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Abstract

Time series subject to parameter shifts of random magnitude and tim-
ing are commonly modeled with a change-point approach using Chib’s
(1998) algorithm to draw the break dates. We outline some advantages of
an alternative approach in which breaks come through mixture distribu-
tions in state innovations, and for which the sampler of Gerlach, Carter
and Kohn (2000) allows reliable and efficient inference. We show how the
same sampler can be used to (i) model shifts in variance that occur inde-
pendently of shifts in other parameters (ii) draw the break dates in O(n)
rather than O(n3) operations in the change-point model of Koop and Pot-
ter (2004b), the most flexible and general to date. Finally, we introduce
to the time series literature the concept of adaptive Metropolis-Hastings
sampling for discrete latent variable models. We develop an easily imple-
mented adaptive algorithm that improves on Gerlach et al. (2000) and
promises to significantly reduce computing time in a variety of problems
including mixture innovation, change-point, regime-switching, and outlier
detection. The efficiency gains on two models for U.S. inflation and real
interest rates are 257% and 341%.
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1 Introduction

This paper is concerned with the problem of modeling and inference for processes
subjects to random shifts in parameters at unknown dates. The literature on
the topic can be traced back at least to Quandt (1958) and Chernoff and Zack
(1964), but has expanded rapidly in recent years because of faster computers and
the availability of powerful new statistical tools for the solution of the consid-
erable numerical problems involved. Additional incentives have been provided
by Clements and Hendry (1999), who point to failures to detect (or to properly
adjust to) intercept shifts as a main source of forecast failure, and by Stock and
Watson (1996), who document the widespread nature of parameter instability
in linear models of U.S. macroeconomic and financial time series.
Traditionally, a majority of papers in this area take a frequentist approach.1

However, in recent years the number of Bayesian alternatives has increased
rapidly, as many authors came to recognize the theoretical and practical advan-
tages of a Bayesian approach for these types of problems. From a theoretical
perspective, it seems desirable for parameter and forecast distributions to reflect
uncertainty on the number and timing of break-points, rather than being condi-
tioned on modal values. From a practical stance, because the likelihood quickly
becomes intractable as the number of breaks increase2, frequentists are forced to
resort to simulation methods similar to those employed by Bayesians, therefore
losing the advantage of simpler implementation enjoyed in other models.
The Bayesian approach coupled with modern simulation methods makes it

tractable to estimate models with multiple structural breaks. Latent variables
determine the location and nature of the breaks. Conditional on these latent
variables, it is possible to generate the model parameters, while conditional on
the parameters it is possible to generate the latent variables. Such generation
is repeated until an adequate sample is obtained from the posterior distribution
of interest. The most popular Bayesian approach in the econometric literature
on structural breaks follows Chib (1998), who models the breaking process as
a Markov chain with transition probabilities constrained so that regimes come
in a non-reversible sequence. (We refer to this as a ‘change-point’ approach.)
Pesaran, Pettenuzzo, and Timmermann (2004) extend the results in Chib (1998)
by adding a hierarchical level for all parameters. Koop and Potter (2004a,
2004b) make a significant advance by allowing for an unknown number of breaks.
An alternative approach builds on the state-space representation, modeling

1The frequentist literature on testing for structural breaks is reviewed by Hansen (2001)
and Elliott and Müller(2003).

2 See the discussion in Elliott and Müller (2003).



the breaking process through mixture distributions for the state innovations.
(We refer to this as a ‘mixture innovation’ approach.) Time-varying-parameter
models with normal innovations in state variables are well-known and easily
estimated special cases (see Cogley and Sargent (2001) and Primiceri (forth-
coming) for recent Bayesian economic applications), but the general case of
several component distributions presents formidable computational problems.
Several approximations have been proposed, including Harrison and Stevens
(1976), Sims (1993) and Engle and Smith (1999). Markov chain Monte Carlo
techniques opened the way for the exact solutions developed by McCulloch and
Tsay (1993), Carter and Kohn (1994), and Shephard (1994). However, these
algorithm are at best extremely inefficient in the case of relatively infrequent
breaks. The reason is that they draw the discrete latent variables conditional on
the states, and in models with structural breaks the correlation between these
two blocks is very high or even perfect. For models that can be written in condi-
tionally Gaussian state-space form, the sampling algorithm of Gerlach, Carter
and Kohn (2000) avoids this problem and permits fast and efficient estimation
of mixture innovation models.
Our paper makes four contribution to the Bayesian literature on structural

breaks. The first is to remark that mixture innovations in state variables are
often an intuitive and flexible way of modelling breaks, and that even complex
models can be estimated efficiently with the method of Gerlach, Carter and
Kohn (2000). Mixture innovation models have a number of desirable features,
including random number of in-sample breaks, possibility of jointly modeling
small (and more frequent) and large (and less frequent) breaks, easy inclusion
of innovation and additive outliers, ease of prior elicitation, and the relative
convenience of allowing different parameters to change at different times.
The second contribution is to show how to perform efficient inference for

models with breaks in conditional variance, and how to allow breaks in condi-
tional mean parameters and in conditional variance to occur independently.
Of course in some instances a change-point approach may still be preferred.

Koop and Potter (2004b) is then an interesting option because it allows for a
random number of breaks. However, it requires O(n2) operations to draw the
break dates with a geometric prior distribution for regime durations, and O(n3)
operations with a Poisson prior (their preferred choice). The third contribution
of this paper is to show that, for conditionally Gaussian models, the algorithm
of Gerlach et al. (2000) can be adapted to draw the break-points in the model
of Koop and Potter (2004b) in just O(n) operations with either prior.
The fourth contribution is to introduce to the time series literature the con-

cept of adaptive Metropolis-Hastings sampling for discrete latent variable mod-
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els. We present a simple algorithm which further improves sampling efficiency
(over Gerlach et al., 2000) in a class of discrete latent variable models that
includes change-point, mixture innovation, regime switching, and outlier detec-
tion. The adaptive algorithm uses past draws of the discrete latent variables
to design a proposal distribution for a Metropolis-Hastings step, greatly reduc-
ing computing time spent (and mostly wasted) on observations for which the
presence or absence of a break is rather clear-cut. In two applications to U.S. in-
flation and real interest rate, this adaptive algorithm reduces computing times
(compared to Algorithm 1 in Gerlach et al. (2000), for a given Monte Carlo
standard error) by over 75% and 60%.
The paper is organized as follows. Section 2 presents three Bayesian ap-

proaches to structural change, and discusses some advantages of mixture in-
novation models. In particular, it argues that the method of Gerlach et al.
(2000) solves the computational problems that have so far constrained their use
and development. Section 4 suggests a method to model breaks in variances
in conditionally Gaussian form and to combine shifts in conditional mean and
variance parameters. Section 4 shows how the sampler of Gerlach et al. (2000)
can be adapted to draw the break dates in models with non-Markov breaking
processes, using the case of a Poisson prior for regime duration as an example.
Section 5 outlines a new adaptive Metropolis-Hastings sampler which promises
to further increase sampling efficiency in a variety of discrete latent variable
problems. Section 6 evaluates the efficiency gains from the new adaptive sam-
pler on models of U.S. inflation and real interest rate. Section 7 concludes.

2 Bayesian approaches to structural change

This section reviews three approaches to modeling structural change: change-
point models, time-varying-parameter models, and mixture innovation models.
For our purposes, it is useful to cast all these models in a common framework,
writing them in state-space form, with system matrices depending on vectors of
discrete latent variables. The contributions of our article are for conditionally
Gaussian models. Conditionally Gaussian models, introduced independently by
Carter and Kohn (1994) and Shephard (1994), can be written in linear and
Gaussian state-space form conditional on a vector of latent variables:

yt = gt + h0txt + γtut (1)

xt = ft + Ftxt−1 + Γtvt, (2)
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where ut ∼ nid(0, 1), vt ∼ nid(0, I)3 and all system matrices are known (for
t = 1, ..., n) conditional on parameters, observations and on discrete latent vari-
ables K, where, throughout the paper, for any variable zt, we define zt1,t2 =
(zt1 , ..., zt2) and z = (z1, ..., zn). The latent variables are typically assumed to be
independent or Markov. Most time series models take a conditionally Gaussian
state-space form, and need not be Gaussian after integrating out the latent vari-
ables. In fact, besides models for structural change, the most common nonlinear
models and several models for fat-tailed errors are conditionally Gaussian (see
Giordani, Kohn and van Dijk, 2005).

2.1 Change-point models with a known number of breaks

A conditionally linear change-point model with a known number of breaks is
defined as

yt = β
0
mzt + σmut (3)

βm = β1, σm = σ1, for τ1 > t ≥ 1
...

βm = βM−1, σm = σM−1, for τM−1 > t ≥ τM−2

βm = βM , σm = σM , for n ≥ t ≥ τM−1,

where ut ∼ nid(0, 1), M -1 is the number of breaks and the unknown para-
meters are (β1, ..., βM , σ1, ..., σM , τ1, ..., τM−1). Chib (1998) obtains large ef-
ficiency gains over previous samplers by framing the change-point problem as
a switching-regime problem with transition probabilities constrained so that
regimes come in a non-reversible sequence. This model can be written is the
state-space form (1)-(2) by setting Kt = m, gt = β

0
(Kt)zt, γt = σ(Kt), and

modelling Kt as a discrete Markov process with restrictions on the transition
probability matrix. Chib then adapts the sampler of Carter and Kohn (1994)
and draws K in O(nM) operations. He then shows how to compute the mar-
ginal likelihood so that the number of breaks can be treated as an unknown
quantity in a model selection or model averaging context. Chib’s method does
not require the measurement equation to be linear or Gaussian, but it does re-
quire the probability of yt to be readily available given parameters θ(Kt), and
is therefore impractical for models with time-varying unobserved states such as
measurement errors or seasonal components.

3 It is possible to allow E(utvt) 6= 0.
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2.2 Change-point models with an unknown number of breaks

Pesaran, Pettenuzzo and Timmermann (2004) generalize the model of Chib
(1998), but retain the assumption of a known number of breaks. Even though
they integrate over the number of breaks M -1 by computing the marginal like-
lihood for M = 0, 1, ...,Mmax, Koop and Potter (2004a) point out that there
are several drawbacks to this strategy, besides the large computational costs.
One is the difficulty in nesting the case of rare, large breaks, and of frequent,
smaller breaks. A second problem is that the need to impose exactly M -1 in-
sample breaks typically implies a prior in which breaks near the end of the
sample are inordinately more likely than at earlier dates. A further problem is
that computing the marginal likelihoods accurately in complex models is very
difficult.
To avoid these shortcomings, Koop and Potter (2004b) develop a change-

point model with an unknown number of breaks. Letting the number of breaks
be random is not only valuable per se, but also delivers a prior in which all
observations have the same probability of being a break-point. Their key idea is
to model an unknown number of breaks indirectly, by assuming that there are
M regimes but that up to M -1 may occur out of sample. They set M = n and
are therefore able to nest a time-varying-parameter model and a model with few
breaks (given a sufficiently sparse prior on regime duration).
Another innovation in Koop and Potter (2004b) is that regime duration has

a Poisson prior in place of the standard geometric prior. A geometric prior
for regime duration corresponds to the assumption of an independent breaking
process, i.e. p(Kt|Ks6=t) = p(Kt), where Kt = 1 if there is a break at time t
and Kt = 0 otherwise. The geometric distribution implies that, for any j > 1,
durations of j are more likely than durations of j+1, a feature of the prior that
is relaxed in Koop and Potter (2004b).4

Koop and Potter (2004b) draw the break dates conditional on parameters
by adapting the algorithm of Chib (1998). Chib’s algorithm, originally designed
for a geometric prior on duration, requires O(nM) operations to draw all break
points. Koop and Potter set M = n, resulting in O(n2) operations. Transition

4Koop and Potter (2004a) also show that prior regime duration remains approximately
geometric if Kt is Markov. The idea of departing from a geometric distribution is not un-
controversial, though. Gelman et al. (1995, page 52) find that the geometric distribution’s
"‘memoryless’ property makes it a natural model for survival or lifetime data". Moreover, we
note that the use of a Poisson prior may be questionable when breaks are thought to be (or
turn out to be) relatively rare. For example, suppose that breaks occur every twenty years on
average. On monthly data that corresponds to λ = 240, which implies a standard deviation
of
√
240 ' 15.5, or a little over a year. The Poisson prior therefore restricts infrequent breaks

to recur with greater regularity than is probably prudent to assume.
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probabilities are constant for a geometric distribution, whereas they depend
on the distance from the last break for a Poisson. The choice of a Poisson prior
therefore requires averaging over durations in computing transition probabilities,
leading to O(n3) operations. This is unfortunate, since in practice it limits
the use of what is otherwise a flexible and powerful model. Section 4 shows
how break points can be drawn in O(n) operations by adapting the sampling
algorithm of Gerlach et al. (2000) rather than that of Chib (1998).

2.3 Time varying parameter models

Time-varying-parameter (TVP) models are written in the state-space form (1)-
(2) with constant system matrices. Parameter variation comes through normal
innovations in the transition equations. These models have a long tradition
(West and Harrison (1997) is a classic Bayesian reference). Recent examples
in economics include Cogley and Sargent (2001) and Primiceri (forthcoming).
Inference by Gibbs sampling is relatively straightforward, as a number of algo-
rithms are available to draw the states x conditional on parameters (including
Carter and Kohn (1994), Fruhwirth-Schnatter (1994), de Jong and Shepard
(1995) and Durbin and Koopman, 2002). The limitation of TVP models is that
they are designed for smooth and frequent parameter variation and cannot effec-
tively cope with infrequent interventions. Both types of breaks can be captured
by mixture innovation models.

2.4 Mixture innovation models

Mixture innovation models are very general because they allow all system ma-
trices in (1) and (2) to depend on Kt. Parameter shifts are typically modeled
by letting ΓtΓ

0
t (the covariance matrix of innovations to the states) depend on

Kt. To illustrate, consider the simple example

yt = µt + σuut (4)

µt = µt−1 +Ktσvvt,

where Kt is an independent sequence of Bernoulli variables, with

Kt = 1 with probability π

Kt = 0 with probability 1− π,

and ut and vt are both nid(0, 1). This model can be written in terms of (1)
and (2) by setting gt = 0, ht = 1, γt = σu, ft = 0, Ft = 1, Γt = σvKt. At
each new observation, there is a probability π of a break; if there is a break,
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the change in the mean of the process is normally distributed with mean zero
and standard deviation σv. The number of in-sample breaks is random, with
prior distribution defined by π (possibly a random variable itself). Prior regime
duration is geometric, with mean (1−π)/π and standard deviationp(1− π)/π.5

This approach to structural change has a number of advantages over the
change-point approach:

1. It is an intuitively simple way of allowing for random number and size of
breaks, which facilitates prior elicitation.

2. Computational costs are linear in the number of values that Kt can take.
This gives the modeler great flexibility. For example, we may wish to
capture the idea that the mean of a process is unchanged in some peri-
ods, while in others it incurs small but relatively frequent and large but
infrequent breaks. This can be achieved by setting

σv(Kt = Ki) = σvi , prob(Kt = Ki) = πi for i = 1, 2, 3,

with σv1 = 0, and a prior for which σv3 À σv2 and π2 À π3. This is a gen-
eral and intuitive way of nesting TVP models and models with infrequent
breaks.6

3. It is just as easy to assume that parameters in different regimes (i) are
drawn from a common distribution, as in Chib (1998) and Pesaran et al.
(2004) (ii) depend only on parameters in the previous regime, as in Koop
and Potter (2004b) and in most TVP and mixture innovation applications,
or (iii) are a mixture of (i) and (ii). Referring to equation (4), the first
case can be modelled as

µt = mKt + µt−1(1−Kt) +Ktσvvt, (5)

where Kt is either 0 or 1. To nest both cases, write

µt = mK1t + µt−1(1−K1t) + (K1tσ1v +K2tσ2v)vt, (6)

where Kt = (K1t,K2t), Kt = (0, 0) for no break, and Kt = (1, 0) and
(0, 1) for a break with µt|Kt independent and a random walk respectively.

5Notice that a geometric distribution with mean µ has standard deviation close to µ,
whereas a Poisson distribution with mean µ has standard deviation

√
µ. When µ is relatively

large, the two priors have very different implications for the regularity of occurrences of breaks.
6Koop and Potter (2004b) also nest a TVP model and a model with few breaks, given a

sufficiently sparse prior on durations. However, mixture innovations are more general in that
they allow to combine (rather than choose from) these two options.
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4. It is a convenient framework to allow different parameters to change at dif-
ferent times. Change-point models invariably assume that all parameters
change at the same time (unless some are forced to be constant). With-
out this restriction, a change-point model would have Mp regimes to keep
track of, where M -1 is the maximum number of breaks in each parameter
and p is the number of parameters that are allowed to change, implying
at least O(nMp) operations to draw the break dates. In contrast, if we let
Kit ∈ {0, 1} denote the absence or presence of a break in parameter i at
time t, then Kt = (K1t, ...,Kpt) can take 2p values, so K can be drawn in
O(n2p) operations regardless of the number of breaks (see Section 2.4.1).

5. It is a convenient framework to allow shifts in variance and in conditional
mean parameters to occur independently (see Section 3).

6. It is a convenient framework to model breaks and outliers jointly. This can
be important, as innovation and (especially) additive outliers may both
hide actual breaks and spuriously indicate non-existing breaks, particu-
larly in real-time forecasting.

7. While sampling schemes for multiple change-point models draw the break
dates conditional on all parameters, in a mixture innovation approach most
parameters can be treated as states and integrated out, which increases
sampling efficiency. For example, referring to the model given by (3), we
would write

yt = β
0
tzt + σtut

βt = βt−1 +Ktσvvt,

treat βt as the state vector and integrate it out when drawing Kt (see
Section 2.4.1).

Finally, it is worth noting that mixture innovations can be combined with
regime-switching and change-points (see Giordani et al. (2005) for an example),
and that transition and break probabilities can be related to exogenous variables
(see McCulloch and Tsay, 1993).

2.4.1 Sampling K in mixture innovation models

Mixture innovation models have been the subject of considerable study7, but
until the mid-90s exact solutions were available only for the simplest cases and at

7Harrison and Stevens (1976) call them multiprocess models. See also Kitagawa (1987).

9



great computational expense. Several approximations were proposed, including
Harrison and Stevens (1976), Sims (1993) and Engle and Smith (1999). Markov
chain Monte Carlo techniques opened the way for the exact solutions developed
by McCulloch and Tsay (1993), Carter and Kohn (1994), and Shephard (1994).
However, the algorithms proposed by Carter and Kohn (1994) and Shephard
(1994) draw the auxiliary variables K conditional on the states x. In the case
of structural breaks or additive outliers, K and x are highly correlated, mak-
ing these samplers very inefficient. Often, as in the model given in (4), the
correlation is perfect, and the samplers break down completely (see Gerlach et
al., 2000). McCulloch and Tsay (1993) reduce the severity of this problem by
drawing Kt conditional on the error vt rather than on the state xt, but their
sampler remains rather inefficient (Gerlach et al., 2000). Gerlach et al. (2000)
develop an algorithm for conditionally Gaussian processes that drawsK without
conditioning on x, and therefore retains a high degree of efficiency regardless of
the correlation between K and x.
The first contribution of Gerlach et al. (2000) is to draw K from

p(Kt|y,Ks6=t, θ) ∝ p(yt,n|y1,t−1,K, θ)p(Kt|Ks6=t, θ), (7)

where the states have been integrated out (rather than conditioned on) and θ

is the vector of parameters. For a given proposed value of Kt, p(Kt|Ks6=t, θ)
is evaluated from the transition probabilities, and p(yt,n|y1,t−1,K, θ) can be
computed with the Kalman filter in conditionally Gaussian models. Evaluating
p(yt,n|y1,t−1,K, θ) through the Kalman filter is straightforward, but requires
O(n) operations, implying O(n2) operations to draw K. Gerlach et al. (2000)’s
second contribution is to provide an algorithm to evaluate p(yt,n|y1,t−1,K, θ) in
one step and thus to draw K in O(n) operations. Since Kt takes a finite number
of values, it can be drawn by computing p(Kt|y,Ks6=t, θ) for all possible values
of Kt and then normalizing. The computing time is then linear in both n and
in the number of elements in the mixture (the number of values that Kt can
take).

3 Breaks in conditional variance

A mixture innovation approach can also be used to model variance shifts, as first
shown by McCallum and Tsay (1993). Their algorithm draws K conditional on
the states and is therefore inefficient. DrawingK without conditioning on states
as in Gerlach et al. (2000) is preferable. However, because squared residuals
are not normal, it would seem that their algorithm is not suitable for variance
shifts. However, this problem is overcome as follows. We begin by considering
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shifts in variance in an otherwise white noise process, and then show how to
combine shifts in variances with shifts in other parameters.

Modeling shifts in variance. Let yt be a zero-mean, uncorrelated ran-
dom variable such that

yt = σt�t, (8)

where �t is standard normal. Then

log(y2t ) = log(σ2t ) + ut, (9)

where ut is log(χ21). Following the stochastic volatility literature, we work with

log(σ2t ), ensuring that σ
2
t is always positive. It is then natural to model perma-

nent shifts in σ2t as

log(σ2t ) = log(σ2t−1) + σv(K2,t)vt, (10)

where vt is a standard normal random variable. If K2t takes only one value the
model reduces to smoothly changing variances of the type used by Primiceri
(forthcoming). In Section 6 we set σv(K2,t = 0) = 0 and σv(K2,t = 1) = σ∗v > 0
with a prior favouring infrequent shifts. More elements can be added to the
mixture, for example to allow for both smooth and sudden shifts in variance,
analogously to the case of shifts in conditional mean parameters.
To draw K2t, we follow Carter and Kohn (1993 and 1997), Shephard (1994)

and Kim et al. (1998), who observe that the distribution of a log(χ21) can be
very accurately approximated by a mixture of normals with few components.
(Carter and Kohn (1997) use five, Kim et al. (1998) seven.8) We can then write
the model in conditionally Gaussian state-space form

zt = g(K1,t) + ht +G(K1,t)ηt (11)

ht = ht−1 + σv(K2,t)vt,

where zt = log(y2t ), ht = log(σ2t ), and ηt and vt are standard normal. The mean
and standard deviation of each component of the mixture approximating the
distribution of ut determine g(K1,t) and G(K1,t) respectively, so these matrices
contain no unknown parameters. The prior probabilities πi of each component
are also known. Thus

p(ut) '
IX
i

πiN(gi, G
2
i ),

8Both papers report all parameters of the mixture. We use the parameters from Carter
and Kohn (1997).
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where N(gi, G2i ) is the normal density with mean gi and variance G2i .
Shifts in variance can then be modeled through σv(K2,t). If K2t can take

only one value the model reduces to smoothly changing variances of the type
used by Primiceri (forthcoming). In Section 6 we set σv(K2,t = 0) = 0 and
σv(K2,t = 1) = σ∗v > 0 with a prior of infrequent shifts. More elements can be
added to the mixture, for example to allow for both smooth and sudden shifts
in variance, analogously to the case of shifts in conditional mean parameters.

Shifts in conditional first and second moments. We use the following
sampling scheme to deal with shifts in both the conditional mean and conditional
variance parameters:

1. Initialize the sampler with a time series of conditional standard deviations
σ1,n (for example σ1 = σ2 = ... = σn).

2. Given σ1,n, the model is conditionally Gaussian. Draw interventions Km

as in Gerlach et al. (2000). Conditional onKm, draw the states x with any
of the algorithms mentioned in Section 2.3. Conditional on y,Km and x,

compute residuals rt. The definition of residuals is such that std(rt) = σt.

3. Model interventions in log(r2t ) as explained above in this section. Referring
to equation (11), draw Kv = (K1,n

1 ,K1,n
2 ). Given Kv, draw log

¡
σ2t
¢
for

t = 1, .., n with the same algorithms used to draw x in step (2).

4. Go to (2).

In going from (2) to (3), the most convenient assumption is that that shifts
in conditional variance (second block) are independent of shifts in conditional
mean parameters (first block). It is possible to have a prior relating probabilities
of interventions in the first and second block, but some care is required as an
overly tight prior may induce a nearly reducible chain. Innovation and additive
outliers are drawn in the first block and accounted for in computing the residuals
used in the second block (see Section 6 for an example), therefore reducing the
risk of isolated outliers being intrerpreted as variance shifts.

4 Non-Markov breaking processes

This sections shows how to adapt the algorithm of Gerlach et al. (2000) whenKt

is not Markov, and how this allows drawing the break dates in O(n) operations
in the change-point model of Koop and Potter (2004b) with a Poisson prior on
regime durations.
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Although Gerlach et al. (2000) work with Markov interventions, their key
results do not require this assumption. In particular, the algorithm to draw
p(yt,n|K) in one step does not rely on Kt being Markov, as all operations are
conditioned on K, and it is therefore suitable for any breaking process as long as
it is possible to evaluate p(Kt|Ks6=t, θ) (or p(K|θ) ∝ p(Kt|Ks6=t, , θ)). The inde-
pendence and Markov assumptions are simply the most convenient to perform
this evaluation.

4.1 Poisson prior for regime duration

Following Koop and Potter (2004b), assume that regime duration follow a Pois-
son distribution. The duration of regime m is defined as dm = τm+1 − τm,
where τm+1 and τm are adjacent break dates. Then they assume that dm− 1 is
Poisson distributed Po(λ) with parameter λ.9 We now show how to draw K in
mixture innovation models with a Poisson prior for durations, and then how the
same technique can be used to draw break dates in the model of Koop and Pot-
ter (2004b). In both cases, only O(n) operations are required for conditionally
Gaussian models.

4.1.1 Drawing K

Let Kt = 1 (Kt = 0) stand for the presence (absence) of a break at time t. We
want to evaluate p(Kt|Ks6=t)–where the dependence on parameters θ has been
dropped for convenience–when durations are Poisson distributed with known
parameter λ. Assuming that there is at least one break both before and after t,
the probability of a break at t is given by

p(Kt = 1|Ks6=t) = p(d1t)p(d2t),

where d1t and d2t are regime durations, defined as the number of periods between
two adjacent breaks

d1t = min(t− τ1; t > τ1,Kτ1 = 1)

d2t = min(τ2 − t; t < τ2,Kτ2 = 1),

and the probability of no break at t is given by

p(Kt = 0|Ks6=t) = p(d3t),

9Koop and Potter (2004b) use a hierarchial prior to allow the mean duration λ to depend
on m. For our purposes, we can assume a single λ with no loss of generality.
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where d3t is the number of periods between the last break before period t and
the first break after period t

d3t = min(τ2 − τ1; τ2 > t > τ1, Kτ1 = Kτ2 = 1).

Finally, p(dit), where i = 1, 2, 3, is evaluated as

p(dit) ∝ exp(−λ)λdit−1
(dit − 1)! .

The only slight complication arise when there is no in-sample break either before
or after t. A simple but unsatisfactory solution is to assume K0 = Kn+1 = 1. To
illustrate a better solution, keep the assumption K0 = 1 (simply for convenience
of exposition). Initialize the algorithm with an arbitrary value of n∗, such as
n∗ = n+ 1, where

n∗ = min(τ ; τ > n, Kτ = 1).

Given n∗, sequentially update K1, ...,Kn as described above. n∗ is then easily
updated from the prior conditional on n− τ l, where such as stochastic volatility
models is the last in-sample break date.

4.1.2 Application to Koop and Potter (2004b)

Referring to equation (7), having shown how to evaluate p(Kt|y,Ks6=t, θ) with
a Poisson prior on duration, we can use Gerlach et al. (2000) to compute
p(yt,n|K, θ) in one step if the model is conditionally Gaussian.10 To illus-
trate, consider a simplified version of the benchmark model in Koop and Potter
(2004b):

yt = β
0
mxt + σmut

βm = βm−1 + ηβt

ln(σm) = ln(σm−1) + ησt

var(�t) = 1, var(ηβt ) = Ωβ , var(η
σ
t ) = ωσ,

where dm − 1 ∼ Po(λ) and other priors can be omitted for our purposes. Koop
and Potter draw all parameters conditional on the regimes and then the regimes
conditional on the parameter sub-set θ = (β1, ..., βm, σ1, ..., σm, λ). If we frame
the problem as one of drawing break dates rather than regimes, then, conditional
on θ and on the break dates, the model can be written as (1)-(2) with all system
matrices known, by setting

gt = β
0
mxt, ht = 0, γt = σm.

10Non-Gaussian change-point models include Chib (1998) and Koop and Potter (2004a).
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This completes the description of how to draw K in O(n) operations using the
sampler of Gerlach et al. (2000).

5 AdaptiveMetropolis-Hastings sampling for dis-
crete latent variable models

5.1 Discussion

This section describes a new adaptive sampler that speeds up the drawing of
K. Since this is, to the best of our knowledge, the first application of adaptive
sampling for discrete latent variables in a time series context, the main ideas
are discussed in some detail. Because the discussion is in terms of drawing
K in a conditionally Gaussian model, the methods developed in this section
are applicable to mixture innovation models as well as regime switching and
multiple change-point models with unobserved states and to the change-point
model with unknown number of breaks of Koop and Potter (2004b). Moreover,
they are ideally suited to detect outliers in both time series and cross sectional
data.
The key idea of adaptive sampling is to use previous draws to form efficient

proposal distributions for the application of the Metropolis-Hastings method.
Precursors to full adaptive sampling limited this learning process to a subset of
the burn-in period. This guarantees that the chain is Markov, and hence that
the standard convergence properties of Metropolis-Hastings are unaffected by
the initial learning period. A fully adaptive sampler, however, does not limit
the learning to the burn-in period. Because the proposal distribution is no
longer constant, but rather depends on the history of the draws, the resulting
chain is not Markov, so the usual proof of ergodicity of the Metropolis-Hastings
algorithm no longer applies. Establishing the properties of an adaptive MH
sampler is a rather complex problem. Recent progress has been made by Gilks,
Roberts and Sahu (1998), Haario, Saksamn and Tamminen (2001), Atachade’
and Rosenthal (2003), and Nott and Kohn (forthcoming).
In particular, Nott and Kohn (forthcoming) establish conditions for the va-

lidity of an adaptive sampling scheme for discrete distributions. However, their
argument is also valid for a compact space and so can be applied by suitably
truncating the priors on the unknown parameters and states without affecting
practical performance. Adaptation needs to be implemented with care to en-
sure ergodicity. Loosely speaking, the main requirements are that we use the
entire history of draws rather than a moving window and that we constrain
the proposal distribution so that no event in the sample space of K has zero

15



probability.
The traditional use of partially (limited to the burn-in) adaptive schemes is

to gain some knowledge of a non-standard distribution. Adaptive algorithms
can of course be used to increase sampling efficiency in this case. However,
the intuition of Nott and Kohn (forthcoming), which we extend to our time-
series framework, is that an adaptive Metropolis-Hastings algorithm can increase
sampling efficiency even when direct sampling from the distribution of interest
is possible. The key idea is to use information coming from the history of the
draws to cheaply draw from an approximation rather than expensively draw
from the exact distribution. The approximation is then used as the proposal
distribution in a Metropolis-Hastings step.
The general problem of detecting regimes and interventions in time series

models is ideally suited to incorporate these ideas, because (i) the distribu-
tion of (Kt|Y,Ks6=t) is expensive to compute, particularly when the number of
interventions is random (ii) in most periods, most of the probability mass is
concentrated in a small sub-set of the sample space of Kt. For example, during
the running of the chain, for many observations it soon becomes clear whether
a break in that period is likely or unlikely, or if the observation belongs to,
say, regime one or two. Sizable computational gains are therefore possible by
incorporating this information into an adaptive algorithm, rather than drawing
Kt from the exact but computationally expensive distribution.

5.2 Sampling algorithm.

We now present our adaptive Metropolis-Hastings (MH) sampling algorithm to
draw K efficiently. The algorithm is first stated and then discussed.

1. For m = 1, ..., d, generate K(m) (the m-th draw of K) using the algorithm
of Gerlach et al. (2000). After drawing each K(m), update all the model
parameters.

2. For m = d + 1, ...,M (where M is the total number of iterations), carry
out (a)-(c) for t = 1, ..., n, and then (d).

(a) Using past draws K(1), ...,K(m−2), compute the percentage of Kt =

Ki for i = 1, ..., J, where J is the number of values that Kt can take.
Call each percentage pi,t.

(b) Define αit = max(min(pit, 1−δ), δ), for i = 1, ..., J, where δ > 0 (e.g.
0.01 or 0.02). Then normalize αit so that

PJ
i=1 αit = 1. Draw P ∈

{1, ..., J} from a multinomial density with parameters {α1t, ..., αJt}.
Given P, form KP .
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(c) Let C be the current indicator of Kt, that is, KC = K
(m−1)
t . We

accept K(m)
t = KP with probability min(1, p), where

p =
p(Kt = KP |y,Ks6=t)
p(Kt = KC |y,Ks6=t)

αCt
αPt

,

and p(Kt = KP |y,Ks6=t) can be computed efficiently using the method
of Gerlach et al. (2000), and (crucially) no computation is required
whenever KP = KC .

(d) Update all model parameters.

We note that adaptation is carried out only on the latent variables Kt and
not on the other parameters and variables in the model.
The learning mechanism outlined in step 2.a has two characteristics that help

ensure ergodicity: (i) an expanding (rather than fixed) window of draws (ii) a
proposal distribution built with information up tom-2 only (K(m−1) is available
but not used). The percentages mentioned in step 2.a may be updated at each
iteration or only infrequently (we update them every 50 iterations). In step 2.b,
a strictly positive constant δ ensures that we can draw with positive probability
even those interventions that have not been drawn before (thus ensuring that
the sampling scheme does not become reducible). Crucially, for a large propor-
tion of the observations the multinomial density (α1t, ..., αJt) typically assigns
most of the probability mass to one or a few outcomes. For example, for most
observations the probability of an outlier is either close to zero or to one. The
probability of a break at t is rarely close to one (exception for very large breaks),
but is often very small. The proposal distribution built in 2.b is used in 2.c in
a Metropolis-Hastings step.

5.3 Assessing efficiency gains

The efficiency gains of our adaptive MH sampler are likely to be larger when
interventions are relatively rare (as for breaks) and/or relatively clear-cut (as
for outliers and, in some cases, regime-switching), since then the large majority
of proposals is of the type KP = KC , and hence no calculation is required in
step 2.c. Computational gains are also likely to increase when J is large. To say
more, we need to specify a model, a data-set and a prior, as the efficiency of our
adaptive MH sampler can only be evaluated numerically.
Since the number of objects of interest (including K) is high, we summarize

sample draws through the distributions of selected parameters and of the states
at t = 1. Denoting by θmi the m-th draw of parameter i, we compare Algorithm
1 in Gerlach et al. (2000) with our adaptive MH sampler by (i) confirming that
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they lead to the same posterior inference, summarized by θi = (
PM

m=1 θ
m
i )/M

and bσi2 = [
PM

m=1(θ
m
i − θi)

2]/M, and (ii) comparing their relative efficiency .
(ii) is done as follows: An estimate of the variance of θi is

var(θi) =
bσi2
M
[1 + 2

RX
i=1

(1− j

M
)bρ(j)],

where bρ(j) = dcorr(θm, θm−j) and the truncation point R is such that bρ(j) ' 0
for j > R. Assuming that M is sufficiently large, bσi2 is the same for both
samplers. The term in square parenthesis is the inefficiency factor (IF). An
independent sampler has unit inefficiency factor. We can couple the inefficiency
factor with the running time of the two sampling schemes to obtain a measure of
the relative efficiency of the adaptive scheme. The number of iterations needed
for the adaptive scheme to have the same var(θi) as the non-adaptive scheme is
given by the ratio of the inefficiency factors. We can then multiply this number
by the ratio of computing time (CT) to obtain a measure of the relative efficiency
of the adaptive Metropolis-Hastings sampler:

Relative efficiency =
CT non-adaptive
CT adaptive

IF non-adaptive
IF adaptive

.

6 Efficiency gains in models of U.S. inflation and
real interest rate

This section computes relative efficiencies in two applications to U.S. real inter-
est rate and inflation. The models are meant to illustrate the mixture innovation
approach to structural breaks and to evaluate the efficiency of the adaptive sam-
pler rather than to provide a thorough empirical analysis of the two series.
In both cases 10000 iterations are used, with a burn-in of 100.11 The first

100 iterations are always performed with Algorithm 1 in Gerlach et al. (2000).
After 100 iterations we either continue to use the same algorithm or switch to
the adaptive Metropolis-Hastings sampler, with δ = 0.01.

6.1 Mean shifts in U.S. real interest rates

U.S. real interest rates have attracted considerable attention in the multiple
change-point literature because they seem to display several sharp shifts in
mean, at least in a univariate context (Bai and Perron, 1998). Our data are

11The burn-in may seem low, but in our experience convergence to the stationary distribu-
tion occurs very quickly in this type of model using Algorithm 1 in Gerlach et al. (2000).
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quarterly from 1952Q1 to 2004Q412 and consider an AR(1) model with fixed
autoregressive coefficient and fixed residual variance, time variation modeled
directly in the mean of the process rather than in the intercept, and additive
outliers

yt = y∗t + σeKv,tvt (12)

y∗t = µt + ρ(yt−1 − µt−1) + σeet

µt = µt−1 + σeKµ,tut

p(Kt) = p(Kt|Ks6=t),

where Kt = (Kv,t,Kµ,t). Additive outliers are modelled by letting Kv,t ∈
{0, gv} and breaks in mean by letting Kµ,t ∈ {0, gµ1 , gµ2}, where we now al-
low (gv, gµ1 , gµ2) to be random. In total, Kt can take the four values (for given
gv, gµ1 , gµ2), shown in Table 1.
The priors for (g2v, g

2
µ1
, g2µ2) are inverse gamma

g2i ∼ IG(Si, ni),

where i ∈ {v, µ1, µ2}, ni = 5 and
√
Sv/nv = 2.5,

p
Sµ1/nµ1 = 1,

p
Sµ2/nµ2 = 3.

These priors are not very tight, but they do not try to be diffuse either. As
shown in McCulloch (2000), being uninformative or nearly uninformative on the
size of breaks ends up placing most prior probability on extremely large breaks,
with the result that no break is ever found. Conversely, diffuse priors on the
frequency of breaks place considerable probability on very frequent breaks, and
therefore carry a large risk of risk of over-fitting.
Letting πi be the prior probability that Kt = Ki, the prior distribution for

(π1, π2, π3, π4) is Dirichelet

p(π1, π2, π3, π4) ∼ D(n0π
∗
1, ..., n0π

∗
4),

where n0 can be interpreted as the number of prior observations (the tightness
of the prior), and (π∗1, ..., π∗4) as their relative frequencies (the prior mean).13

To emphasize the strength of the evidence of mean shifts, we impose a tight
prior of extremely infrequent breaks: n0 = 1000, and the prior probabilities

12The nominal interest rate is the yield on three months government bonds, secondary
market. Inflation is CPI inflation for urban consumers, all items, seasonally adjusted. Both
series are from the database FRED II (http://research.stlouisfed.org/fred2), aggregated from
monthly data.
13The posterior distribution of g2v, g

2
µ1
, g2µ, given σ� is inverse gamma. See Giordani et al.

(2005) for details.
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of Kµ = gµ1 and Kµ = gµ2 are both just 0.1%, implying an average regime
duration of 125 years. In spite of such tight priors, posterior distributions show
rather clear evidence of four mean shifts, corresponding closely with common
historical interpretations of the data: low real interest rate during the inflation
of the 70s, then a sudden increase with the Volcker deflation, and after a few
years a return to lower values. Once mean shifts are taken into account, the real
interest rate displays little persistence: Table 1 shows that the posterior mean
of the autoregressive coefficient ρ is only 0.35.
Table 3 shows that the relative efficiencies of the MH sampler for µ1, ρ, σe

are 3.13, 3.64, and 3.47 respectively. That is, on average, the adaptive sampling
scheme reaches a given Monte Carlo standard error in about 29% of the time
required by Algorithm 1 in Gerlach et al. (2000). The adaptive scheme is a
bit less efficient per iteration, but the efficiency loss is compensated for by the
increase in speed.

6.2 Changing mean, dynamics and volatility in U.S. infla-
tion

Several studies (see, for example, Nelson and Piger, 2002) have suggested the
presence of structural breaks in the mean of U.S. inflation.14 Moreover, there
is some statistical evidence and some economic theory to support the non-
constancy of inflation persistence over long time periods (Akerlof et al. (2000),
Christiano and Fitzgerald, 2003). However, other researchers have found little
variation in either the intercept or autoregressive coefficients of AR models for
U.S. inflation, but strong evidence of changes in residual variance (for example,
Primiceri (forthcoming), and Koop and Potter, 2004b).
We model quarterly U.S. CPI15 inflation for the period 1951Q1-2004Q4 as

an AR(1) process with random breaks in intercept, autoregressive parameter,
and residual variance as:

14This statement implictly assumes a linear reference model. Sargent (1999) is an example
of a non-linear model in which shifts in the mean and dynamics of inflation arise endogenously,
a reminder that the presence or absence of structural breaks can only be evaluated in relation
to a model.
15Consumer Price Index for all urban consumers (all items), from the database Fred II,

series ID: CPIAUCSL, seasonally adjusted. CPI aggregated from monthly data (averages)
and inflation defined as 400( CPIt

CPIt−1
− 1).
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yt = ct + btyt−1 + σtKe,tet (13)

ct = ct−1 + σtKc,tu
c
t

bt = bt−1 + σtKb,tu
b
t

log(σ2t ) = log(σ2t−1) +Kv,tvt

p(Kt) ≡ p(Km,t,Kv,t) = p(Km,t)p(Kv,t) = p(Kt|Ks6=t),

whereKm,t = (Ke,t,Kc,t,Kb,t). The latent variableKe,t can take values (1, 2.5),
where 1 is a standard observation and 2.5 an innovation outlier; Kc,t can take
the values (0, 0.2, 1) and Kb,t can take values (0, 0.5). For ease of interpretation,
we assume that a break and an outlier cannot occur simultaneously, but we do
allow breaks in ct and bt to occur both separately and jointly. This last feature
seems new to the literature. As discussed in Section 2.4, extending change-point
models to relax the assumption that all parameters break at the same time is
straightforward in principle, but problematic in practice, whereas in our case
the increased computational burden is small. In total, the vector Km,t can take
seven values (refer to Table 2). Kv,t can take the values (0, 1.39); σt = σt−1 for
Kv,t = 0, while Kv,t = 1.39 and vt = 1 (−1) imply σt/σt−1 ' 2 (σt/σt−1 ' 0.5).
The prior probabilities of interventions are fixed and reflect the assumption

that breaks in any parameter are rare (the combined probability of a break in
ct and/or bt is 1%, so the prior mean interval between breaks is 25 years; the
probability of a break in variance is also 1%). Priors on all the other parameters
are conditionally conjugate but diffuse, and centered on OLS values. Sampling
states and parameters conditional on K is then straightforward (see Giordani
et al. (2005) for details).
The results are summarized in Figure ??. The rise in inflation in the late

sixties and seventies is captured by an increase in both coefficients, whereas
the falling inflation of the eighties leaves the constant nearly unaffected but
corresponds to a large and sudden decrease in persistence. Inflation persistence
is a positive function of the inflation level, as observed by Akerlof et al. (2000).
The conditional standard deviation shows marked changes during the sample,
which are also strongly correlated with the inflation level.16

Table 3 shows that the relative efficiencies of the MH sampler for c1, b1, σ1
are 1.94, 2.82, and 2.94 respectively.

16This finding is hardly surprising. There is conclusive evidence that inflation is less fore-
castable at higher levels (see Giordani and Söderlind (2003) for a review of the literature).
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7 Conclusion

Koop and Potter (2004a and 2004b) convincingly illustrate the advantages of
allowing for a random number of breaks in change-point models. Our article
argues that a mixture innovation approach is often a more natural and general
way of achieving the same goal, and that fast and reliable estimation of con-
ditionally Gaussian mixture innovation models is possible using the algorithm
of Gerlach et al. (2000). The sampler of Chib (1998) is efficient when the
number of break-points is known, but can otherwise involve dramatically higher
computational costs.
Our article also introduces to the time series literature the concept of adap-

tive Metropolis-Hastings sampling for discrete latent variable problems. A sim-
ple adaptive scheme produces large efficiency gains (arising from reduced com-
puting times) in two empirical applications to models with outliers and shifts in
both conditional mean and conditional variance parameters. When considering
the generality and simplicity of the sampler and the small additional program-
ming costs required, these efficiency gains suggest that adaptive Metropolis-
Hastings for discrete latent variable models should prove a fruitful concept in
time series.
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K1 K2 K3 K4

Kv,t 0 gv 0 0
Kµ,t 0 0 gµ1 gµ2

prior prob 0.978 0.020 0.001 0.001
post. prob 0.975 0.019 0.002 0.004

E(·|y) std(·|y)
gv 2.48 0.82
gµ1 1.19 0.53
gµ2 3.57 1.52
ρ 0.35 0.08

Table 1: Values of K(t) and probabilities for model of the U.S. real
interest rate. Values of K(t) in columns. First row: value of Kv (additive
outlier). Second row: value of Km (break in mean). Third row: prior probability
of each value of K(t). Fourth row: posterior probability of each value of K(t).
Further rows: mean and std of model parameters.

K1 K2 K3 K4 K5 K6 K7

Ke,t 1 2.5 1 1 1 1 1
Kc,t 0 0 0.2 0.2 1 0 1
Kb,t 0 0 0 0.5 0 0.5 0.5
prob 0.97 0.02 0.002 0.002 0.002 0.002 0.002

Table 2: Values of Km(t) and probabilities for AR(1) model of U.S.
inflation. Values of K(t) in columns. First row: value of Ke (innovation
outlier). Second row: value of Kc (break in constant). Third row: value of
Kb (break in autoregressive parameter). Kv(t) can take values 0 and 1.39 with
prior probabilities 0.99 and 0.01, independent of Ke, Kc, Kb.

Inflation IF IF ratio RE Real rate IF IF ratio RE
c1 3.32 1.76 1.94 µ1 1.26 1.14 3.13
b1 2.14 1.21 2.82 ρ 1.68 0.98 3.64
σ1 2.89 1.16 2.94 σ 1.58 1.03 3.47

Table 3: Inefficiency factor of the adaptive MH algorithm, the ratio
of the inefficiency factors of the adaptive MH algorithm over the
algorithm of Gerlach et al. (2000), and the relative efficiency for
selected parameters in two models of U.S. inflation and real interest
rate.
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Figure 1: AR(1) model with mean shifts for the U.S. real interest rate. (a) real
interest rate and posterior mean of µt (b) posterior density of ρ (c) posterior
mean of Km,t (d) posterior distribution of µ1976Q1 (e) posterior distribution of
µ19822Q1 (f) posterior distribution of µ2004Q4.

27



Figure 2: AR(1) model of U.S. inflation: (a) posterior mean of ct (b) posterior
mean of bt (c) inflation and posterior median of ct/(1− bt) (d) posterior mean
of σt (e) posterior distribution of b1979Q1 (f) posterior distribution of b2004Q4.
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