̃2

ω
(1−ρ̃)2σ̃2

η+σ̃2
ω
ρ̃

(1−ρ̃)2σ̃2
η

(1−ρ̃)2σ̃2
η+σ̃2

ω
αρ̃

− σ̃2
ω

(1−ρ̃)2σ̃2
η+σ̃2

ω
ρ̃ δρ̃ − (1−ρ̃)2σ̃2

η

(1−ρ̃)2σ̃2
η+σ̃2

ω
αρ̃

⎤
⎦ .

The characteristic polynomial is

λ2 − λ

[
σ̃2

ω

(1 − ρ̃)2σ̃2
η + σ̃2

ω

ρ̃+ δρ̃ −
(1 − ρ̃)2σ̃2

η

(1 − ρ̃)2σ̃2
η + σ̃2

ω

αρ̃

]
+

σ̃2
ω

(1 − ρ̃)2σ̃2
η + σ̃2

ω

ρ̃δρ̃

≡ λ2 − λb+ c

Suppose that the roots λ1, λ2 of this polynomial are real, in which case λ1 + λ2 = b and λ1λ2 = c.

Since c > 0, λ1 and λ2 have the same sign. If λ1 and λ2 are negative, they are both greater than

-1, since b > −1 from αρ̃ < 1 and ρ̃, δρ̃ ≥ 0. If λ1 and λ2 are positive, then at least one is smaller

than 1, since b < 2 from ρ̃, δρ̃ < 1 and αρ̃ ≥ 0. But since the characteristic polynomial for λ = 1

takes the value

(1 − δρ̃)
(

1 − σ̃2
ω

(1 − ρ̃)2σ̃2
η + σ̃2

ω

ρ̃

)
+

(1 − ρ̃)2σ̃2
η

(1 − ρ̃)2σ̃2
η + σ̃2

ω

αρ̃ > 0,

both λ1 and λ2 are smaller than 1. Suppose instead that λ1, λ2 are complex. In that case, they are

conjugates and the modulus of each is
√
c < 1.

Lemma A.1 determines st, the true mean of st conditional on Ht−1, and st(p̃), the mean that

Freddy computes under the parameter vector p̃. To state the lemma, we set ζt ≡ st − st, D̃t ≡
Ã− G̃tC̃, D̃ ≡ Ã− G̃C̃, and

J̃t,t′ ≡
{∏t

k=t′ D̃k for t′ = 1, .., t,
I for t′ > t.
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For simplicity, we set the initial condition x0 = 0.

Lemma A.1 The true mean st is given by

st = μ+
t−1∑
t′=1

CAt−t′−1Gt′ζt′ (A.1)

and Freddy’s mean st(p̃) by

st(p̃) = μ̃+
t−1∑
t′=1

C̃M̃t,t′ζt′ + C̃M̃μ
t (μ− μ̃), (A.2)

where

M̃t,t′ ≡ J̃t−1,t′+1G̃t′ +
t−1∑

k=t′+1

J̃t−1,k+1G̃kCA
k−t′−1Gt′ ,

M̃μ
t ≡

t−1∑
t′=1

J̃t−1,t′+1G̃t′ .

Proof: Consider the recursive-filtering problem under the true model, and denote by xt the true

mean of xt. Eq. (9) implies that

st = μ+ Cxt−1. (A.3)

Eq. (10) then implies that

xt = Axt−1 +Gt(st − st) = Axt−1 +Gtζt.

Iterating between t− 1 and zero, we find

xt−1 =
t−1∑
t′=1

At−t′−1Gt′ζt′ . (A.4)

Plugging into (A.3), we find (A.1).

Consider next Freddy’s recursive-filtering problem under p̃. Eq. (10) implies that

xt(p̃) = (Ã− G̃tC̃)xt−1(p̃) + G̃t(st − μ̃).
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Iterating between t− 1 and zero, we find

xt−1(p̃) =
t−1∑
t′=1

J̃t−1,t′+1G̃t′(st′ − μ̃) (A.5)

=
t−1∑
t′=1

J̃t−1,t′+1G̃t′(ζt′ + μ− μ̃+ Cxt′−1),

where the second step follows from st′ = ζt′ + st′ and (A.3). Substituting xt′−1 from (A.4), and

grouping terms, we find

xt−1(p̃) =
t−1∑
t′=1

M̃t,t′ζt′ + M̃μ
t (μ− μ̃). (A.6)

Combining this with

st(p̃) = μ̃+ C̃xt−1(p̃) (A.7)

(which follows from (9)), we find (A.2).

We next prove Lemma 3. While this Lemma is stated after Theorem 1 and Lemmas 1 and 2,

its proof does not rely on these results.

Proof of Lemma 3: Lemma A.1 implies that

st(p̃) − st =
t−1∑
t′=1

et,t′ζt′ +Nμ
t (μ̃− μ), (A.8)

where

et,t′ ≡ C̃M̃t,t′ − CAt−t′−1Gt′ ,

Nμ
t ≡ 1 − C̃M̃μ

t .

Therefore,

[st(p) − st]2 =
t−1∑

t′,t′′=1

et,t′et,t′′ζt′ζt′′ + (Nμ
t )2(μ̃− μ)2 + 2

t−1∑
t′=1

et,t′N
μ
t ζt′(μ̃− μ). (A.9)

Since the sequence {ζt′}t′=1,..,t−1 is independent under the true measure and mean-zero, we have

E [st(p) − st]
2 =

t−1∑
t′=1

e2t,t′σ
2
s,t′ + (Nμ

t )2(μ̃− μ)2. (A.10)

We first determine the limit of
∑t−1

t′=1 e
2
t,t′σ

2
s,t′ when t goes to ∞. Defining the double sequence
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{φk,t}k,t≥1 by

φk,t ≡
{
e2t,t−kσ

2
s,t−k for k = 1, .., t− 1,

0 for k > t− 1,

we have
t−1∑
t′=1

e2t,t′σ
2
s,t′ =

t−1∑
k=1

e2t,t−kσ
2
s,t−k =

∞∑
k=1

φk,t.

The definitions of et,t′ and M̃t,t′ imply that

et,t−k = C̃J̃t−1,t−k+1G̃t−k +
k−1∑
k′=1

C̃J̃t−1,t−k+k′+1G̃t−k+k′CAk′−1Gt−k − CAk−1Gt−k. (A.11)

Eq. (9) applied to the recursive-filtering problem under the true model implies that

σ2
s,t = CΣt−1C

′ + V.

When t goes to ∞, Gt goes to G, G̃t to G̃, Σt to Σ, and J̃t,t−k to D̃k+1. Therefore,

lim
t→∞ et,t−k = C̃D̃k−1G̃+

k−1∑
k′=1

C̃D̃k−1−k′
G̃CAk′−1G− CAk−1G = Ñk −Nk ≡ ek,

lim
t→∞σ2

s,t−k = CΣC ′ + V = CΣC ′ + (1 − ρ)2σ2
η + σ2

ω = σ2
s , (A.12)

implying that

lim
t→∞φk,t = e2kσ

2
s .

The dominated convergence theorem will imply that

lim
t→∞

∞∑
k=1

φk,t =
∞∑

k=1

lim
t→∞φk,t = σ2

s

∞∑
k=1

e2k, (A.13)

if there exists a sequence {φk}k≥1 such that
∑∞

k=1 φk < ∞ and |φk,t| ≤ φk for all k, t ≥ 1. To

construct such a sequence, we note that the eigenvalues of A have modulus smaller than one, and

so do the eigenvalues of D̃ ≡ Ã− G̃C̃ (Balakrishnan, Theorem 4.2.3, p.111). Denoting by a < 1 a

number exceeding the maximum of the moduli, we can construct a dominating sequence {φk}k≥1

decaying geometrically at the rate a2k.

We next determine the limit of Nμ
t . Defining the double sequence {χk,t}k,t≥1 by

χk,t ≡
{
J̃t−1,t−k+1G̃t−k for k = 1, .., t− 1,

0 for k > t− 1,
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we have

Nμ
t = 1 − C̃

t−1∑
k=1

J̃t−1,t−k+1G̃t−k = 1 − C̃
∞∑

k=1

χk,t.

It is easy to check that the dominated convergence theorem applies to {χk,t}k,t≥1, and thus

lim
t→∞Nμ

t = 1 − C̃ lim
t→∞

[ ∞∑
k=1

χk,t

]
= 1 − C̃

∞∑
k=1

lim
t→∞χk,t = 1 − C̃

∞∑
k=1

D̃k−1G̃ = Nμ. (A.14)

The lemma follows by combining (A.10), (A.13), and (A.14).

Proof of Theorem 1: Eq. (15) implies that

2 logLt(Ht|p̃)
t

= −
∑t

t′=1 log
[
2πσ2

s,t′(p̃)
]

t
− 1
t

t∑
t′=1

[st′ − st′(p̃)]2

σ2
s,t′(p̃)

. (A.15)

To determine the limit of the first term, we note that (9) applied to Freddy’s recursive-filtering

problem under p̃ implies that

σ2
s,t(p̃) = C̃Σ̃t−1C̃

′ + Ṽ .

Therefore,

lim
t→∞σ2

s,t(p̃) = C̃Σ̃C̃ ′ + Ṽ = σ2
s(p̃), (A.16)

lim
t→∞

∑t
t′=1 log σ2

s,t′(p̃)

t
= lim

t→∞ log σ2
s,t(p̃) = log σ2

s(p̃). (A.17)

We next fix k ≥ 0 and determine the limit of the sequence

Sk,t ≡ 1
t

t∑
t′=1

ζt′ζt′+k

when t goes to ∞. This sequence involves averages of random variables that are non-independent

and non-identically distributed. An appropriate law of large numbers (LLN) for such sequences is

that of McLeish (1975). Consider a probability space (Ω,F , P ), a sequence {Ft}t∈Z of σ-algebras,

and a sequence {Ut}t≥1 of random variables. The pair ({Ft}t∈Z, {Ut}t≥1) is a mixingale (McLeish,

Definition 1.2, p.830) if and only if there exist sequences {ct}t≥1 and {ψm}m≥0 of nonnegative

constants, with limm→∞ ψm = 0, such that for all t ≥ 1 and m ≥ 0:

‖Et−mUt‖2 ≤ ψmct, (A.18)

‖Ut − Et+mUt‖2 ≤ ψm+1ct, (A.19)
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where ‖.‖2 denotes the L2 norm, and Et′Ut the expectation of Ut conditional on Ft′ . McLeish’s

LLN (Corollary 1.9, p.832) states that if ({Ft}t∈Z, {Ut}t≥1) is a mixingale, then

lim
t→∞

1
t

t∑
t′=1

Ut′ = 0

almost surely, provided that
∑∞

t=1 c
2
t /t

2 < ∞ and
∑∞

m=1 ψm < ∞. In our model, we take the

probability measure to be the true measure, and define the sequence {Ft}t∈Z as follows: Ft = {Ω, ∅}
for t ≤ 0, and Ft is the σ-algebra generated by {ζt′}t′=1,..,t for t ≥ 1. Moreover, we set Ut ≡ ζ2

t −σ2
s,t

when k = 0, and Ut ≡ ζtζt+k when k ≥ 1. Since the sequence {ζt}t≥1 is independent, we have

Et−mUt = 0 for m ≥ 1. We also trivially have Et+mUt = Ut for m ≥ k. Therefore, when k = 0,

(A.18) and (A.19) hold with ψ0 = 1, ψm = 0 for m ≥ 1, and ct = supt≥1 ‖ζ2
t − σ2

s,t‖2 for t ≥ 1.

McLeish’s LLN implies that

lim
t→∞S0,t = lim

t→∞
1
t

t∑
t′=1

(
Ut′ + σ2

s,t′
)

= lim
t→∞

∑t
t′=1 σ

2
s,t′

t
= lim

t→∞σ2
s,t = σ2

s (A.20)

almost surely. When k ≥ 1, (A.18) and (A.19) hold with ψm = 1 for m = 0, .., k − 1, ψm = 0 for

m ≥ k, and ct = supt≥1 ‖ζt‖2
2 for t ≥ 1. McLeish’s LLN implies that

lim
t→∞Sk,t = lim

t→∞
1
t

t∑
t′=1

Ut′ = 0 (A.21)

almost surely. Finally, a straightforward application of McLeish’s LLN to the sequence Ut ≡ ζt

implies that

lim
t→∞

1
t

t∑
t′=1

ζt′ = 0 (A.22)

almost surely. Since N is countable, we can assume that (A.20), (A.21) for all k ≥ 1, and (A.22),

hold in the same measure-one set. In what follows, we consider histories in that set.

To determine the limit of the second term in (A.15), we write it as

1
t

t∑
t′=1

ζ2
t′

σ2
s,t′(p̃)︸ ︷︷ ︸

Xt

− 2
t

t∑
t′=1

ζt′ [st′(p̃) − st′ ]
σ2

s,t′(p̃)︸ ︷︷ ︸
Yt

+
1
t

t∑
t′=1

[st′(p̃) − st′ ]2

σ2
s,t′(p̃)︸ ︷︷ ︸

Zt

.

Since limt→∞ σ2
s,t(p̃) = σ2

s(p̃), we have

lim
t→∞Xt =

1
σ2

s(p̃)
lim
t→∞

1
t

t∑
t′=1

ζ2
t′ =

1
σ2

s(p̃)
lim
t→∞S0,t =

σ2
s

σ2
s(p̃)

. (A.23)
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Using (A.8), we can write Yt as

Yt = 2
∞∑

k=1

ψk,t +
2
t

t∑
t′=1

Nμ
t′

σ2
s,t′(p̃)

ζt′(μ̃− μ),

where the double sequence {ψk,t}k,t≥1 is defined by

ψk,t ≡
{

1
t

∑t
t′=k+1

et′,t′−k

σ2
s,t′ (p̃)

ζt′ζt′−k for k = 1, .., t− 1,

0 for k > t− 1.

Since limt→∞ et,t−k = ek and limt→∞Nμ
t = Nμ, we have

lim
t→∞ψk,t =

ek
σ2

s(p̃)
lim
t→∞

1
t

t∑
t′=k+1

ζt′ζt′−k =
ek

σ2
s(p̃)

lim
t→∞Sk,t = 0,

lim
t→∞

1
t

t∑
t′=1

Nμ
t′

σ2
s,t′(p̃)

ζt′(μ̃− μ) =
Nμ

σ2
s(p̃)

(μ̃− μ) lim
t→∞

1
t

t∑
t′=1

ζt′ = 0.

The dominated convergence theorem will imply that

lim
t→∞Yt = 2 lim

t→∞

∞∑
k=1

ψk,t = 2
∞∑

k=1

lim
t→∞ψk,t = 0 (A.24)

if there exists a sequence {ψk}k≥1 such that
∑∞

k=1 ψk <∞ and |ψk,t| ≤ ψk for all k, t ≥ 1. Such a

sequence can be constructed by the same argument as for φk,t (Lemma 3) since

∣∣∣∣∣1t
t∑

t′=k+1

ζt′ζt′−k

∣∣∣∣∣ ≤ 1
t

t∑
t′=k+1

|ζt′ | |ζt′−k| ≤
√√√√1
t

t∑
t′=k+1

ζ2
t′

√√√√1
t

t∑
t′=k+1

ζ2
t′−k ≤ sup

t≥1
S0,t <∞,

where the last inequality holds because the sequence S0,t is convergent.

Using similar arguments as for Yt, we find

lim
t→∞Zt =

σ2
s

σ2
s(p̃)

∞∑
k=1

e2k +
(Nμ)2

σ2
s(p̃)

(μ̃− μ)2 =
e(p̃)
σ2

s(p̃)
. (A.25)

The theorem follows from (A.15), (A.17), (A.23), (A.24), and (A.25).

Proof of Lemma 1: We first show that the set m(P ) is non-empty. Eq. (A.16) implies that

when σ̃2
η or σ̃2

ω go to ∞, σ2
s(p̃) goes to ∞ and F (p̃) goes to −∞. Therefore, we can restrict the
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maximization of F (p̃) to bounded values of (σ̃2
η, σ̃

2
ω). Eq. (20) implies that

Nμ = 1 − C̃(I − D̃)−1G̃ = 1 − C̃(I − Ã+ G̃C̃)−1G̃.

Replacing Ã and C̃ by their values, and denoting the components of G̃ by G̃1 and G̃2, we find

Nμ = 1 − C̃(I − Ã+ G̃C̃)−1G̃ =
(1 − ρ̃)(1 − δρ̃ + αρ̃)

[1 − ρ̃(1 − G̃1)](1 − δρ̃ + αρ̃) − αρ̃(1 − ρ̃)G̃2

. (A.26)

Since αρ̃, δρ̃ ∈ [0, 1) and ρ̃ ∈ [0, ρ], Nμ 	= 0. Therefore, when |μ̃| goes to ∞, Lemma 3 implies

that e(p̃) goes to ∞ and F (p̃) goes to −∞. This means that we can restrict the maximization of

F (p̃) to bounded values of μ̃, and thus to a compact subset of P . We can also assume that F (p̃)

is continuous in that subset since the only point of discontinuity is for σ2
s(p̃) = 0, in which case

F (p̃) = −∞. Therefore, F (p̃) has a maximum and the set m(P ) is non-empty.

To show that the measure πt converges weakly to a measure giving weight only to m(P ), it

suffices to show that for all closed sets S having zero intersection with m(P ), πt(S) goes to zero.

(Billingsley, Theorem 29.1, p.390) The maximum FS of F (p̃) over S is the same as in a compact

subset of S and is thus smaller than the value of F (p̃) in m(P ). Consider a compact neighborhood

B of a point in m(P ) such that the minimum FB of F (p̃) over B exceeds FS . Consider also two

constants (F1, F2) such that FB > F2 > F1 > FS . For large enough t,

min
p̃∈B

logLt(Ht|p̃)
t

> F2. (A.27)

Indeed, if (A.27) does not hold, there exists a convergent sequence {p̃t}t≥1 in B such that

logLt(Ht|p̃t)
t

≤ F2.

Denoting the limit of this sequence by p̃ ∈ B, Theorem 1 implies that F (p̃) ≤ F2, a contradiction.

(Theorem 1 concerns the convergence of the likelihood for a given p̃, but extending the argument

to a convergent sequence {p̃t}t≥1 is straightforward.) Likewise, we can show that for large enough

t,

max
p̃∈S

logLt(Ht|p̃)
t

< F1. (A.28)

Bayes’ law, (A.27), and (A.28) imply that for large enough t,

πt(S) =
Eπ0

[
Lt(Ht|p̃)1{p̃∈S}

]
Eπ0 [Lt(Ht|p̃)] <

Eπ0

[
Lt(Ht|p̃)1{p̃∈S}

]
Eπ0

[
Lt(Ht|p̃)1{p̃∈B}

] < exp(tF1)π0(S)
exp(tF2)π0(B)

.

Since F2 > F1, πt(S) goes to zero when t goes to ∞.
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Proof of Lemma 2: Consider p̃ ∈ P such that e(p̃) = e(P ) and σ2
s(p̃) = σ2

s + e(p̃). We will show

that F (p̃) ≥ F (p̂) for any p̂ = (σ̂2
η, ρ̂, σ̂

2
ω, μ̂) ∈ P . Denote by Σ̂ and Ĝ the steady-state variance and

regression coefficient for the recursive-filtering problem under p̂, and by Σ̂λ and Ĝλ those under

p̂λ ≡ (λσ̂2
η, ρ̂, λσ̂

2
ω, μ̂) for λ > 0. It is easy to check that λΣ̂ solves Equation (13) for p̂λ. Since this

equation has a unique solution, Σ̂λ = λΣ̂. Equation (12) then implies that Ĝλ = Ĝ, and Equations

(17) and (A.16) imply that e(p̂λ) = e(p̂) and σ2
s(p̂λ) = λσ2

s(p̂). Therefore,

F (p̂λ) = −1
2

[
log

[
2πλσ2

s(p̂)
]
+
σ2

s + e(p̂)
λσ2

s(p̂)

]
. (A.29)

Since this function is maximized for

λ∗ =
σ2

s + e(p̂)
σ2

s(p̂)
,

we have

F (p̂) ≤ F (p̂λ∗) = −1
2
[
log

[
2π
[
σ2

s + e(p̂)
]]

+ 1
] ≤ −1

2
[
log

[
2π
[
σ2

s + e(p̃)
]]

+ 1
]

= F (p̃).

The proof of the converse is along the same lines.

Lemma A.2 determines when a model can predict the signals equally well as the true model.

Lemma A.2 The error e(p̃) is zero if and only if

• C̃Ãk−1G̃ = CAk−1G for all k ≥ 1

• μ̃ = μ.

Proof: From Lemma 3 and Nμ 	= 0, it suffices to show that {ek}k≥1 = 0 is equivalent to C̃Ãk−1G̃ =

CAk−1G for all k ≥ 1. Setting ak ≡ C̃Ãk−1G̃− CAk−1G and

bk ≡ D̃k−1G̃+
k−1∑
k′=1

D̃k−1−k′
G̃CAk′−1G− Ãk−1G̃,

we have ek = C̃bk + ak for k ≥ 1. Simple algebra shows that

bk = D̃bk−1 − G̃ak−1.

Iterating between k and one, and using the initial condition b1 = 0, we find

bk = −
k−1∑
k′=1

D̃k−1−k′
G̃ak′ .

40



Therefore,

ek = −
k−1∑
k′=1

C̃D̃k−1−k′
G̃ak′ + ak. (A.30)

Eq. (A.30) implies that {ek}k≥1 = 0 if and only if {ak}k≥1 = 0.

Proof of Proposition 3: Tommy can achieve minimum error e(P0) = 0 by using the vector of

true parameters p. Since e(P0) = 0, Lemmas 2 and A.2 imply that p̃ ∈ m(P0) if and only if (i)

C̃Ãk−1G̃ = CAk−1G for all k ≥ 1, (ii) μ̃ = μ, and (iii) σ2
s(p̃) = σ2

s . Since α = 0 for Tommy, we can

write Condition (i) as

ρ̃kG̃1 = ρkG1. (A.31)

We can also write element (1,1) of (13) as

Σ̃11 =

[
ρ̃2Σ̃11 + (1 − ρ̃)2σ̃2

η

]
σ̃2

ω

ρ̃2Σ̃11 + (1 − ρ̃)2σ̃2
η + σ̃2

ω

, (A.32)

Σ11 =

[
ρ2Σ11 + (1 − ρ)2σ2

η

]
σ2

ω

ρ2Σ11 + (1 − ρ)2σ2
η + σ2

ω

, (A.33)

and the first element of (14) as

G̃1 =
ρ̃2Σ̃11 + (1 − ρ̃)2σ̃2

η

ρ̃2Σ̃11 + (1 − ρ̃)2σ̃2
η + σ̃2

ω

, (A.34)

G1 =
ρ2Σ11 + (1 − ρ)2σ2

η

ρ2Σ11 + (1 − ρ)2σ2
η + σ2

ω

, (A.35)

where the first equation in each case is for p̃ and the second for p. Using (A.12) and (A.16), we can

write Condition (iii) as

ρ̃2Σ̃11 + (1 − ρ̃)2σ̃2
η + σ̃2

ω = ρ2Σ11 + (1 − ρ)2σ2
η + σ2

ω. (A.36)

Suppose that ρσ2
η > 0, and consider p̃ that satisfies Conditions (i)-(iii). Eq. (A.35) implies

that G1 > 0. Since (A.31) must hold for all k ≥ 1, we have ρ̃ = ρ and G̃1 = G1. We next write

(A.32)-(A.35) in terms of the normalized variables s̃2η ≡ σ̃2
η/σ̃

2
ω, S̃11 ≡ Σ̃11/σ̃

2
ω, s2η ≡ σ2

η/σ
2
ω, and

S11 ≡ Σ11/σ
2
ω. Eqs. (A.32) and (A.33) imply that S̃11 = g(s̃2η) and S11 = g(s2η) for the same

function g. Eqs. (A.34), (A.35), and G̃1 = G1 then imply that s̃2η = s2η, and (A.36) implies that

σ̃2
ω = σ2

ω. Thus, p̃ = p.

Suppose next that ρσ2
η = 0, and consider p̃ that satisfies Conditions (i)-(iii). If ρ = 0, (A.31)

implies that ρ̃kG̃1 = 0, and (A.36) that ρ̃2Σ̃11 + (1 − ρ̃)2σ̃2
η + σ̃2

ω = σ2
η + σ2

ω. If σ2
η = 0, the same
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implications follow because Σ = 0 and G = [0, 1]′ from (13) and (14). Eq. ρ̃kG̃1 = 0 implies that

either ρ̃ = 0, or G̃1 = 0 in which case σ̃2
η = 0. If ρ̃ = 0, then σ̃2

η + σ̃2
ω = σ2

η + σ2
ω. If σ̃2

η = 0, then

σ̃2
ω = σ2

η + σ2
ω. Therefore, p̃ is as in the proposition. Showing that all p̃ in the proposition satisfy

Conditions (i)-(iii) is obvious.

Proof of Proposition 4: We determine the parameter vectors p̃ that belong to m(P0) and satisfy

e(p̃) = 0. From Lemmas 2 and A.2, these must satisfy (i) C̃Ãk−1G̃ = CAk−1G for all k ≥ 1, (ii)

μ̃ = μ, and (iii) σ2
s(p̃) = σ2

s . Since ρσ2
η = 0, we can write Condition (i) as

ρ̃kG̃1 − αρ̃(δρ̃ − αρ̃)k−1G̃2 = 0, (A.37)

and Condition (iii) as

C̃Σ̃C̃ ′ + Ṽ = σ2
η + σ2

ω. (A.38)

Using the definitions of (αρ̃, δρ̃), we can write (A.37) as

ρ̃k
[
G̃1 − α(δ − α)k−1G̃2

]
= 0. (A.39)

If ρ̃ 	= 0, (A.39) implies that G̃1 − α(δ − α)k−1G̃2 = 0 for all k ≥ 1, which in turn implies that

G̃ = 0. For G̃ = 0, (13) becomes Σ̃ = ÃΣ̃Ã′ + W̃ . Solving for Σ̃, we find

Σ̃11 =
(1 − ρ̃)σ̃2

η

1 + ρ̃
,

Σ̃12 = 0,

Σ̃22 =
σ̃2

ω

1 − (δρ̃ − αρ̃)2
.

Substituting Σ̃ into (14), we find (σ̃2
η, σ̃

2
ω) = 0. But then, Σ̃ = 0, which contradicts (A.38) since

σ2
ω = σ2

ε > 0. Therefore, ρ̃ = 0. Eq. (A.38) then implies that σ̃2
η + σ̃2

ω = σ2
η + σ2

ω. Showing that all

p̃ in the proposition satisfy Conditions (i)-(iii) is obvious.

Proof of Proposition 5: Consider a sequence {αn}n∈N converging to zero, and an element

p̃n ≡ ((σ̃2
η)n, ρ̃n, (σ̃2

ω)n, μ̃n) from the set m(Pρ) corresponding to αn. The proposition will follow if

we show that ( (s̃2
η)n

αn
, ρ̃n, (σ̃2

ω)n, μ̃n) converges to (z, ρ, σ2
ω, μ), where (s̃2η)n ≡ (σ̃2

η)n/(σ̃2
ω)n. Denoting

the limits of ( (s̃2
η)n

αn
, (σ̃2

η)n, ρ̃n, (σ̃2
ω)n, μ̃n) by (�s, �η, �ρ, �ω, �μ), the point (�η, �ρ, �ω, �μ) belongs to the

set m(Pρ) derived for α = σ2
η = 0. (If the sequences do not converge, we extract converging

subsequences.) All elements in that set satisfy μ̃ = μ. Proposition 3 implies that they also satisfy

σ̃2
η = 0 and σ̃2

ω = σ2
ω since ρ̃ ≥ ρ > 0. Therefore, �μ = μ, �η = 0, and �ω = σ2

ω.

When v ≡ (α, s̃2
η

α , σ̃
2
η, ρ̃, σ̃

2
ω) converges to �v ≡ (0, �s, 0, �ρ, σ2

ω), C̃D̃kG̃ converges to zero, G̃1
s̃2
η

to
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1−�ρ

1+�ρ
, and G̃2 to 1. These limits follow by continuity if we show that when α = σ̃2

η = 0, C̃D̃kG̃ = 0

and G̃2 = 1, and when α = 0, limσ̃2
η→0

G̃1
s̃2
η

= 1−ρ̃
1+ρ̃ . When σ̃2

η = 0, the unique solution of (13) is

Σ̃ = 0, and (14) implies that G̃ = [0, 1]′. Therefore, when α = σ̃2
η = 0, we have C̃G̃ = 0,

C̃D̃ = C̃(Ã− G̃C̃) = C̃Ã = ρ̃C̃,

and C̃D̃kG̃ = ρ̃kC̃G̃ = 0. Moreover, if we divide both sides of (A.32) and (A.34) (derived from (13)

and (14) when α = 0) by σ̃2
ω, we find

S̃11 =
ρ̃2S̃11 + (1 − ρ̃)2s̃2η

ρ̃2S̃11 + (1 − ρ̃)2s̃2η + 1
, (A.40)

G̃1 =
ρ̃2S̃11 + (1 − ρ̃)2s̃2η

ρ̃2S̃11 + (1 − ρ̃)2s̃2η + 1
. (A.41)

When σ̃2
η converges to zero, s̃2η and S̃11 converge to zero. Eqs. (A.40) and (A.41) then imply that

S̃11
s̃2
η

and G̃1
s̃2
η

converge to 1−ρ̃
1+ρ̃ .

Using the above limits, we find

lim
v→�v

C̃Ãk−1G̃

α
= lim

v→�v

ρ̃kG̃1 − αρ̃(δρ̃ − αρ̃)k−1G̃2

α

= lim
v→�v

ρ̃k

[
s̃2η
α

G̃1

s̃2η
− (δ − α)k−1G̃2

]
= �kρ

[
�s(1 − �ρ)

1 + �ρ
− δk−1

]
.

Eqs. (18), (A.30), limv→�v C̃D̃
kG̃ = 0, and Nk = CAkG = 0, imply that

lim
v→�v

ek
α

= lim
v→�v

Ñk

α
= lim

v→�v

C̃D̃k−1G̃

α
= lim

v→�v

ak

α
= lim

v→�v

C̃Ãk−1G̃

α
= �kρ

[
�s(1 − �ρ)

1 + �ρ
− δk−1

]
.

(A.42)

Since p̃n minimizes e(p̃n), (17) implies that ((σ2
η)n, ρ̃n, (σ2

ω)n) minimizes σ2
s(p̃)

∑∞
k=0 e

2
k. Since from

(A.42),

lim
v→�v

σ2
s(p̃)

∑∞
k=1 e

2
k

α2
= σ2

ω

∞∑
k=1

�2k
ρ

[
�s(1 − �ρ)

1 + �ρ
− δk−1

]2

≡ σ2
ωF (�s, �ρ),

(�s, �ρ) must minimize F . Treating F as a function of
(

�s(1−�ρ)
1+�ρ

, �ρ

)
, the minimizing value of the

second argument is clearly �ρ = ρ. The first-order condition w.r.t. the first argument is

∞∑
k=1

�2k
ρ

[
�s(1 − �ρ)

1 + �ρ
− δk−1

]
= 0,

and implies �s = z.
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Proof of Proposition 6: Eqs. (A.5) and (A.7) imply that in steady state

Ẽt−1(st) ≡ st(p̃) = μ̃+
∞∑

k=1

C̃D̃k−1G̃(st−k − μ̃).

Therefore,

Δ̃k =
k∑

k′=1

C̃D̃k′−1G̃.

Eq. (A.42) implies that

Δ̃k = αgk + o(α),

where

gk ≡
k∑

k′=1

fk′ ,

fk ≡ ρk

[
z(1 − ρ)
1 + ρ

− δk−1

]
.

Using (24) to substitute z, we find

f1 = g1 =
ρ3(δ − 1)
1 − ρ2δ

< 0,

g∞ = ρ

[
z

1 + ρ
− 1

1 − ρδ

]
=

ρ2(1 − δ)
(1 − ρ2δ)(1 − ρδ)

> 0.

The function fk is negative for k = 1 and positive for large k. Since it can change sign only once,

it is negative and then positive. The function gk is negative for k = 1, then decreases (fk < 0),

then increases (fk > 0), and is eventually positive (g∞ > 0). Therefore, gk is negative and then

positive.

Proof of Proposition 7: Consider a sequence {αn}n∈N converging to zero, an element p̃n ≡
((σ̃2

η)n, ρ̃n, (σ̃2
ω)n, μ̃n) from the set m(P0) corresponding to αn, and set (σ2

η)n ≡ ναnσ
2
ω. The propo-

sition will follow if we show that ( (s̃2
η)n

αn
, ρ̃n, (σ̃2

ω)n, μ̃n) converges to (z, r, σ2
ω, μ). Denoting the limits

of ( (s̃2
η)n

αn
, (σ̃2

η)n, ρ̃n, (σ̃2
ω)n, μ̃n) by (�s, �η, �ρ, �ω, �μ), the point (�η, �ρ, �ω, �μ) belongs to the set m(P0)

derived for α = σ2
η = 0. Proposition 3 implies that �μ = μ, �η = 0, and �ω = σ2

ω. The same

argument as in the proof of Proposition 5 implies that (�s, �ρ) must minimize the function

H(�s, �ρ) ≡
∞∑

k=1

[
�kρ

[
�s(1 − �ρ)

1 + �ρ
− δk−1

]
− ρk ν(1 − ρ)

1 + ρ

]2

.

44



Treating H as a function of
(

�s(1−�ρ)
1+�ρ

, �ρ

)
, the first-order condition w.r.t. the first argument is

∞∑
k=1

�kρ

[
�kρ

[
�s(1 − �ρ)

1 + �ρ
− δk−1

]
− ρk ν(1 − ρ)

1 + ρ

]
= 0 (A.43)

and w.r.t. the second is

∞∑
k=1

k�k−1
ρ

[
�s(1 − �ρ)

1 + �ρ
− δk−1

] [
�kρ

[
�s(1 − �ρ)

1 + �ρ
− δk−1

]
− ρk ν(1 − ρ)

1 + ρ

]
= 0. (A.44)

Computing the infinite sums, we can write (A.43) as

�s�ρ
(1 + �ρ)2

− �ρ
1 − �2ρδ

− νρ(1 − ρ)
(1 + ρ)(1 − ρ�ρ)

= 0 (A.45)

and (A.44) as

�s(1 − �ρ)
1 + �ρ

[
�s�ρ

(1 + �ρ)2(1 − �2ρ)
− �ρ

(1 − �2ρδ)2
− νρ(1 − ρ)

(1 + ρ)(1 − ρ�ρ)2

]

−
[

�s�ρ(1 − �ρ)
(1 + �ρ)(1 − �2ρδ)2

− �ρ
(1 − �2ρδ

2)2
− νρ(1 − ρ)

(1 + ρ)(1 − ρ�ρδ)2

]
= 0. (A.46)

Substituting �s from (A.45), we can write the first square bracket in (A.46) as

− νρ(1 − ρ)�ρ(ρ− �ρ)
(1 + ρ)(1 − ρ�ρ)2(1 − �2ρ)

+
�3ρ(1 − δ)

(1 − �2ρ)(1 − �2ρδ)

and the second as

νρ(1 − ρ)�ρ(ρ− �ρ)
[
1 − 2δ + (ρ+ �ρ)�ρδ2 − ρ�3ρδ

2
]

(1 + ρ)(1 − ρ�ρ)(1 − �2ρδ)2(1 − ρ�ρδ)2
− �3ρ(1 − δ)

[
1 − 2δ + �2ρ(1 + δ)δ2 − �4ρδ

3
]

(1 − �2ρδ)3(1 − �2ρδ
2)2

.

We next substitute �s from (A.45) into the term �s(1−�ρ)
1+�ρ

that multiplies the first square bracket in

(A.46). Grouping terms, we can write (A.46) as

−νρ(1 − ρ)(ρ− �ρ)
(1 + ρ)(1 − ρ�ρ)2

H1(�ρ) +
�2ρ(1 − δ)
(1 − �2ρδ)2

H2(�ρ) = 0. (A.47)

Eq. (A.47) coincides with (26) when �ρ = r. To show that (A.47) has a solution, we note that

H1(�ρ), H2(�ρ) > 0 for �ρ ∈ [0, ρ] because

2 − ρ�ρ(1 + δ) − �2ρδ + ρ2�4ρδ
2 > 0, (A.48)

2 − �2ρδ
2 − �4ρδ

3 > 0. (A.49)
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(To show (A.48) and (A.49), we use ρ, δ < 1. For (A.48) we also note that the left-hand side (LHS)

is decreasing in δ and positive for δ = 1.) Since H1(�ρ), H2(�ρ) > 0, the LHS of (A.47) is negative

for �ρ = 0 and positive for �ρ = ρ. Therefore, there exists a solution �ρ = r in (0, ρ). Moreover,

there does not exist a solution in (ρ, ρ] because the LHS is positive. Substituting �ρ = r into (A.45),

we find �s = z.

Proof of Proposition 8: Proceeding as in the proof of Proposition 6, we find

Δ̃k − Δk = αgk + o(α),

where

gk ≡
k∑

k′=1

fk′ ,

fk ≡ rk

[
z(1 − r)
1 + r

− δk−1

]
− ρk ν(1 − ρ)

1 + ρ
. (A.50)

The proposition will follow if we show that f1 = g1 < 0 and g∞ < 0. Indeed, suppose that

f1 = g1 < 0. Since r < ρ, fk is negative for large k. Moreover, (A.43) can be written for

(�s, �ρ) = (z, r) as
∞∑

k=1

rkfk = 0, (A.51)

implying that fk has to be positive for some k. Since fk can change sign at most twice (because

the derivative of fk/ρ
k can change sign at most once, implying that fk/ρ

k can change sign at most

twice), it is negative, then positive, and then negative again. The function gk is negative for k = 1,

then decreases (fk < 0), then increases (fk > 0), and then decreases again (fk < 0). If g∞ < 0,

then gk can either be (i) always negative or (ii) negative, then positive, and then negative again.

To rule out (i), we write (A.51) as

g1r +
∞∑

k=2

(gk − gk−1) rk = 0 ⇔
∞∑

k=1

gk

(
rk − rk+1

)
= 0.

We next show that f1 = g1 < 0 and g∞ < 0. Substituting z from (25), we find

f1 = g1 =
zr(1 − r)

1 + r
− r − νρ(1 − ρ)

1 + ρ
=
ρr(ρ− r)(1 − ρ)(ν − ν1)

(1 + ρ)(1 − ρr)
,

g∞ =
zr

1 + r
− r

1 − rδ
− νρ

1 + ρ
=
ρ(ρ− r)(ν∞ − ν)
(1 + ρ)(1 − ρr)

,
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where

ν1 ≡ (1 + ρ)(1 − ρr)r2(1 − δ)
ρ(ρ− r)(1 − ρ)(1 − r2δ)

ν∞ ≡ (1 + ρ)(1 − ρr)r2(1 − δ)
ρ(ρ− r)(1 − r2δ)(1 − rδ)

.

We thus need to show that ν1 > ν > ν∞. These inequalities will follow if we show that when ν is

replaced by ν1 (resp. ν∞) in (26), the LHS becomes larger (resp. smaller) than the RHS. To show

these inequalities, we make use of 0 < r < ρ < 1 and 0 ≤ δ < 1. The inequality for ν1 is

(ρ− rδ)r2

(ρ− r)(1 − ρr)(1 − r2δ)
+

Y1

(1 − ρr)(1 − ρrδ)2(1 − r2δ2)2(1 − r2δ)
> 0, (A.52)

where

Y1 = (1 − r2δ2)2
[
2 − ρr(1 + δ) − r2δ + ρ2r4δ2

]− (1 − ρr)(1 − ρrδ)2(2 − r2δ2 − r4δ3).

Since ρ > r > rδ, (A.52) holds if Y1 > 0. Algebraic manipulations show that Y1 = (ρ − rδ)rZ1,

where

Z1 ≡ (2 − r2δ2 − r4δ3)
[
δ(1 − r2δ)(2 − r2δ2 − ρrδ) + (1 − ρrδ)2

]
−(1 − r2δ2)2

[
1 + δ − (ρ+ rδ)r3δ2

]
.

Since 2 − r2δ2 − r4δ3 > 2(1 − r2δ2), inequality Z1 > 0 follows from

2
[
δ(1 − r2δ)(2 − r2δ2 − ρrδ) + (1 − ρrδ)2

]− (1 − r2δ2)
[
1 + δ − (ρ+ rδ)r3δ2

]
> 0. (A.53)

To show (A.53), we break the LHS into

2δ(1 − r2δ)(1 − r2δ2) − (1 − r2δ2)(δ − r4δ3) = δ(1 − r2δ2)(1 − r2δ)2 > 0

and

2
[
δ(1 − r2δ)(1 − ρrδ) + (1 − ρrδ)2

]− (1 − r2δ2)(1 − ρr3δ2). (A.54)

Eq. (A.54) is positive because of the inequalities

2(1 − ρrδ) > 1 − r2δ2,

δ(1 − r2δ) + 1 − ρrδ > 1 − ρr3δ2.
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The inequality for ν∞ is

− (ρ− rδ)(1 − ρ)(1 − r)r
(ρ− r)(1 − ρr)(1 − r2δ)(1 − rδ)2

+
Y∞

(1 − ρr)(1 − ρrδ)2(1 − r2δ)(1 − r2δ2)2(1 − rδ)
< 0, (A.55)

where

Y∞ = (1− ρ)(1− r2δ2)
[
2 − ρr(1 + δ) − r2δ + ρ2r4δ2

]− (1− ρr)(1− ρrδ)2(1− rδ)(2− r2δ2 − r4δ3).

Algebraic manipulations show that Y∞ = −(ρ− rδ)Z∞, where

Z∞ ≡ (2 − r2δ2 − r4δ3)
[
(1 − ρrδ)2(1 − r) − (1 − ρ)rδ(1 − r2δ)(2 − r2δ2 − ρrδ)

]
+(1 − ρ)r(1 − r2δ2)2

[
1 + δ − (ρ+ rδ)r3δ2

]
.

To show that Z∞ > 0, we break it into

(2 − r2δ2 − r4δ3)
[
(1 − ρrδ)2(1 − r) − (1 − ρ)rδ(1 − r2δ)(1 − ρrδ)

]
> (2 − r2δ2 − r4δ3)(1 − ρrδ)

[
(1 − ρrδ)(1 − r) − (1 − ρ)(1 − r2δ)

]
= (2 − r2δ2 − r4δ3)(1 − ρrδ)(ρ− r)(1 − rδ) > 0

and

(1 − ρ)r(1 − r2δ2)2
[
1 + δ − (ρ+ rδ)r3δ2

]− (2 − r2δ2 − r4δ3)(1 − ρ)rδ(1 − r2δ)(1 − r2δ2)

= (1 − ρ)r(1 − r2δ2)
[
(1 − r2δ2)

[
1 + δ − (ρ+ rδ)r3δ2

]− (2 − r2δ2 − r4δ3)δ(1 − r2δ)
]
.

Since 2 − r2δ2 − r4δ3 < 2 − r2δ2 − r4δ4 = (1 − r2δ2)(2 + r2δ2), the last square bracket is greater

than

(1 − r2δ2)
[
1 + δ − (ρ+ rδ)r3δ2 − δ(1 − r2δ)(2 + r2δ2)

]
= (1 − r2δ2)

[
(1 − δ)(1 − r4δ3) + r2δ2(2 − δ − ρr)

]
> 0.

Proof of Proposition 9: Eqs. (A.6) and (A.7) imply that in steady state

Ẽt−1(st) ≡ st(p̃) =
∞∑

k=1

Ñkζt−k + μ̃+
∞∑

k=1

C̃D̃k−1G̃(μ− μ̃).
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Therefore,

Ẽt(st+1) − Ẽt−1(st) =
∞∑

k=1

(Ñk − Ñk−1)ζt−k,

where Ñ0 ≡ 0. Since the sequence {ζt}t∈Z is i.i.d. and normal with mean zero and variance σ2
s ,

the variable Ẽt(st+1)− Ẽt−1(st) is normal with mean zero and variance σ2
s

∑∞
k=1(Ñk − Ñk−1)2. Eq.

(30) then follows from (29) and the fact that for a normal variable γ with mean zero and variance

σ2, E(|γ|) =
√

2
πσ .

Suppose that σ2
η = 0 and Freddy has prior knowledge that ρ̃ ≥ ρ for ρ ∈ (0, ρ]. Since Nk = 0

for all k ≥ 1, (30) implies that Q = 0. To show that Q̃ > 0, suppose instead that Q̃ = 0. Eq. (30)

then implies that Ñk = 0 for all k ≥ 1, Lemma A.2 implies that C̃Ãk−1G̃ = 0 for all k ≥ 1, and

Proposition 4 implies that ρ̃ = 0, a contradiction.

Suppose next that ρ > 0 and Freddy has no prior knowledge. Eq. (A.42) implies that

Ñk − Ñk−1 = αh̃k + o(α),

where

h̃k ≡ rk

[
z(1 − r)
1 + r

− δk−1

]
− rk−1

[
z(1 − r)
1 + r

− δk−2

]
= −rk−1

[
z(1 − r)2

1 + r
− δk−2(1 − rδ)

]

for k ≥ 2, and

h̃1 ≡ r

[
z(1 − r)
1 + r

− 1
]
.

Substituting into (30), we find

Q̃ =

√
2
π

α

aσs

√√√√ ∞∑
k=1

h̃2
k + o(α).

The same equation holds for Tommy by omitting the tildes and setting

hk ≡ ρk ν(1 − ρ)
1 + ρ

− ρk−1 ν(1 − ρ)
1 + ρ

= −ρk−1 ν(1 − ρ)2

1 + ρ

for k ≥ 2, and

h1 ≡ ρ
ν(1 − ρ)

1 + ρ
.
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Therefore, for small α and σ2
η, inequality Q̃ > Q is equivalent to

∞∑
k=1

h̃2
k >

∞∑
k=1

h2
k

⇔ z2r2(1 − r)2

(1 + r)3
+

r2

1 + rδ
− zr2(1 − r)(2 − r − rδ)

(1 + r)(1 − r2δ)
>
ν2ρ2(1 − ρ)2

(1 + ρ)3
. (A.56)

Substituting z from (25) and grouping terms in ν2, ν, and 1, we can write (A.56) as RQ > 0 where

RQ ≡ ν2ρ2(ρ− r)(1 − ρ)2(1 + r − r2 − ρr2)
(1 + ρ)3(1 − ρr)2

− νρr2(1 − ρ)(1 − r2)(1 − δ)
(1 + ρ)(1 − ρr)(1 − r2δ)

+
r4(1 − δ)2

(1 − r2δ)2(1 + rδ)
.

(A.57)

When ν is small, (26) implies that

r ≈
√

νρ2(1 − ρ)
(1 + ρ)(1 − δ)

. (A.58)

Substituting into (A.57), we find

RQ ≈ ν2ρ5(1 − ρ)2

(1 + ρ)3
> 0.

When ν is large, (26) implies that r ≈ ρ and

ρ− r ≈ ρ(1 + ρ)2(1 − ρ2)(1 − δ)
ν(1 − ρ2δ)2

. (A.59)

Substituting into (A.57), we find

RQ ≈ −νρ
5(1 − ρ)(1 − δ)2

(1 + ρ)(1 − ρ2δ)2
< 0.

Therefore, Q̃ > Q for small ν, and Q̃ < Q for large ν.

Proof of Proposition 10: The maximum in (27) is

Ũ1(W̃t−1, Ẽt−1(st)) = − exp

[
−a(1 + r)W̃t−1 − (Ẽt−1(st) − r)2

2Ṽ ar1

]
(A.60)

and the maximum when Freddy observes signals up to Period t− k only is

Ũk(W̃t−1, Ẽt−k(st)) = − exp

[
−a(1 + r)W̃t−1 − (Ẽt−k(st) − r)2

2Ṽ ark

]
. (A.61)
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Eqs. (31), (A.60), and (A.61) imply that

exp
[
a(1 + r)Ĩk

]
Ẽt−k−1

{
exp

[
−(Ẽt−1(st) − r)2

2Ṽ ar1

]}
= exp

[
−(Ẽt−k−1(st) − r)2

2Ṽ ark+1

]
. (A.62)

To compute the expectation in (A.62), we write the term inside the square bracket as −γ2

2 , where

γ ≡ Ẽt−1(st) − r√
Ṽ ar1

.

When Freddy observes signals up to Period t− k − 1, he takes γ to be normal with mean

μγ ≡ Ẽt−k−1(st) − r√
Ṽ ar1

and variance

σ2 ≡ Ṽ art−k−1(Ẽt−1(st))
Ṽ ar1

=
Ṽ art−k−1(st) − Ẽt−k−1(Ṽ art−1(st))

Ṽ ar1
=
Ṽ ark+1 − Ṽ ar1

Ṽ ar1
. (A.63)

Since for a normal variable γ with mean μγ and variance σ2,

E exp
(
−γ

2

2

)
=

1√
1 + σ2

exp

(
− μ2

γ

2(1 + σ2)

)
,

we have

Ẽt−k−1

{
exp

[
−(Ẽt−1(st) − r)2

2Ṽ ar1

]}
=

√
Ṽ ar1

Ṽ ark+1

exp

[
−(Ẽt−k−1(st) − r)2

2Ṽ ark+1

]
.

Substituting into (A.62), we find the first equality in (32). To derive the second equality, we note

from (A.63) that

Ṽ ark+1 = Ṽ ar1 + Ṽ art−k−1(Ẽt−1(st)). (A.64)

We next define the sequence {ζ̃t}t∈Z of surprises according to Freddy by ζ̃t ≡ st − Ẽt−1(st). Same

calculations as for Tommy in Lemma A.1 imply that in steady state

Ẽt−1(st) =
∞∑

k=1

C̃Ãk−1G̃ζ̃t−k.

Therefore,

Ṽ art−k−1(Ẽt−1(st)) = Ṽ art−k−1

(
k∑

k′=1

C̃Ãk′−1G̃ζ̃t−k′

)
=

k∑
k′=1

(C̃Ãk−1G̃)2Ṽ ar1, (A.65)
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where the last step is because Freddy views the sequence {ζ̃t}t∈Z as i.i.d. with variance Ṽ ar1 =

σ2
s(p̃). Combining (A.64) and (A.65) establishes the second inequality in (32).

Suppose that σ2
η = 0 and Freddy has prior knowledge that ρ̃ ≥ ρ for ρ ∈ (0, ρ]. Since Nk = 0

for all k ≥ 1, (32) implies that Ik = 0 for all k ≥ 1. To show that Ĩk > 0 for all k ≥ 2, it suffices to

show that Ĩ2 > 0. If Ĩ2 = 0, then C̃G̃ = 0 and C̃ÃG̃ = 0. Proceeding as in the proof of Proposition

4, we can show that ρ̃ = 0, a contradiction.

Suppose next that ρ > 0 and Freddy has no prior knowledge. Eqs. (32) and (A.42) imply that

Ĩk =
α2

2a(1 + r)

k∑
k′=1

r2k′
[
z(1 − r)
1 + r

− δk′−1

]2

+ o(α2). (A.66)

Likewise,

Ik =
α2

2a(1 + r)

k∑
k′=1

ρ2k′ ν2(1 − ρ)2

(1 + ρ)2
+ o(α2). (A.67)

Therefore, for small α and σ2
η,

Ĩk > Ik ⇔
k∑

k′=1

[
rk′

[
z(1 − r)
1 + r

− δk′−1

]
+ ρk′ ν(1 − ρ)

1 + ρ

]
fk′ > 0, (A.68)

for fk defined in (A.50). Recall from Proposition 8 that fk is negative in an interval k ∈ {1, .., k0−1},
becomes positive in an interval k ∈ {k0, .., k1}, and becomes negative again for k ∈ {k1 + 1, ..}.
Since fk < 0 in {k1 + 1, ..}, (A.51) implies that

k1∑
k=1

rkfk = −
∞∑

k=k1+1

rkfk > 0.

Since fk < 0 in {1, .., k0}, fk > 0 in k ∈ {k0 + 1, .., k1}, and 0 < r < ρ,

k1∑
k=1

ρkfk = ρk0

k1∑
k=1

ρk−k0fk > ρk0

k1∑
k=1

rk−k0fk =
ρk0

rk0

k1∑
k=1

rkfk. (A.69)

Likewise, since 0 ≤ δ < 1,

k1∑
k=1

rkδk−1fk = δk0−1
k1∑

k=1

rkδk−k0fk < δk0−1
k1∑

k=1

rkfk. (A.70)
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Eqs (A.68), (A.69), and (A.70) imply that Ĩk1 > Ik1 if

1
rk0

[
rk0

[
z(1 − r)
1 + r

− δk0−1

]
+ ρk0

ν(1 − ρ)
1 + ρ

]( k1∑
k=1

rkfk

)
> 0.

This inequality holds because of (A.68) and

rk0

[
z(1 − r)
1 + r

− δk0−1

]
+ ρk0

ν(1 − ρ)
1 + ρ

= fk0 + 2ρk0
ν(1 − ρ)

1 + ρ
> 0.

Computing the sums in (A.66) and (A.67), we find that Ĩ∞ > I∞ is equivalent to

z2r2(1 − r)
(1 + r)3

+
r2

1 − r2δ2
− 2zr2(1 − r)

(1 + r)(1 − r2δ)
>
ν2ρ2(1 − ρ)

(1 + ρ)3
. (A.71)

Substituting z from (25) and grouping terms in ν2, ν, and 1, we can write (A.71) as RI > 0 where

RI ≡ −ν
2ρ2(ρ− r)2(1 − ρ)
(1 + ρ)3(1 − ρr)2

+
r4(1 − δ)2

(1 − r2δ2)(1 − r2δ)2
. (A.72)

To evaluate RI for small ν, we substitute (A.58) into (A.72) and find

RI ≈ −ν
2ρ6(1 − ρ)
(1 + ρ)3

< 0.

To evaluate RI for large ν, we substitute (A.59) into (A.72) and find

RI ≈ ρ6(1 − δ)4

(1 − ρ2δ)4(1 − ρ2δ2)
> 0.

Therefore, Ĩ∞ < I∞ for small ν, and Ĩ∞ > I∞ for large ν.

B Calibration

We calibrate the length of a period based on how frequently fund returns are recorded and reported

to investors. We consider four frequencies: monthly (number T of periods in a year equal to 12),

quarterly (T = 4), semi-annual (T = 2), and annual (T = 1). We assume that 85% of managerial

ability carries over to the next year, and calibrate ρ through ρT = 0.85. This is consistent with

Cohen, Frazzini and Malloy (2007), who report that 14% of mutual funds change their managers in

a given year. Larger values of ρ would strengthen our results. We calibrate σ2
η/σ

2
ω through the ratio

of variances of fund alpha to fund return. To express variances on an annual basis, we assume that

annual return is the sum of returns in each of the T periods, i.e.,
∑T

t=1 st, and the same applies
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to annual alpha, i.e.,
∑T

t=1 θt. Using (1) and (2), we find that the ratio of unconditional annual

variances is
V ar

(∑T
t=1 θt

)
V ar

(∑T
t=1 st

) =
σ2

η

[
T − 2ρ(1−ρT )

1−ρ2

]
σ2

η

[
T − 2ρ(1−ρT )

1−ρ2

]
+ σ2

ωT
.

We assume that the annual standard deviation of fund returns is 20% and that of alpha is 4%.

Replacing 20% by a larger value and 4% by a smaller value would strengthen our results. Finally,

we use the calibration of Section 2 for the parameters of the gambler’s fallacy, setting α = 0.2 and

δ = 0.7. Table 2 reports Freddy’s average flow relative to Tommy.

Number of periods in a year (T ) 12 4 2 1

Relative fund flows (Q̃/Q) 1.645 1.528 1.285 1.029

Table 2: Freddy’s average flow relative to Tommy.
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