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1. Introduction

A growing body of research investigates the comovement of volatility in financial series.
The motivation underlying this effort is well-known. Joint movements in volatility,
quantified for instance by the conditional covariance matrix, play an important role
in risk management, portfolio selection and tests of asset pricing. Comovements in
volatility also help our understanding of financial markets, and shed light on issues
such as contagion and the transmission of shocks through the financial system.1 This
motivation is particularly strong in the exchange rate literature, where first moments
of exchange rates are only weakly related to fundamentals at medium frequencies and
movements in volatility can be large and persistent (e.g. Meese and Rogoff, 1983; Rogoff,
1999; Sarno and Taylor, 2002; Clarida et al., 2003).2

Multivariate GARCH, which was pioneered by Kraft and Engle (1982) and Boller-
slev, Engle and Wooldridge (1988), is perhaps the most commonly used class of models.
A natural extension of GARCH, these models assume that a vector transform of the
covariance matrix can be written as a linear combination of its lagged values and the
return innovations. These models have been shown to exhibit some empirical success
over competing alternatives (e.g. Andersen, Bollerslev and Lange, 1999). They are
however plagued by a number of difficulties. The dimensionality of the parameter space
tends to be high, and it is not always straightforward to guarantee that the generated
covariance-matrix is positive-definite. This has led authors to consider simplified ver-
sions of the model, such as the constant-conditional correlation GARCH (Bollerslev,
1990), the diagonal BEKK representation of Engle and Kroner (1995), or the more
recent restrictions of Engle and Mezrich (1996) and Engle (2002).3

These difficulties are even more acute with multivariate stochastic volatility processes
(Harvey, Ruiz, and Shephard, 1994). Estimation is generally delicate and is either
moment-based (e.g. EMM) or requires the computation of a Hermite polynomial ex-
pansion (Ait-Sahalia, 2003). This is an unfortunate situation, since stochastic volatility
models are the backbone of modern option pricing (e.g. Hull and White, 1987).

This paper proposes a different approach based on an earlier advance in univariate
time series, the Markov Switching Multifractal (MSM) process introduced in Calvet and
Fisher (2001, 2002b). This earlier research uses Markov-switching to develop the first
time-stationary formulation of multifractal diffusions, and also provides a weakly conver-
gent sequence of discrete filters. In this framework, total volatility is the multiplicative
product of a large but finite number of random components, each first order Markov with

1See for instance Engle, Ito and Lin (1990) and Edwards and Susmel (2003).
2See Lyons (1995, 2001) and Andersen and Bollerslev (1998) for stronger evidence at high frequency.
3Researchers have also explored factor models (e.g. Engle, 1987; Diebold and Nerlove, 1989; Engle,

Ng and Rotshchild, 1990), or proposed estimation methods other than maximum likelihood (Ledoit,
Santa-Clara and Wolf, 2003).
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an identical marginal distributions. The components are differentiated only by their re-
spective time scales, governed by a unique switching probability for each frequency. The
specification is completed by assuming that the progression of switching probabilities
is approximately geometric. This parsimonious model delivers long-memory features in
volatility, substantial outliers, and a decomposition into components with heterogenous
decay rates. MSM compares favorably to earlier specifications both in- and out-of-
sample. Univariate multifractal forecasts slightly improve on GARCH(1,1) at daily and
weekly intervals, and provide considerable gains in accuracy at horizons of 10 to 50 days
(Calvet and Fisher, 2002b).

In this paper, we investigate how the MSM volatility components of three exchange
rates relate to other macroeconomic and financial variates. We consider the German
Mark, the British Pound and the Japanese Yen, all versus the US Dollar over the period
1973-2002. At monthly frequencies, we find little evidence of a correlation between uni-
variate MSM components and macroeconomic variables such as GDP, inflation, money
supply or interest rates. There is evidence, however, of strong correlation between the
volatility components of different exchange rates. More specifically, we find that com-
ponents of similar frequencies in two different series tend to be strongly correlated. In
contrast, components of different frequencies display less correlation, both within and
across series.

This leads us to construct a multivariate stochastic volatility model exhibiting these
features. We consider vectors M1t, ..., Mk̄t ∈ R2, which are first-order Markov and are
characterized by the transition probabilities γ1, ..., γk̄. The return vector xt is specified
as

xt = (M1t ∗ ... ∗Mk̄t)
1/2 ∗ εt, (1.1)

where ∗ denotes the Hadamard product4 and the column vectors εt ∈ R2 are IID
Gaussian N (0,Σ). This specification offers several advantages. It is relatively parsimo-
nious, as the number of parameters is independent of k̄. There is no issue of positive
semi-definiteness. The likelihood function can be written in closed-form and ML esti-
mation can be implemented for state spaces of reasonable size.

To accommodate larger state spaces, we develop a particle filter algorithm that
permits convenient inference and forecasting using simulation methods. The good per-
formance of the method is checked using a Monte Carlo experiment. The algorithm
broadens the range of computationally tractable models to include cases where the
number of volatility components (state variables) is very large, and to cases where the
state variables are drawn from continuous rather than binomial distributions. This in-
novation thus opens econometric research on multifractal processes to a much wider
range of specifications in both the multivariate and univariate cases.

4For any x = (x1, .., xn) ∈ Rn and y = (y1, ..., yn) ∈ Rn, the Hadamard product is x ∗ y =

(x1y1, ..., xnyn).
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Several applications of the model are considered. First, we investigate whether the
multivariate model can help improve the out-of-sample forecasts provided by the uni-
variate model. Second, we show that the model can be used to forecast the conditional
covariance matrix and correlations of the currencies. Other application might use a fre-
quency decomposition of volatility shocks to analyze the transmission volatility across
currency markets.

The rest of the paper is organized as follows. Section 2 reviews univariate MSM and
relates the volatility components to other financial and macroeconomic variates. Section
3 introduces the multivariate model, develops likelihood estimation, and proposes a
particle filter algorithm. Empirical results are discussed in Section 4. We conclude in
Section 5.

2. Comovement of Univariate Volatility Components

2.1. The Univariate Stochastic Volatility Model

We begin by reviewing the Markov-Switching Multifractal (MSM), a discrete-time Markov
process with multi-frequency stochastic volatility. Consider an economic series Xt de-
fined in discrete time on the regular grid t = 0, 1, 2, ...,∞. In applications, Xt will
be the log-price of a financial asset or exchange rate. We consider an economy with k

componentsM1,t,M2,t, ...,Mk,t, which decay at heterogeneous frequencies γ1, .., γk. The
notation MSM(k) will refer to versions of the model with k frequencies.

The innovations xt ≡ Xt −Xt−1 are specified as

xt = (M1,tM2,t...Mk,t)
1/2εt, (2.1)

where the random variables εt are IID standard Gaussians N (0, σ2). The random multi-
pliers or volatility components Mk,t are persistent, non-negative and satisfy E(Mk,t) = 1.
We assume for simplicity that the multipliers M1,t,M2,t...Mk,t at a given time t are sta-
tistically independent. The parameter σ is then equal to the unconditional standard
deviation of the innovation xt.

Equation (2.1) defines a return process with stochastic volatility σt = σ(M1,tM2,t...

Mk,t)
1/2. We conveniently stack the period t volatility components into the k × 1 row

vector
Mt =

³
M1,t,M2,t, ...,Mk,t

´
.

The vector Mt is first-order Markov, which permits maximum likelihood estimation. It
is then natural to call Mt the volatility state vector. The econometrician observes the
returns xt but not the vector Mt itself. The latent state Mt is inferred recursively by
Bayesian updating.
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Each Mk,t follows a process that is identical except for time scale. Assume that the
volatility state vectors have been constructed up to date t − 1. For each k ∈ {1, .., k̄},
the next period multiplier Mk,t is drawn from a fixed distribution M with probability
γk, and is otherwise equal to its current value: Mk,t = Mk,t−1. The switching events
and new draws from M are assumed to be independent across k and t. The volatility
componentsMk,t thus differ in their transition probabilities γk but not in their marginal
distribution M .

The transition probabilities are specified as γk = 1 − (1− γ1)
(bk−1), where γ1 ∈

(0, 1) and b ∈ (1,∞). This specification is introduced in Calvet and Fisher (2001) in
connection with the discretization of a Poisson arrival process. Consider a process with
a small parameter γ1. For small values of k, the transition probabilities of low frequency
components grow approximately at geometric rate b :

γk ∼ γ1b
k−1.

In empirical applications, it is numerically convenient to use (γk̄, b) in order to specify
the set of transition probabilities.

The multifractal construction imposes only minimal restrictions on the marginal dis-
tribution of the multipliers: M ≥ 0 and E(M) = 1. While this allows flexible parametric
or even nonparametric specifications ofM , the paper focuses on the parsimonious setup
in which M is drawn from a binomial random variable taking values m0 or 2−m0 with
equal probability. The full parameter vector is then

ψ ≡ (m0, σ, b, γk̄) ∈ R4,

where m0 characterizes the distribution of the multipliers, σ is the unconditional stan-
dard deviation of returns, and b and γk̄ define the set of switching probabilities.

2.2. Properties

The multiplicative structure (2.1) is appealing to model the high variability and high
volatility persistence exhibited by financial time series. When a low level multiplier
changes, volatility varies very discontinuously and has strong degree of persistence. In
addition, high frequency multipliers introduce substantial outliers.

The MSM construction permits low frequency regime shifts, and thus long volatility
cycles in sample paths. In exchange rate series, the duration of the most persistent
component, 1/γ1, is typically of the same order as the length of the data. Estimated
processes thus tend to generate volatility cycles with periods proportional to the sample
size, a property also apparent in the sample paths of long memory processes. Long
memory is often defined by a hyperbolic decline in the autocovariance function as the
lag goes to infinity. Fractionally integrated processes generate such patterns by assuming
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that an innovation linearly affects future periods at a hyperbolically declining weight.
As a result, fractional integration tends to produce smooth volatility processes. By
contrast, our approach generates long cycles with a switching mechanism that also
gives abrupt volatility changes. As shown in Calvet and Fisher (2002b), MSM mimics
the hyperbolic autocovariograms exhibited by many financial series for a large range of
intermediate lags, and is thus consistent with a large body of empirical evidence (e.g.,
Dacorogna et al., 1993; Ding, Granger and Engle, 1993).5 The combination of long-
memory behavior with sudden volatility movements in MSM has a natural appeal for
financial econometrics.

Another interesting property of MSM is that when k̄ →∞, the limiting continuous
time process lies outside the class of Itô diffusions. The sample paths are continuous
but exhibit a high degree of heterogeneity in local behavior, which is characterized by
a continuum of local Hölder exponents in any finite time interval. We refer the reader
to Calvet and Fisher (2001, 2002a) for a full development of the continuous-time limit.

2.3. Comovement of Volatility Components

The empirical analysis uses daily exchange rate data for the Deutsche Mark (DM),
Japanese Yen (JA) and British Pound (UK), all against the US Dollar. The data
consists of daily prices reported at noon by the Federal Reserve Bank of New York.6

The series begin on 1 June 1974, shortly after the demise of the fixed exchange rate
system. Since the Deutsche Mark was replaced by the Euro at the beginning of 1999,
we chose to end all three series on 31 December 1998. Overall, the dataset contains
6,169 observations for each currency.

We estimate the model by maximum likelihood and report the results in Table 1 for
all currencies. The columns correspond to the number of frequencies k̄ varying from
1 to 8. The first column is thus a standard Markov-switching model with only two
possible values for volatility. As k̄ increases, the number of states increases at the rate
2k̄. The multiplier value m̂0 tends to decline with k̄. This is because with a larger
number of volatility components, less variability is required in each individual compo-
nent to generate the same aggregate amount of stochastic volatility. The estimates of
σ̂ show variability of a different type across k̄, with no particular pattern of increasing
or decreasing. When k̄ = 1, the parameter γ̂k̄ indicates a switch in the single multiplier
once every few weeks. As k̄ increases, the switching probability of the highest frequency
multiplier increases until for large values of k̄ a switch occurs almost every day. At
the same time, the estimated value b̂ decreases steadily with k̄. In the DM series with

5This result complements earlier research that has emphasized the difficulty of distinguishing between
long memory and structural change in finite samples (e.g., Bhattacharya et al., 1983; Hidalgo and
Robinson, 1996; Diebold and Inoue, 2001).

6More specifically, the data consist of buying rates for wire transfers at 12:00 PM Eastern time.
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k̄ = 8, a switch in the lowest frequency multiplier occurs approximately once every
seven years, or about one fourth the sample size. Thus, as k̄ increases, the range of
frequencies spreads out while the spacing between frequencies becomes tighter.

We use the ML parameter estimates to compute the smoothed state probabilities
(Kim, 1993), and therefore the conditional expectation of the multipliers M̂k,t of each
currency. We then compute the correlations of these components. In Table 2, we see
that different components of the DM exchange rate exhibit limited correlation. We
note that some correlation in the smoothed beliefs across multipliers is consistent with
our assumption of mutual independence in the construction of the process. Consider
the case when the volatility of a mid-range frequency multiplier switches to the high
state. The econometrician’s beliefs about the volatility state of this multiplier are likely
to change, but because of imperfect information his beliefs about the state of nearby
(in frequency space) components may change in a similar fashion. The correlation of
volatility components within a series for the DM is qualitatively similar to unreported
results from the UK and JA series.

We also attempted in unreported work to relate volatility components to macroeco-
nomic variables. The variables of interest included monetary aggregates (M1, M2 and
M3), short and long interest rates, producer price index, consumer price index, wages
and the growth rate of industrial production. Using IMF data for the 1973-2000 pe-
riod, we computed the correlation between monthly volatility and the macro variables
of each country, their difference and the absolute value of their difference. We used
several measures of volatility, including the absolute value of the monthly return, the
realized monthly volatility, and MSM volatility components. We also ran regressions
of volatility on lagged values. We found no robust link between volatility and macro-
economic fundamentals. These results are consistent with the findings of Andersen and
Bollerslev (1998a), who show that the effect of macro announcements induces volatility
shocks that are not unusually large compared to daily volatility. It is thus unsurprising
that little impact is found at lower frequencies.

More positive results are obtained, however, when comparing the comovements of
volatility across currencies. In Table 2, we report the correlation of volatility components
across time series. We see that the correlation between the multipliers M̂α

l,t and M̂β
k,t of

two currencies α and β tends to be high when k and l are close, and is low otherwise.
This suggests that the components of the series are correlated when the corresponding
frequencies are close. We note that the univariate MSM series investigated in Table
2 typically have distinct frequencies, which could in principle complicate the analysis.
We confirm the results of Table 2 by estimating a simple bivariate model in which the
series are assumed to be statistically independent but are restricted to have identical
frequency parameters b and γk̄. It is convenient to call this specification the combined
univariate. In Table 3, we report the estimation results for (DM,JA) and (DM,UK).
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We then report in Table 4 the corresponding correlation in inferred multipliers. We
note that as in Table 2, multipliers of identical frequencies tend to be most correlated.
This suggests to consider a multivariate model in which the vectors (M̂α

k,t, M̂
β
k,t) have

correlated components but are independent across k. The development of this process
is presented in the next section.

The findings of Table 2 and 4 also suggest that the volatility comovements of major
currencies tend to be positively correlated, and that this correlation is stronger when
one considers components of similar frequencies. We also observe that correlation tends
to be slightly higher at low than at high frequencies. These findings suggest that the
volatility dynamics tend to be determined in the short run by country-specific events,
such as innovations to equity returns or investor demand, while long run movements
in volatility are more affected by general worldwide conditions. We also observe that
volatility components of similar frequencies display much stronger correlations than
coarser measures of volatility, such as the absolute value or the square of returns. From
a methodological standpoint, this analysis thus confirms the benefits of the frequency
decomposition of volatility provided by MSM.

3. A Multivariate Multifrequency Model

3.1. Stochastic Volatility

We consider two financial series α and β defined on the regular grid t = 0, 1, 2, ...,∞.
Their log-returns7 xαt and xβt in period t are stacked into the column vector

xt =

"
xαt
xβt

#
∈ R2.

Volatility is stochastic and hit by shocks with heterogeneous frequencies. For every
k ∈ {1, ..., k}, we consider the first-order Markov column vector

Mk,t =

"
Mα

k,t

Mβ
k,t

#
∈ R2.

The period-t volatility components Mk,t are stacked into the 2× k̄ matrix

Mt = (M1,t,M2,t, ...,Mk,t).

Each vector Mk,t follows a process that is identical except for time scale. Assume
that the volatility state vectors have been constructed up to date t − 1. For each
k ∈ {1, .., k̄}, the next period vector multiplier Mk,t is drawn from a fixed distribution

7 If Xα
t denote the value of the exchange rate at date t, the log-return is x

α
t = ln(X

α
t /X

α
t−1).
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M with probability γk, and is otherwise equal to its current value: Mk,t =Mk,t−1. The
dynamics of Mk,t can be summarized as:

Mk,t drawn from distribution M with probability γk
Mk,t =Mk,t−1 with probability 1− γk.

The switching events and new draws from M are assumed to be independent across
k and t. The volatility components Mk,t thus differ in their transition probabilities
γk but not in their marginal distribution M . These features greatly contribute to the
parsimony of the model.

In applications,Mkt is drawn from a bivariate binomial distributionM = (Mα,Mβ)0.
The first element ofM can take valuesmα

0 andm
α
1 = 2−mα

0 , while the second component
is either mβ

0 or m
β
1 = 2−mβ

0 . The random vectorM can thus have four possible values,
whose probabilities are parameterized by the matrix (pi,j) = (P{M = (mα

i ,m
β
j )}). The

conditions P(Mα = mα
0 ) = 1/2 and P(Mβ = mβ

0 ) = 1/2 impose that"
p00 p01
p10 p11

#
=

"
p 1/2− p

1/2− p p

#
for some p ∈ [0, 1/2].We easily show that the correlation coefficient ρm = Corr(Mα;Mβ)

satisfies ρm = 4p−1. In empirical applications, it is convenient to report the correlation
coefficient ρm instead of the probability p. To obtain a parsimonious model, we thus
assume that the distribution of volatility components is the same at all frequencies.

The random volatility components Mk,t are persistent, non-negative and satisfy
E(Mk,t) = 1. Consistent with previous notation, let ∗ denote element by element mul-
tiplication, and g(Mt) the 2 × 1 vector M1,t ∗M2,t ∗ ... ∗Mk,t. The return vector xt is
specified as

xt = [g(Mt)]
1/2 ∗ εt, (3.1)

where the column vectors εt ∈ R2 are IID Gaussian N (0,Σ). The covariance matrix Σ
can be written as

Σ =

"
σ2α ρεσασβ

ρεσασβ σ2β

#
.

The specification implies that the volatility of the series are correlated, and permits
correlation in returns when ρε 6= 0.

The univariate series satisfy

xαt = (Mα
1,tM

α
2,t...M

α
k,t
)1/2εαt

xβt = (Mβ
1,tM

β
2,t...M

β

k,t
)1/2εβt .

The dynamics of the univariate series thus coincide with univariate MSM. We consider
for simplicity that the multipliers M1,t,M2,t...Mk,t at a given time t are statistically
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independent. The unconditional standard deviation of each univariate series i ∈ {α, β}
is then equal to σi.

As in the univariate case, the transition probabilities
¡
γ1, γ2, ..., γk

¢
are defined as

γk = 1− (1− γ1)
(bk−1) ,

where γ1 ∈ (0, 1) and b ∈ (1,∞). The bivariate process is thus specified by eight
parameters

ψ ≡ (σα, σβ,mα
0 ,m

β
0 , ρm, b, γk̄, ρε),

where σα and σβ are the unconditional standard deviations of the series, mα
0 and mβ

0

determine the levels of the volatility components, ρm their correlation, b and γk̄ their
transition probabilities, and ρε the correlation of the Gaussian innovations. A key
restriction is that the two series are assumed to have identical switching probabilities.
Another is that the volatility components of the two series have identical correlations
ρm at all frequencies. The empirical evidence of Tables 2 and 4 suggest that this is not
an entirely unreasonable specification. A possible variant of the model would consider
ρ1, ..., ρk̄, where a functional form involving two parameters would specify correlations
as one goes from low to high frequencies.

3.2. Properties

The return series have unconditional means equal to zero: Ext = 0. Their correlation
satisfies8

Corr(xαt ;x
β
t ) = ρε

Yk̄

k=1
E[(Mα

k,tM
β
k,t)

1/2] ≤ ρε.

The upper bound ρε is reached when the multipliers of both series are perfectly correlated.
On the other hand when ρε < 1, uncorrelated changes in volatility across series represent
additional sources of noise that reduce the correlation of the asset returns.9

We now examine the conditional moments of the bivariate model. Returns are un-
predictable: Et−1xt = 0. Their comovement is quantified by the conditional covariance

Covt(x
α
t+n;x

β
t+n) = ρεσασβ

Yk̄

k=1
Et[(Mα

k,t+nM
β
k,t+n)

1/2], and the conditional correla-
tion

Corrt(x
α
t+n;x

β
t+n) = ρε

Yk̄

k=1

Et[(Mα
k,t+nM

β
k,t+n)

1/2]

[(EtMα
k,t+n)(EtM

β
k,t+n)]

1/2
≤ ρε. (3.2)

We observe that these quantities fluctuate through time with the multipliers. Thus while
the construction assumes constant correlation between the Gaussian innovations and

8Note that the inequality stems from the Cauchy-Schwarz inequality.
9The correlation can in fact be arbitrary small for any levels of ρε. For instance if M

α
k,t and M

β
k,t are

independent, the unconditional correlation ρε(E
√
M)2k̄ is arbitrary small as M becomes more widely

distributed.
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between volatility components, the conditional correlation of returns is time-varying.
We show in the Appendix that the conditional correlation of returns (3.2) is high when
both currencies are volatile, or more specifically when their volatility components are
simultaneously high.

Comovement in volatility can be similarly investigated. We show in the Appendix
that when ρm > 0 and k̄ is sufficiently large, the conditional correlation of squared
returns is

Corrt(|xαt+n|2; |xβt+n|2) ∼ Cε

Yk̄

k=1

Et(Mα
k,t+nM

β
k,t+n)

{Et[(Mα
k,t+n)

2]Et[(Mβ
k,t+n)

2]} 12
,

where Cε = E[(εα1 ε
β
1 )
2]/{E[(εαt+n)4]E[(εβt+n)4]}

1
2 ≤ 1. We note that the conditional cor-

relation is positive even when the Gaussian noises are independent. Consistent with
previous intuition, correlation between squared returns is high in periods of high volatil-
ity.

3.3. Likelihood Inference

Since the multiplierM has a discrete distribution, there exist a finite number of volatility
states. Standard filtering methods then provide the likelihood function in closed-form.

The vector Mt = (M1,t,M2,t, ...,Mk,t) has d = 4k possible values m1, ...,md ∈ Rk
+.

The dynamics of the Markov chain Mt are characterized by the transition matrix
A = (ai,j)1≤i,j≤d with components aij = P(Mt+1 = mj

¯̄
Mt = mi). Let Xt ≡ {xs}ts=1

denote the set of past observations. By Bayes’ rule, the conditional probability Πjt+1 =
P
¡
Mt+1 = mj |Xt, xt+1

¢
satisfies

Πjt+1 =
fxt+1

¡
xt+1|Mt+1 = mj

¢Pd
i=1Π

i
taij

fxt+1 (xt+1 |Xt )
,

Let f (x) the vector with elements f i (x) ≡ fxt+1
¡
xt+1|Mt+1 = mi

¢
. Note that each

density f i(x) is a bivariate normals with zero mean and covariance matrices that dif-
fer across states. We stack these conditional probabilities into the row vector Πt =¡
Π1t , ..,Π

d
t

¢ ∈ Rd
+. Let ι = (1, ., 1) ∈ Rd. The updated probabilities are written in matrix

notation as

Πt+1 =
f (xt+1) ∗ΠtA
[f (xt+1) ∗ΠtA] ι0 .

This formula expresses the conditional probability distribution Πt+1 as a function of
the observation xt+1 and the probability distribution Πt calculated in period t. These
results imply that Πt can be computed recursively. In empirical applications, we choose
the initial vector Π0 to be equal to the ergodic distribution of the Markov process.
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Since the multipliers (M1,1, ..,Mk,1) are independent, the components of Π0 are uniquely

determined by Πj0 =
Qk

l=1 P(M = mj
l ) for all j.

The log likelihood function is

lnL (x1, ..., xT ;ψ) =
TX
t=1

ln[ω(xt) · (Πt−1A)].

For a fixed k̄, the maximum likelihood estimator (ML) is consistent and asymptotically
efficient as T →∞.

3.4. Particle Filter

Multivariate MSM is a parsimonious process that potentially involves very large state
spaces. The volatility state vector Mt has 4k possible values, and the transition matrix
A contains 4k × 4k elements. For instance if k = 8, the matrix A contains 232 ≈ 4× 109
elements. More generally when k is large, it is computationally expensive to carry
out volatility forecasts using the transition matrix. Following the recent literature on
Markov chains,10 we propose a simulation-based inference methodology.

Volatility forecasting involves computing features of the n-period ahead return dis-
tribution conditional on past values Xt = (xt, ..., x1). We achieve this objective by
designing a particle filter, a computational algorithm that generates draws from the
distribution Mt | Xt given a sample M

(1)
t−1, ... , M

(B)
t−1 from Mt−1 | Xt−1. We begin the

algorithm by drawing M
(1)
0 , ... , M (B)

0 from the ergodic distribution Π0. The particle
filter then allows us to recursively draw a sample {M (b)

t }Bb=1 from Mt | Xt given the

sample {M (b)
t−1}Bb=1 previously drawn from Mt−1 | Xt−1. For each M

(b)
t , we can then

simulate the multifractal process forward n steps to obtain a draw from (Mt+n, xt+n) |
Xt. Any feature of the forecast distribution may then be approximated. For example,
the mean volatility forecast for xt+n is E

¡
xt+nx

0
t+n|Xt

¢ ≈ 1
B

PB
b=1 x

(b)
t+nx

(b)0
t+n.

The particle filter starts with Bayes theorem: P (Mt|Xt) ∝ fxt (xt|Mt)P (Mt|Xt−1),
or equivalently

P (Mt|Xt) ∝ fxt (xt|Mt)
X
Mt−1

P (Mt|Mt−1) P (Mt−1|Xt−1) .

The normal density fxt (xt|Mt) is easy to compute, but the sum is computationally
expensive for large values of k. The draws M (1)

t−1, ..., M
(B)
t−1 from Mt−1 | Xt−1 imply the

Monte Carlo approximation:

P (Mt|Xt) ∝ fxt (xt|Mt)
1

B

BX
b=1

P(Mt|M (b)
t−1).

10See Chib, Nardari and Shephard (2002), Gordon, Salmond and Smith (1994), Jacquier, Polson and
Rossi (1994), Kitagawa (1996) and Pitt and Shephard (1999).
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As shown in the Appendix, we can use the following importance sampler to simulate
the distribution of Mt | Xt.

1. DrawM
(1)
t , ..., M

(B)
t from the distribution 1

B

PB
b=1 P(Mt|M (b)

t−1) by first drawing a
random number j from 1 to B, and then simulating the series forward one period
to draw Mt from P(Mt|M (j)

t−1).

2. For each M
(b)
t compute the multivariate normal density fxt(xt|M (b)

t ).

3. Draw a random number j from 1 to B with probability

P(j = b) ≡ fxt(xt|M (b)
t )PB

j=1 fxt(xt|M (j)
t )

.

The vector M (j)
t is the draw from P(Mt|Xt). Repeat B times to obtain B draws

from the conditional distribution.

Likelihood function. We can use the particle filter to compute the likelihood function.
Each one-step ahead density can be expressed as a sum over the unobserved volatility
states: f(xt|Xt−1) =

P
Mt

f(xt|Mt)P(Mt|Xt−1). Given simulated draws M
(b)
t from Mt

| Xt−1, the Monte Carlo approximation to the conditional density is thus

bf(xt|Xt−1) ≡ 1

B

BX
b=1

f(xt|M (b)
t ).

We infer that the log-likelihood is approximately

lnL (x1, ..., xT ;ψ) ≈
TX
t=1

ln f̂(xt|Xt−1).

In principle we can carry out simulated maximum likelihood based on this function.

Applications. The particle filter methodology extends the range of computationally
feasible multifractal specifications. In previous work with univariate processes, Calvet
and Fisher (2002b) report an approximate computational upper bound of ten binomial
state variables, or 210 states. While this produced good results in the univariate case,
multivariate work requires a correspondingly larger number of state variables.

The development of the particle filter permits modelling extensions in two direc-
tions.11 First, we may investigate models with a larger number of state variables. This

11Early drafts of Calvet and Fisher (2002b) experimented with other computational methods including
SMM and EMM.
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allows further development of inference and forecasting with multivariate MSM. Sec-
ond, the particle filter also permits implementation of specifications where the state
vector M is drawn from a continuous rather than a binomial distribution. Since ear-
lier work (Calvet and Fisher, 2002a) has suggested that exchange rates are best fit by
multipliers drawn from a lognormal distribution, it will be interesting in future work
to revisit the lognormal specification and compare its out-of-sample performance to the
results obtained here and in earlier work with the binomial.

Monte Carlo Simulations. Table 5 presents a Monte Carlo assessment of the impor-
tance sampling methodology. For k̄ = 8, we compute the log-likelihood of the univariate
Deutsche Mark series using the particle filter and the ML estimates of Table 1. We com-
pare the result with the exact value obtained in Table 1 by Bayesian updating. In order
to assess the variation due to randomness, we compute the simulated likelihood value
1,000 times with B = 1, 000 volatility draws. The particle filter simulations use the same
Deutsche Mark series but are mutually independent. The table presents the average and
standard deviation across simulations, along with some quantiles. Similar comparisons
are also carried out for the forecasted volatility and kurtosis.

Table 5 reveals that the particle filter estimate of the log-likelihood is fairly precise.
The standard deviation is small, but the average across simulations, −5, 406.2, is below
the true value of −5, 393.7. Even the 99% quantile of the estimates is below the true
value. The particle filter estimates of the forecast variance and kurtosis are accurate
and approximately unbiased. Judging from the simulation bias and standard error, the
particle filter becomes less accurate as the forecast horizon lengthens. These results
overall confirm that the particle filter produces reasonable estimates of the likelihood
and moments of the series. In future work, we will present a Monte Carlo simulation of
the parameter estimates obtained by simulated maximum likelihood.

4. Empirical Results

4.1. Maximum Likelihood Estimates

We report in Table 6 the results of the bivariate ML estimation for (DM,JA) and
(DM,UK). As in the univariate case, estimates of m0 are declining with the number of
frequencies, while the standard deviation σ̂ is variable but displays no apparent trend.
For each bivariate series, the estimates of mα

0 ,m
β
0 and σ appear to be quite close to the

values reported in the univariate case (Table 1), especially for larger values of k̄. We
observe that γk̄ increases relatively quickly with k̄. The estimates of γk̄ and b, which
now jointly affect both series, are also broadly comparable to the values obtained in the
univariate case.

The correlation between Gaussian innovations ρε is positive and relatively constant
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across values of k̄. The correlation between volatility components ρm is rather large
and slightly increases with k̄. We note that the Gaussian innovations and volatility
components of the DM are most correlated with the UK. This result is not particularly
surprising since Germany and the UK are geographically close and have markets that
are open at the same time.12 The looser economic and financial connections between
Germany and Japan are consistent with the lower estimates of ρε and ρm.

The likelihood functions sharply increase with the number of frequencies. For in-
stance with (DM,UK), the log-likelihood increases by more than 200 when k̄ goes from
2 to 5. Since the various models are non-nested and specified by the same number of
parameters, these results indicate a very substantial increase of fit in-sample.

We can also compare the goodness of fit to the independent case. Consider for in-
stance the (DM,UK) case. The independence assumption implies that the log-likelihood
of the bivariate series is the sum of the log-likelihoods obtained in the univariate estima-
tion (Table 1), which is equal to -10,220.86. In contrast, the bivariate estimate implies
the likelihood function equal to -8,191.33, implying a gain in log-likelihood of 2,029.53.
Note that this comparison requires no adjustment since the independent and the bivari-
ate models are specified by the same number of parameters. The bivariate model thus
implies considerable gains in accuracy in-sample as compared to independent univariate
models.

4.2. Volatility Forecasts

We report in Table 7 the results of the univariate forecasts for horizons ranging from 1 to
50 days. The univariate is known to be a good benchmark. Previous work (Calvet and
Fisher, 2002b) has shown that MSM substantially outperforms the out-of-sample volatil-
ity predictions of GARCH(1,1) and Markov-switching GARCH. We estimate MSM on
the beginning of the series, and use the last twelve years of data (or approximately half
the sample) for our out-of-sample forecasting comparison. Table 7 reports summary
forecasting results and significance tests for horizons of 1, 5, 10, 20 and 50 days.

We compute the coefficients α and β from the Mincer-Zarnowitz OLS regressions
of realized volatility on the n-period volatility forecast produced by MSM: s2t,n =

α + βEtx2t,n + ut. More specifically, xt,n = ln(Xt+n/Xt) is the n-period return and
the dependent variable s2t,n =

Pt+n
s=t+1 x

2
s is the sum of squared daily returns, as in

Andersen and Bollerslev (1998). These regressions are common in the financial econo-
metrics literature,13 and unbiased forecasts would imply α = 0 and β = 1. We adjust
the standard errors of α and β for parameter uncertainty as in West and McCracken

12The British Pound was also briefly pegged with other European currencies, including the Mark,
when it participated in Exchange Rate Mechanism from October 1990 to September 1992.
13See for instance Pagan and Schwert (1990), West and Cho (1995), and Andersen, Bollerslev, and

Meddahi (2002).
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(1998), and for HAC effects using the weighting and lag selection methodology of Newey
and West (1987, 1994). The MSM results show that for each currency, the estimated
intercept α̂ is slightly positive and the slope β̂ is slightly lower than 1. These small
biases, however, are not statistically significant. In particular, the hypotheses α = 0

and β = 1 are accepted at the 5% confidence level for most values of k̄ and the forecast
horizon. Because the average size of returns increases with the sampling interval, the
estimated intercepts α are larger at longer horizons.

Table 7 also reports the forecast mean squared errors MSE and R2 at various hori-
zons.14 We observe that the precision of the out-of-sample volatility forecasts is generally
higher for specifications with more frequencies. This finding confirms the benefit of in-
cluding components of heterogeneous frequencies into the model. The precision of the
forecasts is also larger at longer horizons, which stems from the fact that the dependent
variable s2t,n =

Pt+n
s=t+1 x

2
s becomes a more accurate estimate of volatility as the horizon

increases. These results contrast with the poor performance of traditional models such
as GARCH(1,1) and Markov-switching GARCH at longer horizons. We also observe
that while Table 7 only reports the DM results, analogous results are obtained for other
currencies.

We investigate in Table 8 how these results compare to the forecasts obtained from
the bivariate models. The challenge is to see whether we can improve the univariate
forecasts obtained for the DM by using the bivariate model and thus bringing in in-
formation from another currency market. Since volatility is correlated across markets,
this will presumably help detect the latent volatility states and thus help refine our
forecasts. On the negative side, however, we anticipate that the additional number of
parameters used in the bivariate specification make it more difficult to beat the univari-
ate out-of-sample forecasts. Furthermore, we impose that frequencies be the same for
both currencies in the bivariate specification, implying that the estimation may fit less
precisely the range and spacing of frequencies in the currency of primary interest.

Tables 8a−b show that despite these potential difficulties, the DM volatility forecasts
obtained from the bivariate model tend to improve on the univariate predictions. More
specifically, we find that improvements in accuracy are obtained with UK and JA data.
With UK and JA, however, the intercepts α and the slopes β of the Mincer-Zarnowitz
regressions are closer to their ideal values than in the univariate case for given values
of k̄. The reported values are R2 are also slightly superior. Overall, the multivariate
model provides forecasts that are slightly better than the univariate ones.

14The multifractal yields a higher R2 for n-day returns than for daily returns. This stems from the
fact that our measure of n-day volatility is a sum of daily squared returns

Pt+n
s=t+1 x

2
s. As in Andersen

and Bollerslev (1998), reduced noise in the volatility measure leads to an increase in explanatory power.
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4.3. Forecasts of the Conditional Covariance Matrix

We now investigate how the bivariate model helps forecast the conditional covariance
matrix of two series. The covariance matrix plays an important role in risk management,
portfolio selection and tests of asset pricing. It can only be provided by a bivariate
model. [To be completed]

5. Conclusion

This paper implements a multifractal frequency decomposition of exchange rate volatil-
ity and investigates whether it can be useful in developing improved forecasting models
for variances and covariances. We find no robust relation between the smoothed beliefs
about exchange rate volatility components and macroeconomic variates. We do, how-
ever, find that across currencies, the inferred states of volatility components of similar
frequencies are highly correlated. This motivates our development of a multivariate
Markov-switching multifractal process.

We develop a filter for the multivariate model that permits closed form expressions
for the likelihood. This algorithm is used for estimation and forecasting of variances
and covariances of three exchange rate series. Early results indicate some success,
including improved variance forecasts from a bivariate relative to a univariate model for
the DM series.

For larger problems the analytical updating algorithm suffers from reduced compu-
tational tractability. We therefore develop a particle filter that is particularly suitable
for multivariate models with high-dimensional state spaces. We find that this tool
shows promise in extending the range of computationally accessible problems, and are
implementing the method empirically in ongoing work.

17



6. Appendix

6.1. Conditional Moments

Conditional Correlation in Returns. The ratios on the right-hand side of (3.2) can
be rewritten as

E(
q
Mα
1,tM

β
1,t) + (1− γk)

µq
Mα

k,tM
β
k,t − E

q
Mα
1,tM

β
1,t

¶
{[1 + (1− γk)(M

α
k,t − 1)][1 + (1− γk)(M

β
k,t − 1)]}1/2

. (6.1)

We observe that the correlation between the two returns is large when their volatility
components are both large. For instance when Mα

1,t and Mβ
1,t → ∞, the ratio (6.1) is

close to 1, which is its upper bound.

Conditional Correlation of Volatility. The conditional covariance of squared re-
turns Covt[(xαt+n)

2; (xβt+n)
2] is equal to E[(εα1 ε

β
1 )
2]Πk̄k=1Et(Mα

k,t+nM
β
k,t+n)− σ2ασ

2
β Π

k̄
k=1

EtMα
k,t+nEtM

β
k,t+n, which can be approximated by E[(ε

α
1 ε

β
1 )
2]Πk̄k=1Et(Mα

k,t+nM
β
k,t+n)

[when the correlation between the multipliers is large or k̄ is sufficiently large]. Their con-
ditional variance of squared returns V art[(xαt+n)

2] is E[(εαt+n)4]Πk̄k=1Et[(Mα
k,t+n)

2] − σ4α³
Πk̄k=1EtMα

k,t+n

´2
.

6.2. Particle Filter

How do we sample from P (Mt|Xt)? Consider a random variable Y (Mt) with conditional
expectation E [Y (Mt)|Xt] . The conditional probability P (Mt|Xt) is unknown, but we
can easily simulate from the mixture distribution g(Mt) ≡ 1

B

PB
b=1 P(Mt|M (b)

t−1). We
rewrite the conditional expectation

E [Y (Mt)|Xt] =
X
Mt

Y (Mt)
P (Mt|Xt)

g(Mt)
g(Mt).

Given drawsM (1)
t , ..., M

(B)
t from g(Mt), the Monte Carlo approximation to this integral

is

E [Y (Mt)|Xt] =
BX
b=1

µbY (M
(b)
t ) with µb =

P(M (b)
t |Xt)

Bg(M
(b)
t )

This approximation is valid for any Y , which suggests that we can approximate P (Mt|Xt)

with a discrete distribution where Mt takes on the value M
(b)
t with probability µb. This

approximation to P (Mt|Xt) is called an importance sampler.
The probabilities µb may be simplified

µb =
f(xt|M (b)

t ) 1B
PB

j=1 P(M
(b)
t |M (j)

t−1)

f (Xt)B
1
B

PB
j=1 P(M

(b)
t |M (j)

t−1)
=

f(xt|M (b)
t )

f (Xt)B
.
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f(xt|M (b)
t ) is easy to calculate since, conditional on M

(b)
t , xt is distributed multivariate

normal with zero mean and covariance

S
(b)
t =

"
(σ

α,(b)
t )2 ρεσ

α,(b)
t σ

β,(b)
t

ρεσ
α,(b)
t σβ (σ

β,(b)
t )2

#
,

with σ
α,(b)
t = σα(M

α,(b)
1,t M

α,(b)
2,t · · ·Mα,(b)

k,t
)1/2 and σ

β,(b)
t = σβ(M

β,(b)
1,t M

β,(b)
2,t · · ·Mβ,(b)

k,t
)1/2.

We do not need to calculate p (Xt), since the µb must sum to one. Thus we approximate

the probabilities with µb ≈ bµb ≡ f(xt|M(b)
t )PB

j=1 f
³
xt|M(j)

t

´ .
6.3. A Multivariate Approximation for Univariate Forecasting

The univariate series have state spaces Sα and Sβ of dimension 2k. The bivariate series
has a state space Sα × Sβ of dimension 4k. Our belief over the bivariate state space is
given by the vector Πt. We denote by Π

β
t+1 the belief vector from the univariate series

β.

The conditional probability Παt+1(m
α) = P(Mα

t+1 = mα|Πβt+1,Παt , xt+1) can be re-
cursively computed as follows:

Παt+1(m
α)

∝
X

nβ∈Sβ
Πβt+1(n

β)f(xt+1|Mα
t+1 = mα,Mβ

t+1 = nβ)
X
m∈Sα

Παt (m)P(Mα
t+1 = mα,Mβ

t+1 = nβ|Mα
t = m)

P(Mβ
t+1 = nβ|Mα

t = m)
.

I like this rule for the following reasons:

• In order for ρε to show up, we need to use both xβt+1 and Π
β
t+1.

• In order for ρm to show up, it is important to have an expression of the type
P(Mα

t+1 = mα,Mβ
t+1 = nβ|Mα

t = m).

• The computation involves the 2k×4k matrix P(Mα
t+1 = mα,Mβ

t+1 = nβ|Mα
t = m),

instead of the 4k × 4k transition matrix of the bivariate process.

• If Mα
t+1 and Mβ

t+1 are independent, the rule reduces to univariate updating.

Heuristic Derivation. The conditional probabilityΠαt+1(m
α) = P(Mα

t+1 = mα|Πβt+1,Παt , xt+1)
is approximately equal toX

nβ∈Sβ
Πβt+1(n

β)P(Mα
t+1 = mα|Mβ

t+1 = nβ,Παt , xt+1).
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Bayes’ theorem implies P(Mα
t+1 = mα|Mβ

t+1 = nβ,Παt , xt+1) ∝ f(xt+1|Mα
t+1 = mα,Mβ

t+1 =

nβ)P(Mα
t+1 = mα|Mβ

t+1 = nβ,Παt ). Thus,

Παt+1(m
α) ∝

X
nβ∈Sβ

Πβt+1(n
β)f(xt+1|Mα

t+1 = mα,Mβ
t+1 = nβ)P(Mα

t+1 = mα|Mβ
t+1 = nβ,Παt ).

We note that P(Mα
t+1 = mα|Mβ

t+1 = nβ,Παt ) =
P

m∈Sα Π
α
t (m)P(Mα

t+1 = mα|Mβ
t+1 =

nβ,Mα
t = m), or

P(Mα
t+1 = mα|Mβ

t+1 = nβ,Παt ) =
X
m

Παt (m)P(Mα
t+1 = mα,Mβ

t+1 = nβ|Mα
t = m)

P(Mβ
t+1 = nβ|Mα

t = m)
.

We conclude that Παt+1(m
α) satisfies the above updating rule.
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TABLE 1. – Univariate MLE
k̄ = 1 2 3 4 5 6 7 8

Deutsche Mark
m̂0 1.644 1.583 1.546 1.485 1.456 1.406 1.373 1.346

(0.014) (0.017) (0.014) (0.013) (0.014) (0.013) (0.012) (0.011)
σ̂ 0.667 0.626 0.594 0.568 0.521 0.537 0.540 0.541

(0.011) (0.020) (0.015) (0.018) (0.024) (0.022) (0.020) (0.025)
γ̂k̄ 0.072 0.097 0.709 0.728 0.760 0.885 0.956 0.987

(0.011) (0.018) (0.148) (0.098) (0.103) (0.122) (0.058) (0.033)
b̂ - 9.95 24.03 11.06 8.63 5.59 4.38 3.56

( 4.04) ( 8.17) ( 2.05) ( 1.63) ( 0.88) ( 0.56) ( 0.43)
ln L -5601.73 -5470.68 -5422.59 -5405.44 -5397.80 -5395.55 -5393.16 -5393.72

Japanese Yen
m̂0 1.794 1.767 1.673 1.636 1.620 1.549 1.549 1.500

(0.011) (0.003) (0.009) (0.011) (0.011) (0.012) (0.011) (0.009)
σ̂ 0.636 0.542 0.567 0.456 0.684 0.656 0.527 0.506

(0.011) (0.009) (0.017) (0.012) (0.021) (0.024) (0.020) (0.017)
γ̂k̄ 0.197 0.285 0.404 0.713 0.791 0.943 0.942 0.999

(0.022) (0.030) (0.085) (0.089) (0.087) (0.053) (0.049) (0.002)
b̂ - 962.82 17.09 20.95 20.70 10.43 10.40 8.17

(1062.77) ( 3.47) ( 4.53) ( 4.38) ( 1.78) ( 1.80) ( 1.51)
ln L -5387.12 -5111.36 -4997.46 -4958.58 -4938.52 -4929.90 -4930.49 -4925.71

British Pound
m̂0 1.745 1.697 1.675 1.626 1.592 1.552 1.517 1.470

(0.013) (0.012) (0.014) (0.012) (0.002) (0.013) (0.016) (0.011)
σ̂ 0.619 0.585 0.492 0.463 0.393 0.490 0.396 0.393

(0.010) (0.016) (0.016) (0.015) (0.013) (0.023) (0.017) (0.017)
γ̂k̄ 0.131 0.247 0.312 0.678 0.711 0.793 0.802 0.956

(0.018) (0.035) (0.055) (0.091) (0.063) (0.080) (0.081) (0.053)
b̂ - 25.03 17.16 13.32 10.76 8.72 6.58 5.09

( 6.94) ( 3.65) ( 2.29) ( 0.80) ( 1.35) ( 1.02) ( 0.68)
ln L -5219.33 -4996.72 -4899.76 -4851.44 -4823.06 -4811.97 -4807.47 -4805.59
Notes: This table shows maximum likelihood estimation results for the binomial multifractal model. Columns

correspond to the number of frequencies k̄ in the estimated model. Asymptotic standard errors are in parenthesis.



TABLE 2. – Correlation of Univariate
Volatility Components

DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 |xDM| x2
DM

DM1 1.000 0.738 0.310 0.136 0.073 0.055 0.028 0.016 0.201 0.126
DM2 0.738 1.000 0.584 0.325 0.155 0.099 0.048 0.028 0.271 0.181
DM3 0.310 0.584 1.000 0.627 0.322 0.186 0.089 0.053 0.320 0.241
DM4 0.136 0.325 0.627 1.000 0.749 0.461 0.224 0.134 0.383 0.297
DM5 0.073 0.155 0.322 0.749 1.000 0.814 0.452 0.284 0.457 0.359
DM6 0.055 0.099 0.186 0.461 0.814 1.000 0.782 0.565 0.629 0.496
DM7 0.028 0.048 0.089 0.224 0.452 0.782 1.000 0.927 0.853 0.673
DM8 0.016 0.028 0.053 0.134 0.284 0.565 0.927 1.000 0.880 0.692
|xDM| 0.201 0.271 0.320 0.383 0.457 0.629 0.853 0.880 1.000 0.866
x2

DM 0.126 0.181 0.241 0.297 0.359 0.496 0.673 0.692 0.866 1.000

JA1 0.887 0.455 0.194 0.067 0.044 0.036 0.017 0.010 0.139 0.081
JA2 0.888 0.460 0.202 0.070 0.045 0.037 0.018 0.010 0.140 0.081
JA3 0.889 0.460 0.204 0.070 0.045 0.037 0.018 0.010 0.140 0.081
JA4 0.739 0.341 0.199 0.072 0.024 0.028 0.015 0.009 0.116 0.075
JA5 0.160 0.156 0.173 0.203 0.137 0.080 0.041 0.025 0.089 0.071
JA6 0.098 0.100 0.158 0.289 0.371 0.306 0.175 0.112 0.208 0.180
JA7 0.033 0.031 0.041 0.093 0.180 0.306 0.369 0.328 0.337 0.299
JA8 0.015 0.014 0.018 0.045 0.096 0.206 0.360 0.397 0.375 0.333
|xJA| 0.216 0.120 0.126 0.154 0.190 0.263 0.356 0.364 0.415 0.384
x2

JA 0.107 0.052 0.090 0.120 0.154 0.217 0.287 0.286 0.331 0.355

UK1 0.974 0.635 0.256 0.113 0.061 0.047 0.023 0.013 0.177 0.107
UK2 0.727 0.619 0.287 0.189 0.097 0.063 0.031 0.018 0.165 0.096
UK3 0.644 0.639 0.251 0.179 0.090 0.059 0.028 0.016 0.170 0.110
UK4 0.344 0.525 0.416 0.284 0.137 0.081 0.037 0.021 0.192 0.143
UK5 0.018 0.073 0.476 0.589 0.404 0.238 0.115 0.069 0.227 0.186
UK6 0.148 0.167 0.228 0.421 0.543 0.470 0.275 0.177 0.312 0.258
UK7 0.081 0.086 0.095 0.178 0.305 0.453 0.465 0.379 0.424 0.365
UK8 0.030 0.033 0.037 0.072 0.139 0.281 0.470 0.503 0.488 0.418
|xUK| 0.213 0.231 0.232 0.267 0.285 0.357 0.466 0.476 0.604 0.557
x2

UK 0.113 0.144 0.182 0.223 0.245 0.305 0.395 0.404 0.543 0.606
Notes: This table shows correlations from a frequency decomposition of the univariate multifractal exchange rate

models with eight components. For each series, the smoothed probabilities of different volatility states are calculated.
These are used to construct eight sub-series giving the smoothed probability that a given multiplier is in the high
volatility state. These series are labeled from one to eight, with the first corresponding to the lowest frequency. The
table then shows correlations of these series within and across currency models.



TABLE 3. – Combined Univariate MLE
k̄ = 1 2 3 4 5 6 7 8

DM and JA
m̂DM

0 1.668 1.636 1.538 1.488 1.470 1.415 1.410 1.376
(0.013) (0.016) (0.014) (0.015) (0.013) (0.013) (0.070) (0.012)

m̂JA
0 1.778 1.751 1.673 1.624 1.619 1.549 1.499 1.463

(0.014) (0.010) (0.010) (0.017) (0.011) (0.011) (0.056) (0.012)
σ̂DM 0.664 0.574 0.597 0.571 0.507 0.546 0.449 0.462

(0.011) (0.013) (0.015) (0.026) (0.021) (0.024) (0.079) (0.000)
σ̂JA 0.626 0.547 0.564 0.482 0.677 0.646 0.614 0.547

(0.013) (0.010) (0.016) (0.037) (0.029) (0.025) (0.034) (0.002)
γ̂k̄ 0.124 0.206 0.462 0.735 0.740 0.882 0.987 0.993

(0.012) (0.019) (0.109) (0.070) (0.064) (0.047) (0.011) (0.001)
b̂ - 84.77 17.05 13.36 13.74 7.42 6.86 5.17

( 40.30) ( 3.66) ( 2.77) ( 2.09) ( 0.70) ( 0.85) ( 0.00)
ln L -11003.28 -10604.23 -10421.73 -10369.40 -10345.89 -10332.45 -10322.84 -10321.88

DM and UK
m̂DM

0 1.657 1.597 1.533 1.487 1.460 1.413 1.407 1.377
(0.013) (0.017) (0.014) (0.014) (0.013) (0.014) (0.013) (0.013)

m̂UK
0 1.730 1.688 1.672 1.623 1.591 1.540 1.506 1.467

(0.013) (0.012) (0.013) (0.012) (0.011) (0.012) (0.013) (0.011)
σ̂DM 0.665 0.624 0.598 0.569 0.526 0.544 0.457 0.459

(0.011) (0.022) (0.015) (0.022) (0.022) (0.024) (0.019) (0.018)
σ̂UK 0.618 0.587 0.497 0.467 0.393 0.476 0.405 0.398

(0.010) (0.016) (0.015) (0.014) (0.012) (0.021) (0.022) (0.018)
γ̂k̄ 0.096 0.171 0.310 0.705 0.725 0.777 0.832 0.954

(0.010) (0.023) (0.063) (0.055) (0.063) (0.070) (0.076) (0.040)
b̂ - 16.61 13.98 12.22 9.90 6.55 5.77 4.68

( 3.56) ( 2.54) ( 1.45) ( 1.16) ( 0.67) ( 0.54) ( 0.43)
ln L -10825.35 -10474.47 -10325.40 -10258.07 -10222.33 -10213.72 -10204.79 -10200.43
Notes: This table shows maximum likelihood estimation results for the combined univariate model. This involves

joint estimation of two univariate models where the paramters b and γk̄ are required to be identical across currencies.
This also corresponds to a restricted bivariate model where all correlations are zero. Columns correspond to the
number of frequencies k̄ in the estimated model. Asymptotic standard errors are in parenthesis.



TABLE 4. – Correlation of Combined Univariate
Volatility Components

DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 |xDM| x2
DM

JA1 0.901 0.895 0.383 0.123 -0.002 0.027 0.015 0.007 0.139 0.081
JA2 0.901 0.895 0.378 0.126 -0.003 0.027 0.015 0.007 0.139 0.081
JA3 0.803 0.792 0.169 0.133 0.003 0.018 0.012 0.006 0.103 0.062
JA4 0.411 0.415 0.263 0.166 0.059 0.028 0.019 0.010 0.098 0.077
JA5 0.065 0.066 0.112 0.191 0.334 0.237 0.107 0.056 0.151 0.122
JA6 0.024 0.024 0.043 0.094 0.261 0.361 0.256 0.154 0.221 0.195
JA7 0.010 0.010 0.014 0.030 0.100 0.229 0.372 0.336 0.340 0.305
JA8 0.005 0.005 0.006 0.014 0.052 0.137 0.333 0.396 0.374 0.335
|xJA| 0.222 0.221 0.090 0.111 0.146 0.211 0.340 0.362 0.415 0.384
x2

JA 0.110 0.111 0.031 0.086 0.119 0.175 0.275 0.283 0.331 0.355

UK1 0.978 0.979 0.603 0.162 0.040 0.022 0.022 0.009 0.176 0.107
UK2 0.717 0.739 0.620 0.204 0.126 0.050 0.035 0.015 0.170 0.101
UK3 0.624 0.618 0.596 0.143 0.113 0.053 0.034 0.013 0.169 0.115
UK4 0.231 0.240 0.451 0.501 0.330 0.142 0.070 0.029 0.215 0.159
UK5 0.037 0.046 0.067 0.434 0.589 0.368 0.184 0.082 0.246 0.201
UK6 0.130 0.138 0.141 0.199 0.402 0.534 0.388 0.200 0.322 0.268
UK7 0.073 0.077 0.079 0.085 0.177 0.336 0.489 0.401 0.433 0.372
UK8 0.028 0.030 0.032 0.034 0.076 0.168 0.387 0.503 0.489 0.419
|xUK| 0.205 0.206 0.212 0.207 0.247 0.286 0.413 0.475 0.604 0.557
x2

UK 0.109 0.108 0.130 0.168 0.210 0.247 0.351 0.401 0.543 0.606
Notes: This table shows correlations from a frequency decomposition of the combined univariate multifractal

exchange rate models with eight components. For each series, the smoothed probabilities of different volatility states
are calculated. These are used to construct eight sub-series giving the smoothed probability that a given multiplier
is in the high volatility state. These series are labeled from one to eight, with the first corresponding to the lowest
frequency. The table then shows correlations of these series across currencies.



TABLE 5. – Evaluation of Particle filter
E

(
x2

t+n|xt, ..., x1

)
Conditional kurtosis

ln L n = 1 5 20 50 n = 1 5 20 50

True value -5393.7 0.304 0.317 0.337 0.347 5.105 5.481 5.892 6.225
Simulation average -5406.2 0.305 0.318 0.341 0.350 5.069 5.436 5.838 6.113
Std. Deviation 6.6279 0.023 0.028 0.037 0.046 0.205 0.233 0.288 0.318
1% quantile -5423.7 0.260 0.263 0.271 0.266 4.683 4.979 5.266 5.482
25% quantile -5410.2 0.289 0.299 0.313 0.313 4.927 5.279 5.622 5.891
50% quantile -5405.7 0.303 0.316 0.337 0.345 5.037 5.416 5.810 6.095
75% quantile -5401.9 0.320 0.336 0.367 0.385 5.173 5.570 6.015 6.333
99% quantile -5396.2 0.345 0.367 0.407 0.430 5.465 5.848 6.362 6.672
Notes: This table compares values generated by the particle filter with their true values generated by exact

Bayesian updating. lnL is the value of the log-likelihood function for the Deutsche Mark series with k = 8 evaluated
at the maximum likelihood estimates in Table 1. E

�
x2

t+n|xt, ..., x1

�
is the forecasted variance of the series, and

conditional kurtosis is E
�
x4

t+n|xt, ..., x1

�
/(E

�
x2

t+n|xt, ..., x1

�
)2. For each quantity, the table provides the true value

along with the average, standard deviation, and quantiles over 1000 simulations. In each simulation the data set is
the same, but the random draws used to calculate the particle filter are independent across simulations. The particle
filter is calculated from B = 1000 random draws.



TABLE 6. – Bivariate MLE
k̄ = 1 2 3 4 5 6 7 8

DM and JA
m̂DM

0 1.638 1.581 1.538 1.482 1.459 0.000 0.000 0.000
(0.011) (0.014) (0.002) (0.014) (0.016) (0.000) (0.000) (0.000)

m̂JA
0 1.727 1.694 1.661 1.605 1.578 0.000 0.000 0.000

(0.011) (0.010) (0.000) (0.014) (0.012) (0.000) (0.000) (0.000)
σ̂DM 0.666 0.615 0.566 0.559 0.609 0.000 0.000 0.000

(0.010) (0.012) (0.020) (0.023) (0.017) (0.000) (0.000) (0.000)
σ̂JA 0.694 0.662 0.588 0.596 0.678 0.000 0.000 0.000

(0.012) (0.015) (0.015) (0.035) (0.017) (0.000) (0.000) (0.000)
γ̂k̄ 0.125 0.202 0.433 0.703 0.746 0.000 0.000 0.000

(0.013) (0.019) (0.028) (0.061) (0.044) (0.000) (0.000) (0.000)
b̂ - 12.22 13.93 10.39 8.49 0.00 0.00 0.00

( 1.18) ( 2.95) ( 1.63) ( 0.05) ( 0.00) ( 0.00) ( 0.00)
ρ̂ε 0.639 0.646 0.641 0.645 0.647 0.000 0.000 0.000

(0.008) (0.008) (0.024) (0.021) (0.009) (0.000) (0.000) (0.000)
ρ̂m 0.472 0.506 0.575 0.628 0.629 0.000 0.000 0.000

(0.052) (0.049) (0.083) (0.026) (0.034) (0.000) (0.000) (0.000)
ln L -9562.64 -9140.91 -8996.07 -8920.86 -8892.74 0.00 0.00 0.00

DM and UK
m̂DM

0 1.675 1.581 1.552 1.499 1.499 0.000 0.000 0.000
(0.012) (0.012) (0.015) (0.006) (0.013) (0.000) (0.000) (0.000)

m̂UK
0 1.754 1.676 1.647 1.594 1.595 0.000 0.000 0.000

(0.010) (0.011) (0.011) (0.034) (0.011) (0.000) (0.000) (0.000)
σ̂DM 0.665 0.684 0.591 0.562 0.459 0.000 0.000 0.000

(0.010) (0.015) (0.015) (0.007) (0.010) (0.000) (0.000) (0.000)
σ̂UK 0.647 0.672 0.576 0.543 0.853 0.000 0.000 0.000

(0.010) (0.016) (0.017) (0.016) (0.018) (0.000) (0.000) (0.000)
γ̂k̄ 0.249 0.396 0.595 0.792 0.799 0.000 0.000 0.000

(0.022) (0.043) (0.072) (0.099) (0.011) (0.000) (0.000) (0.000)
b̂ - 11.63 12.61 9.65 10.04 0.00 0.00 0.00

( 2.05) ( 2.09) ( 1.24) ( 0.05) ( 0.00) ( 0.00) ( 0.00)
ρ̂ε 0.725 0.731 0.725 0.727 0.728 0.000 0.000 0.000

(0.007) (0.007) (0.007) (0.007) (0.013) (0.000) (0.000) (0.000)
ρ̂m 0.787 0.819 0.846 0.848 0.844 0.000 0.000 0.000

(0.032) (0.030) (0.028) (0.045) (0.032) (0.000) (0.000) (0.000)
ln L -8723.58 -8392.52 -8246.48 -8187.11 -8191.33 0.00 0.00 0.00
Notes: This table shows maximum likelihood estimation results for the bivariate multifractal model. Columns

correspond to the number of frequencies k̄ in the estimated model. Asymptotic standard errors are in parenthesis.



TABLE 7. – Univariate Forecast Results, DM
k̄ = 1 2 3 4 5 6 7 8

Mincer-Zarnowitz Alpha
1 0.13 0.10 0.03 0.11 0.10 0.11 0.08 0.07

( 0.11) ( 0.09) ( 0.10) ( 0.07) ( 0.07) ( 0.07) ( 0.08) ( 0.08)
5 0.50 0.37 0.03 0.47 0.36 0.45 0.29 0.26

( 0.52) ( 0.44) ( 0.46) ( 0.31) ( 0.32) ( 0.31) ( 0.34) ( 0.34)
10 0.57 0.31 -0.21 0.76 0.55 0.75 0.48 0.44

( 1.16) ( 1.04) ( 1.02) ( 0.70) ( 0.72) ( 0.68) ( 0.74) ( 0.76)
20 0.58 0.39 -0.55 1.47 1.23 1.71 1.31 1.23

( 2.94) ( 2.70) ( 2.56) ( 1.71) ( 1.75) ( 1.66) ( 1.77) ( 1.80)
50 -5.96 5.21 0.45 4.49 4.38 5.64 5.23 5.10

( 12.67) ( 9.07) ( 9.13) ( 5.94) ( 5.85) ( 5.49) ( 5.68) ( 5.81)

Mincer-Zarnowitz Beta
1 0.69 0.70 0.88 0.69 0.73 0.70 0.77 0.79

( 0.22) ( 0.17) ( 0.19) ( 0.13) ( 0.13) ( 0.13) ( 0.14) ( 0.15)
5 0.76 0.75 0.93 0.74 0.78 0.74 0.81 0.83

( 0.21) ( 0.16) ( 0.18) ( 0.12) ( 0.12) ( 0.11) ( 0.13) ( 0.13)
10 0.86 0.84 0.99 0.77 0.81 0.77 0.83 0.85

( 0.25) ( 0.20) ( 0.20) ( 0.13) ( 0.14) ( 0.13) ( 0.14) ( 0.15)
20 0.95 0.87 1.01 0.78 0.80 0.75 0.80 0.82

( 0.32) ( 0.26) ( 0.26) ( 0.17) ( 0.17) ( 0.16) ( 0.17) ( 0.18)
50 1.34 0.71 0.95 0.77 0.76 0.70 0.73 0.75

( 0.59) ( 0.37) ( 0.39) ( 0.24) ( 0.24) ( 0.22) ( 0.23) ( 0.24)

Forecast MSE
1 0.73 0.73 0.72 0.72 0.72 0.72 0.71 0.71
5 5.09 5.00 4.79 4.77 4.71 4.76 4.68 4.67
10 13.03 12.84 12.20 12.06 11.90 12.03 11.86 11.83
20 37.43 37.43 35.17 34.43 34.19 34.84 34.30 34.15
50 151.43 158.25 146.38 140.56 140.09 143.80 141.82 140.91

Restricted R2

1 0.019 0.028 0.041 0.039 0.044 0.042 0.047 0.048
5 0.069 0.086 0.125 0.129 0.139 0.131 0.144 0.146
10 0.112 0.124 0.168 0.178 0.188 0.179 0.191 0.193
20 0.114 0.114 0.167 0.185 0.191 0.175 0.188 0.192
50 0.090 0.049 0.121 0.156 0.159 0.136 0.148 0.154
Notes: The first two panels of this table show show coefficients from the Mincer-Zarnowitz regressions x2

t+h =
α+βEt[x

2
t+h]+ut. The leftmost column corresponds to the horizon h of the forecast. Asymptotic standard errors in

parenthesis are corrected for heteroskedasticity and autocorrelation using the method of Newey and West (1987,1994)
and for parameter uncertainty using the method of West and McCracken (1998). The third panel gives the mean
square error of the forecast, and the final panel reports the forecast R2 which is is one less the MSE divided by the
sum of squared demeaned squared returns in the out of sample period.



TABLE 8a. – Bivariate Forecast Results, DM with JA
k̄ = 1 2 3 4 5 6 7 8

Mincer-Zarnowitz Alpha
1 0.08 0.08 0.08 0.05 0.05 0.00 0.00 0.00

( 0.12) ( 0.10) ( 0.09) ( 0.08) ( 0.08) ( 0.00) ( 0.00) ( 0.00)
5 0.15 0.19 0.17 0.12 0.12 0.00 0.00 0.00

( 0.60) ( 0.49) ( 0.44) ( 0.38) ( 0.37) ( 0.00) ( 0.00) ( 0.00)
10 -0.66 -0.07 -0.04 0.11 0.13 0.00 0.00 0.00

( 1.47) ( 1.17) ( 1.00) ( 0.84) ( 0.82) ( 0.00) ( 0.00) ( 0.00)
20 -3.85 -0.04 -0.19 0.42 0.49 0.00 0.00 0.00

( 4.33) ( 2.87) ( 2.44) ( 1.98) ( 1.96) ( 0.00) ( 0.00) ( 0.00)
50 -29.98 2.75 -1.44 2.22 3.03 0.00 0.00 0.00

( 23.10) ( 9.05) ( 8.52) ( 6.43) ( 6.40) ( 0.00) ( 0.00) ( 0.00)

Mincer-Zarnowitz Beta
1 0.83 0.77 0.81 0.84 0.85 0.00 0.00 0.00

( 0.25) ( 0.19) ( 0.18) ( 0.16) ( 0.16) ( 0.00) ( 0.00) ( 0.00)
5 0.97 0.87 0.92 0.89 0.91 0.00 0.00 0.00

( 0.27) ( 0.20) ( 0.18) ( 0.15) ( 0.15) ( 0.00) ( 0.00) ( 0.00)
10 1.21 0.97 1.02 0.92 0.94 0.00 0.00 0.00

( 0.34) ( 0.24) ( 0.22) ( 0.16) ( 0.16) ( 0.00) ( 0.00) ( 0.00)
20 1.53 0.98 1.06 0.90 0.92 0.00 0.00 0.00

( 0.51) ( 0.30) ( 0.27) ( 0.20) ( 0.20) ( 0.00) ( 0.00) ( 0.00)
50 2.56 0.89 1.16 0.86 0.86 0.00 0.00 0.00

( 1.13) ( 0.40) ( 0.41) ( 0.27) ( 0.27) ( 0.00) ( 0.00) ( 0.00)

Forecast MSE
1 0.73 0.72 0.72 0.71 0.71 0.00 0.00 0.00
5 5.04 4.92 4.80 4.67 4.64 0.00 0.00 0.00
10 13.05 12.64 12.20 11.83 11.74 0.00 0.00 0.00
20 38.22 36.52 35.07 33.79 33.59 0.00 0.00 0.00
50 158.99 149.44 144.83 136.30 137.31 0.00 0.00 0.00

Restricted R2

1 0.025 0.033 0.039 0.048 0.050 0.000 0.000 0.000
5 0.079 0.100 0.123 0.147 0.152 0.000 0.000 0.000
10 0.110 0.138 0.168 0.194 0.200 0.000 0.000 0.000
20 0.095 0.136 0.170 0.200 0.205 0.000 0.000 0.000
50 0.045 0.102 0.130 0.181 0.175 0.000 0.000 0.000
Notes: The first two panels of this table show show coefficients from the Mincer-Zarnowitz regressions x2

t+h =
α+βEt[x

2
t+h]+ut. The leftmost column corresponds to the horizon h of the forecast. Asymptotic standard errors in

parenthesis are corrected for heteroskedasticity and autocorrelation using the method of Newey and West (1987,1994)
and for parameter uncertainty using the method of West and McCracken (1998). The third panel gives the mean
square error of the forecast, and the final panel reports the forecast R2 which is is one less the MSE divided by the
sum of squared demeaned squared returns in the out of sample period.



TABLE 8b. – Bivariate Forecast Results, DM with UK
k̄ = 1 2 3 4 5 6 7 8

Mincer-Zarnowitz Alpha
1 0.09 0.07 0.10 0.06 0.06 0.00 0.00 0.00

( 0.14) ( 0.10) ( 0.08) ( 0.08) ( 0.08) ( 0.00) ( 0.00) ( 0.00)
5 -0.06 0.06 0.29 0.13 0.14 0.00 0.00 0.00

( 0.81) ( 0.50) ( 0.37) ( 0.39) ( 0.39) ( 0.00) ( 0.00) ( 0.00)
10 -2.17 -0.38 0.27 0.03 0.08 0.00 0.00 0.00

( 2.32) ( 1.16) ( 0.84) ( 0.88) ( 0.87) ( 0.00) ( 0.00) ( 0.00)
20 -11.05 -1.11 0.42 0.09 0.26 0.00 0.00 0.00

( 8.08) ( 2.86) ( 2.08) ( 2.12) ( 2.09) ( 0.00) ( 0.00) ( 0.00)
50 -69.76 -6.25 1.18 1.00 1.74 0.00 0.00 0.00

( 47.33) ( 10.74) ( 7.37) ( 7.09) ( 6.89) ( 0.00) ( 0.00) ( 0.00)

Mincer-Zarnowitz Beta
1 0.84 0.81 0.72 0.81 0.81 0.00 0.00 0.00

( 0.31) ( 0.19) ( 0.15) ( 0.16) ( 0.16) ( 0.00) ( 0.00) ( 0.00)
5 1.13 0.95 0.81 0.89 0.88 0.00 0.00 0.00

( 0.39) ( 0.21) ( 0.14) ( 0.15) ( 0.15) ( 0.00) ( 0.00) ( 0.00)
10 1.67 1.07 0.88 0.94 0.92 0.00 0.00 0.00

( 0.58) ( 0.25) ( 0.17) ( 0.17) ( 0.17) ( 0.00) ( 0.00) ( 0.00)
20 2.57 1.14 0.91 0.95 0.93 0.00 0.00 0.00

( 1.04) ( 0.31) ( 0.21) ( 0.22) ( 0.21) ( 0.00) ( 0.00) ( 0.00)
50 4.82 1.35 0.93 0.94 0.91 0.00 0.00 0.00

( 2.47) ( 0.50) ( 0.32) ( 0.30) ( 0.29) ( 0.00) ( 0.00) ( 0.00)

Forecast MSE
1 0.73 0.72 0.72 0.72 0.72 0.00 0.00 0.00
5 5.20 4.87 4.76 4.71 4.71 0.00 0.00 0.00
10 13.86 12.43 12.00 11.92 11.93 0.00 0.00 0.00
20 41.24 35.71 34.30 33.96 34.03 0.00 0.00 0.00
50 171.97 145.69 139.34 136.90 137.28 0.00 0.00 0.00

Restricted R2

1 0.018 0.035 0.037 0.044 0.044 0.000 0.000 0.000
5 0.049 0.110 0.130 0.139 0.139 0.000 0.000 0.000
10 0.055 0.152 0.181 0.187 0.187 0.000 0.000 0.000
20 0.024 0.155 0.188 0.196 0.195 0.000 0.000 0.000
50 -0.033 0.125 0.163 0.178 0.175 0.000 0.000 0.000

Notes: The first two panels of this table show show coefficients from the Mincer-Zarnowitz regressions x2
t+h =

α+βEt[x
2
t+h]+ut. The leftmost column corresponds to the horizon h of the forecast. Asymptotic standard errors in

parenthesis are corrected for heteroskedasticity and autocorrelation using the method of Newey and West (1987,1994)
and for parameter uncertainty using the method of West and McCracken (1998). The third panel gives the mean
square error of the forecast, and the final panel reports the forecast R2 which is is one less the MSE divided by the
sum of squared demeaned squared returns in the out of sample period.


