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Abstract. We model a regression density �exibly so that at each value of the co-

variates the density is a mixture of normals with the means, variances and mixture

probabilities of the components changing smoothly as a function of the covariates.

The model extends existing models in two important ways. First, the components are

allowed to be heteroscedastic regressions as the standard model with homoscedastic

regressions can give a poor �t to heteroscedastic data, especially when the number of

covariates is large. Furthermore, we typically need a lot fewer heteroscedastic compo-

nents, which makes it easier to interpret the model and speeds up the computation.

The second main extension is to introduce a novel variable selection prior into all the

components of the model. The variable selection prior acts as a self-adjusting mecha-

nism that prevents over�tting and makes it feasible to �t high-dimensional nonpara-

metric surfaces. We use Bayesian inference and Markov Chain Monte Carlo methods

to estimate the model. Simulated and real examples are used to show that the full

generality of our model is required to �t a large class of densities.

Keywords: Bayesian inference, Markov Chain Monte Carlo, Mixture of Experts,

Nonparametric estimation, Splines, Value-at-Risk, Variable selection.

JEL: C11, C50.

1. Introduction

Nonlinear and nonparametric regression models are widely used in statistics (see e.g.

Ruppert, Wand and Carroll (2003)), and are increasingly used in econometrics. Our

article considers the general problem of nonparametric regression density estimation,

i.e., estimating the whole predictive density while making relatively few assumptions

about its functional form and how that functional form changes across the space of

covariates. This is an important problem in empirical economics, e.g. in the analysis of

�nancial data where accurate estimation of the left tail probability is often the �nal goal
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of the analysis (Geweke and Keane, 2007), but also in many other areas, such as machine

learning (Bishop, 2006), where the predictive density is typically highly nonlinear and

multimodal.

Our approach generalizes the popular �nite mixture of Gaussians model (McLachlan

and Peel, 2000) to the regression density case. Our model extends the Mixture-of-

Experts (ME) model (Jacobs, Jordan, Nowlan and Hinton (1991); Jordan and Jacobs

(1994)), which has been frequently used in the machine learning literature to �exibly

model the mean regression. This model is called Smoothly Mixing Regression (SMR) in

econometrics (Geweke and Keane, 2007). The SMR model is a mixture of regressions

where the mixing probabilities are functions of the covariates which partition the space

using stochastic (soft) boundaries.

The early machine learning literature used SMRs with many simple component re-

gressions (constant or linear). Some recent statistical/econometric literature takes the

opposite approach of using a small number of more complex component regressions.

The most common approach has been to use basis expansion methods (polynomials,

splines) to allow for nonparametric component regressions, see e.g. Wood, Jiang and

Tanner (2002) and Geweke and Keane (2007). One motivation of the few-but-complex

approach comes from a growing awareness that mixture models can be quite challenging

to estimate and interpret, especially when the number of mixture components is large

(Celeux, Hurn and Robert (2000), Geweke (2007)). It is then sensible to make each of

the components very �exible and to use extra components only when they are required.

Jiang and Tanner (1999a,b) prove that a smooth mixture of su¢ ciently many linear

regressions can approximate essentially any function or a single density. Similarly, it

is expected that the SMR should in principle be able to �t heteroscedastic data if

the number of mixed regressions is large enough, but it is unlikely to be the most

e¢ cient model for that situation. Simulations in Section 3 show that this model can

have di¢ culties in modelling heteroscedastic data, and that its predictive performance

quickly deteriorates as the number of covariates grows. If the component regressions

themselves are heteroscedastic, we would clearly need fewer of them.

Our article generalizes the SMR model by using Gaussian heteroscedastic regression

components with the three parts of each component, i.e. the means, variances and the

mixing probabilities, functions of the covariates. In the most general form of our model

each of these three parts is modelled �exibly using spline basis function expansions. We

take a Bayesian approach to inference with a prior that allows for variable selection

among the covariates in the mean, variance and mixing probabilities. When using

splines, the centering of the spline basis functions (knots) are therefore determined
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automatically from the data as in Smith and Kohn (1996), Denison, Mallick and Smith

(1998) and Dimatteo, Genovese and Kass (2001). This is particularly important in soft

partition models as it allows the estimation method to automatically downweight or

remove basis functions from a regression in the region where the component regression

has small probability. Such basis functions are otherwise poorly identi�ed and may

cause instability in the estimation and over�tting. In particular, variable selection

makes the Metropolis-Hastings (MH) steps computationally tractable by reducing the

e¤ective number of parameters at each iteration. The variable selection prior we use for

the component means and variances is novel because it takes into account the mixing

probability of a component regression when deciding whether to include a basis function

in that component. The variable selection prior is very e¤ective at simplifying the model

and in particular allows us to reach the linear homoscedastic model if such a model is

warranted. Section 3 illustrates the methods using real and simulated examples which

show that each aspect of our model may be necessary to obtain a satisfactory and

interpretable �t of the predictive distribution. We use the cross-validated log of the

predictive density for model comparison and for selecting the number of components in

the model to reduce sensitivity to the prior.

The �rst Bayesian paper on smooth mixtures is Peng, Jacobs and Tanner (1996) who

used the random walk Metropolis algorithm to sample from the posterior. Wood et al.

(2002) and Geweke and Keane (2007) propose more elaborate extensions of this model

and device more e¢ cient inferential algorithms. Leslie, Kohn and Nott (2007) propose

a model of the conditional regression density using a Dirichlet Process (DP) mixture

prior whose components do not depend on the covariates. Green and Richardson (2001)

discuss the close relationship between �nite mixture models and DP mixtures. A more

detailed discussion of these estimators is given in Section 2. An alternative approach

to regression density estimation is given by De Iorio, Muller, Rosner and MacEarchen

(2004), Dunson, Pillai and Park (2007) and Gri¢ n and Steel (2007) who use a dependent

DP prior. An attractive feature of this prior is that di¤erent partitions of the data can

have di¤ering numbers of components. However, it is unclear to us how to extend their

implementations in a practical way to allow for �exible heteroscedasticity, especially

when the number of covariates is moderate to large. The empirical examples in Section 3

show that such extensions are necessary in some examples. To carry out the inference we

develop e¢ cient MCMC samplers that compare favourably to existing MCMC samplers

for smooth homoscedastic mixtures case as well. A comparison with existing samplers

is given in the working paper version of our paper (Villani, Kohn and Giordani, 2007

Appendix D).
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2. Smooth Adaptive Gaussian Mixtures

2.1. The model. Regression density estimation entails estimating a sequence of densi-
ties, one for each covariate value, x. A single density can usually be modelled adequately

by a �nite mixture of Gaussians. For example, the simulations in Roeder and Wasser-

man (1997) suggest that mixtures with up to 10 components can model even highly

complex univariate densities. To extend the basic mixture of Gaussians model to the

regression density case we need to make the transition between densities smooth in

x. We propose that the means, variances and the mixing probabilities of the mixture

components vary smoothly across the covariate space according to the Smooth Adaptive

Gaussian Mixture (SAGM) model

(2.1) yij(si = j; vi; wi) � N [�0jvi; �
2
j exp(�

0
jwi)]; (i = 1; :::; n; j = 1; :::;m);

where si 2 f1; :::;mg is an indicator of component membership for the ith observa-
tion, vi is a p-dimensional vector function of covariates for the conditional mean of

observation i with coe¢ cients, �j, that vary across the m components, and wi is an

r-dimensional vector of covariates for the conditional variance of observation i. Compo-

nents j�s responsibility for the ith observation is modelled by a multinomial logit mixing

function

(2.2) Pr(si = jjzi) = �j(zi; 
) =
exp(
0jzi)Pm
k=1 exp(


0
kzi)

;

where zi is a q-dimensional vector function of covariates for observation i, and 
1 = 0

for identi�cation. The three sets of terms, vi; wi, and zi can be (high-dimensional) basis

expansions (polynomials, splines etc.) of other predictors. For example, basis expansion

in the mixing function gives us the �exibility to vary the number of e¤ective mixture

components quite dramatically across the covariate space. In the case of splines, let

�vk; �
w
k and �

z
k denote the position of the kth knot in the mean, variance and mixing

functions, respectively. We denote the original vector of covariate observations from

which the terms (vi; wi; zi) were constructed by xi.

Many of the models in the nonparametric literature are special cases of the SAGM

model in (2.1) and (2.2). The model in Wood, Jiang and Tanner (2002) is the special

case with �j = 0 and �j = �, for j = 1; :::;m. The model in Geweke and Keane

(2007) is obtained if we set �j = 0 for all j, and use polynomial expansions of the

covariates. Both of these articles use a multinomial probit mixing function. This means

that the component probabilities must be computed by numerical integration, which

makes the evaluation of predictive densities/likelihoods very time-consuming (Geweke

and Keane, 2007). The model in Leslie et al. (2007) is a heteroscedastic regression
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with a nonparametric modelling of the disturbances using a Dirichlet process mixture

prior. This can be viewed as a special case of the SAGM model with �j = � for all

j, mixing probabilities that do not depend on x, and means and (log) variances of the

component that di¤er by constants for all x. Bishop�s (2006) mixture density network

is a related model in the neural network �eld. The mixture density network model is

more restrictive than the SAGM, see Bishop (2006) for details.

We will also allow for automatic variable selection in all three sets of covariates. Let

V denote a p � m matrix of zero-one indicators for the mean covariates in v. If the

element in row k, column j of V is zero, then the coe¢ cient on the kth v-covariate in
the jth component is zero (�kj = 0) ; if the indicator is one, then �kj is free to take

any value. This is best viewed as a two-component mixture prior for �kj with one of

the components degenerate at �kj = 0. Similarly, let W (r�m) and Z (q�m) denote
the variable selection indicators for the variance and mixing functions, respectively.

There are at least two restrictions on the model that are useful in practice. First,

we may restrict the heteroscedasticity to be the same across components: �1 = ::: =

�m = �. Given that we allow for nonparametric variance and mixing functions, the

model will often be �exible enough even under this restriction. Second, we may restrict

the covariate selection indicators to be the same across components. That is, either a

covariate has a non-zero coe¢ cient in all of the components or its coe¢ cient is zero for

all components. Our posterior sampling algorithms handle both types of restrictions.

In many applications interest centers on the �rst derivative of the mean function

E(yjx) with respect to the covariates (Ruppert et al 2003). It is easy to show that the
�rst derivative of the SAGM mean function, E(yjx) =

Pm
j=1 �j(z)�

0
jv; is of the form

(2.3)
@

@x
E(yjx) =

Pm
j=1 �j(z)

��
@z

@x

�0 h

j �

Pm
g=1 �g(z)
g

i
�0jv +

�
@v

@x

�0
�j

�
:

The matrices @z=@x and @v=@x are typically of simple form, see Ruppert et al (2003, p.

153-154) for explicit matrix expressions for some commonly used spline functions. With

linear components @z=@x and @v=@x are simply selection matrices that extracts subsets

of covariates from x. The MCMC draws can be used in the usual way to obtain the

posterior distribution of the �rst derivative. We return to the �rst derivative in Section

3.2, where it is used to de�ne the persistence of a nonlinear time series model.

We use the following notation. Let Y = (y1; :::; yn)0 be the n-vector of responses, and

X = (x1; :::; xn)
0 the n � px dimensional covariate matrix. Let V = (v1; :::; vn)

0;W =

(w1; :::; wn)
0 and Z = (z1; :::; zn)0 be the n� p, n� r and n� q dimensional matrices of

covariates expanded from X. The covariates are standardized to have zero mean and

unit variance to simplify the prior elicitation. Let s = (s1; :::; sn)0 denote the n-vector
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of component indicators for the full sample. Furthermore, de�ne the p �m matrix of

mean coe¢ cients, � = (�1; :::; �m), and similarly the r�m matrix � = (�1; :::; �m) with

heteroscedasticity parameters. The corresponding disturbance variances are collected

in �2 = (�21; :::; �
2
m)

0. De�ne 
 = (
02; :::; 

0
m)

0 to be the q(m � 1) vector of multinomial
logit coe¢ cients.

2.2. The prior distribution and variable selection. The prior decomposes as

p(�; �2; �; 
; s;V ;W ;Z) = p(�; �2;V j 
)p(�;Wj
)p(
;Z; s):

Consider �rst p(�; �2;V j 
). We assume a priori that the coe¢ cients are independent
between components. Let V = (V1; :::;Vm), where Vj contains the variable selection
indicators for the jth component. Let �Vj and �Vcj denote the subvectors of �j with

non-zero coe¢ cients and zero coe¢ cients, respectively. The prior for component j is

�2j � IG( 1j;  2j)

�Vj jVj; �2j � N(0; � 2�j�
2
jH

�1
� )

where IG denotes the inverse Gamma distribution and �Vcj jVj is identically zero. H� is

a positive de�nite precision matrix, often equal to the identity matrix or a scaled version

of the cross-product moment matrix V 0V . The prior for variable inclusion/exclusion has

a novel form to deal with a problem that has gone unnoticed in the literature on smooth

mixtures. An a priori positioning of a knot at location � in covariate space runs the risk

that one of the components may have very low probability in the neighborhood of that

point (�j(�; 
) � 0 for at least some j). The coe¢ cients for that component�s knot will
then be poorly estimated, or may even be unidenti�ed. To deal with this problem, we

use the prior

(2.4) Vkjj
 � Bern[!��j(�
v
k; 
)]; (k = 1; :::; p; j = 1; :::;m);

where 0 � !� � 1, and Vkj are assumed to be a priori independent conditional on 
.
Note how the prior inclusion probability decreases as the components�s responsibility

for the knot decreases. In the limit where the jth component has zero responsibility

for �vk, that knot is automatically excluded from component j with probability one.

The variable indicators for covariates other than those generated by the knots have

prior Bern(!�). It is possible to estimate !� as in for example Kohn, Smith and Chan

(2001), but it will require an extra MH step.
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The prior on the variance function is essentially of the same form as the prior on the

mean function:

�Wj
jWj � N(0; � 2�jH

�1
� )

Wkjj
 � Bern[!��j(�
w
k ; 
)]; (k = 1; :::; r, j = 1; :::;m):

The prior on the mixing function decomposes as

p(
;Z; s) = p(sj
;Z)p(
jZ)p(Z):

The variable indicator in Z are assumed to be iid Bern(!
). Let 
Z denote the non-zero
coe¢ cients in the mixing function for a given Z. The prior on 
 is then assumed to be
of the form


Z jZ � N(0; � 2
H
�1

 );

and 
Zc = 0 with probability one; p(sj
;Z) is given by the multinomial logit model in
(2.2).

2.3. Bayesian inference and model comparison. We adopt a Bayesian approach
to inference using MCMC to sample from the joint posterior distribution of the model

parameters. We have experimented with several sampling schemes (see Appendix A

to D in Villani et al. (2007) for a description of the algorithms and a comparison

on the LIDAR data) and found that the scheme presented in Appendix A gives the

best combination of e¢ ciency and computing time. This algorithm includes variable

selection in all three sets of covariates: mean, variance and mixing function.

Ideally we would like to use the marginal likelihood as a basis for model comparison.

It is well known however that the marginal likelihood is very sensitive to the choice of

prior, especially when the prior is not very informative, see e.g. Kass (1993) for a general

discussion and Richardson and Green (1997) in the context of density estimation. By

sacri�cing a subset of the observations to update/train the vague prior we remove much

of the dependence on the prior. It also gives a better assessment of the predictive

performance that can be expected for future observations, and simpli�es computations.

To deal with the arbitrary choice of which observations to use for training and testing,

we use B-fold cross-validation of the log predictive density score (LPDS):

LPDS = B�1
BX
b=1

ln p(~ybj~y�b; x);

where ~yb contains the nb observations in the bth test sample, ~y�b denotes the remain-

ing observations and p(~ybj~y�b; xi) =
R Q

i2Tb p(yij�; xi)p(�j~y�b)d�, where Tb is the index
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set for the observations in ~yb. Here we have implicitly assumed independent observa-

tions conditional on � and the covariates. The LPDS is easily computed by averagingQ
i2Tb p(yij�; xi) over the posterior draws from p(�j~y�b). This can be computed from

B complete runs with the posterior simulator, one for each training sample. For time

series data it is typically false that the observations are independent conditional on the

model parameters. For such data it is more natural to use the most recent observations

in a single test sample. Ideally we would here like to re-estimate the model sequentially

as we add more observations to the training sample, but this is too time-consuming, and

we instead approximate the LPDS using a �xed training sample for all test observations.

One way to calibrate the LPDS is to transform a di¤erence in LPDS between two

competing models into a Bayes factor. One can then use Je¤reys�(1961) well-known

rule-of-thumb for Bayes factors to assess the strength of evidence. It should be noted

however that the original Bayes factor evaluates all the data observations, whereas

the cross-validated LPDS is an average over the B test samples. The Bayes factor is

therefore roughly B times more discriminatory than the LPDS; this is the price paid by

the LPDS for using most of the data to train the prior. Other authors have proposed

summing the log predictive density over the B test samples (see Geisser and Eddy (1979)

for the case with B = n, and Kuo and Peng (2000) for B < n), which would multiply

any LPDS di¤erence by a factor B. We have chosen not to do so as the LPDS can then

no longer be calibrated by Je¤reys scale of evidence.

3. Empirical illustrations

3.1. Inverse problem. Our �rst example is based on an inverse problem discussed

by Bishop (2006). Suppose that for a given y, x = y + 0:3 sin(2�y) + u, where u is

U(0; 1). We generate 1000 xi by taking the yi to be equally spaced on [0; 1] and the ui
independent and uniform. The resulting data set is plotted in the left column of Figure

1. From the data we wish to estimate the density of p(yjx). Figure 1 shows that this is
a challenging regression density estimation problem as the density p(yjx) is multimodal
and heteroscedastic.

The prior �� = � � = 10, � 
 = 1000 (the choice of � 
 is explained below); and

 1 =  2 = 0:01 (in the IG prior for the �2j�s) was used for all �tted SAGM models.

We used truncated quadratic splines (see e.g. Ruppert et al, 2003) with 20 equally

spaced knots, and variable selection among the knots with inclusion probabilities !� =

!� = !
 = 0:2. Figure 1 displays the estimated 95% Highest Posterior Density (HPD)

intervals in the predictive distribution, the mixing function and the predictive standard

deviation as a function of x for four di¤erent models. The HPD intervals of the true
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density (obtained by simulation) are the black thin lines in the �rst column of Figure

1. The seemingly odd behavior of the intervals at points in covariate space where the

number of modes of the density is changing (e.g. at x � 0:27) is an artifact of the

HPD interval construction, the actual predictive densities are well behaved. The �rst

row displays the results for the nonparametric SAGM with a single component, which

clearly is not �exible enough to capture the true density or the standard deviation. The

SAGM(3) model in the second row of Figure 1 does an excellent job in capturing the

true density and standard deviation. The same model is �tted in the third row of Figure

1, but with the knots excluded in the mixing function (the mean and variance are still

nonparametric). The terrible �t of this model clearly demonstrates the importance of a

�exible mixing function. In fact, with a nonparametric mixing function it is important

that � 
 is not made too small, for then the mixing function cannot change rapidly

enough to �t the data (hence the choice of � 
 = 1000 for this data set). Finally, the last

row of Figure 1 again analyzes the SAGM(3) with nonparametric mean, variance and

mixing function, but this time without knot selection. As expected, this model is very

adaptive, but the �t is too wiggly. Note also that a smaller smoothing parameter (� 
)

is not a solution here as that would not give us enough �exibility in the regions where

it is needed. Estimating � 
 will not help either.

3.2. US In�ation. Our second application is a nonlinear time series model for US in-
�ation during 1952Q1-2004Q4. It has been documented that both the volatility and the

persistence of US in�ation seem to increase with the level of in�ation (see e.g. Chris-

tiano and Fitzgerald, 2003), and there is some economic theory to support these �ndings

(Akerlof et al, 2000). We shall here illustrate that a SAGM model of in�ation with lags

of in�ation as covariates is able to generate these features. A SAGM generalization of

the AR(k) process is of the form

ytj(st = j; yHt ) = c(j) +
Pk

i=1 �
(j)
i yt�i + "t

var("tjst = j; yHt ) = �2j exp(
Pk

i=1 �
(j)
i yt�i);(3.1)

where yHt = (yt�1; :::; yt�k)
0. st follows the multinomial logit model in (2.2) with yHt as

covariates. The mean function is similar to the SETAR and STAR-type models in the

nonlinear time series literature, see e.g. Teräsvirta (2006) for a recent overview. Our

methodology allows the errors to be heteroscedastic, and we jointly select the subset

of variables that de�ne the thresholds (variable selection in the mixing function) and

estimate the locations of the (soft) thresholds.

We now show that a very simple SAGM model with k = 1 lag and two linear com-

ponents forms an interesting model for US in�ation. We use the prior with �� = � 
 =
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� � = 5 and  1 =  2 = 1. Variable selection was used with !� = !� = !
 = 0:5 as

prior inclusion probabilities. The model with a common variance function performed

better than a model with separate ��s in the two components, so we present results for

the common variance model. The upper left subgraph of Figure 2 displays the �t of a

SAGM(2) with one lag. The estimated model is clearly heteroscedastic: the posterior

inclusion probability of yt�1 in the variance function is 0:995. The predictive mean

has an interesting kink just above zero in�ation, suggesting that in�ation persistence

varies with the level of in�ation (see also the mixing functions in the upper right part

of Figure 2). The two-component SAGM model outperformed the usual AR(1) model

in an out-of-sample forecast evaluation with the last ten years removed from the esti-

mation sample (the Bayes factor is 5:55 in favor of the two-component model). Most

of improved forecasting accuracy comes from the heteroscedastic disturbances rather

than the changes in persistence (the Bayes factor comparing the model with two het-

eroscedastic components to the model with a single heteroscedastic component is only

2:25).

A more formal measure of the persistence is given by the �rst derivative of the mean

function with respect to yt�1 (Kapetanios, 2007). Using (2.3), this persistence measure

is

�1(yt�1)�
(1) + �2(yt�1)�

(2) + �1(yt�1)�2(yt�1)

(2) [E(ytjst = 2)� E(ytjst = 1)] ;

where 
(2) is the mixing function coe¢ cient on yt�1 for the second component. The

posterior distribution of this persistence measure is shown in Figure 2. The mean

persistence is roughly zero when in�ation is low (the posterior inclusion probability of

yt�1 in the low in�ation component is 0:06), it then increases quite rapidly in the region

0% � 3% in�ation to �nally settle down around 0:9 when in�ation is above 4%. Note

that there is a corridor where in�ation may even be locally explosive. In models with

more than one lag, persistence can be de�ned as the modulus of the largest eigenvalue

of the companion matrix with the usual AR coe¢ cients replaced by the corresponding

derivatives of the mean function (Kapetanios, 2007).

3.3. Simulated heteroscedastic data. We now investigate how well the smooth mix-
ture of homoscedastic components can capture heteroscedastic data in �nite samples,

and in particular how this ability depends on the number of covariates. We simu-

lated data from a single linear heteroscedastic component with 1; 2; 3 and 5 additive

covariates generated uniformly in the hypercube [�1; 1]p. A zero mean was used to

isolate the e¤ects of the heteroscedasticity. The heteroscedasticity parameters were set

to � = (�2;�1; 0; 1; 2) in the model with 5 covariates, � = (�2;�1; 0) in the model
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with 3 covariates, � = (1;�1) in the model with two covariates and � = 1 in the model

with a single covariate. We used � = 0:1 in all simulations. For each model we gener-

ated 25 data sets, each with a 1000 observations, from the DGP, and then �tted SMR

and SAGM models with linear components. To simplify the comparisons of strength of

evidence with the real data examples later in this section we use cross-validation (see

Section 2.3) here even if we know the true DGP. The prior with �� = � � = � 
 = 10

and  1 =  2 = 0:01 was used for all models. Variable selection was not used for sim-

plicity. Both the SMR and SAGM models were �t with one to �ve components. Figure

2 displays box plots of the di¤erence in LPDS between the SMR models with a given

number of components and the estimated SAGM(1) model. With a single covariate

the predictive performance of the SMR models with m � 3 is fairly close to that of

SAGM(1). As the number of covariates grows, the SMR model has increasing di¢ culty

in �tting the data, relative to the SAGM(1) model, and it seems that its predictive per-

formance cannot be improved by adding more than �ve components. There are already

some signs of over�tting with �ve components. Even with two covariates the evidence

is decisively in favor of the SAGM(1) model (Je¤reys, 1961). We also simulated data

from a model with 10 covariates (not shown), and the results followed the same trend:

the performance of the SMR relative to the SAGM(1) was much inferior to the case

with �ve covariates. Similar simulations also show that there is hardly any loss from

�tting an SAGM model when the true DGP is an SMR model, see Villani et al. (2007)

for details.

3.4. LIDAR. Our next data set has been used extensively in the nonparametric litera-
ture. The data comes from a technique that uses laser-emitted light to detect chemical

compounds in the atmosphere (LIDAR, LIght Detection And Ranging, see Holst et al.

(1996)). The response variable (logratio) consists of 221 observations on the log ratio

of received light from two laser sources: one at the resonance frequency of the target

compound, and the other from a frequency o¤ this target frequency. The predictor is

the distance travelled before the light is re�ected back to its source (range). We will

use the model with common � in the components. The models with common � and the

models with separate ��s give essentially the same LPDS. Moreover, when the ��s are

allowed to di¤er across components, the posterior distributions of the ��s are largely

overlapping. The prior �� = � � = � 
 = 10 and  1 =  2 = 0:01 was used, but other

priors had very little impact on the �t and the LPDS.

The left column in Figure 4 displays the LIDAR data and the 68% and 95% Highest

Posterior Density (HPD) regions in the predictive distribution p(logratio j range) from
the SMR model with 3 linear component (top row) and 1; 2 and 3 thin plate spline
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components (second to fourth row). See e.g. Green and Silverman (1994) for details on

thin plate splines. We used 10 equally spaced knots in each of the mean, variance and

mixing functions, and variable selection among the knots with !� = !� = !
 = 0:2 as

prior inclusion probability. The SMR(3) models do fairly well, but fail to capture the

small variance of logratio for the smallest values of range, and the predictive intervals

also have a somewhat unpleasant visual appearance.

The right column of Figure 4 displays the �t of the SAGM models. The SAGM(3)

model with linear components performs rather well. The best �t seems to be given by the

SAGM model with a single nonparametric component. It is interesting to see that the

overparametrized SAGM(2) and SAGM(3) models with nonparametric components do

not seem to over�t. This is due to the self-adjusting mechanism provided by the variable

selection: the more components that are added to the model, the fewer the knots in all

components. For example, the SAGM(1) component has a highly non-linear mean, but

the components in the SAGM(3) model with nonparametric components are essentially

linear, all the knots in the SAGM(3) model have very small inclusion probabilities. The

prior in (2.4) is very e¤ective in removing a component�s knots in regions of low mixing

probability: almost all such knots have zero posterior inclusion probability. All the

knots in the variance function of the SAGM models have posterior probabilities smaller

than 0:1, suggesting strongly that the (log) variance function is linear in range. There

is some evidence of smoothly changing nonlinearity in the (log odds) mixing function

where most of the knots have posterior probabilities in the range 0:2-0:4. This is true

for both SMR and SAGM models.

Table 1 displays the mean of the log predictive score (LPDS) over the B = 5 test

samples as a function of the number of components. All three SAGM models with

nonparametric components and the SAGM(3) model with linear components give very

similar LPDS values. In particular, a single nonparametric heteroscedastic component

is su¢ cient to �t the data. The SMR models need three components to come close to

the LPDS of the SAGM model with a single nonparametric component, and even then

do not quite reach it.

3.5. US stock returns. In our �nal example we analyze the distribution of 3673
daily returns on the S&P500 stock market index from January 21, 1991 to August

12, 2005. The response variable is Return: yt = 100 ln(pt=pt�1), where pt is the closing

S&P500 index on day t. This series is plotted in the left panel of Figure 5. Follow-

ing Geweke and Keane (2007) we construct two predictors Return Yesterday yt�1 and

a geometrically declining average of absolute returns, GeoAverage, which is de�ned as

(1� 0:95)
P1

s=0 0:95
s jyt�2�sj.



REGRESSION DENSITY ESTIMATION 13

Geweke and Keane (2007) conducted an out-of-sample evaluation of the conditional

distribution p(Return j Return Yesterday, GeoAverage) where the SMR model dramati-
cally outperformed the popular t-GARCH(1,1) and several other widely used models for

volatility in stock return data. Our aim here is to see if the SAGM can do a better job

by having the heteroscedastic components capturing the heteroscedasticity in Return so

that the mixture can concentrate more heavily on modelling the fat tails and possibly

also skewness.

We �t SMR and SAGM models with the components modelled as two-dimensional

thin plate spline surfaces. The mean of each component is restricted to be constant, in

line with the literature on stock market data. Both the mixing and variance functions

use 20 knots in R2 with the locations of the knots chosen by the algorithm in Villani

et al. (2007, Appendix E). We apply variable selection among the knots with inclusion

probabilities !� = !
 = 0:2. We used the prior �� = 1, � � = � 
 = 5 and  1 =

 2 = 1, but the predictive distribution is not sensitive to non-drastic changes in the

prior hyperparameters. We report results from the model where the heteroscedasticity is

common to all components as it outperformed the model with separate �. We generated

30; 000 draws from the posterior, and used the last 25; 000 draws for inference.

Table 2 displays the LPDS for SMR and SAGM models evaluated on the 1000 last

trading days as a single test sample. The best model is the SAGM(4) model which is

more than 6 LPDS units better than the best SMR model (the Bayes factor is 415:72).

This is decisive evidence in favor of the SAGM (Je¤reys, 1961). It is interesting to note

that SAGM(1) is only slightly inferior to SAGM(4). This result is however particular

to this speci�c test sample, which happens to be essentially free from outliers. To show

this, we plot in Figure 5 (right panel) Return against GeoAverage (the main driver of the

heteroscedasticity, see the standard deviation graphs in Villani et al. (2007, Figure 6))

in the training and test sample. It is clear from Figure 5 that a single heteroscedastic

component will perform well in the test sample, but will most likely fail to capture

the training observations with extreme returns but low GeoAverage value, if they had

been in the test sample. To investigate this more formally we evaluate the LPDS using

5-fold cross-validation with the test samples systematically sampled through time (the

�rst test sample consists of observation 1, 6, 11, etc.), even if this exercise may be

regarded as somewhat unnatural for time series data. Table 3 shows that the SAGM(1)

now performs substantially worse than, for example, the SAGM(3) model. The average

LPDS di¤erence between the best SAGM and the best SMR is now smaller (the Bayes

factor comparing SAGM(3) to SMR(4) is 18:92), but the SAGM(3) model outperforms

the SMR(4) in each of the �ve test samples.
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We also consider the e¤ect of using two additional covariates: Time and LastWeek, a

moving average of the returns from the previous �ve trading days. The LPDS on the last

1000 observations is reported in Table 4. A comparison of Tables 2 and 4 shows that the

two new covariates bring a very substantial improvment in predictive performance of

the SAGM model, whereas the performance of the SMR is more or less unchanged. The

relative support for the SAGM model is now dramatically stronger: the Bayes factor

comparing the best �tting SMR and SAGM models is 7:26 � 107 in favor of the SAGM
model.

Figure 6 display quantile-quantile plots (QQ-plots) of the normalized residuals (see

e.g. Leslie et al., 2007) for the SMR and SAGM models with two covariates. The

normalized residuals are de�ned as ��1[F̂ (xi)], for i = 1; :::; n, where F̂ (xi) is the

posterior expectation of the predictive distribution function at xi. The QQ-plot graphs

the empirical quantiles of the normalized residuals against the quantiles of the standard

normal density. Deviations from the 45� degree line signal a lack of �t. The models with

one component both do a poor job in the tails of the distribution (not shown in Figure

6 for scaling considerations). Adding another component to the SAGM(1) model gives

a substantial improvement in �tting the tails, and the �t of the SAGM(3) is excellent.

The SMR model improves as more components are added, but even the SMR(4) model

cannot fully capture the tails of the distribution.

The estimated mixing function for the SMR and SAGMmodels in Villani et al. (2007,

Figure 7) clearly reveal that the SMR model is using all the components to capture the

heteroscedasticity in the data. The SAGM model has a more e¢ cient division of labor:

a dominant global component with a probability exceeding 0:5 for all values of the

covariates captures the bulk of the heteroscedasticity and the other much more local

components take care of the heavy tails. The implications of this can be seen in the

posterior mean of the 1% quantile of the predictive density, the so called Value-at-Risk

(VaR). Figure 7 displays the VaR as a function of the two covariates for the SMR(4) and

SAGM(4) models. For some covariate values, the di¤erence between the two models is

larger than 1%, which is quite substantial for daily returns.

Appendix A. MCMC sampling for the SAGM model

This appendix describes our preferred Metropolis-Hasting scheme for sampling from

the joint posterior distribution of the SAGM parameters. See Villani et al. (2007) for

details on other algoritms and a comparison of the algorithms�performance .

We use a general method for constructing tailored MH proposal densities to sample

from the full conditional posterior of the two pairs (
;Z) and (�;W). The technique
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was initially proposed by Gamerman (1997) for the exponential family without variable

selection, and later extended by Nott and Leonte (2004) to allow for variable selection

with the exponential family. We will here brie�y describe an extension of this method

to a more general setting, see Villani et al. (2007, Appendix A) for details. The basic

idea of this variable dimension K-step Newton method is as follows. Suppose that the

model can be written p(yij�i), where �i = �0xi, xi is a q-dimensional covariate vector

and � = (�1; :::; �q)
0. The distribution p(yij�i) is not restricted to the exponential

family. Let J = (j1; :::; jq) be a vector of binary variable selection indicators, such that

ji = 0 if �i = 0; and let ji = 1 otherwise. The two sets of parameters � and J are

proposed jointly. There are many ways to propose J . A simple but often useful option
is to randomly select one of the indicators and always propose a change of the chosen

indicator, see Nott and Kohn (2005) for more advanced proposals. The proposal for �

is drawn conditional on J from the multivariate t-distribution with c > 2 degrees of

freedom:

�pj�c;Jp � t

"
�̂; �

�
@2 ln p(�jy)
@�@�0

��1�����
�=�̂

; c

#
;

where the second argument of the density is the covariance matrix. �̂ is obtained by

taking a �xed number of steps (K) with Newton�s method from the current point �c
toward the mode of p(�jy;Jp). Note that K is often set to a small number, so �̂ is rarely

the (conditional) mode, but typically quite close to it. We have found that K � 3 is

more than su¢ cient for good convergence, which makes the algorithm very fast. We may

further speed up the algorithm by evaluating the gradient and Hessian on a (random)

subset of the observations. In many cases we can also replace the Hessian by its expected

value (Fisher scoring). Because of the variable selection, �c and �p may be of di¤erent

dimensions, so that Newton�s original method needs to be generalized, see Villani et

al. (2007) for details. The key idea is that the functional �i = �0xi is one-dimensional

and is expected to change only slightly in value as variables are added or removed from

the model. Note also that variable selection has the advantage of keeping down the

dimension of � in every iteration of the algorithm, which speeds up the algorithm and

increases the MH acceptance probability.

We now describe the updating steps of the sampling scheme in detail. We make use of

the following transformation from a heteroscedastic regression to a homoscedastic one:

(Y; V )! (G�Y;G�V ) = ( ~Y ; ~V );

where G� = diag[exp(��0w1=2); :::; exp(��0wn=2)]. The Jacobian of this transformation
is jG�j = exp(��0

P
wi=2). The extension to case where � is di¤erent for each component
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is immediate. We use the following notation. Let nj denote the number of observations

allocated to the jth component for a given s. Vj denotes the nj�p submatrix containing
the rows of V corresponding to the jth component�s observations given an allocation s.

Zj, Wj and Yj are analogously de�ned.

Updating �, �2 and V
Conditional on s and �, we can integrate out � and �2 to show that the Vj are indepen-
dently distributed, and that

(A.1) p(Vkj = 1jV�k;j; Y;X; s; �) /
��� ~V 0
j
~Vj + ��2�jH�

����1=2�dj
2
+  2j

��(nj+2 1j)=2
;

where ~Vj is the covariate matrix for the jth component assuming the presence of the

kth covariate, V�k;j is Vj with Vkj excluded, dj = ~Y 0
j
~Yj � ~Y 0

j
~Vj( ~V

0
j
~Vj + �

�2
�j
H�j)

�1 ~V 0
j
~Yj is

the residual sum of squares of the regression of ~Yj on ~Vj.

The non-zero elements of � and the elements in �2 can now be generated conditional

on V from

�2j jVj; s; �; Y;X � IG

�
nj + pj + 2 1j � 1

2
;
dj + 2 2j

2

�
�Vj j�2j ;Vj; s; �; Y;X � N(��j ;
�j);

where �Vj contains the pj non-zero coe¢ cients in �j, 

�1
�j
= ��2j (

~V 0
j
~Vj + �

�2
�j
H�), ��j =

��2j 
�j
~V 0
j
~Yj. Note that ~Vj and ~Yj, and H� are here assumed to be conformable with the

current draw of V, so that for example ~Vj contains only the covariates with non-zero
coe¢ cients.

Updating � and W
We �rst consider the case without covariate selection. The full conditional posterior of

the variance function parameters is of the form

p(�j�2; �; Y;X) / p(Y j�; �2; �;X)p(�) = jG�j p( ~Y j�; �2; �;X)p(�)

/ exp(��0
P
wi=2)

nY
i=1

exp

�
� 1

2�2si
(~yi � �0si~vi)

2

�
exp

�
��

�2
�

2
�0H��

�
:

The full conditional posterior of � is of non-standard form, and we use the K-step

Newton proposal to generate from it. The gradient and Hessian are given by

@ ln p(�j�)
@�

=
1

2

mP
j=1

W 0
j(�j � �nj)�H��

@2 ln p(�j�)
@�@�0

= �1
2

mX
j=1

Wj diag(�j)W
0
j �H�;
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where �j = ��2si (
~Yj � ~Vj�j)2. It is also possible to replace the Hessian with its expected

value E
h
@2 ln p(�j�)
@�@�0

i
= �1

2
W 0W in the Newton iterations. The case where the ��s di¤er

across components is handled in exactly the same way since the �j are independent con-

ditional on s. The extension of the K-step Newton proposal to the case with covariate

selection is straightforward; see Villani et al. (2007) for details.

Updating 
 and Z

 and Z are updated using the K-step Newton method. We describe the updating step
for the case without variable selection, and we refer to Villani et al. (2007) for details

on the variable selection case. The full conditional posterior of the multinomial logit

parameters 
 = (
02; :::; 

0
m)

0 is of the form

(A.2) p(
js;X) / p(sjX; 
)p(
) =
�

nQ
i=1

exp(
0sizi)Pm
k=1 exp(


0
kzi)

�
exp

 
�
��2

2

mP
j=1


0jH

j

!
;

which is a non-standard density. The gradient is of the form

@ ln p(
j�)
@ vec 


= vec[Z 0(D � P )�H

];

whereD is an n�mmatrix where the ith row is zero in all positions except in position si
where it is unity, and P is the n�m matrix of component probabilities Pr(si = jjzi; 
).
The Hessian consists of (m� 1)2 blocks of q � q matrices of the form

@2 ln p(
j�)
@
j@


0
u

=

(
Z 0[Iq 
 Pj(Pu � �n)]Z �H
 , if j = u

Z 0[Iq 
 PjPu]Z, if j 6= u

where Pj is the jth column of P . The matrix P is evaluated at the value of 
 at the kth

iteration of Newton algorithm. Note that when the prior for V depends on the value of
the mixing function at the knots (see Section 2.2), then the conditional posterior of 


equals the expression in (A.2) multiplied byYm

j=1

Yp

k=pv+1
Bern[Vkjj!��j(�k; 
)]:

A similar factor should be used for W when the ��s di¤er across components.

Updating s
The component indicator, si (i = 1; :::; n) are independent conditional on the other

model parameters, and can therefore be drawn simultaneously. The full conditional

posterior of si is

p(si = jjY;X; �2; �; 
; �) / p(Y jX; �2; �; �; 
; si = j)p(si = jjZ; 
)

/ ��1j exp

�
� 1

2�2j
(~yi � �0j~vi)

2

�
exp(
0jzi); (i = 1; :::; n; j = 1; :::;m):
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Unless otherwise stated, the reported results in this article were generated by 10; 000

draws after a burn-in of 2; 000 draws. We used c� = 10 and c
 = 10 degrees of freedom in

multivariate-t Newton-based proposal densities for � and 
. The component allocation

is initialized with the k-means clustering algorithm.
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Linear experts Thin plate experts
m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

SMR 26:564 59:137 63:162 48:399 61:571 62:985
SAGM 30:719 61:217 64:223 64:267 64:311 64:313

Table 1. LIDAR data. Average log predictive density score (LPDS) over
the 5 cross-validation samples.

m = 1 m = 2 m = 3 m = 4 m = 5
SMR �1579:16 �1430:39 �1413:96 �1410:50 �1410:92
SAGM �1404:95 �1409:02 �1407:99 �1404:47 �1409:06

Table 2. SP500 data - two covariates. Log predictive density score
(LPDS) on the last 1000 observations.

m = 1 m = 2 m = 3 m = 4 m = 5
SMR �1058:85 �955:97 �945:69 �942:01 �942:02
SAGM �955:24 �944:22 �939:07 �939:81 �939:51

Table 3. SP500 data - two covariates. Average log predictive density
score (LPDS) over the 5 cross-validation samples.

m = 1 m = 2 m = 3 m = 4 m = 5
SMR �1579:16 �1428:05 �1412:02 �1412:83 �1414:11
SAGM �1393:92 �1398:92 �1396:63 �1395:31 �1401:87

Table 4. SP500 data - four covariate model. Log predictive density score
(LPDS) on the last 1000 observations.
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Figure 1. Inverse problem data. First column displays the data and the
95 percent HPD intervals in the predictive density. The second and third
columns present the mixing and predictive standard deviation function,
respectively. The rows correspond to four di¤erent SAGM models.
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Figure 2. US in�ation data. The upper left graph displays the data
with the 68 and 95 percent HPD intervals in the predictive density of the
SAGM(2) model. The other graphs depict the posterior distribution of
the mixing probabilities, the persistence and the standard deviation of
the predictive distribution.
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Figure 3. Simulated heteroscedastic data. Box plots of the di¤erence in
log predictive score (LPDS) between the estimated SAGM(1) model and
the SMR model as a function of the number of components in the SMR
model.
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Figure 4. The LIDAR data overlayed on 68 and 95 percent HPD pre-
dictive intervals. The solid red line is the predictive mean. The thicker
tick marks on the horizontal axis locate the knots of the thin plate splines.
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Figure 5. SP500 data. Left: Time plot of Return. Right: Return vs GeoAverage.
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Figure 6. SP500 data. QQ-plots of the normalized residuals.
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Figure 7. SP500 data. Value at risk (VaR). 1 percent quantile of the
predictive density.


