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Abstract

We study how changes in wealth affect ambiguity attitudes. We define a decision

maker decreasing (resp., increasing) absolute ambiguity averse if he becomes less (resp.,

more) ambiguity averse as he becomes richer. Our definition is behavioral. We provide

different characterizations of these attitudes for a large class of preferences: monotone

and continuous preferences which satisfy risk independence. We then specialize our

results for different subclasses of preferences. Inter alia, our characterizations provide

alternative ways to test experimentally the validity of some of the models of choice under

uncertainty.

1 Introduction

Beginning with the seminal work of David Schmeidler, several choice models have been

proposed in the past thirty years in the large literature on choice under uncertainty that

deals with ambiguity, that is, with Ellsberg-type phenomena.1 At the same time, many

papers have investigated the economic consequences of ambiguity. Our purpose in this paper

is to study a basic economic problem: How the ambiguity attitudes of a decision maker

change as his wealth changes. In other words, our purpose is to study absolute and relative

ambiguity attitudes in terms of changes in wealth. This is an alternative and complementary

approach to some of the existing literature, discussed at the end of this Introduction, which in

contrast studies how ambiguity attitudes change in terms of utility shifts rather than wealth
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calchi, for suggestions that lead to an improvement of the paper. We also thank Aurélien Baillon, Pierpaolo

Battigalli, Loic Berger, Giacomo Cattelan, Peter Klibanoff, Nenad Kos, Mark Machina, Peter Wakker, and
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for their useful comments. Simone Cerreia-Vioglio gratefully acknowledges the financial support of ERC
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shifts. Put differently, this literature studies absolute and relative ambiguity attitudes in

terms of changes in utility.

To fix ideas and understand our main motivation, one should think of how central is in

many fields of Economics the relationship between wealth and agents’attitudes toward risk

(e.g., portfolio allocation problems and insurance demand). For example, in his seminal work

[3, p. 96], Arrow, in discussing measures of absolute and relative risk attitudes, mentions

that “The behaviour of these measures as wealth changes is of the greatest importance for

prediction of economic reactions in the presence of uncertainty”.

To the best of our knowledge, no systematic study has been done in exploring a similar

relation between wealth and ambiguity attitudes, despite the large and growing use in appli-

cations of models that are nonneutral toward ambiguity. In this context, Arrow’s comment

would seem to apply all the more. The challenge of our work, compared to the analysis done

under risk by Arrow and Pratt, is that their study has been restricted to the expected utility

model. Under ambiguity, instead, there are by now several alternative models, thus moving

the analysis well beyond expected utility. In characterizing how ambiguity attitudes change

with wealth, our results might provide some guidance in choosing between these models, as

the standard theory of absolute risk aversion of Arrow and Pratt provides guidance in the

choice of the von Neumann-Morgenstern utility function. For example, our results will show

that a researcher who believes that agents are not constant absolute ambiguity averse —be

that due to experimental evidence and/or personal introspection as for Arrow’s assumption

of decreasing absolute risk aversion — can rule out the use of some models: for example,

α-maxmin, Choquet expected utility, and variational preferences under risk neutrality. Sim-

ilarly, for a researcher relying on the smooth ambiguity model, behavioral assumptions on

absolute and relative ambiguity attitudes translate into corresponding choices of the model’s

parameters. For instance, if risk attitudes are assumed to be CRRA and risk averse, as

common in Macroeconomics,2 and relative ambiguity attitudes are assumed to be constant

as well (irrespective of the prior µ), then our results yield that φ must be either CARA or

CRRA, depending on the von Neumann-Morgenstern function being either the logarithm or

the power function.

Finally, our work provides alternative and useful methods to falsify models of choice

under ambiguity as well as testable implications. For example, on the one hand, under

the assumption that agents are CARA,3 falsifying our notion of constant absolute ambiguity

attitudes yields that preferences cannot be invariant biseparable preferences (e.g., α-maxmin

and Choquet expected utility). On the other hand, under the assumption that agents are

2More formally, consequences are elements of (0,∞) and the von Neumann-Morgenstern utility function

over consumption/money is often set to be v̄γ (c) = cγ if γ ∈ (0, 1) and v̄γ (c) = log c if γ = 0.
3For a portfolio-choice experiment estimating ambiguity aversion in a CARA setup, see e.g., Ahn et al.

[1].
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CRRA,4 if we observe that the share invested in the uncertain asset is not constant with

wealth, then we can conclude that preferences cannot be invariant biseparable.

Our methodological approach We consider a standard Anscombe and Aumann setup.5

This choice is motivated by our aim to study how wealth effects change ambiguity attitudes,

thus we want to control for the effects due to risk attitudes. We denote by F the set of all
Anscombe and Aumann acts f : S → ∆0 (R), where S is a state space and ∆0 (R) is the set

of simple monetary lotteries. Methodologically, we think that the idea of defining decreasing

absolute ambiguity aversion rests on answering the following question: How do we formalize

the idea that the poorer the decision maker is, the more ambiguity averse he is? In order to

do that, we need two ingredients:

1. A notion of preference at different wealth levels w, in symbols, %w.

2. A notion of comparative ambiguity aversion.

Given any formalization of points 1 and 2, then one can say that % is decreasing absolute
ambiguity averse if ambiguity aversion is higher at lower wealth levels, that is, w′ > w yields

that %w is more ambiguity averse than %w′ . Clearly, when preferences are defined over
lotteries, this approach exactly mirrors how decreasing absolute risk attitudes are defined.

Conversely, under ambiguity the above approach might lead to different definitions depending

on which formal notion one translates points 1 and 2 into. In our case, preferences over final

wealth levels are modelled by a binary relation % on F . Given a wealth level w and an act
f , we define by fw the act whose final monetary outcomes are the outcomes of f shifted by

w (see Section 2.1, for a formal definition). Thus, as for 1, we define preferences at wealth

level w by

f %w g def⇐⇒ fw % gw.

As for 2, we rely on the comparative notion of Ghirardato and Marinacci [17].6 Finally, in

a similar fashion, we also define the notions of increasing and constant absolute ambiguity

aversion (see Definition 3).

Before proceeding, we reiterate that there are other rather different approaches that

formalize absolute ambiguity attitudes in terms of utility shifts rather than wealth shifts (see

the related literature below). Since our goal here is to talk about wealth effects, we will

always talk about these attitudes as wealth decreasing (resp., increasing, constant) absolute

ambiguity averse attitudes and we will refer to them as w-DAAA (resp., w-IAAA, w-CAAA),

thus adding the qualifier of wealth to our notion.

4For an empirical study of constant relative risk attitudes using portfolio composition data, see Chiappori

and Paiella [13].
5The relevant decision theoretic and mathematical notions are introduced in Section 2 and Appendix A.
6See Epstein [14] for a different comparative notion of ambiguity attitudes. See also Section 3.6.
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The class of preferences studied In the paper, we characterize wealth absolute ambi-

guity attitudes for the class of rational preferences. This class of preferences is large and

contains several models of choice which are common in the literature (e.g., maxmin, α-

maxmin, smooth ambiguity, and variational preferences). Rational preferences are known to

admit a representation of the form V : F → R such that

V (f) = I (u (f)) ∀f ∈ F , (1)

where u is a von Neumann-Morgenstern expected utility functional over ∆0 (R) and I is a

normalized and monotone functional that maps utility profiles s 7→ u (f (s)) into the real

line. This decomposition of the utility function V dates back to Schmeidler [27].7 From

a behavioral point of view, this decomposition is particularly useful since the pair (u, I),

other than representing % as in (1), characterizes the attitudes of the decision maker toward
risk and ambiguity: Namely, u characterizes the risk attitudes of the decision maker, while

I describes the ambiguity attitudes. This specific feature of this decomposition has been

emphasized by Ghirardato and Marinacci [16] and exploited several times in the literature.8

Also in this work the two functions u and I will play a key role.

Wealth classifiable preferences As in the risk case, it is not hard to show that wealth

absolute attitudes do not provide an exhaustive class of categories with which we can classify

rational preferences. In other words, there exist rational preferences that are neither wealth

decreasing, nor increasing, nor constant absolute ambiguity averse. When a rational pref-

erence relation % exhibits one of these three absolute ambiguity attitudes, we will say that
% is wealth classifiable. Of course, being classifiable in terms of absolute attitudes toward
ambiguity has neither a positive nor a negative connotation. Non-classifiable preferences

simply fall outside our analysis.

Our first result (Proposition 4) states that if % is a wealth classifiable rational preference,
then it must be constant absolute risk averse (henceforth, CARA). Conceptually, this is

important because, in this way, absolute risk attitudes do not intrude in wealth effects and

all the differences in terms of attitudes toward uncertainty can be then rightfully attributed

to attitudes toward ambiguity. At the same time, this can be a serious limitation. The

aforementioned utility approach allows for more general risk attitudes. Nevertheless, this

comes at the potential cost of studying utility shifts rather than wealth effects.

With this in mind, we proceed by characterizing wealth absolute ambiguity attitudes

using the decomposition (u, I) (Theorem 2 and Corollary 1). The following table provides

an informal summary of our characterization for a wealth classifiable %:
7 In [27] it plays a key role in characterizing Choquet expected utility preferences (the functional I is indeed

a Choquet integral).
8For example, it has been useful in characterizing comparative ambiguity attitudes, as in Ghirardato and

Marinacci [17].
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Risk averse Risk loving Risk neutral

w-DAAA I superhomogeneous I subhomogeneous I constant superadditive

w-IAAA I subhomogeneous I superhomogeneous I constant subadditive

w-CAAA I homogeneous I homogeneous I constant additive

The table should be read as follows: Under the assumption of wealth classifiability, the rows

specify the absolute ambiguity attitudes while the columns specify the risk attitudes, be they

averse, loving, or neutral.9 Each cell then provides a full characterization in terms of the

functional I. For example, consider a preference relation which is wealth decreasing absolute

ambiguity averse and risk averse. By Theorem 2, I is superhomogeneous. On the other hand,

if I is assumed to be superhomogeneous, the table shows that there are only two possibilities

for a wealth classifiable preference: either % is risk averse and w-DAAA or % is risk loving
and w-IAAA.

The table also shows that (Corollary 3) invariant biseparable preferences —so in particular

α-maxmin and Choquet expected utility preferences —are wealth classifiable if and only if

they are wealth constant absolute ambiguity averse. The reason is simple: For this class of

preferences, the functional I is both positively homogeneous and constant additive.

These are two dichotomic properties of the functional I. They characterize absolute

attitudes toward ambiguity in the risk neutral and nonneutral cases and are most evident for

w-CAAA preferences. We argue that they are the by-product of a unit of account problem.

In fact, though wealth effects are in monetary units (as traditional in Economics), for each

act f the number I (u (f)) is in von Neumann-Morgenstern utils.10 In contrast, if v denotes

the von Neumann-Morgenstern utility function on monetary outcomes of u, then the map

c : F → R defined by
c (f) = v−1 (I (u (f))) ∀f ∈ F

is a monetary certainty equivalent. Clearly, c is expressed in the same unit of account of

wealth w. We show that monetary certainty equivalents emerge as the proper representation

for absolute attitudes (Proposition 5); for example, % is w-DAAA if and only if % is CARA
and c is wealth superadditive, that is,

c (fw) ≥ c (f) + w ∀w ≥ 0

for every act f . To sum up, a consistent use of the unit of account allows for a clear-cut

characterization of wealth absolute ambiguity attitudes.

9Being wealth classifiable, % must be CARA (Proposition 4). Thus, the von Neumann-Morgenstern utility
function over monetary outcomes can be normalized to be either v (c) = − 1

α
e−αc with α 6= 0 or v (c) = c.

10Since I is normalized, if an act f is such that, for some scalar k, u (f (s)) = k for all s ∈ S, then

I (u (f)) = k.
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We then proceed to characterize wealth absolute attitudes toward ambiguity by focusing

on the subclass of uncertainty averse preferences. For this class, we provide a characterization

of these attitudes in terms of their dual representation, that is, in terms of properties of their

ambiguity aversion index (Theorem 3). For this particular class, we are able to show how

wealth constant absolute ambiguity attitudes are characterized by two radically different

models: variational preferences, under risk neutrality, and homothetic preferences under risk

nonneutrality (Corollaries 4 and 7).

In Section 3.5, we also study some portfolio implications of absolute attitudes toward

ambiguity. Our portfolio application adapts Arrow’s portfolio exercise to our setting.

Relative attitudes Finally, in Section 4 we conduct a similar analysis for relative ambi-

guity aversion. Though our analysis rests on the same arguments and intuitions used for

the absolute case, we report the main definitions and characterizations because of the rele-

vance of relative attitudes in applied work. For example, a preference is wealth decreasing

relative ambiguity averse if, at a higher proportional wealth level, it becomes comparatively

less averse to ambiguity. Similarly to the absolute case, we obtain that a proper analysis of

(wealth) relative attitudes toward ambiguity requires that the underlying risk preference on

lotteries be constant relative risk averse (CRRA, a popular assumption in Macroeconomics

and Finance), so that relative risk attitudes do not intrude in proportional wealth effects.

Our analysis of wealth relative attitudes reinforces our main message: It is fundamental to

keep track of risk attitudes (i.e., risk aversion/love) in studying ambiguity attitudes, be they

absolute or relative. Also for relative attitudes, we perform a portfolio exercise. In a two

asset allocation problem, we obtain that wealth constant relative ambiguity attitudes yield

that the share of wealth invested in the non risk free asset does not vary with wealth. Thus,

the empirical evidence on individuals’ portfolio allocations in favor of CRRA preferences

might be consistent with both CRRA and wealth constant relative ambiguity attitudes (see

Section 4.3).

Related literature Absolute attitudes toward uncertainty have been previously studied

in a few insightful papers. On the one hand, Cherbonnier and Gollier [12] propose and

characterize a preferential definition of wealth absolute attitudes toward uncertainty (being

the sum of risk and ambiguity) within the α-maxmin and the smooth ambiguity models while

Wakker and Tversky [30, Propositions 9.5 and 9.6] characterize wealth constant attitudes

over gains within the prospect theory model. The latter paper shows that wealth constant

attitudes, be those either absolute or relative, within the prospect theory model, translate

into the same properties (i.e., either CARA or CRRA) of the corresponding von Neumann-

Morgenstern utility v. This is perfectly in line with our Corollary 3, despite having been

derived in a different setting and for a specific model. Instead, for the former paper, the key
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differences with our work are that Cherbonnier and Gollier focus on the portfolio implications

of their characterizations and, since they do not operate in an Anscombe and Aumann

setup, they are not able to disentangle risk and ambiguity attitudes, which is essential to our

analysis. Moreover, their analysis is limited to two particular classes of preferences. On the

other hand, Grant and Polak [21] start from the following observation: “Constant absolute

risk aversion says that if we add or subtract the same constant both to a random variable

and to a sure outcome to which it is preferred, then the preference is maintained”. They

consider an Anscombe and Aumann setting where lotteries are not necessarily monetary.

They identify random variables with acts and constants with constant acts (i.e., lotteries).

Then, they observe that in such a setting formal standard additions are not allowed,11 but

convex combinations are. Hence, they replace the former with the latter. In this way,

constant absolute ambiguity aversion becomes the following property: for any act f in F
and any three lotteries x, y, and z, and any α in (0, 1),

αf + (1− α)x % αz + (1− α)x =⇒ αf + (1− α) y % αz + (1− α) y. (2)

For rational preferences with Imu = R, (2) turns out to be equivalent to the Weak C-
Independence Axiom (e.g., variational preferences as in [24] and vector expected utility

preferences as in [28]), which in turn is equivalent to the constant additivity of I, irrespective

of any other property of u and its risk attitudes. From a comparative point of view, their

analysis would be equivalent to the following approach. Consider a rational preference with

representation as in (1). As in [21], assume that Imu = R. Define a preference relation <
over utility profiles by

u (f) < u (g)
def⇐⇒ f % g.

It turns out that the binary relation < is a well defined monotone preference over simple real-
valued random variables. For, since Imu = R, for each simple real-valued random variable

ϕ there exists an act f ∈ F such that u (f) = ϕ. This fact and the definition of < allow for
defining a derived preference <k over utility profiles by imposing that

u (f) <k u (g)
def⇐⇒ u (f) + k < u (g) + k.

The binary relation <k is interpreted as the preference of the decision maker at a utility level
k ∈ R. In other words, in this analysis, adding or subtracting the same constant is done at
a utility level. With this in mind, constant absolute ambiguity aversion of Grant and Polak

[21] would be equivalent to say that <k is as ambiguity averse as <k′ for any two utility levels
k and k′. In other words, their notion can be constructed in a similar fashion to ours, but

rather than defining preferences at different wealth levels, one has to define preferences at

11 In other words, in order to define the sum of an act f and a lottery x, we would need to define the sum,

state by state, of two lotteries, namely f (s) and x, which is clearly something nonstandard.
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different utility levels (i.e., k and k′). This way of reasoning would lead to notions of utility

absolute ambiguity attitudes, where their case is the constant one.

In the same spirit, Xue [31] and [32] considers more general attitudes, namely utility de-

creasing and increasing absolute attitudes, by suitably weakening (2) and by axiomatizing a

constant superadditive version of variational preferences as well as two equivalent representa-

tions of uncertainty averse preferences (see also Chambers et al. [10] for a similar definition).

Independently of Xue, Ghirardato and Siniscalchi [18] studied a similar notion of utility ab-

solute ambiguity attitudes for the class of rational preferences. Relative to these papers, the

key difference with our work is that we directly address the effect of baseline monetary shifts.

As mentioned, in the latter four papers instead, absolute ambiguity attitudes are defined in

terms of utility shifts rather than wealth shifts.

A similar approach was already present in Klibanoff, Marinacci, and Mukerji [23]. As

a consequence, our analysis is consistent with their results under risk neutrality: this is

the only case when additive wealth shifts coincide with additive utility shifts. In general,

standard shifts in wealth considered in Economics do not generate well behaved shifts in

utility and, apart from the risk neutral case, our analysis leads to different results. For

example, homothetic preferences in this literature would be classified as (utility) constant

relative ambiguity averse while in our case they turn out to be (wealth) constant absolute

ambiguity averse under risk nonneutrality and CARA.

One major benefit of the utility approach is, of course, that if a researcher believes

that agents exhibit absolute ambiguity attitudes in terms of utility shifts, then the same

researcher has no limitation on how to model the risk attitudes of the decision maker. If

instead the same is assumed about absolute ambiguity attitudes in terms of wealth shifts,

then the decision maker over risk, necessarily must be CARA.

Finally, to the best of our knowledge, the only experimental paper testing absolute/relative

ambiguity attitudes is Baillon and Placido [4]. They discuss their findings using both defini-

tions: the one based on utility shifts as well as the one based on wealth shifts. They observe

that roughly 60% of their subjects are CARA. Within this group, the majority of risk neutral

subjects was wealth constant absolute ambiguity averse, followed by wealth decreasing ab-

solute ambiguity averse. Risk averse agents were, instead, mostly wealth increasing absolute

ambiguity averse.12

12Given our results, for a risk neutral agent, for example, this would be consistent with either having

invariant biseparable or variational preferences. For a risk averse agent, instead, this would rule out risk

averse variational preferences.
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2 Preliminaries

2.1 Setup

We begin by considering a generalized version of the Anscombe and Aumann [2] setup with

a nonempty set S of states of the world, an algebra Σ of subsets of S called events, and

a nonempty convex set X of consequences. We will confine our attention to sets X of

monetary simple lotteries: for wealth absolute ambiguity attitudes X = ∆0 (R), while for

wealth relative ambiguity attitudes X = ∆0 (R++).13 Since part of the analysis of these two

cases is in common, some of the results use the abstract notion of consequence set X (e.g.,

Theorem 1). We denote by F the set of all (simple) acts: functions f : S → X that are

Σ-measurable and take on finitely many values.

Given any x ∈ X, define x ∈ F to be the constant act that takes value x. Thus, with

the usual slight abuse of notation, we identify X with the subset of constant acts in F .
Using the linear structure of X, we define a mixture operation over F . For each f, g ∈ F
and α ∈ [0, 1], the act αf + (1 − α)g ∈ F is defined to be such that (αf + (1− α)g) (s) =

αf(s)+(1−α)g(s) ∈ X for all s ∈ S. Given a binary relation % on F (a preference), for each
f ∈ F we denote by xf ∈ X a certainty equivalent of f , that is, xf ∼ f .14 Given a function
u : X → R, we denote by Imu the set u (X); in particular, observe that u ◦ f ∈ B0 (Σ) when

f ∈ F . The mathematical notions used in the main text, but not defined there, are collected
in Appendix A.

The paper relies on the following comparative notion of Ghirardato and Marinacci [17].

Definition 1 Given two preferences %1 and %2 on F , we say that %1 is more ambiguity

averse than %2 if, for each f ∈ F and x ∈ X, f %1 x implies f %2 x.

An important example of a convex consequence set X is that of all simple monetary

lotteries:

∆0 (R) =

{
x ∈ [0, 1]R : x (c) 6= 0 for finitely many c ∈ R and

∑
c∈R

x (c) = 1

}
.

Any wealth level w ∈ R defines a map w : ∆0 (R) → ∆0 (R) which is bijective and affi ne:

for each x in ∆0 (R), xw is the lottery such that xw (c) = x (c− w) for all c ∈ R. We thus
interpret the outcome of a lottery, c ∈ R, as a final wealth level. Thus, given x in ∆0 (R), if

the decision maker has wealth w, we interpret xw as being the distribution on final wealth

levels. In fact, lottery x yields a consequence d ∈ R (on top of w) with probability x (d) and

13We define ∆0 (R) right below and ∆0 (R++) in Section 4.
14 In a monetary framework when X is either ∆0 (R) or ∆0 (R++), note that given f , xf is a lottery that,

received with certainty in each state s, is indifferent to f . Thus, xf is a risky prospect which is independent

of the realization on S.
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the probability of having as final wealth w + d, that is xw (w + d), is equal to x (d). This

implies that xw (w + d) = x (d) for all d ∈ R, which is equivalent to our definition of xw.
Note that the map w admits a natural extension to F when X = ∆0 (R), where f 7→ fw is

defined by fw (s) = f (s)w for all s ∈ S.

2.2 Axioms and representations

We will consider the following classes of preferences % on F : rational preferences (Cerreia-
Vioglio et al. [6]), uncertainty averse preferences (Cerreia-Vioglio et al. [7]), invariant

biseparable preferences (Ghirardato, Maccheroni, and Marinacci [15]), variational prefer-

ences (Maccheroni, Marinacci, and Rustichini [24]), and maxmin preferences (Gilboa and

Schmeidler [20]). They rely on the following axioms, discussed in the original papers as well

as in Gilboa and Marinacci [19].

Axiom A. 1 (Weak Order) % is nontrivial, complete, and transitive.

Axiom A. 2 (Monotonicity) If f, g ∈ F and f(s) % g(s) for all s ∈ S, then f % g.

Axiom A. 3 (Continuity) If f, g, h ∈ F , the sets {α ∈ [0, 1] : αf + (1 − α)g % h} and
{α ∈ [0, 1] : h % αf + (1− α)g} are closed.

Axiom A. 4 (Risk Independence) If x, y, z ∈ X and α ∈ (0, 1),

x ∼ y =⇒ αx+ (1− α) z ∼ αy + (1− α) z.

Axiom A. 5 (Convexity) If f, g ∈ F and α ∈ (0, 1),

f ∼ g =⇒ αf + (1− α) g % f.

Axiom A. 6 (Weak C-Independence) If f, g ∈ F , x, y ∈ X, and α ∈ (0, 1),

αf + (1− α)x % αg + (1− α)x =⇒ αf + (1− α)y % αg + (1− α)y.

Axiom A. 7 (C-Independence) If f, g ∈ F , x ∈ X, and α ∈ (0, 1),

f % g ⇐⇒ αf + (1− α)x % αg + (1− α)x.

Axiom A. 8 (Unboundedness) There exist x and y in X such that x � y and for each

α ∈ (0, 1) there exists z ∈ X that satisfies

either y � αz + (1− α)x or αz + (1− α)y � x.

The following omnibus result collects some of the results that the above papers proved

for the classes of preferences that they studied.
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Theorem 1 (Omnibus) A preference % on F satisfies Weak Order, Monotonicity, Con-

tinuity, and Risk Independence if and only if there exist a nonconstant and affi ne function

u : X → R and a normalized, monotone, and continuous functional I : B0 (Σ, Imu) → R
such that the criterion V : F → R, given by

V (f) = I (u (f)) ∀f ∈ F (3)

represents %. The function u is cardinally unique and, given u, I is the unique normalized,
monotone, and continuous functional satisfying (3). In this case, we say that % is a rational
preference. A rational preference satisfies:

(i) C-Independence if and only if I is constant linear; in this case, we say that % is an

invariant biseparable preference.15

(ii) Convexity if and only if I is quasiconcave; in this case, we say that % is an uncertainty
averse preference.16

(iii) Convexity and Weak C-Independence if and only if I is quasiconcave and constant

additive; in this case, we say that % is a variational preference.

(iv) Convexity and C-Independence if and only if I is quasiconcave and constant linear; in

this case, we say that % is a maxmin preference.

(v) Unboundedness if and only if Imu is unbounded.

Given u and I as in Theorem 1, we call (u, I) a (canonical) representation of the rational

preference %.17

We say that % on F is a homothetic (uncertainty averse) preference if there exists a

canonical representation (u, I), with Imu equal to either (−∞, 0) or (0,∞), such that

I (ϕ) = min
p∈∆

∫
ϕc (p)− sgnϕ dp =


minp∈∆

∫
ϕdp
c(p) if Imu = (0,∞)

minp∈∆ c (p)
∫
ϕdp if Imu = (−∞, 0)

where c : ∆ → [0, 1] is normalized, upper semicontinuous, and quasiconcave.18 Note that

I is positively homogeneous. These preferences, proposed by Chateauneuf and Faro [11],
15 Invariant biseparable preferences correspond to the general class of α (f)-maxmin preferences of Ghi-

rardato, Maccheroni, and Marinacci [15], which, inter alia, includes the Choquet expected utility preferences

of Schmeidler [27].
16Uncertainty averse preferences, within the rational preferences class, are distinguished by further satisfying

the Convexity axiom. A slightly stronger version of this axiom was termed Uncertainty Aversion by Schmeidler

[27, p. 582], since it captures a preference for diversification/hedging. According to our terminology, these

preferences should be called ambiguity averse preferences, yet we opted to use their original name as in [7].
17 In Appendix B, we discuss more in detail the uniqueness features of canonical representations.
18The function c is normalized if and only if maxp∈∆ c (p) = 1. Observe also that since Imu is equal to

either (−∞, 0) or (0,∞), then − sgnϕ = 1 or − sgnϕ = −1, yielding that c (p) can be factored out the

integral.
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are a natural counterpart to variational preferences with positive homogeneity in place of

constant additivity. As [11] showed, positive homogeneity is implied by a form of homo-

theticity/independence with respect to a worst consequence, when such a consequence exists

(something that in this paper we do not allow for; this is why these preferences are not

included in the omnibus theorem).

2.3 A twist: Anscombe and Aumann setup and wealth

One possible way of justifying the use of Anscombe and Aumann acts to study wealth

effects is to relate this framework to model uncertainty. To this end, assume there exists

an underlying measurable space (Ω,A) of payoff relevant states, a collection M = {ms}s∈S
of “models” (probability measures on the σ-algebra A).19 The “primitive” alternatives of

the decision maker are (simple and measurable) state-contingent payoffs h : Ω → R; in
symbols h ∈ B0 (A). If S is finite, then for each simple A-measurable and real valued h,
there corresponds an Anscombe and Aumann act

ĥ : S → ∆0 (R)

s 7→ ms ◦ h−1

that maps s to the distribution of h underms. The agent is assumed to have a preference over

state-contingent payoffs, that is, over B0 (A). If he is indifferent between state-contingent

payoffs that are identically distributed with respect to each model (i.e., the agent is con-

sequentialist), then his “primitive” preference over B0 (A) can be directly expressed by a

preference on Anscombe and Aumann acts. More formally:20

Proposition 1 If M = {ms}s∈S is a finite set of probability measures on (Ω,A), then{
ĥ : h ∈ B0 (A)

}
⊆ F . (4)

with equality if and only if the elements of M are orthogonal and nonatomic.

For our exercise, it is interesting to observe that, given any h ∈ B0 (A) for each w ∈ R
and each c ∈ R

(ĥ+ w) (s) (c) = ms (ω ∈ Ω : (h+ w) (ω) = c) = ms (ω ∈ Ω : h (ω) = c− w) = (ĥ)w (s) (c)

for all s ∈ S. That is, ĥw = ĥ+ w is the Anscombe and Aumann act that corresponds to a

wealth shift w of the state-contingent payoff h. This permits to interpret our Anscombe and

Aumann analysis in terms of model uncertainty.

19Only for this section, the word state is reserved to the elements ω of Ω while the elements s of S are best

seen as parameters.
20For the sake of brevity, we omit the proof of Proposition 1. It is available upon request.
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3 Results

3.1 Induced preferences

In the rest of the paper (with the exception of Section 4) we specialize the set of consequences

X to be made of monetary lotteries, that is X = ∆0 (R). A preference % on F induces,

through a wealth level w ∈ R, a preference %w on F given by

f %w g ⇐⇒ fw % gw.

The induced preference inherits some of the properties of the original preference.

Proposition 2 Let % be a preference on F and w ∈ R. Then:

(i) If % is a rational preference, so is %w.

(ii) If % is an uncertainty averse preference, so is %w.

Next, we compare the ambiguity aversion of different induced preferences.

Proposition 3 Let % be a rational preference on F and w and w′ two wealth levels. If %w

is more ambiguity averse than %w′, then uw is a positive affi ne transformation of uw′.21

Before proceeding, note that an affi ne utility function u : ∆0 (R) → R takes the form

u (x) =
∑

c∈R v (c)x (c), where v : R → R. Throughout the paper we make the following
assumption.

Assumption The function v is strictly increasing and continuous.

In this monetary setup, we have the following classic notion.

Definition 2 A preference % on F is constant absolute risk averse (CARA) if, for any two
levels w and w′ of wealth, the induced preferences %w and %w′ agree on ∆0 (R).

This behavioral definition amounts to say that preferences over lotteries are unaffected

by the level of wealth w. A routine argument shows that, if % (on lotteries) is represented by
an affi ne utility function u : ∆0 (R) → R, then % is CARA if and only if there exist α ∈ R,
a > 0, and b ∈ R such that

v (c) = vα (c) =

{
−a 1

αe
−αc + b if α 6= 0

ac+ b if α = 0
, (5)

21Here, uw and uw′ are part of a canonical representation for, respectively, %w and %w
′
.
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that is, vα is either exponential or affi ne. In the former case, % is a CARA preference which
is not risk neutral; in particular, it is (strictly) risk averse if α > 0 and (strictly) risk loving

if α < 0.22 Note that

Imu =


(−∞, b) if α > 0

(b,+∞) if α < 0

(−∞,+∞) if α = 0

and so b = sup Imu when % is risk averse and b = inf Imu when % is risk loving. Momen-
tarily, this extremum role of b will play a key role in Theorem 2.

3.2 Rational preferences

Wealth absolute ambiguity attitudes describe how the decision maker’s preferences over

uncertain monetary alternatives vary as his wealth changes. This motivates the following

behavioral definition, which adapts to our setting a standard notion for risk domains. We

then proceed to characterize it for rational and for uncertainty averse preferences.

Definition 3 A preference % on F is wealth decreasing (increasing, constant) absolute am-
biguity averse if, for any two levels w and w′ of wealth, w′ > w implies that %w is more
(less, equally) ambiguity averse than %w′.23

As this classification is not exhaustive, we say that a preference is (absolutely) wealth

classifiable in terms of absolute ambiguity aversion if it can be classified according to this

definition, that is, if it is either wealth decreasing or increasing or constant absolute ambiguity

averse. The next result shows that being CARA is a necessary condition for a preference in

order to be wealth classifiable: in fact, in this way absolute risk attitudes do not intrude in

wealth effects.

Proposition 4 A rational preference % is wealth classifiable only if it is CARA.

We first characterize wealth absolute ambiguity attitudes for rational preferences.

Theorem 2 Let % be a rational preference on F with representation (u, I). The following

statements are equivalent:

(i) % is wealth decreasing absolute ambiguity averse;
22 In what follows, we omit “strictly”since a CARA preference is either risk neutral (α = 0) or strictly risk

averse (α > 0) or strictly risk loving (α < 0).
23Clearly, %w is less ambiguity averse than %w′ if and only if %w′ is more ambiguity averse than %w.

Similarly, equally ambiguity averse means that %w is, at the same time, more and less ambiguity averse than
%w′ .
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(ii) % is CARA and I is:

(a) concave (convex) at b provided % is risk averse (loving);

(b) constant superadditive provided % is risk neutral.

(iii) % is wealth classifiable and I satisfies (a) or (b).

When vα (c) = − 1
αe
−αc, and so a = 1 and b = 0, in point (a) concavity (convexity) at b

reduces to positive superhomogeneity (subhomogeneity).24

Dual versions of this theorem are easily seen to hold for wealth increasing and constant

absolute ambiguity aversion (for this latter case see Corollary 1). In particular, by keeping

the same premises, Theorem 2 takes a similar form with (i), (ii), and (iii) replaced by:

(i)’% is wealth increasing absolute ambiguity averse;

(ii)’% is CARA and I is:

(a) convex (concave) at b provided % is risk averse (loving);

(b) constant subadditive provided % is risk neutral.

(iii)’% is wealth classifiable and I satisfies (a) or (b).

The next result characterizes wealth constant absolute ambiguity aversion for wealth

classifiable rational preferences. At the same time, the result still holds if instead of requiring

% being wealth classifiable we only require % to be CARA.25

Corollary 1 Let % be a wealth classifiable rational preference on F with representation

(u, I). Then:

(i) If % is risk neutral, it is wealth constant absolute ambiguity averse if and only if I is
constant additive.26

(ii) If % is not risk neutral, it is wealth constant absolute ambiguity averse if and only if I
is affi ne at b.27

When vα (c) = − 1
αe
−αc, and so a = 1 and b = 0, in point (ii) the affi nity at b reduces

to positive homogeneity, that is, I (λϕ) = λI (ϕ) for all λ > 0. Risk neutrality and risk

aversion of %may thus translate wealth constant absolute ambiguity aversion in, respectively,
24See also Appendix A for the notions of concavity/convexity at b.
25Recall that, by Proposition 4, wealth classifiable and rational preferences are CARA.
26Recall that Imu = R in the risk neutral case.
27Recall that b = sup Imu when % is risk averse and b = inf Imu when % is risk loving.
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constant additivity and positive homogeneity of I which are two mathematically and decision

theoretically distinct properties.

Indeed, constant additivity and positive homogeneity can be obtained jointly by assuming

C-Independence. The assumption of C-Independence could be equivalently rewritten as: for

each f, g ∈ F , x, y ∈ ∆0 (R), and α, β ∈ (0, 1]

αf + (1− α)x % αg + (1− α)x =⇒ βf + (1− β) y % βg + (1− β) y.

Thus, as argued in [24, p. 1454], C-Independence actually involves two types of independence:

independence relative to mixing with constants and independence relative to the weights

used in such mixing. The first type (Weak C-Independence) corresponds to I being constant

additive while the second type, in the presence of a worst consequence, corresponds to I

being positively homogeneous (see Chateauneuf and Faro [11]). Another class of preferences

that satisfy Weak C-Independence, but do not necessarily satisfy Convexity, is the class of

vector expected utility preferences (see Siniscalchi [28]).28

Corollary 2 A risk neutral rational preference is wealth constant absolute ambiguity averse
if and only if it satisfies Weak C-Independence.

Along with Corollary 1, the next result shows that invariant biseparable preferences are

a class of rational preferences that, when wealth classifiable, are wealth constant absolute

ambiguity averse regardless of their risk attitudes.

Corollary 3 Let % be an invariant biseparable preference % on F . The following conditions
are equivalent:

(i) % is wealth classifiable;

(ii) % is wealth constant absolute ambiguity averse;

(iii) % is CARA.

As mentioned in the Introduction, Corollary 2 (and Corollary 4 below) show that our

analysis is consistent, under risk neutrality, with the approach of Grant and Polak [21].

Since we are dealing with acts yielding monetary lotteries, it is also possible to discuss

monetary certainty equivalents. Given a canonical representation (u, I), we can define the

functional c : F → R by the rule c (f) = v−1 (I (u (f))). Note that, given f ∈ F , the scalar
c (f) is the monetary amount that, received with certainty in each state of the world, makes

28Vector expected utility preferences, on top of being rational and satisfying Weak C-Independence, satisfy

two other axioms of independence/invariance and an extra continuity axiom. In terms of framework, Σ is

required to be countably generated.
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the decision maker indifferent between f and the constant (risk free) act paying c (f). We

will say that c is wealth superadditive (resp., subadditive, additive) if and only if for each

f ∈ F and for each w ≥ 0

c (fw) ≥ c (f) + w (resp., ≤,= ).

Proposition 5 Let % be a rational preference on F with representation (u, I). Then:

(i) % is wealth decreasing absolute ambiguity averse if and only if c is wealth superadditive
and % is CARA.

(ii) % is wealth increasing absolute ambiguity averse if and only if c is wealth subadditive
and % is CARA.

(iii) % is wealth constant absolute ambiguity averse if and only if c is wealth additive and
% is CARA.

3.3 Uncertainty averse preferences

Assume that % is an uncertainty averse preference. By definition, % is also rational. If (u, I)

is a (rational) representation of %, then there exists a unique minimal linearly continuous
G ∈ G (Imu×∆) such that I (ψ) = infp∈∆G

(∫
ψdp, p

)
for all ψ ∈ B0 (Σ, Imu). Uncertainty

averse preferences are thus characterized by the pair (u,G). In particular, the function G is

an index of ambiguity aversion.29

Now we characterize wealth absolute ambiguity attitudes for uncertainty averse prefer-

ences in terms of the pair (u,G).

Theorem 3 Let % be an uncertainty averse preference on F with representation (u,G). The

following statements are equivalent:

(i) % is wealth decreasing absolute ambiguity averse;

(ii) % is CARA and G is such that:

(a) G (λt+ (1− λ) b, p) ≥ λG (t, p) + (1− λ) b (≤) for all (t, p) ∈ Imu × ∆ and for

all λ ∈ (0, 1) provided % is risk averse (loving);

(b) G (t+ k, p) ≥ G (t, p) + k for all (t, p) ∈ Imu × ∆ and for all k ≥ 0 provided

% is risk neutral.

(iii) % is wealth classifiable and G satisfies (a) or (b).

29These facts can be found in [7] (see also Appendix A). Because of the minimality of G, we have G (t, p) =

supf∈F
{
u (xf ) :

∫
u (f) dp ≤ t

}
for all (t, p) ∈ Imu×∆. The function G is unique given u.
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As mentioned in the Introduction and above, our analysis is consistent, under risk neutral-

ity, with the approach of Grant and Polak [21]. Indeed, the role of constant superadditivity

in Theorem 3 shows that a similar consistency holds with the results of Xue [31] and [32]

where decreasing absolute ambiguity aversion is modelled in terms of utility shifts.

In Theorem 3 as well, dual versions of this result hold in the wealth increasing and con-

stant absolute ambiguity averse case (with, respectively, opposite inequalities and equalities).

The next corollary shows that the behavioral characterization established in Corollary 2

leads to variational preferences when preferences are uncertainty averse.

Corollary 4 A risk neutral uncertainty averse preference is wealth constant absolute ambi-
guity averse if and only if it is a variational preference.

The next result reports a noteworthy consequence of the previous theorem for uncertainty

averse preferences which feature a concave G (or, equivalently, a concave I).

Corollary 5 Let % be an uncertainty averse preference which is CARA and risk averse. If
G is concave, then % is wealth decreasing absolute ambiguity averse.

This corollary can be sharpened for the class of variational preferences that are not

maxmin, and so in particular are not invariant biseparable. This class features a concave G.

Corollary 6 A variational preference, which is not maxmin and not risk neutral, satisfies:

(i) wealth decreasing absolute ambiguity aversion if and only if it is CARA and risk averse;

(ii) wealth increasing absolute ambiguity aversion if and only if it is CARA and risk loving.

In order to characterize wealth constant absolute ambiguity attitudes when the preference

is not risk neutral, we need to consider homothetic preferences.

Corollary 7 A risk nonneutral uncertainty averse preference is wealth constant absolute

ambiguity averse if and only if it is CARA and homothetic.

To sum up, depending on risk attitudes, either homothetic or variational preferences

characterize wealth constant absolute ambiguity attitudes for uncertainty averse preferences.

3.4 Smooth ambiguity preferences

Let φ : Imu→ R be a strictly increasing and continuous function, and µ a Borel probability
measure over ∆. The preferences represented by a pair (u, I), where

I (ϕ) = φ−1

(∫
φ

(∫
ϕdp

)
dµ

)
(6)

are called smooth ambiguity preferences (Klibanoff, Marinacci and, Mukerji [23]). They are

uncertainty averse when φ is concave.
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Proposition 6 Let % be a CARA smooth ambiguity preference and φ (t) = −e−γt with
γ > 0. Then,

(i) If % is risk neutral, then it is wealth constant absolute ambiguity averse.

(ii) If % is risk averse, then it is wealth decreasing absolute ambiguity averse.

In our setup an exponential φ thus yields wealth constant absolute ambiguity aversion,

as argued in [23], as long as % is risk neutral. In the next result, using Theorem 2, we

provide a full characterization of wealth decreasing absolute ambiguity aversion within the

smooth ambiguity model. Before doing so, we need to introduce some additional notions

and terminology.

Given φ : R → R and w ∈ R, we define φw : R → R to be such that φw (t) = φ (t+ w)

for all t ∈ R. Similarly, given φ : (−∞, 0)→ R (resp., φ : (0,∞)→ R) and ν > 0, we define

φν (t) = φ (νt) for all t < 0 (resp., t > 0).

Definition 4 Let φ : Imu→ R be strictly increasing and continuous.

(i) If Imu = R, we say that φ is DARA if for each w′, w ∈ R, with w′ > w, there exists a

strictly increasing and concave f : Imφ→ Imφ such that φw = f ◦ φw′.

(ii) If Imu = (−∞, 0), we say that φ is IRRA if for each ν, η > 0, with ν > η, there exists

a strictly increasing and concave f : Imφ→ Imφ such that φν = f ◦ φη.

(iii) If Imu = (0,∞), we say that φ is DRRA if for each ν, η > 0, with ν > η, there exists

a strictly increasing and concave f : Imφ→ Imφ such that φη = f ◦ φν .

Consider a function φ : Imu → R which is twice continuously differentiable and such

that φ′ > 0. Clearly, φ is DARA if and only if −φ′′ (t) /φ′ (t) is decreasing and similarly, φ
is DRRA (resp., IRRA) if and only if −tφ′′ (t) /φ′ (t) is decreasing (resp., increasing).

Proposition 7 Let % be a CARA smooth ambiguity preference with b = 0 in (5) and assume

that Σ is nontrivial. Then,

(i) If % is risk neutral, % is wealth decreasing absolute ambiguity averse for all µ if and
only if φ is DARA.

(ii) If % is risk averse, % is wealth decreasing absolute ambiguity averse for all µ if and

only if φ is IRRA.

(iii) If % is risk loving, % is wealth decreasing absolute ambiguity averse for all µ if and

only if φ is DRRA.
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This result provides some behavioral guidance in the specification of the function φ, as

the standard theory of absolute risk aversion of Arrow and Pratt provides guidance in the

choice of the von Neumann-Morgenstern utility function.

Remark 1 Cherbonnier and Gollier [12, Proposition 2 and Corollary 1], in a different frame-
work, characterize wealth decreasing absolute uncertainty aversion (being the sum of risk and

ambiguity) for the smooth ambiguity model. Under the assumption that φ is concave, they

show that a smooth ambiguity preference is wealth decreasing absolute uncertainty averse if

and only if v and φ ◦ v are both DARA. The characterization in Proposition 7, where v is
CARA, is consistent with their findings. At the same time, in our case, φ does not have to

be concave.

Let cf (p) ∈ R be the monetary certainty equivalent of act f under p, that is, cf (p) =

v−1
(∫
u (f) dp

)
. By setting w = φ ◦ v : R→ R, the smooth ambiguity representation can be

written as

V (f) =
(
v ◦ w−1

)(∫
w (cf (p)) dµ

)
=
(
v ◦ w−1

)(∫ (
w ◦ v−1

)(∫
u (f) dp

)
dµ

)
.

The function w can be interpreted as aversion to epistemic uncertainty.30 When v is the

identity, we have φ = w and so point (i) of the Proposition 6 can be interpreted in terms of

constant attitudes toward such uncertainty. When both v (c) = −e−αc and w (c) = −e−βc

are risk averse exponentials, with β > α > 0, then φ (t) = − (−t)
β
α . The condition β > α can

be interpreted as higher aversion to epistemic uncertainty than to risk (both being constant

absolute averse). The next result shows that in this double exponential case the resulting

wealth absolute ambiguity aversion is decreasing.

Proposition 8 Let % be a CARA smooth ambiguity preference, with b ≤ 0 in (5), and

suppose φ (t) = − (−t)γ for all t < 0 with γ > 1. If % is risk averse, then it is wealth

decreasing absolute ambiguity averse.

3.5 Portfolio problem and absolute attitudes

In this section we study how wealth absolute ambiguity attitudes affect portfolio choices. To

do so, we adapt to our setting the standard portfolio exercise of Arrow which originally was

carried out in a risk domain, as an illustration of the implications of absolute and relative risk

attitudes (see Section 4.3 for the study of relative attitudes). Assume that f : S → ∆0 (R) is

30See Marinacci [25] for a discussion of this version of the smooth ambiguity model. The context should

clarify that here w is a function and not a wealth level.
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a purely ambiguous asset, that is, for each state of the world the act f yields a deterministic

consequence, interpreted as a return. Formally, as an Anscombe and Aumann act, we have

that f (s) = δrs for all s ∈ S where rs > 0 is the return in state s.31 The risk free asset is

instead modelled by the act g such that g (s) = δrf for all s ∈ S where rf > 0 is the return

on the risk free asset. The agent faces the following portfolio problem: he has wealth w > 0

which he has to allocate between the ambiguous asset and the risk free asset. We denote by β

the amount of wealth invested in the ambiguous asset and by w−β the amount invested in the
risk free one. We assume that the agent cannot short any of the two securities and therefore

β ∈ [0, w]. Note that the allocation (β,w − β) generates an Anscombe and Aumann act that

in each state of the world yields δβrs+(w−β)rf where βrs + (w − β) rf = wrf + β (rs − rf )

is the final wealth level in state s. We denote the real-valued measurable random variable

s 7→ rs by r. Similarly, with a small abuse of notation, we denote by rf the constant random

variable that in each state s assumes value rf .

In terms of preferences, we assume that the agent has rational preferences % on F with
canonical representation (u, I) and von Neumann-Morgenstern function v : R → R. The
portfolio problem amounts to

max I (v (βr + (w − β) rf )) subject to β ∈ [0, w] . (7)

In what follows, we assume that this problem admits a unique solution for all w > 0, denoted

by β∗ (w).

Proposition 9 Let % be a rational preference on F with representation (u, I). If % is wealth
constant absolute ambiguity averse, then

w′ > w > 0 =⇒ β∗
(
w′
)
≥ β∗ (w) .

If, in addition, β∗ (w) ∈ (0, w) with w > 0 and % is risk averse and uncertainty averse, then

w′ > w =⇒ β∗
(
w′
)

= β∗ (w) .

Before discussing the result, we comment on its generality. From a theoretical point of

view, note that, differently from what happens under risk, the subclass of preferences which

exhibit wealth constant absolute attitudes is quite large. Under risk and the expected utility

model, constant absolute attitudes coincide to a very specific form of v. In contrast, under

ambiguity wealth constant absolute attitudes encompass a family of preferences: α-maxmin,

Choquet expected utility, variational under risk neutrality, vector expected utility under risk

neutrality, homothetic under risk nonneutrality as well as the risk averse CARA smooth

ambiguity preferences % of Proposition 8 when b = 0.32

31As usual, x = δc is the degenerate lottery at c, that is, x (d) = 1 if d = c, and x (d) = 0 otherwise.
32That said, the relevance of this family to describe the behavior of decision makers is, in a final analysis,

an empirical question.
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We next discuss the second part of the statement. The result is indeed in line with

intuition. If the decision maker is risk and uncertainty averse, then his preferences are convex

in β, so the agent values diversification. It follows that if β∗ (w) is an interior solution, then

an intermediate subjective optimal balance has been found between the certainty provided

by the risk free asset and the potentially higher, yet uncertain, returns of the ambiguous

asset. At the same time, if w′ > w and % is wealth constant absolute ambiguity averse,

then wealth does not impact the ambiguity attitudes of the decision maker. In other words,

the increment in wealth (w′ − w) rf is factored out and, as a consequence, the previously

optimal balance between the risk free asset and the ambiguous one is unaffected, that is,

β∗ (w′) = β∗ (w). In the first part of the statement, we only obtain a weak inequality since

we impose no restriction on β∗ (w). This is easy to understand if, for example, we think of

the case where rs > rf for all s ∈ S. In such a case, the decision maker would always choose
β∗ (w) = w, no matter what, and the inequality would trivially follow.

Note that the second part of the statement provides a testable implication for wealth

constant absolute ambiguity aversion, which could be brought to portfolio composition data.

Indeed, under the assumption the agent is risk averse and uncertainty averse as well as

β∗ (w) > 0, wealth constant absolute ambiguity aversion yields that the share of wealth

invested in the non risk free asset decreases with the agent’s wealth, that is,

w′ > w > 0 =⇒ β∗ (w)

w
≥ β∗ (w′)

w′
.

It eluded us to which extent a general portfolio result holds for wealth decreasing absolute

ambiguity aversion. We were able to prove such a result for two important classes of pref-

erences: 1) risk neutral smooth ambiguity preferences and 2) CARA multiplier preferences.

This is still somehow surprising in light of the negative result of Yaari [33, p. 322 and Figure

2].33

In the first case, by Proposition 7 and since % is risk neutral, by choosing v to be the
identity, we know that wealth decreasing absolute ambiguity aversion amounts to impose φ

being DARA, provided Σ is nontrivial.

Proposition 10 Let % be a CARA smooth ambiguity preference with φ twice continuously
differentiable and such that φ′ > 0. If % is risk neutral, φ is concave and DARA, and

β∗ (w) ∈ (0, w) with w > 0, then

w′ > w =⇒ β∗
(
w′
)
≥ β∗ (w) . (8)

33 In a nutshell, Yaari, in a mildly different framework, provides an example of convex preferences which

are wealth decreasing absolute uncertainty averse for which the investment in the uncertain security, at least

locally, decreases as wealth increases.
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The second result instead deals with Hansen and Sargent [22] multiplier preferences.

Recall that % is a multiplier preference if it admits a rational representation (u, I) where

I (ϕ) = −1

θ
log

(∫
e−θϕdq

)
= min

p∈∆

{∫
ϕdp+

1

θ
R (p||q)

}
where θ > 0, q is a countably additive element of ∆, and R (p||q) is the relative entropy of p
with respect to q.34 Multiplier preferences are variational. By Corollary 6, if % is risk averse
then % is wealth decreasing absolute ambiguity averse.

Proposition 11 Let % be a CARA multiplier preference. If % is risk averse and β∗ (w) ∈
(0, w) with w > 0, then (8) holds.

Remark 2 Cherbonnier and Gollier [12] carried out a portfolio analysis for wealth decreas-
ing absolute uncertainty averse smooth and α-maxmin preferences. It is, however, a different

exercise than ours, based also on assumptions on returns. Combined with the differences in

the frameworks, this makes their results not directly comparable with ours. In particular,

in our setting also for the smooth ambiguity model we have a monotonicity result in wealth

(cf. [12, Proposition 5]).

3.6 Two alternative approaches

In the Introduction,35 we mentioned that, in defining wealth decreasing absolute ambiguity

aversion (w-DAAA), the way we formalize the idea that the poorer the decision maker is,

the more ambiguity averse he is, rests on two key ingredients:

1. A notion of preference at different wealth levels w, in symbols, %w.

2. A notion of comparative ambiguity aversion.

We feel that the notion we use for point 1 merely formalizes the idea of wealth shift.

Thus, any alternative notion of w-DAAA should rest on a different definition of comparative

ambiguity aversion. Next, we mention two possible alternatives one could follow and their

potential drawbacks. Before doing so, we introduce a piece of terminology. We say that an

act f ∈ F is purely ambiguous if and only if f (s) is a degenerate lottery for all s ∈ S. We
denote the subset of purely ambiguous acts Fpa. With this in mind, two possible alternative

definitions of “more ambiguity averse”are:

a. decision maker 1 is more ambiguity averse than decision maker 2 if for each f ∈ Fpa

and each x ∈ ∆0 (R)

f %1 x =⇒ f %2 x.

34See also Maccheroni, Marinacci, and Rustichini [24, Section 4.2.1] as well as Strzalecki [29].
35This section has been written in collaboration with Giacomo Cattelan.

23



b. decision maker 1 is more ambiguity averse than decision maker 2 if for each A ∈ Σ,

each α ∈ [0, 1], and each c, d ∈ R

δcAδd %1 αδc + (1− α) δd =⇒ δcAδd %2 αδc + (1− α) δd.
36

The notion in a is rather simple: indeed it amounts to say that if decision maker 1 is

bold enough to choose (pure) ambiguity over risk, so does decision maker 2. Compared to

Ghirardato and Marinacci [17], by focusing on purely ambiguous acts, this notion does not

immediately force the risk attitudes of the decision makers to be the same. The notion in b,

instead, follows the same structure of a but focuses the comparisons on purely ambiguous

binary acts vs binary lotteries. This latter definition does also not force risk attitudes to

coincide, nevertheless it is rather weak. For, ambiguity preferences are not fully determined

by willingness to bet (i.e., by preferences over binary acts), at least in general.37 It is so for

very specific models like Choquet expected utility.

To sum up, using Ghirardato and Marinacci notion of comparative ambiguity aversion

allows for arbitrary ambiguity preferences, but forces risk preferences to be CARA. Using

the notion in b, one restricts ambiguity preferences, but allows for arbitrary risk preferences.

On the other hand, using the notion in a seems a good compromise. Nevertheless, it would

surprisingly lead to the same results for a large class of preferences. Namely, preferences will

still turn out to be CARA, provided we restrict attention to invariant biseparable preferences

which admit an essential event.38

4 Relative ambiguity aversion

4.1 Relative analysis

In this section we briefly explore relative ambiguity aversion. Due to the relevance of relative

attitudes in applied work, we report the main definitions and characterizations. For this

reason, we focus on lotteries which yield only strictly positive numbers, interpreted as returns:

X = ∆0 (R++).39 As before, we consider a group of transformations on X, but this time, it

36Here, δcAδd is the Anscombe and Aumann act that yields the degenerate lottery δc if s ∈ A and δd
otherwise.
37To wit, one could construct two maxmin preferences which are equivalently ambiguity averse according

to definition b, but where the set of probabilities of the first preference is strictly contained in the second one:

a fact which seems counterintuitive. Namely, one would like to say that the larger is the set over which the

min is taken, the more ambiguity averse is the decision maker.
38An event A ∈ Σ is essential if and only if there exist two consequences x and y such that x � xAy � y

where xAy is the act that yields x if s ∈ A and y otherwise.
39Proofs follow closely the ones carried out for the absolute case and are therefore omitted for brevity. The

formal definition of ∆0 (R++) is easily obtained by replacing R in the definition of ∆0 (R) with R++ (see

Section 2.1).
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is indexed by R++. In particular, given ν > 0, we denote by ν : ∆0 (R++) → ∆0 (R++) the

affi ne and onto map such that xν (νc) = x (c) for all c ∈ R++ and for all x ∈ ∆0 (R++). Given

wealth ν > 0, the lottery xν is interpreted as the distribution of final wealth if ν is invested

in x. A preference % on F thus induces, through a wealth level ν ∈ R++, a preference %ν

on F given by
f %ν g ⇐⇒ fν % gν

where fν is the act s 7→ f (s)ν for all s ∈ S. In this monetary setup, we have the following
classic notion.

Definition 5 A preference % on F is constant relative risk averse (CRRA) if, for any

two strictly positive levels ν and η of wealth, the induced preferences %ν and %η agree on
∆0 (R++).

This behavioral definition amounts to say that preferences over lotteries yielding returns

are unaffected by changes in invested wealth. A routine argument shows that, if % is rep-
resented by an affi ne utility function u : ∆0 (R++) → R,40 then % is CRRA if and only if

there exist γ ∈ R, a > 0, and b ∈ R such that

vγ (c) =

{
aγcγ + b if γ 6= 0

a log c+ b if γ = 0
, (9)

that is, vγ is either a power or the logarithm. Note that

Imu =


(−∞, b) if γ < 0

(b,+∞) if γ > 0

(−∞,+∞) if γ = 0

and so b = sup Imu when γ < 0 and b = inf Imu when γ > 0. Again, this extremum role of

b will play a key role momentarily (Theorem 4).

4.2 Relative ambiguity attitudes

Relative ambiguity attitudes describe how the decision maker’s preferences over uncertain

monetary returns vary as the wealth invested changes. This motivates the following behav-

ioral definition, which adapts to our setting a standard notion for risk domains. We then

proceed to characterize it for rational preferences.

Definition 6 A preference % on F is wealth decreasing (increasing, constant) relative am-
biguity averse if, for any two strictly positive levels ν and η of wealth, ν > η implies that %η

is more (less, equally) ambiguity averse than %ν .
40Even in this section, we maintain the assumption that if % on ∆0 (R++) is represented by an affi ne utility

function, then its von Neumann-Morgenstern utility function is strictly increasing and continuous.

25



Since also this classification of preferences is not exhaustive, we say that a preference is

relatively wealth classifiable (in terms of relative ambiguity aversion) if it can be classified

according to this definition, that is, if it is either wealth decreasing or increasing or constant

relative ambiguity averse. The next result shows that being CRRA is a necessary condition

for a preference to be relatively wealth classifiable: indeed, in this way relative risk attitudes

do not intrude in wealth’s proportionality effects.

Proposition 12 A rational preference % is relatively wealth classifiable only if it is CRRA.

We next characterize wealth decreasing relative ambiguity aversion for rational prefer-

ences.

Theorem 4 Let % be a rational preference on F with representation (u, I). The following

statements are equivalent:

(i) % is wealth decreasing relative ambiguity averse;

(ii) % is CRRA and I is:

(a) concave (convex) at b provided γ < 0 (γ > 0);

(b) constant superadditive provided γ = 0.

(iii) % is relatively wealth classifiable and I satisfies (a) or (b).

Similar characterizations hold for wealth increasing and constant relative ambiguity aver-

sion.41 We next provide a formal statement of a result mentioned in the Introduction which

shows that our results provide some behavioral guidance in the choice of the parameters of

specific functional representations.

Proposition 13 Let % be a CRRA smooth ambiguity preference with b = 0 in (9), γ ∈ [0, 1),

and assume that Σ is nontrivial. Then,

(i) If γ = 0, % is wealth constant relative ambiguity averse for all µ if and only if φ is

CARA.42

41 If we replace wealth decreasing relative ambiguity aversion with wealth increasing relative ambiguity

aversion, then we must invert the role of concavity and convexity at b as well as change constant superadditivity

in constant subadditivity. Similarly, if we replace wealth decreasing relative ambiguity aversion with wealth

constant relative ambiguity aversion, then concavity and convexity at b (resp., constant superadditivity) will

become affi nity at b (resp., constant additivity).
42That is, φ : R→ R is a positive affi ne transformation of either − 1

β
e−βt where β 6= 0 or the identity.
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(ii) If γ ∈ (0, 1), % is wealth constant relative ambiguity averse for all µ if and only if φ is
CRRA.43

Also in this case, it is possible to introduce monetary certainty equivalents. Given a

canonical representation (u, I), we can again define the functional c : F → R++ by the rule

c (f) = v−1 (I (u (f))). We will say that c is wealth superproportional (resp., subproportional,

proportional) if and only if for each f ∈ F and for each ν ≥ 1

c (fν) ≥ νc (f) (resp., ≤,= ).

Proposition 14 Let % be a rational preference on F with representation (u, I). Then:

(i) % is wealth decreasing relative ambiguity averse if and only if c is wealth superpropor-
tional and % is CRRA.

(ii) % is wealth increasing relative ambiguity averse if and only if c is wealth subproportional
and % is CRRA.

(iii) % is wealth constant relative ambiguity averse if and only if c is wealth proportional

and % is CRRA.

4.3 Portfolio problem and relative attitudes

We again consider the portfolio problem of Section 3.5. In a nutshell, we consider an agent

with rational preferences (u, I) and von Neumann-Morgenstern function v : R++ → R.44

The decision maker is choosing an optimal portfolio which can consist of a mixture between

a purely ambiguous asset, yielding returns rs > 0 for all s ∈ S, and a risk free asset, yielding
a constant return rf > 0. The agent has wealth w > 0 which has to be allocated between

these two assets. The number β denotes the absolute amount of wealth invested in the

ambiguous asset. The agent cannot short any of the two securities and therefore β ∈ [0, w].

Formally, the portfolio problem takes the form:

max I (v (βr + (w − β) rf )) subject to β ∈ [0, w] . (10)

Also here, we assume that this problem always admits a unique solution for all w > 0,

denoted by β∗ (w).

Proposition 15 Let % be a rational preference on F with representation (u, I). If % is

wealth constant relative ambiguity averse, then

w′ > w > 0 =⇒ β∗ (w′)

w′
=
β∗ (w)

w
.

43That is, φ : (0,∞)→ R is a positive affi ne transformation of either ρtρ where ρ 6= 0 or log t.
44 In Section 3.5, since we were studying absolute attitudes, v was defined over the entire real line. Never-

theless, given our assumptions on returns the set (0,∞) suffi ces.
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In order to understand the previous proposition, we recall the standard result under risk

for constant relative risk attitudes. In that case, if the decision maker is CRRA and expected

utility, then the share of his wealth invested in the risky asset does not depend on the wealth

level w. Our result is saying that if the risky asset is indeed perceived as ambiguous by the

agent, then wealth constant relative ambiguity attitudes would yield the same prediction.

In other words, the share of wealth invested in the non risk free asset does not vary with

the agent’s wealth. It is interesting to note that some papers in the literature exactly look

at the share invested in the risky asset to test if CRRA preferences are consistent with the

empirical evidence (see, e.g., Brunnermeier and Nagel [5] as well as Chiappori and Paiella

[13]). Thus, the empirical evidence in favor of CRRA preferences might be indeed consistent

with both CRRA and wealth constant relative ambiguity attitudes. Recall that rational

preferences, which are also wealth constant relative ambiguity averse, are necessarily CRRA.

So, examples of rational preferences that are wealth constant relative ambiguity averse are:

α-maxmin, Choquet expected utility, variational if v is the logarithm, and vector expected

utility if v is the logarithm.

A Appendix: Mathematics

We denote by B0 (Σ) the set of all real-valued Σ-measurable simple functions. If T is an

interval of the real line, set B0 (Σ, T ) = {ψ ∈ B0 (Σ) : ψ (s) ∈ T for all s ∈ S}. We endow
both B0 (Σ) and B0 (Σ, T ) with the topology induced by the supnorm.

With a small abuse of notation, we denote by k both the real number and the constant

function on S that takes value k. Let ϕ,ψ ∈ B0 (Σ, T ). A functional I : B0 (Σ, T )→ R is:

(i) normalized if I (k) = k for all k ∈ T ;

(ii) monotone if ϕ ≥ ψ implies I (ϕ) ≥ I (ψ);

(iii) quasiconcave if I (λϕ+ (1− λ)ψ) ≥ min {I (ϕ) , I (ψ)} for all λ ∈ (0, 1);

(iv) positively superhomogeneous (subhomogeneous) if I (λϕ) ≥ (≤)λI (ϕ) for all λ ∈ (0, 1)

such that λϕ ∈ B0 (Σ, T );

(v) positively homogeneous if it is both: positively superhomogeneous and subhomoge-

neous;45

(vi) concave (convex ) at k ∈ cl (T ) if I (λϕ+ (1− λ) k) ≥ (≤)λI (ϕ) + (1− λ) k for all

λ ∈ (0, 1);

45When either T = (−∞, 0) or T = (0,∞) or T = R, then I is positively homogeneous if and only if
I (λϕ) = λI (ϕ) for all ϕ ∈ B0 (Σ, T ) and for all λ > 0. Often, in this paper, in talking about positive

homogeneity properties of I, we will either say I is (sup/sub)homogeneous, dropping the qualifier positive,

or equivalently say it is positive (sup/sub)homogeneous as well as positively (sup/sub)homogeneous.
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(vii) affi ne at k ∈ cl (T ) if it is both concave and convex at k;

(viii) constant superadditive (subadditive) if I (ϕ+ k) ≥ (≤) I (ϕ) + k for all k ≥ 0 such that

ϕ+ k ∈ B0 (Σ, T ).

(ix) constant additive if I is both constant superadditive and subadditive;46

(x) constant linear if I (λϕ+ k) = λI (ϕ) + k for all λ ∈ (0, 1] and k ∈ R such that

λϕ+ k ∈ B0 (Σ, T ). If T is either (−∞, 0) or (0,∞) or R, this amounts to impose that
I is constant additive and positively homogeneous.

When k = 0, concavity (convexity) at k reduces to positive superhomogeneity (subho-

mogeneity).

As well known, the norm dual space of B0 (Σ) can be identified with the set ba (Σ) of all

bounded finitely additive measures on (S,Σ). The set of probabilities in ba (Σ) is denoted

by ∆ and is a (weak*) compact and convex subset of ba (Σ). Elements of ∆ are denoted by

p or q. We endow ∆ and any of its subsets with the weak* topology.

Functions of the form G : T×∆→ (−∞,∞], where T is an interval of the real line, play

an important role in Section 3.3. We denote by G (T×∆) the class of these functions such

that:

(i) G is quasiconvex on T×∆,

(ii) G (·, p) is increasing for all p ∈ ∆,

(iii) infp∈∆G (t, p) = t for all t ∈ T .

A function G : T×∆→ (−∞,∞] is linearly continuous if the map

ψ 7→ inf
p∈∆

G

(∫
ψdp, p

)
from B0 (Σ, T ) to [−∞,∞] is extended-valued continuous. Finally, given a function, say

u : X → R, we will denote its image, that is u (X), by Imu.

B Appendix: Proofs and related material

We begin with a preliminary result that will be used in the appendix.

Lemma 1 Let %1 and %2 be two rational preferences on F with representations (u1, I1) and

(u2, I2). The following statements are equivalent:

46Note that I is constant additive if and only if I (ϕ+ k) = I (ϕ) + k for all ϕ ∈ B0 (Σ, T ) and for all k ∈ R
such that ϕ+ k ∈ B0 (Σ, T ). In other words, if I (ϕ+ k) = I (ϕ) + k holds for positive constants, then it also

holds for k < 0, provided ϕ,ϕ+ k ∈ B0 (Σ, T ).
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(i) %1 is more ambiguity averse than %2;

(ii) There exist a > 0 and b ∈ R such that u1 = au2 + b and I1 ≤ I2 (provided u1 = u2).

B.1 Generic set of consequences and shifted preferences

Proof of Proposition 2. Clearly, %w is well defined. Moreover, we have

f �w g ⇐⇒ f %w g and g 6%w f ⇐⇒ fw % gw and gw 6% fw ⇐⇒ fw � gw.

(i). Weak Order. Since % satisfies Weak Order and Monotonicity, it follows that there exist
x̄ and ȳ in X such that x̄ � ȳ. Since w is bijective, it follows that there exist x, y ∈ X such

that x̄ = xw and ȳ = yw. By definition of %w, we have that

x̄ � ȳ =⇒ xw � yw =⇒ x �w y,

proving that %w is nontrivial. Consider f, g ∈ F . Since fw, gw ∈ F and % satisfies Weak
Order, we have that either fw % gw or gw % fw. By definition of %w, this implies that either
f %w g or g %w f or both, thus proving that %w is complete. Next, consider f, g, h ∈ F and
assume that f %w g and g %w h. By definition of %w, we have that fw % gw and gw % hw.

Since % satisfies Weak Order, we can conclude that fw % hw, that is, f %w h, proving that
%w is transitive. We can conclude that %w satisfies Weak Order.
Monotonicity. Consider f, g ∈ F and assume that f (s) %w g (s) for all s ∈ S. By definition
of %w and w, it follows that fw (s) = f (s)w % g (s)w = gw (s) for all s ∈ S. Since % satisfies
Monotonicity, we have that fw % gw, that is, f %w g.
Continuity. Consider f, g, h ∈ F and a sequence {αn}n∈N ⊆ [0, 1] such that αn → α and

αnf + (1− αn) g %w h for all n ∈ N. By definition of %w and since w is affi ne, we have

αnf
w + (1− αn) gw = (αnf + (1− αn) g)w % hw for all n ∈ N. Since % satisfies Mixture

Continuity, we have that (αf + (1− α) g)w = αfw + (1− α) gw % hw. We can conclude that
αf + (1− α) g %w h. Thus, the set {α ∈ [0, 1] : αf + (1− α)g %w h} is closed. A symmetric
argument yields the closure of {α ∈ [0, 1] : h %w αf + (1− α)g}.
Risk Independence. Consider x, y, z ∈ X, α ∈ (0, 1), and assume that x ∼w y. It follows that
xw ∼ yw. Since % satisfies Risk Independence and w is affi ne, we have that

(αx+ (1− α) z)w = αxw + (1− α) zw ∼ αyw + (1− α) zw = (αy + (1− α) z)w ,

proving that αx+ (1− α) z ∼w αy + (1− α) z.

(ii). We only need to show that %w also satisfies Convexity.
Convexity. Consider f, g ∈ F and α ∈ (0, 1) and assume that f ∼w g. It follows that

fw ∼ gw. Since % satisfies Convexity and w is affi ne, we have that (αf + (1− α) g)w =

αfw + (1− α) gw % fw, that is, αf + (1− α) g %w f . �
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Proof of Proposition 3. Let w,w′ ∈ R. By Proposition 2, both preferences %w and %w′

are rational preferences. By Theorem 1, both preferences have a canonical representation:

(uw, Iw) and (uw′ , Iw′). In particular, uw and uw′ are nonconstant and affi ne. Since %w is
more ambiguity averse than %w′ , we have that y %w x implies y %w′ x. Thus, we conclude
that uw (y) ≥ uw (x) implies uw′ (y) ≥ uw′ (x). By [15, Corollary B.3], the statement follows.

�

The next result will be instrumental in proving Theorem 2.

Proposition 16 Let (u, I) and
(
ū, Ī
)
be two canonical rational representations. The two

representations (u, I) and
(
ū, Ī
)
represent the same rational preference % if and only if there

exist a > 0 and b ∈ R such that

ū = au+ b and Ī (·) = aI

(
· − b
a

)
+ b.

Moreover,

(i) I is concave if and only if Ī is concave.

(ii) I is concave (convex, affi ne) at c if and only if Ī is concave (convex, affi ne) at ac+ b.

(iii) I is constant superadditive (subadditive, additive) if and only if Ī is constant superad-

ditive (subadditive, additive), provided Imu is unbounded from above.

Proof. The first part of the statement follows from [6, Proposition 1]. Define f : R → R
as f (t) = at + b for all t ∈ R. Define T : B0 (Σ, Im ū) → B0 (Σ, Imu) as T (ϕ) = ϕ−b

a for

all ϕ ∈ B0 (Σ, Im ū). Note that both functions are bijective and Ī = f ◦ I ◦ T as well as

I = f−1 ◦ Ī ◦ T−1.

(i). “Only if”. Assume that I is concave. Since f and T are monotone and affi ne and

Ī = f ◦ I ◦ T , it follows that Ī is concave. “If”. Note that I = f−1 ◦ Ī ◦ T−1. Assume that Ī

is concave. Since f−1 and T−1 are monotone and affi ne, it follows that I is concave.

(ii). “Only if”. Assume that I is concave (convex, affi ne) at c ∈ cl (Imu). Note that

c̄ = ac+ b ∈ cl (Im ū). It follows that for each ϕ ∈ B0 (Σ, Im ū) and for each λ ∈ (0, 1)

Ī (λϕ+ (1− λ) c̄) = aI

(
λϕ+ (1− λ) c̄− b

a

)
+ b = aI

(
λ
ϕ− b
a

+ (1− λ)
c̄− b
a

)
+ b

= aI

(
λ
ϕ− b
a

+ (1− λ)
ac+ b− b

a

)
+ b

= aI

(
λ
ϕ− b
a

+ (1− λ) c

)
+ b

≥ (≤,=) a

(
λI

(
ϕ− b
a

)
+ (1− λ) c

)
+ b

= λ

(
aI

(
ϕ− b
a

)
+ b

)
+ (1− λ) (ac+ b) = λĪ (ϕ) + (1− λ) c̄,
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proving that Ī is concave (convex, affi ne) at c̄. “If”. Assume that Ī is concave (convex,

affi ne) at c̄ = ac+ b. It follows that for each ϕ ∈ B0 (Σ, Imu) and for each λ ∈ (0, 1)

I (λϕ+ (1− λ) c) =
1

a
Ī (a (λϕ+ (1− λ) c) + b)− b

a

=
1

a
Ī (λ (aϕ+ b) + (1− λ) (ac+ b))− b

a

=
1

a
Ī (λ (aϕ+ b) + (1− λ) c̄)− b

a

≥ (≤,=)
1

a

(
λĪ (aϕ+ b) + (1− λ) c̄

)
− b

a

= λ

(
1

a
Ī (aϕ+ b)− b

a

)
+ (1− λ)

(
c̄

a
− b

a

)
= λI (ϕ) + (1− λ) c,

proving that I is concave (convex, affi ne) at c.

(iii). “Only if”. Assume that I is constant superadditive (subadditive, additive). It

follows that for each ϕ ∈ B0 (Σ, Im ū) and for each k ≥ 0

Ī (ϕ+ k) = aI

(
ϕ+ k − b

a

)
+ b = aI

(
ϕ− b
a

+
k

a

)
+ b

≥ (≤,=) a

(
I

(
ϕ− b
a

)
+
k

a

)
+ b = aI

(
ϕ− b
a

)
+ b+ k = Ī (ϕ) + k,

proving that Ī is constant superadditive (subadditive, additive). “If”. Assume that Ī is

constant superadditive (subadditive, additive). It follows that for each ϕ ∈ B0 (Σ, Imu) and

for each k ≥ 0

I (ϕ+ k) =
1

a
Ī (a (ϕ+ k) + b)− b

a
=

1

a
Ī ((aϕ+ b) + ak)− b

a

≥ (≤,=)
1

a

(
Ī (aϕ+ b) + ak

)
− b

a
=

(
1

a
Ī (aϕ+ b)− b

a

)
+ k = I (ϕ) + k,

proving that I is constant superadditive (subadditive, additive). �

B.2 Monetary consequences

We next prove a couple of ancillary facts. Moreover, when % (on ∆0 (R)) is represented by

an affi ne u and is CARA, we first assume that v of u corresponds to (5) with a = 1 and

b = 0, that is, we normalize the von Neumann-Morgenstern utility function v to be such that

v̄α (c) =

{
− 1
αe
−αc if α 6= 0

c if α = 0
. (11)

In this case, for each w ∈ R and for each lottery x ∈ ∆0 (R), either u (xw) = e−αwu (x) or

u (xw) = u (x) + w.
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Lemma 2 If % is a CARA rational preference with representation (u, I), then %w is a

rational preference with representation (u, Iw). Moreover, if we choose v = v̄α as in (11),

then Iw is such that

Iw (ϕ) =

{
I (ϕ+ w)− w if % is risk neutral

eαwI (e−αwϕ) otherwise
∀ϕ ∈ B0 (Σ, Imu) .

Proof. By Proposition 2, both preferences %w and % are rational for all w ∈ R. By

assumption, % is CARA. Thus, %w coincides with % on ∆0 (R) and it has a canonical

representation (uw, Iw) where vw of uw is either exponential or affi ne as in (5). Wlog, we

can thus set u = uw and choose v as in (11). By [6, Proposition 1], we have that

I (ϕ) = u (xg) where xg ∼ g and u (g) = ϕ

and

Iw (ϕ) = u (xf,w) where xf,w ∼w f and u (f) = ϕ.

a) Assume that v = v̄α is exponential (risk nonneutral case), that is, v̄α (c) = − 1
αe
−αc for

all c ∈ R. This implies that either Imu = (0,∞) or Imu = (−∞, 0), in particular, for each

w ∈ R and ϕ ∈ B0 (Σ, Imu), we have that e−αwϕ ∈ B0 (Σ, Imu). Consider ϕ ∈ B0 (Σ, Imu).

Then, there exists f ∈ F such that u (f) = ϕ. Call xf,w a certainty equivalent of f for

the induced preference %w, that is, xf,w ∼w f . It follows that Iw (ϕ) = u (xf,w). By

definition of %w, we have that fw ∼ xwf,w. It follows that u (fw) = e−αwu (f) = e−αwϕ and

u
(
xwf,w

)
= e−αwu (xf,w). If we define g = fw, then we also have that xg can be chosen to

be xwf,w, that is,

I
(
e−αwϕ

)
= I (u (g)) = u (xg) = e−αwu (xf,w) = e−αwIw (ϕ) ,

and so Iw (ϕ) = eαwI (e−αwϕ).

b) Assume that v = v̄α is the identity (risk neutral case). This implies that Imu = R.
Consider ϕ ∈ B0 (Σ, Imu). Then, there exists f ∈ F such that u (f) = ϕ. Call xf,w a

certainty equivalent of f for the induced preference %w, that is, xf,w ∼w f . It follows

that Iw (ϕ) = u (xf,w). By definition of %w, we have that fw ∼ xwf,w. It follows that

u (fw) = u (f) + w = ϕ+ w and u
(
xwf,w

)
= u (xf,w) + w. If we define g = fw, then we also

have that xg can be chosen to be xwf,w, that is,

I (ϕ+ w) = I (u (g)) = u (xg) = u (xf,w) + w = Iw (ϕ) + w,

and so Iw (ϕ) = I (ϕ+ w)− w. �

Proof of Proposition 4. Let w,w′ ∈ R be such that w 6= w′. If % is wealth decreasing
or constant absolute ambiguity averse, wlog, we can assume that w′ > w. If % is wealth
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increasing absolute ambiguity averse, wlog, we can assume that w > w′. By Proposition 3

and since % is wealth classifiable, we have that uw is a positive affi ne transformation of uw′
and this holds for all w,w′ ∈ R, proving that % is CARA. �

Proof of Theorem 2. Let % be a rational preference with canonical representation (u, I)

where u is such that u (x) =
∑

c∈R v (c)x (c) for every x ∈ ∆0 (R), with v strictly increasing

and continuous. Before starting the proof, we add few extra points.

(iv) % is CARA and Iw ≤ Iw′ , provided w′ > w and uw = uw′ = u and v = v̄α is as in (11);

(v) % is CARA and, provided v = v̄α as in (11), for each ϕ ∈ B0 (Σ, Imu) and for each

w,w′ ∈ R such that w′ > w, either

eαwI
(
e−αwϕ

)
≤ eαw′I

(
e−αw

′
ϕ
)
if v̄α is exponential (12)

or

I (ϕ+ w)− w ≤ I
(
ϕ+ w′

)
− w′ if v̄α is the identity. (13)

(vi) % is CARA and, provided v = v̄α as in (11), I is:

(a) superhomogeneous (subhomogeneous) provided % is risk averse (loving);
(b) constant superadditive provided % is risk neutral.
(iii) implies (ii). By Proposition 4, we have that % is CARA. The implication trivially

follows.

(ii) implies (vi). By assumption, % is CARA. We can thus choose a canonical represen-
tation

(
ū, Ī
)
where v = v̄α. In case % is risk averse (resp., loving) Im ū = (−∞, 0) (resp.,

Im ū = (0,∞)). In both cases, we have that b̄ = 0. By Proposition 16, the implication

follows.

(vi) implies (v). % is CARA and, provided v = v̄α is as in (11), we have three cases:

a. % is risk averse, that is, α > 0. Consider w′ > w. It follows that λ = eα(w−w′) ∈ (0, 1).

Next, consider ϕ ∈ B0 (Σ, Imu). Observe that e−αwϕ, e−αw
′
ϕ ∈ B0 (Σ, Imu). We thus have

that

I
(
eα(w−w′) (e−αwϕ)) ≥ eα(w−w′)I

(
e−αwϕ

)
=⇒ eαw

′
I
(
e−αw

′
ϕ
)
≥ eαwI

(
e−αwϕ

)
,

since ϕ was arbitrarily chosen the statement follows.

b. % is risk loving, that is, α < 0. Consider w′ > w. It follows that λ = eα(w′−w) ∈ (0, 1).

Next, consider ϕ ∈ B0 (Σ, Imu). Observe that e−αwϕ, e−αw
′
ϕ ∈ B0 (Σ, Imu). We thus have

that

I
(
eα(w′−w)

(
e−αw

′
ϕ
))
≤ eα(w′−w)I

(
e−αw

′
ϕ
)

=⇒ eαwI
(
e−αwϕ

)
≤ eαw′I

(
e−αw

′
ϕ
)
,

since ϕ was arbitrarily chosen the statement follows.
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c. % is risk neutral, that is, α = 0 and v̄α is the identity. Consider w′ > w. It follows that

k = (w′ − w) > 0. Next, consider ϕ ∈ B0 (Σ, Imu). Observe that ϕ+w,ϕ+w′ ∈ B0 (Σ, Imu).

We thus have that

I
(
ϕ+ w +

(
w′ − w

))
≥ I (ϕ+ w) +

(
w′ − w

)
=⇒ I

(
ϕ+ w′

)
− w′ ≥ I (ϕ+ w)− w,

since ϕ was arbitrarily chosen the statement follows.

(v) is equivalent to (iv). By assumption, % is CARA. We consider two cases. For each
w,w′ ∈ R:
a. v = v̄α is exponential. By Lemma 2, we have that

Iw ≤ Iw′ ⇐⇒ eαwI
(
e−αwϕ

)
≤ eαw′I

(
e−αw

′
ϕ
)

∀ϕ ∈ B0 (Σ, Imu) .

b. v = v̄α is the identity. By Lemma 2, we have that

Iw ≤ Iw′ ⇐⇒ I (ϕ+ w)− w ≤ I
(
ϕ+ w′

)
− w′ ∀ϕ ∈ B0 (Σ, Imu) .

Subpoints a. and b. prove the equivalence between (iv) and (v).

(iv) implies (i). Let w′ > w. By Lemma 2 and since % is CARA, we have that both
preferences, %w and %w′ , admit a representation (uw, Iw) and (uw′ , Iw′). Since % is CARA,
we can choose uw = uw′ = u with v = v̄α for all w,w′ ∈ R. By Lemma 1 and since Iw ≤ Iw′ ,
we can conclude that %w is more ambiguity averse than %w′ .

(i) implies (iv). By Proposition 4, since % is wealth decreasing absolute ambiguity averse,
% is CARA. By Lemma 2, we have that for each w ∈ R the preference %w admits a canonical
representation (uw, Iw). Thus, we can choose uw = u for all w ∈ R with v = v̄α. By Lemma

1 and since uw = uw′ for all w,w′ ∈ R, note that %w is more ambiguity averse than %w
′
only

if Iw ≤ Iw′ .
(iv) implies (vi). By the previous part of the proof, we know that (iv) is equivalent to

(v). We thus assume (v) and prove (vi). We have three cases.

a. % is risk averse, that is, α > 0. In (12) set w = 0, so that

I (ϕ) ≤ eαw′I
(
e−αw

′
ϕ
)

∀ϕ ∈ B0 (Σ, Imu) ,∀w′ > 0.

Since α is positive, it follows that eαw
′
> 1 and

{
eαw

′
: w′ > 0

}
= (1,∞). This implies that

I (ϕ) ≤ γI (ϕ/γ) for all ϕ ∈ B0 (Σ, Imu) and for all γ > 1. In other words, λI (ϕ) ≤ I (λϕ) for

all ϕ ∈ B0 (Σ, Imu) and for all λ ∈ (0, 1), proving superhomogeneity.

b. % is risk loving, that is, α < 0. In (12) set w = 0, so that

I (ϕ) ≤ eαw′I
(
e−αw

′
ϕ
)

∀ϕ ∈ B0 (Σ, Imu) ,∀w′ > 0.
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Since α is negative, it follows that
{
eαw

′
: w′ > 0

}
= (0, 1). This implies that I (ϕ) ≤

γI (ϕ/γ) for all ϕ ∈ B0 (Σ, Imu) and for all γ ∈ (0, 1). If ϕ ∈ B0 (Σ, Imu), then λϕ ∈
B0 (Σ, Imu) for all λ ∈ (0, 1). We have that

I (λϕ) ≤ λI
(

1

λ
(λϕ)

)
= λI (ϕ) ∀ϕ ∈ B0 (Σ, Imu) , ∀λ ∈ (0, 1) ,

proving subhomogeneity.

c. % is risk neutral, that is, v̄α is the identity. In (13) set w = 0 and k = w′, so that

I (ϕ) ≤ I (ϕ+ k)− k ∀ϕ ∈ B0 (Σ, Imu) , ∀k > 0.

In other words, I (ϕ) + k ≤ I (ϕ+ k) for all ϕ ∈ B0 (Σ, Imu) and for all k > 0, proving

superadditivity.

(vi) implies (ii). By assumption, % is CARA and represented by (u, I). We can thus

choose a canonical representation
(
ū, Ī
)
where v = v̄α. In case % is risk averse (resp., loving)

Im ū = (−∞, 0) (resp., Im ū = (0,∞)). In both cases, we have that b̄ = 0. By Proposition

16, the implication follows.

We thus proved that (iii) implies (ii) and (ii) is equivalent to (i), (iv), (v), and (vi).

In particular, it follows that (ii) implies (i), thus % is wealth classifiable, and I satisfies

condition (a) or (b), that is, (ii) implies (iii). �

B.3 Other proofs

Proof of Corollary 2. Call (u, I) the rational representation of % on F . Since % is risk
neutral, it follows that Imu = R and I : B0 (Σ)→ R.

“Only if.”By point 1 of Corollary 1, it follows that I (ϕ+ k) = I (ϕ)+k for all ϕ ∈ B0 (Σ)

and for all k ≥ 0. It is immediate to show that the equality holds for all k ∈ R. By [24,
Lemma 25], it follows that I is a normalized niveloid (see, e.g., [9]). By [24, Lemma 28], we

can conclude that % satisfies Weak C-Independence.
“If.”By [24, Lemma 28], it follows that I is a normalized niveloid. By [24, Lemma 25]

and since Imu = R, it follows that I (ϕ+ k) = I (ϕ) + k for all ϕ ∈ B0 (Σ) and for all k ∈ R.
By point 1 of Corollary 1 (recall that it holds by only assuming CARA in place of wealth

classifiable), the statement follows. �

Proof of Corollary 3. Call (u, I) the rational representation of %. Note that in all three
points (i)—(iii), % is necessarily CARA. Thus, wlog, choose v to be such that a = 1 and b = 0.

By [15], there also exists a normalized, monotone, and continuous functional Î : B0 (Σ)→ R
such that for each ϕ ∈ B0 (Σ)

Î (λϕ+ k) = λÎ (ϕ) + k ∀λ > 0,∀k ∈ R
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and f % g if and only if Î (u (f)) ≥ Î (u (g)). It follows that Î and I coincide on B0 (Σ, Imu).

(i) implies (iii). By Proposition 4, the implication follows.

(iii) implies (ii). By Corollary 1 (recall that it holds by only assuming CARA in place of

wealth classifiable) and since Î and I coincide on B0 (Σ, Imu), the implication follows.

(ii) implies (i). Trivially, % is wealth classifiable. �

Proof of Proposition 5. Let (u, I)be the canonical representation of %. Wlog, if % is
CARA, we choose v to be such that a = 1 and b = 0 (see equation (5)). In this case, by the

definition of c : F → R, we have that

c (f) =

{
− 1
α log (−αI (u (f))) α 6= 0

I (u (f)) α = 0
∀f ∈ F .

Recall that for each f ∈ F and for each w ∈ R

u (fw) =

{
e−αwu (f) α 6= 0

u (f) + w α = 0
.

(i). “Only if”. By Proposition 4, % is CARA, we have three cases.
1. % is risk neutral, that is, α = 0. It follows that c (fw) = I (u (fw)) = I (u (f) + w) for

all f ∈ F and for all w ≥ 0. By Theorem 2, we have that for each f ∈ F and for each w ≥ 0

c (fw) = I (u (f) + w) ≥ I (u (f)) + w = c (f) + w,

proving that c is wealth superadditive.

2. % is risk averse, that is, α > 0. It follows that c (fw) = v−1 (I (u (fw))) = v−1 (I (e−αwu (f)))

for all f ∈ F and for all w ≥ 0. Note that if w ≥ 0, then e−αw ∈ (0, 1]. By Theorem 2 and

since b = 0, we have that for each f ∈ F and for each w ≥ 0

c (fw) = − 1

α
log
(
−αI

(
e−αwu (f)

))
≥ − 1

α
log
(
−αe−αwI (u (f))

)
= − 1

α
log
(
e−αw (−αI (u (f)))

)
= − 1

α
log
(
e−αw

)
+− 1

α
log (−αI (u (f)))

= c (f) + w,

proving that c is wealth superadditive.

3. % is risk loving, that is, α < 0. It follows that c (fw) = v−1 (I (u (fw))) = v−1 (I (e−αwu (f)))

for all f ∈ F and for all w ≥ 0. Note that if w ≥ 0, then eαw ∈ (0, 1]. By Theorem 2 and

since b = 0, we have that for each f ∈ F and for each w ≥ 0

c (f) = − 1

α
log (−αI (u (f))) = − 1

α
log
(
−αI

(
eαw

(
e−αwu (f)

)))
≤ − 1

α
log
(
−αeαwI

(
e−αwu (f)

))
= − 1

α
log (eαw) +− 1

α
log
(
−αI

(
e−αwu (f)

))
= −w + c (fw) ,
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proving that c is wealth superadditive.

“If”. First, observe that

f % g ⇐⇒ I (u (f)) ≥ I (u (g)) ⇐⇒ v−1 (I (u (f))) ≥ v−1 (I (u (g))) ⇐⇒ c (f) ≥ c (g) .

Let w′ > w and f ∈ F . Since w′ − w > 0 and c is wealth superadditive, it follows that

c
(
fw
′
)

= c
(

(fw)w
′−w
)
≥ c (fw) + w′ − w,

that is, c
(
fw
′
)
−w′ ≥ c (fw)−w. Next, let x ∈ ∆0 (R). Since % is CARA, we can conclude

that

f %w x =⇒ fw % xw =⇒ c (fw) ≥ c (xw) =⇒ c (fw) ≥ c (x) + w

=⇒ c (fw)− w ≥ c (x) =⇒ c
(
fw
′
)
− w′ ≥ c (x) =⇒ c

(
fw
′
)
≥ c (x) + w′

=⇒ c
(
fw
′
)
≥ c

(
xw
′
)

=⇒ fw
′ % xw′ =⇒ f %w′ x.

Since f , x, w, and w′ were arbitrarily chosen, we have that %w is more ambiguity averse
than %w′ , proving the statement.

(ii). “Only if”. By Proposition 4, % is CARA, we have three cases.
1. % is risk neutral, that is, α = 0. It follows that c (fw) = I (u (fw)) = I (u (f) + w) for

all f ∈ F and for all w ≥ 0. By what follows right after Theorem 2, we have that for each

f ∈ F and for each w ≥ 0

c (fw) = I (u (f) + w) ≤ I (u (f)) + w = c (f) + w,

proving that c is wealth subadditive.

2. % is risk averse, that is, α > 0. It follows that c (fw) = v−1 (I (u (fw))) = v−1 (I (e−αwu (f)))

for all f ∈ F and for all w ≥ 0. Note that if w ≥ 0, then e−αw ∈ (0, 1]. By what follows

right after Theorem 2 and since b = 0, we have that for each f ∈ F and for each w ≥ 0

c (fw) = − 1

α
log
(
−αI

(
e−αwu (f)

))
≤ − 1

α
log
(
−αe−αwI (u (f))

)
= − 1

α
log
(
e−αw (−αI (u (f)))

)
= − 1

α
log
(
e−αw

)
+− 1

α
log (−αI (u (f)))

= c (f) + w,

proving that c is wealth subadditive.

3. % is risk loving, that is, α < 0. It follows that c (fw) = v−1 (I (u (fw))) = v−1 (I (e−αwu (f)))

for all f ∈ F and for all w ≥ 0. Note that if w ≥ 0, then eαw ∈ (0, 1]. By what follows right

after Theorem 2 and since b = 0, we have that for each f ∈ F and for each w ≥ 0

c (f) = − 1

α
log (−αI (u (f))) = − 1

α
log
(
−αI

(
eαw

(
e−αwu (f)

)))
≥ − 1

α
log
(
−αeαwI

(
e−αwu (f)

))
= − 1

α
log (eαw) +− 1

α
log
(
−αI

(
e−αwu (f)

))
= −w + c (fw) ,
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proving that c is wealth subadditive.

“If”. First, recall that f % g if and only if c (f) ≥ c (g). Let w′ > w and f ∈ F . Since
w′ − w > 0 and c is wealth subadditive, it follows that

c
(
fw
′
)

= c
(

(fw)w
′−w
)
≤ c (fw) + w′ − w,

that is, c
(
fw
′
)
−w′ ≤ c (fw)−w. Next, let x ∈ ∆0 (R). Since % is CARA, we can conclude

that

f %w′ x =⇒ fw
′ % xw′ =⇒ c

(
fw
′
)
≥ c

(
xw
′
)

=⇒ c
(
fw
′
)
≥ c (x) + w′

=⇒ c
(
fw
′
)
− w′ ≥ c (x) =⇒ c (fw)− w ≥ c (x) =⇒ c (fw) ≥ c (x) + w

=⇒ c (fw) ≥ c (xw) =⇒ fw % xw =⇒ f %w x.

Since f , x, w, and w′ were arbitrarily chosen, we have that %w′ is more ambiguity averse
than %w, proving the statement.

(iii). It is an easy consequence of points (i) and (ii). �

Proof of Theorem 3. Recall that an uncertainty averse preference is a rational preference.
In particular, given a canonical representation (u, I), we have that

G (t, p) = sup
ϕ∈B0(Σ,Imu)

{
I (ϕ) :

∫
ϕdp ≤ t

}
∀ (t, p) ∈ Imu×∆.

(i) implies (ii). By Theorem 2, it follows that % is CARA and I is either concave at b,
or convex at b, or constant superadditive, depending on % being, respectively, either risk

averse, or risk loving, or risk neutral. We consider the three different cases separately:

- % is risk averse. Thus, Imu = (−∞, b). Let (t, p) ∈ Imu × ∆ and λ ∈ (0, 1). There

exists a sequence {ϕn}n∈N ⊆ B0 (Σ, Imu) such that I (ϕn) ↑ G (t, p) and
∫
ϕndp ≤ t for all

n ∈ N. It follows that
∫

(λϕn + (1− λ) b) dp ≤ λt+ (1− λ) b ∈ Imu for all n ∈ N. Since I is
concave at b, we have that for each n ∈ N

G (λt+ (1− λ) b, p) ≥ I (λϕn + (1− λ) b) ≥ λI (ϕn) + (1− λ) b.

By passing to the limit, it follows that G (λt+ (1− λ) b, p) ≥ λG (t, p) + (1− λ) b.

- % is risk loving. Thus, Imu = (b,∞). Let (t, p) ∈ Imu×∆ and λ ∈ (0, 1). There exists

a sequence {ϕn}n∈N ⊆ B0 (Σ, Imu) such that I (ϕn) ↑ G (λt+ (1− λ) b, p) and
∫
ϕndp ≤

λt+ (1− λ) b for all n ∈ N. Define {ψn}n∈N to be such that

ψn =
ϕn − (1− λ) b

λ
∀n ∈ N.
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Note also that

ψn (s) > b ∀s ∈ S,
∫
ψndp ≤ t, and ϕn = λψn + (1− λ) b ∀n ∈ N.

Since I is convex at b, this implies that for each n ∈ N

I (ϕn) = I (λψn + (1− λ) b) ≤ λI (ψn) + (1− λ) b ≤ λG (t, p) + (1− λ) b.

By passing to the limit, it follows that G (λt+ (1− λ) b, p) ≤ λG (t, p) + (1− λ) b.

- % is risk neutral. Thus, Imu = R. Let (t, p) ∈ Imu × ∆ and k ≥ 0. There exists a

sequence {ϕn}n∈N ⊆ B0 (Σ, Imu) such that I (ϕn) ↑ G (t, p) and
∫
ϕndp ≤ t for all n ∈ N.

It follows that
∫

(ϕn + k) dp ≤ t+ k ∈ Imu for all n ∈ N. Since I is constant superadditive,
we have that for each n ∈ N

G (t+ k, p) ≥ I (ϕn + k) ≥ I (ϕn) + k.

By passing to the limit, it follows that G (t+ k, p) ≥ G (t, p) + k.

(ii) implies (iii) and (i). Recall that

I (ψ) = inf
p∈∆

G

(∫
ψdp, p

)
∀ψ ∈ B0 (Σ, Imu) .

Observe also that % is CARA by assumption and G satisfies (a) or (b). As before, we

consider three cases:

- % is risk averse. Let ϕ ∈ B0 (Σ, Imu) and λ ∈ (0, 1). We have that

I (λϕ+ (1− λ) b) = inf
p∈∆

G

(∫
(λϕ+ (1− λ) b) dp, p

)
= inf

p∈∆
G

(
λ

∫
ϕdp+ (1− λ) b, p

)
≥ inf

p∈∆

(
λG

(∫
ϕdp, p

)
+ (1− λ) b

)
≥ λ inf

p∈∆
G

(∫
ϕdp, p

)
+ (1− λ) b = λI (ϕ) + (1− λ) b,

that is, I is concave at b.

- % is risk loving. Let ϕ ∈ B0 (Σ, Imu) and λ ∈ (0, 1). We have that

I (λϕ+ (1− λ) b) = inf
p∈∆

G

(∫
(λϕ+ (1− λ) b) dp, p

)
= inf

p∈∆
G

(
λ

∫
ϕdp+ (1− λ) b, p

)
≤ inf

p∈∆

(
λG

(∫
ϕdp, p

)
+ (1− λ) b

)
= λ inf

p∈∆
G

(∫
ϕdp, p

)
+ (1− λ) b = λI (ϕ) + (1− λ) b,

that is, I is convex at b.
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- % is risk neutral. Let ϕ ∈ B0 (Σ, Imu) and k ≥ 0. We have that

I (ϕ+ k) = inf
p∈∆

G

(∫
(ϕ+ k) dp, p

)
= inf

p∈∆
G

(∫
ϕdp+ k, p

)
≥ inf

p∈∆

(
G

(∫
ϕdp, p

)
+ k

)
≥ inf

p∈∆
G

(∫
ϕdp, p

)
+ k = I (ϕ) + k,

that is, I is constant superadditive.

It follows that % is CARA and I either satisfies (a) or (b) of point (ii) of Theorem 2. By

Theorem 2, we can conclude that % is wealth decreasing absolute ambiguity averse and, in
particular, is wealth classifiable.

(iii) implies (ii). By Proposition 4 and since % is wealth classifiable, we have that % is
also CARA.

We thus have proved that (i) =⇒ (ii) =⇒ (iii) =⇒ (ii) =⇒ (i), proving the statement. �

Proof of Corollary 4. Recall that an uncertainty averse preference is a rational preference.
By Corollary 2, we can conclude that a risk neutral uncertainty averse preference is wealth

constant absolute ambiguity averse if and only if it satisfies Weak C-Independence. At the

same time, by definition, uncertainty averse preferences that satisfy Weak C-Independence

are exactly variational preferences.

Proof of Corollary 5. Since % is CARA and risk averse, we have that Imu = (−∞, b).
Recall that G (t, p) ≥ t for all (t, p) ∈ Imu × ∆. At the same time, note that for each

(t, p) ∈ Imu×∆ and for each λ ∈ (0, 1)

G (λt+ (1− λ) b, p) ≥ G (λt+ (1− λ) bn, p) ≥ λG (t, p) + (1− λ)G (bn, p)

≥ λG (t, p) + (1− λ) bn

where bn = b − 1
n for all n ∈ N. By passing to the limit and since (t, p) and λ were

arbitrarily chosen, we have that G (λt+ (1− λ) b, p) ≥ λG (t, p) + (1− λ) b. By Theorem 3,

the statement follows. �

Proof of Corollary 6. Observe that a variational preference is a rational preference where
the canonical representation (u, I) has the extra property of I being quasiconcave and con-

stant additive. In particular, I is normalized and concave.

(i). By Theorem 2 and since % is not risk neutral, if % is either wealth decreasing absolute
ambiguity averse or CARA and risk averse, then v is a positive affi ne transformation of

− 1
αe
−αc where α 6= 0. Without loss of generality, we assume that either Imu = (−∞, 0) or

Imu = (0,∞). The first case holds under risk aversion, the second one under risk love. In
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the first case, since I is normalized and concave, observe that for each λ ∈ (0, 1) and for each

ϕ ∈ B0 (Σ, Imu), we have that λϕ+ (1− λ)
(
− 1
n

)
∈ B0 (Σ, Imu) and

I

(
λϕ+ (1− λ)

(
− 1

n

))
≥ λI (ϕ) + (1− λ) I

(
− 1

n

)
≥ λI (ϕ)− (1− λ)

1

n
∀n ∈ N.

By passing to the limit, it follows that I is concave at 0, that is, I is superhomogeneous. In

the second case, since I is normalized and concave, observe that for each λ ∈ (0, 1) and for

each ϕ ∈ B0 (Σ, Imu), we have that λϕ+ (1− λ) 1
n ∈ B0 (Σ, Imu) and

I

(
λϕ+ (1− λ)

1

n

)
≥ λI (ϕ) + (1− λ) I

(
1

n

)
≥ λI (ϕ) + (1− λ)

1

n
∀n ∈ N.

By passing to the limit, it follows that I is concave at 0, that is, I is again superhomogeneous.

“If”. By Theorem 2 and since I is concave at 0, if % is CARA and risk averse, it follows
that % is wealth decreasing absolute ambiguity averse. “Only if”. By Theorem 2, if %
is wealth decreasing absolute ambiguity averse, then % is CARA. Since % cannot be risk

neutral, it can either be risk averse or risk loving. By contradiction, assume it is risk

loving. By Theorem 2, it follows that I is convex at 0, that is, I is subhomogeneous. From

the previous part of the proof, we can conclude that I is homogeneous. To sum up, we

would have that I is normalized, monotone, continuous, concave, constant additive, and

homogeneous, that is, % is maxmin, a contradiction.
(ii). It follows from analogous arguments. �

Proof of Corollary 7. “If”. Since % is risk nonneutral, if % is CARA, then either % is
risk averse or it is risk loving. If % is homothetic uncertainty averse, then, in both cases, I
is positively homogeneous, proving the statement.

“Only if”. By Proposition 4 and since % is wealth constant absolute ambiguity averse
and uncertainty averse, we have that % is CARA. Since % is uncertainty averse and risk

nonneutral, we can consider a canonical representation (u, I) such that either Imu = (−∞, 0)

or Imu = (0,∞). Since % is wealth constant absolute ambiguity averse, we also have that I
is positively homogeneous. Define Ī : B0 (Σ)→ [−∞,∞) by

Ī (ϕ) = sup {I (ψ) : B0 (Σ, Imu) 3 ψ ≤ ϕ} ∀ϕ ∈ B0 (Σ) .

By [7, Theorem 36], it follows that Ī is monotone, lower semicontinuous, quasiconcave, and

such that Ī|B0(Σ,Imu) = I. We next show that also Ī is positively homogeneous. Consider

ϕ ∈ B0 (Σ) and λ > 0. We have two cases:
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1. {I (ψ) : B0 (Σ, Imu) 3 ψ ≤ ϕ} = ∅. Since B0 (Σ, Imu) is a cone, {I (ψ) : B0(Σ, Imu) 3
ψ ≤ λϕ} = ∅, which yields that Ī (λϕ) = −∞ = Ī (ϕ) = λĪ (ϕ).

2. {I (ψ) : B0 (Σ, Imu) 3 ψ ≤ ϕ} 6= ∅. Let {ψn}n∈N ⊆ B0 (Σ, Imu) be such that ψn ≤ ϕ

for all n ∈ N and I (ψn) ↑ Ī (ϕ). Let now λ > 0. Since B0 (Σ, Imu) is a cone, it

follows that {λψn}n∈N ⊆ B0 (Σ, Imu) and it is such that λψn ≤ λϕ for all n ∈ N. In
particular, by the definition of Ī, we have that Ī (λϕ) ≥ I (λψn) = λI (ψn) → λĪ (ϕ).

We just proved that Ī (λϕ) ≥ λĪ (ϕ) for all ϕ ∈ B0 (Σ) and for all λ > 0. By choosing

1/λ with λ > 0, it follows that

Ī (ϕ) = Ī

(
1

λ
(λϕ)

)
≥ 1

λ
Ī (λϕ) ,

that is, λĪ (ϕ) ≥ Ī (λϕ), proving positive homogeneity.

Consider G : R×∆→ [−∞,∞] defined by

G (t, p) = sup

{
Ī (ϕ) :

∫
ϕdp ≤ t

}
∀ (t, p) ∈ R×∆.

By [8], we have that G is lower semicontinuous, quasiconvex, and such that

Ī (ϕ) = min
p∈∆

G

(∫
ϕdp, p

)
∀ϕ ∈ B0 (Σ) (14)

and G (λt, p) = λG (t, p) for all λ > 0, for all t ∈ R, and for all p ∈ ∆. Define c1, c2 : ∆ →
[0,∞] to be such that

c1 (p) =
1

G (1, p)
and c2 (p) = −G (−1, p) ∀p ∈ ∆.

We now consider two cases:

Risk averse case. Imu = (−∞, 0). Since Ī ≤ 0 and Ī (−1) = I (−1) = −1, observe that

G (−1, p) ≤ 0 and G (−1, p) ≥ −1, that is, c2 (p) ≥ 0 and c2 (p) ≤ 1 for all p ∈ ∆. Next, we

have that for each α ∈ R

{p ∈ ∆ : c2 (p) ≥ α} = {p ∈ ∆ : −G (−1, p) ≥ α} = {p ∈ ∆ : G (−1, p) ≤ −α} .

Since G is quasiconvex and lower semicontinuous, the set is convex and closed, proving

that c2 is quasiconcave and upper semicontinuous. By (14), we can conclude that for each

ϕ ∈ B0 (Σ, Imu)

I (ϕ) = Ī (ϕ) = min
p∈∆

G

(∫
ϕdp, p

)
= min

p∈∆

(
−
∫
ϕdp

)
G (−1, p) = min

p∈∆
c2 (p)

∫
ϕdp.

Since −1 = Ī (−1) = minp∈∆−c2 (p), we have that c2 is normalized. The statement follows

by setting c = c2.
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Risk loving case. Imu = (0,∞). Since Ī (1) = I (1) = 1, observe that G (1, p) ≥ 1, that is,

0 ≤ c1 (p) ≤ 1. Next, we have that for each α ∈ (0,∞)

{p ∈ ∆ : c1 (p) ≥ α} =

{
p ∈ ∆ :

1

G (1, p)
≥ α

}
=

{
p ∈ ∆ : G (1, p) ≤ 1

α

}
.

Since G is quasiconvex and lower semicontinuous, for each α ∈ (0,∞) the set is convex and

closed. Since {p ∈ ∆ : c1 (p) ≥ α} = ∆ for all α ≤ 0, it follows that c1 is quasiconcave and

upper semicontinuous. By (14), we can conclude for each ϕ ∈ B0 (Σ, Imu)

I (ϕ) = Ī (ϕ) = min
p∈∆

(∫
ϕdp

)
G (1, p) = min

p∈∆

∫
ϕdp

c1 (p)
.

Since 1 = Ī (1) = minp∈∆
1

c1(p) , we have that c1 is normalized. The statement follows by

setting c = c1. �

Proof of Proposition 6. Since there exists γ > 0 such that φ (t) = −e−γt for all t ∈ R, we
have that I, defined as in (6), can be defined over the entire space B0 (Σ). Moreover, by [7,

Proposition 54], I is normalized, concave and constant additive. In particular, it is concave

at b, in case % is either risk averse or risk loving.
(i). By Corollary 1 (recall that it holds by only assuming CARA in place of wealth

classifiable) and since I is constant additive, if % is risk neutral, then % is wealth constant
absolute ambiguity averse.

(ii). By Corollary 5 and since % is CARA, if % is risk averse, then % is wealth decreasing
absolute ambiguity averse. �

Proof of Proposition 7. We only prove point (ii). Point (iii) follows from a completely

specular argument. Point (i) instead follows from similar techniques (see also Marinacci and

Montrucchio [26, Theorem 12]).

(ii). Fix µ. By Theorem 2 and since % is risk averse and b = 0, we have that % is wealth
decreasing absolute ambiguity averse if and only if I is positive superhomogeneous. Thus,

to prove point (ii), we only need to show that I is positive superhomogeneous for all µ if and

only if φ is IRRA. Since % is risk averse and b = 0, we also have that Imu = (−∞, 0) and

φ : (−∞, 0) → R. For each ν > 0, define φν : (−∞, 0) → R to be such that φν (t) = φ (νt)

for all t ∈ (−∞, 0). Note that φ1 = φ. Finally, we have that Imφ = Imφν for all ν > 0. “If”

Let µ be generic. Consider ν > η > 0. It follows that φν = f ◦ φη where f : Imφ→ Imφ is

strictly increasing and concave. By the Jensen’s inequality, it follows that if ν > η > 0, then

φ−1
ν

(∫
φν

(∫
ϕdp

)
dµ

)
≤ φ−1

η

(∫
φη

(∫
ϕdp

)
dµ

)
∀ϕ ∈ B0 (Σ, Imu) .
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If we let η ∈ (0, 1) and ν = 1, we have that for each ϕ ∈ B0 (Σ, Imu)

φ

(
ηφ−1

(∫
φ

(∫
ϕdp

)
dµ

))
= φη

(
φ−1

(∫
φ

(∫
ϕdp

)
dµ

))
≤
∫
φ

(
η

∫
ϕdp

)
dµ.

We can conclude that for each ϕ ∈ B0 (Σ, Imu)

I (ηϕ) = φ−1

(∫
φ

(
η

∫
ϕdp

)
dµ

)
≥ ηφ−1

(∫
φ

(∫
ϕdp

)
dµ

)
= ηI (ϕ) ,

proving that I is positive superhomogeneous. “Only if”Let ν > η > 0. Consider η
ν ∈ (0, 1).

Fix µ. Since I is positive superhomogeneous, it follows that for each ϕ ∈ B0 (Σ, Imu)

φ−1

(∫
φη

(∫
ϕdp

)
dµ

)
= φ−1

(∫
φ

(
η

∫
ϕdp

)
dµ

)
= φ−1

(∫
φ

(∫
η

ν
νϕdp

)
dµ

)
≥ η

ν
φ−1

(∫
φ

(∫
νϕdp

)
dµ

)
=
η

ν
φ−1

(∫
φν

(∫
ϕdp

)
dµ

)
,

yielding that

φ−1
η

(∫
φη

(∫
ϕdp

)
dµ

)
=

1

η
φ−1

(∫
φη

(∫
ϕdp

)
dµ

)
≥ 1

ν
φ−1

(∫
φν

(∫
ϕdp

)
dµ

)
= φ−1

ν

(∫
φν

(∫
ϕdp

)
dµ

)
∀ϕ ∈ B0 (Σ, Imu) .

Since both φν and φη are both strictly increasing and continuous, there exists a strictly

increasing function h : Imφ→ Imφ such that φν = h ◦ φη. It follows that

h

(∫
φη

(∫
ϕdp

)
dµ

)
≥
∫
h

(
φη

(∫
ϕdp

))
dµ ∀ϕ ∈ B0 (Σ, Imu) . (15)

Since µ was arbitrarily chosen, (15) holds for all µ. Since Σ is nontrivial, there exists E ∈ Σ

such that E 6= ∅, S. Consider s1, s2 ∈ S such that s1 ∈ E and s2 ∈ Ec. Note that δsi ∈ ∆

and {δsi} ∈ B for i ∈ {1, 2}.47 Let µ = λδδs1 + (1− λ) δδs2 with λ ∈ (0, 1). Consider also

k1, k2 ∈ Imφ. It follows that there exist t1, t2 ∈ (−∞, 0) such that φη (ti) = ki for i ∈ {1, 2}.
47 If s ∈ S, then we denote by δs the Dirac at s. We denote by B the Borel σ-algebra over ∆.
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Define ϕ = t11E + t21Ec ∈ B0 (Σ, Imu). By (15), we have that

h (λk1 + (1− λ) k2) = h (λφη (t1) + (1− λ)φη (t2))

= h

(
λφη

(∫
ϕdδs1

)
+ (1− λ)φη

(∫
ϕdδs2

))
= h

(∫
φη

(∫
ϕdp

)
dµ

)
≥
∫
h

(
φη

(∫
ϕdp

))
dµ

= λh

(
φη

(∫
ϕdδs1

))
+ (1− λ)h

(
φη

(∫
ϕdδs2

))
= λh (φη (t1)) + (1− λ)h (φη (t2)) = λh (k1) + (1− λ)h (k2) ,

proving that h is concave and φ is IRRA. �

Proof of Proposition 8. Since % is a smooth ambiguity preference, it admits a canonical
representation (u, I) where I is as in (6). Since % is CARA and risk averse and b ≤ 0,

we also have that I is defined over B0 (Σ, (−∞, 0)) ⊇ B0 (Σ, Imu). The functional Î :

B0 (Σ, (0,∞))→ (0,∞) defined by

Î (ϕ) =

(∫ (∫
ϕdp

)γ
dµ

) 1
γ

∀ϕ ∈ B0 (Σ, (0,∞)) .

is normalized, monotone, continuous, positively homogeneous, and quasiconvex. It follows

that I : B0 (Σ, (−∞, 0))→ R, which is such that I (ϕ) = −Î (−ϕ), is normalized, monotone,

continuous, positively homogeneous, and quasiconcave. In particular, by [8, Proposition 7

and its proof, WP version, Carlo Alberto Notebook 80], it is concave. By Corollary 5 and

since % is CARA and risk averse, the statement easily follows. �

Proof of Proposition 9. Since % is wealth constant absolute ambiguity averse, then % is
CARA and I is either constant additive or affi ne at b, depending on % being risk neutral or
not. As usual, without loss of generality we can normalize a = 1 and b = 0 (see equation

(5)). In both cases, it follows that

β 7→ v−1 (I (v (βr + (w − β) rf ))) = v−1 (I (v (wrf + β (r − rf ))))

= v−1 (I (v (β (r − rf )))) + wrf .

Thus, for each w ∈ (0,∞), maximizing β 7→ I (v (βr + (w − β) rf )) subject to β ∈ [0, w] is

equivalent to maximize β 7→ v−1 (I (v (β (r − rf )))) subject to β ∈ [0, w]. Define f : [0,∞)→
R by f (β) = v−1 (I (v (β (r − rf )))) for all β ≥ 0. Let w′ > w. We have two cases:

1. β∗ (w′) ≥ w. This implies that β∗ (w′) ≥ w ≥ β∗ (w).

2. β∗ (w′) < w. Since β∗ (w′) maximizes f on [0, w′] and 0 ≤ β∗ (w) ≤ w ≤ w′, we have

that f (β∗ (w′)) ≥ f (β∗ (w)). Since β∗ (w) maximizes f on [0, w] and 0 ≤ β∗ (w′) < w,
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we have that f (β∗ (w)) ≥ f (β∗ (w′)). This implies that β∗ (w′) is a maximizer of

f on [0, w]. Since the solution of (7) is unique for all w > 0, we can conclude that

β∗ (w′) = β∗ (w).

Points 1 and 2 yield the main statement.

Note that if% is risk averse and uncertainty averse, it follows that f (β) = v−1 (I (v (β (r − rf ))))

is quasiconcave on [0,∞). Let w′ > w. By contradiction, assume that β∗ (w′) 6= β∗ (w).

From the previous part of the proof, it follows that β∗ (w′) > β∗ (w). Consider β̂ ∈
(β∗ (w) ,min {w, β∗ (w′)}) ⊆ (0, w) ⊆ (0, w′). Since β∗ (w) , β̂ ∈ (0, w) and the former is

the unique maximizer of f on [0, w], it follows that f (β∗ (w)) > f
(
β̂
)
. Similarly, since

β∗ (w′) , β̂ ∈ [0, w′] and the former is the unique maximizer of f on [0, w′], it follows that

f (β∗ (w′)) > f
(
β̂
)
. On the one hand, we can conclude that min {f (β∗ (w)) , f (β∗ (w′))} >

f
(
β̂
)
. On the other hand, by construction of β̂, we also have that there exists λ ∈ (0, 1)

such that

β̂ = λβ∗ (w) + (1− λ)β∗
(
w′
)
.

Since f is quasiconcave, this implies that f
(
β̂
)
≥ min {f (β∗ (w)) , f (β∗ (w′))}, a contradic-

tion. �

Proof of Proposition 10. Since % is risk neutral, without loss of generality, let v be the
identity. Note that

β 7→ I (v (βr + (w − β) rf )) = φ−1

(∫
φ

(
β

∫
rdp+ (w − β) rf

)
dµ

)
.

Define r̂ : ∆ → R by r̂ (p) =
∫
rdp for all p ∈ ∆. We have that r̂ ≥ 0 is a bounded,

real-valued, Borel measurable function. It follows that the problem in (7) is equivalent to

solve

max

(∫
φ (βr̂ + (w − β) rf ) dµ

)
subject to β ∈ [0, w] ,

which is mathematically equivalent to the usual expected utility portfolio choice problem.

Since φ is concave and DARA, it is twice continuously differentiable and such that φ′ > 0,

and β∗ (w) ∈ (0, w) with w > 0, we have that (8) holds. �

Proof of Proposition 11. Since % is a risk averse multiplier preference, note that

β 7→ I (v (βr + (w − β) rf )) = φ−1

(∫
φ (v (βr + (w − β) rf )) dq

)
where v (c) = −a 1

αe
−αc + b for all c ∈ R, with α, a > 0 and b ∈ R, and φ (t) = −e−θt for all

t ∈ R, with θ > 0. Define v̂ = φ ◦ v : R→ R. It follows that the problem in (7) is equivalent

to solve

max

(∫
v̂ (βr + (w − β) rf ) dq

)
subject to β ∈ [0, w] ,
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which is mathematically equivalent to the usual expected utility portfolio choice problem.

Since v̂ is concave and DARA, it is twice continuously differentiable and such that v̂′ > 0,

and β∗ (w) ∈ (0, w) with w > 0, we have that (8) holds. �
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