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Abstract

Aim of this article is to judge the empirical performance of Arch as diffusion
approximations to models of the short-term rate with stochastic volatility and as filters of
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which a discrete time Arch model converges can be safely based on simple moment conditions
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specification test for just-identified problems based on indirect inference shows in fact that
this approximation to diffusions gives rise to anegligible disaggregation bias. Unlike previous
literature in which standard Arch model s approximated only specific diffusions, our estimation
strategy relies on a new Arch that approximates any Cev-diffusion model for the conditional
volatility. A Monte-Carlo study reveals that the filtering performances of this model is
remarkably good, even in the presence of an important kind of misspecification.
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1. Introduction™

Great progresses have been recently made in the estimation of stochastic differential
equations. Ait-Sahalia (2000) developed a maximum likelihood estimator for scalar diffusions
whereby the unknown transitional density of the model can be approximated, in closed-form,
with great accuracy. Brandt and Santa-Clara (2001) and Durham and Gallant (2001), both
building on Pedersen (1995), proposed to resort to smulating high-frequency paths of the
state variables of the continuous time model and by means of these, recover the unknown
trangitional densities, hence the approximate likelihood; the same methodology is applied in a
nonparametric fashion by Nicolau (1999). The nonparametric framework is employed also by
Altissimo et al. (2001), who develop a ssmulated nonparametric estimator based on matching
the true density of the data and a density simulated conditionally on a continuous time model
and given values of its parameters. The unanimous conclusion of these papers is that, as
the short interest rate dynamics is concerned, traditional univariate diffusions perform poorly
relative to bivariate continuous time models where the interest rate dynamics is coupled with
its conditional volatility dynamics. This finding, not unexpected, represents the continuous
time counterpart of the universal finding of Arch-type effects' in time series of financia
price changes, it finds theoretical justification in the initial contribution of Nelson (1990),
where some basic ARCH models are shown to be reasonable approximations to the diffusion

processes frequently used in theoretical finance models.

In this paper we wish to study the implications of using Arch-type models as i)

continuous time approximations to diffusions as well as ii) filters in continuous time models

0 () This paper was written while the first author was at the University of Cambridge and the second
at the Princeton University. We thank Yacine Ait-Sahalia, Pippo Altissmo, Ron Gallant, Steven Satchell,
José Scheinkman and seminar participants at Princeton University and Cambridge University, the 1998
Econometric Society European Meeting a Berlin and the 1999 Society for Computational Economics
Conference at Boston College for helpful comments. Responsibility for any views or errors in the paper
rests with the authors.

! See eg., Bollerdev et al. (1994), for asurvey of the Arch literature. The unanimous finding of conditional
heteroskedagticity in financiad datahasled researchers (e.g., Hull and White, 1987; Wiggins, 1987; Longstaff and
Schwartz, 1992; Heston, 1993) to extend early asset pricing theories (e.g., Black and Scholes, 1973; Merton,
1973; Vasicek, 1977) to the case in which volatility evolves in a stochastic manner.

2 The major contribution of Nelson to this strand of research can be found in part |1 of the book edited by
Rossi (1996).



with unobservable state variables.®> More precisely, a continuous time models of the short-
term rate is used as a benchmark to test whether Arch-type models are indeed useful devices
to approximate and/or support the estimation of its parameters and to recover the dynamics of
the unobservable volatility, a research topic started by Nelson (1990) and subsequently, for no
apparent reason, abandoned. Indeed, according to Campbell et al. (1997, p. 381), theempirical
properties of Arch as approximations to continuous time stochastic volatility processes “ have
yet to be explored but will no doubt be the subject of future research”.

Given the empirical success of constant elasticity of variance models (Durham, 2001),
our concern is first to broaden the Arch class by developing a model that approximates any
diffusion model where volatility follows a constant elasticity of variance process (henceforth
Cev-Arch) and then to check the functioning of the model to the aims stated above. The
main steps of the estimation phase will then be to show i) that the Cev-Arch specification
that we wish to employ as a reference model converges to a continuous time model for the
short term interest rate as the sampling interval shrinks to zero, ii) that one can easily use the
likelihood function of the Cev-Arch in lieu of the true likelihood function (which cannot be
computed analytically), iii) that, for the proposed continuous time model, the discrete time
Arch approximation isindeed successful in an application based on fitting the dynamics of the
short term rate and, last, iv) that the model makes no significant error in recovering the ’true
volatility of the short rate.

Let us make clear from the beginning that the main difficulty faced in the estimation of
our continuous time reference model is in the second and in the third of the above mentioned
four steps. Though we will provide closed-form moment conditions linking the discrete time
to the continuous time parameters and which guarantee the weak convergence of the Cev-
Arch model toward the continuous time reference model, Arch schemes are typically not
closed under temporal aggregation (Drost and Nijman, 1993 and Drost and Werker, 1996)
and, for this reason, we need to test and correct potential ‘disaggregation’ biases; in this
additional step, Arch modelswill be viewed as auxiliary devices in simulation-based (indirect

3 As widely recognized, Arch models are very appealing for statistical reasons, even though there exist

alternative econometric formulations that are surveyed, for instance, in Shephard (1996).



inference) schemes.* To anticipate, we find that the correction made by indirect inference is
not statistically significant, a result obtained via a global specification test for just-identified
models that was originally suggested by Gouriéroux et al. (1993).°

Asstated in item iv) above, beyond caring about the ability of the Cev-Arch at correctly
estimating the parameters of its continuous time limit, we also want to make sure that the
model provides a good volatility filtering. Thisis an important step of our analysis since, for
example, if one takes the two-factor model proposed below (see eq. (1)) as data generating
processfor the short rate, then bond priceswill depend both on the interest rate level and on the
level of the volatility, and this latter variable becomes an essential ingredient in the practical
implementation of a term structure model with stochastic volatility. We already know, from
atheoretical standpoint, that appropriate sequences of ARCH models are able to consistently
estimate the volatility of a continuous time stochastic process as the sample frequency gets
larger and larger, even in the presence of serious misspecifications (Nelson, 1992; Nelson and
Foster, 1994).° As put by Bollerslev and Rossi (1996), “one could regard the ARCH model as
merely adevice which can be used to perform filtering or smoothing estimation of unobserved
volatilities” (p. xiv). We provide evidence that the desiderable filtering performances of
standard Arch models are also shared by the Cev-Arch, as one might have expected by a
suitable interpretation of the theory (see Nelson and Foster, 1994, theorem 4.1).

4 See Gouriéroux and Monfort (1996) for a full account of simulation-based inference methods. See also
Fornari and M e (2001) for further work related to the diffusion approximation property of Arch in aderivatives
context.

5 Our empirical findings are obtained with the same data set as Andersen and Lund (1997a), who rely on
the efficient method of moments (EMM) estimation proposed by Gallant and Tauchen (1996). The advantage of
the EMM estimator isthat it achieves the same efficiency as the true (intractable) maximum likelihood estimator
when the auxiliary model generates adensity that ‘ smoothly embeds' thetrue likelihood function of the discretely
sampled diffusion. It should be clear that our estimation strategy has the aim of ascertaining whether our auxiliary
model is a reasonabl e approximation to the continuous time model. In technical terms, we are going to focus on
the empiricaly difficult just-identified case, a strategy originally suggested in Gouriéroux et al. (1993) (p. S108):
“[Indirect inference] methods seem particularly promising when the criterion is based on approximations of
the likelihood function, time discretization, range discretizations, linearizations, etc. In this case the method is
simpler [...] and appears as an automatic correction for the asymptotic bias implied by the approximation”. In
our context, indeed, “the asymptotic biasimplied by the approximation” is given by a disaggregation bias. While
not closed under temporal aggregation, Arch models still have a natural interpretation in terms of the continuous
time models that they approximate, being very close (in terms of probability distribution) to the approximated
continuoustime modelswhen the sampling frequency ishigh. Furthermore, theauxiliary criteriathat we construct
are based on approximations that create a natural one-to-one interpretation of the sequence of the parameters of
the auxiliary discrete time model in terms of the parameters of the continuous time model (see section 3).

6 SeeBollerdev and Rossi, 1996, (p. xiii-xvii) for a brief account on the filtering performances of ARCH
models as applied to continuous time stochastic volatility models.



The paper is organized as follows. Next section presents the basic structure of our
continuous time model; it also provides intuition and preliminary results on the estimation
and filtering methods to be implemented with the help of Arch models that do not constrain
the elaticity of variance to one (the Cev-Arch). The econometric strategy is fully detailed
in section 3 while empirical results are in section 4; section 5 concludes and technical
considerations and proofs are gathered in the Appendices.

2. The reference continuous time model and the Cev-Arch process

The continuous time model that we wish to use in this paper has an instantaneous
volatility of the short-term rate which is a constant elasticity of variance process:

dr(t) = (t—0r(7))dr +o(r)\/r(7)dWO(r

«y
do(r)’ = (w—o(7)’)dr +o(7)"d (pW<1> T AWO(r )

where a = (1,0,6,w,¢,4,n,p) is a vector of parameters, W®, i = 1,2, are standard
Brownian motions, and § > 1. The 1/r(:)-term included in the diffusion term of the short
rate equation restricts this variable to positive values only and captures an empirical regularity
known as‘level effect’, i.e., coeteris paribus, the short-term rate volatility riseswith thelevel of
d

the short-term rate. Allowing for more general diffusion terms such as for instance o () |r(-)|
(d > 0.5) ispossible, though it would not change dramatically our empirical results.

As stated, objective of the paper isto use Arch-type models that allow i) the estimation
of the above continuous time parameters and ii) the extraction of the unobserved short-term
rate volatility process o).

To thisaim, consider the following Euler-M aruyama discrete time approximation of (1):

rTh(k+1) — AThE = (L -0 hThk)h + hORrkA/RTRE © RUR(K+1)
5 5 P @)
Wohk+1) — pOhk = (W= nop)h+1- thk 'vVh nEn(ka1)

where 1 denotes the discretization step,

e )= () 1))

and (n7nr,n O i) s are the discretized short-term rate and volatility processes.



It is well known that when h | 0 (2) converges weakly (or in distribution) to (1).
Hence, the higher the sampling frequency, the higher should be the accuracy of, say, maximum
likelihood (ML) estimates of a obtained with (2). Unfortunately (2) represents adiscrete time
stochastic variance model for which ML methods are rather hard to implement; in addition to
this, and with reference to the second of our aims, there are no obvious techniques to filter the
actual volatility path out of (2).

A natural aternative to the estimation problem is represented by Arch models when
thought of as diffusion approximations, though not every diffusion can be approximated by
an Arch scheme. To get an intuition of how the approximating property works, consider the
standard Garch(1,1) of Bollersev (1986):

2 2 2 _
Onpn=w+fo,+ac,, ¢=w-0)p,, n=0,1,--.

where w, 3 and « are parameters, (w, 3, )€ R3 , e isthe residual of an observation equation,
and the index n is an abstract notation for sample points at discrete time intervals (a more
precise notation will be introduced in the next section). Rewrite the preceding equation as:

0ry —or=w— (1—aBE{W®) =)o’ +aol (ul — B(u?)), 3

n n

and suppose that u ~ N(0,1). Choptimesoastomaken : hk <n < h(k+1),k=1,2,---
and let the parameters w, 3, a vary with h by introducing sequences wy,, (3;,, an, and then let
h | 0; theresulting volatility process converges in distribution to:®

dU(T)2 = (w — 900(7)2) dr + 1/JU(T)2dW(2) (1), 4

T If (1) has a unique strong solution denoted as {r(7),o(7)°},;>0, weak convergence of
{hPhieon 0o k=12 In (2 to {r(7),0(7)°} >0 means that the finite dimensiona distributions of
{0 hiesn 0% tr=1.2... converge to those of {r(7),0(7)°},>0 ash | 0. See Stroock and Varadhan (1979). It
turns out that the conditions demanded by Stroock and Varadhan (1979) are difficult to verify when studying the
convergence of ARCH-type models. One then may wish to make reference to the conditions suggested by Nelson
(1990).

®  To obtain an intuition of this result, notice that the sequence (£,,)52, = (u2 — B(u?)) _ isani.id.
sequence of centered chi-square variates with one degree of freedom and represents the discrete version of the
Brownian motion increments d17(2)(-). On the other side, the re-normalizing v/2-term in the last equation of (5)
is explained by the fact that ¢ = «? — F(u?) = u? — 1 isachi-square variate with one degree of freedom and

has a variance equal to two. The normality assumption for « is not needed to obtain the convergence.



where
limhw h’lwh = w
limppoh™' (1 —an = B,) = ¢ (5)
limhw h71/2\/§04h = ’L/)

Equation (4) may correspond to the volatility dynamicsin (1) whené = 2,7 = 1and p = 0.
Similarly, it is possible to show that under conditions similar to (5), the so called Taylor-
Schwert mode!:

Onir — 0w =w— (L= aB(lul) = B) 7 + acy (Jun| — B(Ju])).
also converges in distribution to the following diffusion limit:
do(1) = (w— @o(r))dT + 1/)0(T)dW(2)(T). (6)

Equation (6) may now correspond to the volatility dynamics of (1) when$ =n = 1andp = 0.

As these two basic examples should make clear, standard Arch models do not converge
in distribution to any unrestricted CEV process. Rather, in their diffusion limit, Arch models
typically make the variance of volatility proportional to the square of volatility, thus restricting
the elasticity of variance to unity. Since recent evidence in Durham (2001) shows that Cev
models are indeed successful in fitting interest rates data, we introduce an Arch scheme that
does not force the elasticity of variance to one.® Consider, for instance, the following model:

ol =w+ a0l |u|" + Bo? + aB(Jul™) (02 — o}, (7)
which can also be written as:
Uiﬂ —0=w— (1 — ozE(]u]Qn) — ﬂ) Ui + ozoi" (]un]2" — E(]u]%)) ,

n —

and which collapses to the Garch(1,1) (3) when = 1. In the next section and in Appendix
A we show that under conditions similar to those of Nelson (1990), this model convergesin

9 This class of models can be shown to satisfy the most salient theoretical properties of an optimal volatility
filter as devel oped in the optimal filtering theory of Nelson and Foster (1994, theorems 4.1 and 5.2).



distribution to:
dU(T)2 = (w — g@J(T)Q) dr + wo(T)QndW(Q) (7).

Finally, to obtain convergence results closer to model (1), we shall be considering a
generalization of (7) that sets the volatility propagation mechanism to:

ob 1 = w4 acd? |u, " + Bod + aB(|u|™) (af — oll) . (8)

As before, we will show that at a high sampling frequency, the volatility process in (8)
converges in distribution to

d(j(T)‘5 = (w — QOU(T)5> dr + wo(T)é'"dW@) (1),

which may correspond to the volatility dynamicsin (1) when p = 0. Complications arising
from the presence of correlation will be treated by introducing asymmetries in the volatility

dynamics of (8).1°

2.1 Filtering and invariance properties of the Cev-Arch: preliminary Monte Carlo evidence

The practical relevance of the filtering theory for Arch models can be grasped very
simply from Figure 1, which depicts the typical filtering of an Arch model as applied to a
simplified version of (1). The straight line is one weekly sampled trgjectory of the volatility,

10 In the same way one can introduce nonlinear volatility dynamics into discrete time models that match any
desidered feature of the resulting diffusion limit. Consider, for instance, the following model:

Tnt1 = (L+w)on — (1= aB(lu]) = §) 07 + a (jua| — E(|ul)) o7/,
Using the methods of section 3, it can then be shown that thismodel converges in distribution toward:
do(1) = {o(7) (w — o (7))} dT + o (1)3/ 2w P (1),

as the sampling frequency gets higher and higher. Likewise, one can adjust both the short-term and the volatility
equation to include both variables. In this paper, however, we will only test the adequacy of Arch-type modelsin
the estimation and filtering of system (1).



a(7), smulated within the following model:

{ dr(t) = (=0 -r(1))dr+ /r(7) -o(7) - dW(l)(T) o

do(r) = (w—y¢-o(n)dr+-0(1)- dW(Q)(T)

where W@, i = 1,2, are standard Brownian motions, ¢,0,w, and 1) are rea-valued
parameters fixed at their estimates obtained with US data (see section 4). The dotted line
represents instead the (rescaled) volatility obtained via an Arch model fitted to the weekly
sampled trajectory of the short-term rate »(7), as simulated by (9); of course, in estimating
the Arch model, we considered ourselves constrained to only knowing the realization of the
smulated (7). In fact, figure 1 visualizes one of the simulations performed in the Monte
Carlo experiment of section 4, but such a performance is typical of the overal experiment;
this can be gauged by the very tiny RMSE between the two trajectories computed over all
the simulations.* More precisely, when we compared the volatility trajectories filtered with
equation (8) and conditional on model (1) (with parameters set at the valuesin Table 5) to those
directly smulated from (1), we find that their patterns are very similar and similar also to those
of figure 1. Table 1 reports precise results assessing the performance of this volatility filtering
based on (8), where the common concept of volatility adopted to make comparisons is the
standard deviation. The result is what we call the ‘volatility filtering error’, which is defined
precisely in section 4. The findings reported in Table 1 are of the same order of magnitude
as those derived from a much more detailed analysis and illustrated in section 4. Notice aso
that to compare the ssmulated volatility to the filtered volatility, the latter has to be "rescaled
for diffusions’; techniques for treating this issue are introduced and explained in great detail
in Appendix C.

When ascertaining whether (8) is able to deliver reliable parameter estimates beyond a
consistent filtering of the unobservable volatility, it would be useful if some of the parameters
of the continuous time model could be eliminated from the estimation procedure. Our guess
isthat 6 and n can be fixed at their discrete-time values, after assuming a sort of time-scale
invariance. To prove this we can only resort to numerical arguments. we considered model
(1) and fixed p = 0 (consistently with susequent empirical evidence reported in section 4)
and the other coefficients at the values in Table 1. We then simulated (1) 1,000 times with

1 In addition to section 4, see Schwartz et al., 1993, for previous related work on similar models.
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an Euler-Maruyama approximation and sampled the simulated data at a weekly frequency (in
thissimulation we allow for 25 intra-week observations). All the simulated weekly paths have
1,135 points, thus matching the sample size used in the empirical analysis (see section 4).
Finaly, all weekly ssmulated short-term rate paths were fitted by a conditionally Gaussian
AR(1) model of the form:

Tn = Qo+ G17n-1+ V/Tn_16n  (¢g, ¢, CONStaNtS),

with (8) as volatility propagation equation.

Table 1 reports the results of the experiment. We begin with the case related to the
empirical evidence provided in section 4: there, we find that fitting (8) to actual US short-term
rate data produces estimates of 6 and ) that are both statistically not distinguishable from unity.
Now Table 1 shows that when the data generating processin (1) hasé = n = 1, then (8) aso
reproduces, on average, approximately the same ML estimates of 6 and r. Results not reported
here reveal that the same phenomenon occurs with other possible combinations of 6 and . As
an example, Table 1 reports Monte Carlo results concerning the caseinwhich é = 2andn = %
in (8). Based on this evidence we remove 6 and n from the parameter vector a and fix them at
their discrete time ML-based estimates.

2.2 Some additional characteristics of the continuous time Cev model

Beyond providing a framework for CEV-type volatility modeling, (1) differs
significantly from previous stochastic volatility models, since it does not constrain the
‘volatility concept’ to be ‘variance’ or ‘standard deviation’; rather, in (1) § isanew parameter
that must be estimated from data. Inthe empirical section of the paper, for instance, we uncover
evidence that § = 1 and, as already stated, that n = 1. To understand the influence of & on
the dynamics of ¢ it may be interesting to recall that with » = 1 and positive mean-reversion,
the volatility process o?, § > 1, has a steady state distribution that is an inverted Gamma with
mean g (eg., lemma3.1 p. 217 in Fornari and Mele, 1997a); the stationary distribution of o

12 Engle and Lee (1996) fitted a restricted version of the volatility equation of model (1) to stock returns,
namely for § = 2, and supported a model in which the volatility of volatility raised linearly with the square of
volatility, as our empirical findings do.
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is consequently given by

20492

6 (i—“ﬁ) - _ 2t (er1)y? 2w
fs(0) = —r~L——0 v?  exp <——05> (10
()

W
(see lemma A.2, p. 227, in Fornari and Mele, 1997a). As shown by Fornari and Mele
(2000;chapter 5), the density f5(-) tendsto shrink to the left as ¢ decreases.

The volatility equation in (1) encompasses other formulations already encountered in
the stochastic volatility literature (see, for instance, Ball and Roma, 1994, and Taylor, 1994,
for a list of the typical models in the stochastic volatility option pricing area). This is the
case, for instance, of the non-stationary models of Hull and White (1987) or Johnson and
Shanno (1987), to which our volatility equation reduces when w = 0. By It0’s lemma, indeed,
V = log o2 issolution of

2
m%ﬂ==<—2p;w +2%@@(}2V0ﬁ>>d7+%?dQMﬂ”+w/1—p%v®).
(11)

Hence log-volatility mean-reverts in a non-linear manner when w # 0. Therefore, (11)
is rather different from the /inear mean-reverting process for the log-volatility adopted in
Wiggins (1987) in a stochastic volatility option pricing domain and in Andersen and Lund
(1997a) or Gallant and Tauchen (1998) in ainterest rate framework. To see thisin more detail,

consider the linear mean reverting model utilized in Andersen and Lund,
dV(r) = (@ — pV(1)) dr + E&dW (1)

where W isastandard Brownian motion and @, 3, € are real constants. By 1t0’s lemma, in this
model & isthe solution of

do (1)’ = (%0@)5 — BO'(T)(S - log J(T)5> dr + %U(T)édW(T), (12

which becomes of course also the starting point of Wiggins (1987 eg. (2) p. 353 and eg. (15)
p. 361) when § = 1. Although the volatility of volatility in (12) rises linearly with ¢?°, asin
(2) when n = 1, the drift behaves rather differently in the two volatility equations.
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Figure 2 (panel A) depicts a comparison between the stationary densities that are
generated by (11) and (12). Thefirstisgiven by (10) and has been produced using the estimates
of section 4; the latter isjust alog-normal density, and has been produced using the estimates
of Andersen and Lund (19976). While the two models approximately put the same probability
masses on low levels of volatility, our model puts relatively more masses on high values of
volatility. An explanation of such aphenomenon can befound by comparing the drift functions
of the two models: asis clear from figure 2 (panel B), the two drift functions are of the same
order of magnitude when volatility is low; once volatility visits higher regions, however, the
Andersen-Lund linear drift function pulls volatility towards its steady state expected value
more rapidly than the drift function of our model. This implies that our model generates
relatively more frequent episodes of high volatility than the Andersen-Lund model. Naturally,
our model does not encompass the Andersen-Lund scheme, but it should be more flexible in
practice due to the presence of the additional parameter 6 in the volatility equation: should
the volatility equation in (1) be misspecified, such an additional parameter might give the
model additional flexibility in fitting the statistical properties of the true volatility generating

mechanism.

3. Statistical inference

Asreported in the Introduction, various methods have been recently proposed to estimate
the parameters of a diffusion when sampling is not continuous, a situation in which the main
difficulty of ML methods arises from the likelihood function implied by the measure induced
by adiscretely sampled diffusion being unavailable in explicit form.

In this paper we follow the natural aternative consisting in making use of a (tractable)
exact likelihood function of a class of approximating models. The main idea, presented in the
previous section, consists in resorting to a suitably chosen class of ARCH models converging
in distribution to the solution of (1) as the sampling frequency getsinfinite. However, since the
resulting likelihood function refers to a model converging in distribution to the solution of (1)

13 Following Lo (1988), ML estimation might turn out to be feasible if the transition density of {r(7)},>0
in (1) could be computed easily. Sincethisis not the case here — as in virtualy all continuous time stochastic
volatility models— ML is computationally demanding, sinceit would require to implement anumerical solution
to amulti-dimensional partia differential equation at each iteration of the optimization algorithm. The likelihood
would then be recovered by integrating out with respect to volatility.
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that is not an Euler approximation of (1), we call the resulting criterion ‘ quasi-approximated’

likelihood function.

The advantage of the quasi-approximated ML estimator is that it requires negligible
computational efforts. Its main drawback is that it is not necessarily consistent, as Arch
models are typically not closed under temporal aggregation, owing to this, a one-to-
one correspondence between convergence in distribution of the discrete time models and
disaggregation from a diffusion is not guaranteed.** To quantify such potential drawbacks
of the procedure, we show how to construct a very precise testing procedure of the validity of
the moment conditions needed to guarantee the convergence to well-defined diffusion limits;
as it turns out, such a testing procedure also gives information about the relevance of the
disaggregation bias. Our strategy is based on the consistency test originally suggested by
Gouriéroux et al. (1993, section 4.2), and it can be viewed as the natural substitute of aglobal
specification test in just-identified problems.

3.1 Quasi-approximated likelihood functions

The rationale behind the quasi-approximated ML estimator that we propose lies in the
weak convergence of a class of Arch models towards the solution of (1). We start with
considering the restricted version of (1) that setsn = 1; theorem 3.2 below treats the general
case. Withn = 1, amodel approximating (1) can be a discrete time approximation of the
short-term rate equation in (1) modified by introducing the so-called asymmetric-power Arch
model of Ding et al. (1993):

ATngl = ATnHiA —Oa ATh + ACn1v/ATn © AlUngt
Mn = Al aOn, A% ~N(0,1) (13)
A0ni1 = waFaa(lacn| =7 a)’ 4+ 0 a0,

where the indexing n = 0,1, - - refers to consecutive observations sampled at the same

frequency A (weekly, say), ta,0a,wa are of the form za = =@ . A, with (&) ) real
parameters and w® > 0,aa,8, > 0,7 € (=1,1),6 > 0. Findly, v alows for the

4 Theoretically, such acorrespondence exists only when the concept of an ARCH model isweakened (Drost
and Nijman, 1993, and Drost and Werker, 1996). Furthermore, Corradi (2000) recently criticized the conditions
in Nelson (1990) , necesary to achieve the convergence of the basic GARCH(1,1) to a diffusion; see footnote 16
for detail s on how to adapt Corradi’s critique to our setup.
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leverage effect originally observed by Black (1976), and incorporated by Nelson (1991) in
Arch-type models. To keep things relatively simple, we take advantage of the assumed time-
scaleinvariancefor (6, 7); we also assume that -y shares the same property.

Heuristically, to obtain the weak convergence towards the solution of (1), chop time as
hk <n < h(k+1):

AT h(k+1) = wTak t i — On s wThi + WORGA1)VAETRE © RURGRA1)
hEhk = WUnk * WOnk, hf}%’“ ~ N(0,1) (14)
Wiy — n0e = Wi — (1= o wunel” (1= vsp)?h™% = B, )nod,

(Wlth Sk = S.gn(huhk) and1 Vh > 07 ({Lh}u {eh}{wh}u {ah}u {ﬂh}) S Ri and Y€ (_17 +1))1
and impose suitable Lipschitz conditions on the * h-drift’ as well as non-explosion conditions
on the ‘ vh-diffusion’ terms of volatility.

Nelson (1996, p. 19) was one of the first to suggest a model of the kind of (14) as
a discrete time approximation of a continuous time model for the short-term rate. More
specifically, Nelson (1996) took 6 = 2 and v = 0 in (14), and pointed out that the resulting
scheme is the model of Brenner et a. (1996), slightly changed to admit a diffusion limit.
While the empirical results of this paper suggest a simplification of (1) in which ¢ is one and
p isnil, we provide here more general results that can be useful when applied to different data
setsand/or related problems. Asoriginally remarked by Nelson (1996), the kind of results that
we are going to provide can be useful especially when aresearcher isinterested in thefiltering

performances of model (13) when p isnot nil in (1).%°

To save space, we shall be avoiding technical discussion on the construction of the
measure space in (14): technical details can be found in Nelson (1990) and are those exploited
in Fornari and Mele (1997a, b and 2000) (see also Duan, 1997, for related work). We only
introduce notation for the filtration generated by {,74_1y.n 05;}% ,, which is F;, and which
will be used in appendix A. Let the symbol = denote weak convergence. Recall that if a

vep(—1vvlel)

random variable x is general error distributed then its density is written as — =% =

15 We dightly complicate the theoretical analysis allowing standardized residuals to be genera error
distributed; however, such a possihility is not subsequently considered in the empirica section of the paper,
since Engle and Lee (1996) (see their tables 2 and 4) obtained indirect estimates that seemed to be dependent on
the distributional assumption made for the auxiliary model.
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where V2 = #;),1),1) > 0 and I'(.) isthe Gamma function. The following convergence

result is an extension of theorem 2.3 p. 211 in Fornari and Mele (1997a) that allows for
the presence of the instantaneous correlation between {;74x }x—0.1,.. and {09, }r—01... aSh
shrinks to nil:

28 8
2% ~ly2ep( 28ty 2% ~IviT(&Ltl)

THEOREM 3.1: Let my,, = W, N = o= ,and let h“ﬁ be general

error distributed. Let:

(15) ¢ = 1=mnsu((1 =)+ 1 +7))on = By,

U, \/(mm ni ) (1 =77+ (147)%) = 207, (1 = 7)*(L+7)° - an,

5 v+1

VD) - (1 =9)° = (1+9))

(16) »p
T(v*l)\/(mé,v =g (1 =7)? + (1 +7)%) = 2n5 (1 - 7)1 +7)°

and suppose that limy, o h™ 'y, = 1, limp, 0 b0, = 0 and:

limhw h’lwh = w¢ (0, OO),
limyoh tp, = ¢ <o, a7
limp 0 b2, = 1 < o0,

Then, {}ﬂ"h(kfl),h O_ik}k:(),l,"' = {T(T),O'(T)é}q—zo as h l 0, where {T(T),O'(T)é}q—zo are
solutions of (1) whenn = 1.

Let, in addition:

8
hUhk hUhk

k| (1 — ) — (22| (1 = o))

076 = 72, (1 =) + (L)) = 202, (1= 7)*(1 +7)?

WEhy =

then the preceding approximation result says that when h shrinks to zero and the moment
conditionsin (17) are fulfilled, the distribution of the sample paths generated by the following
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model,
RTh(k4+1) — nThE = (Lh — O - hThk) + hOh(k+1)V/hThE * hUK(k+1)
(18)
hgi(kJrl) — 100, = (Wh — @y w0h) F U w0h s wEan

gets ‘closer and closer’ to the distribution generated by the sample paths generated by (1),
with p given by (16). Comparing (13) to (18) then suggests an estimator based on moment
conditions; specifically, the quasi-approximated ML (g-aml) estimators of w, ¢, that we

propose are
Wgam = A73/2{U\A7
gpq-aml = A 1@9\7 (19)
,L/}q-aml = Ail/Q,L/JA’

where $ 4, @ A are obtained by means of (15)-(16) computed in correspondence of the gml
estimator of model (13), wa isthe gml estimator of wa of model (13). The g-aml estimator of
6 isthe gml estimator of 6 in model (13), and the g-aml estimators of  and ¢ are as those of w
and ¢ above. Finally, the g-aml estimator of p is obtained by plugging the gml estimators of
(6,v,7) informula (16).%

While recognizing that weak convergence results such as those contained in theorem
3.1 are obviously related to parametrization issues, in the empirical section we find that not
only the parametrization in (14) provides areasonably good picture of the volatility dynamics,
consistently with the theoretical results of Nelson and Foster (1994), but it even passes the

16 The estimators in (19) are based on the moment conditions (17) and as we noted before, they may be

affected by a disaggregation bias, furthermore, Corradi (2000) questions the realism of the moment conditions
that Nelson (1990) originally imposed to show the weak convergence of the Garch(1,1) towards a continuoustime
stochastic volatility model. Her reasoning can be generalized here as follows. In the third equation of (14), the
term generating the diffusion terms of volatility is proportional to (b~ % ) - |husg|’, which is of course 0,(Vh)
under the third moment condition in (17). In other terms, acondition for a diffusion to be obtained isto scale the
variance of |, upg |‘s with a diverging sequence. In general, one would generate diffusion terms with o, - |huhk|‘s,
where o), =2 O(h9), ¢ € R. Thisleaves three aternatives:

—Aq="5

1

n

—b)g<

[

-0 ¢q> 2.

The first condition is another way to express the condition under which (14) has a well-defined diffusion
limit; the second condition implies that (14) does not converge to any diffusion limit; the third condition implies
a‘degenerate’ diffusion limit, i.e. with identically zero diffusion terms.



17

global consistency test that checks, ex-post, the accuracy of the approximation in (15)-(16)
and that we present below.

Consider now the case of interest to this paper based on generalizing both (7) and (8) by
means of the following model:

(ATt = ATnt+ia —OA ATn + ATn{1A/ATn* AU
A€n = Al AOn, S5~ ged, (20)
a0n1 = waFaa(laca] =7 a6)” +Ba- a0}

\ +an - E{(|atn] =7+ aun)™} - {ach — acll}.

Chopping time in (20) asin (13), and rearranging, yields:

.
AT h(k+1) = wThk+ = One wThi + WO 1)VAETRE © RURGR1)
— hUnE
h€nk =  nUnk * KOk, N ged,

&
ho_i(k+1) - hgik = Whp— (1 —h3E {’huhk’&? (1 - 7%)577} Qi — ﬂh) hﬂik
Tan (’huhklén (1 —ysp)" — B {’h“hk!&? (1- Vsk)m}) bt
(21)

We have:

THEOREM 3.2: Let

(22) o = 1= ngu((L=9)""+ 1 +9)")an = By,

(@)t = (s — 0, ) (L= 221 4+ (14 7)%0) = 202, (1= 7)"(1+7)% - on,

and

dn—v+1

Q=L GIHID(FED) L (1 9)% — (144)")
D(01) a0 — 12,,) (1= 7)1+ (L 7)257) = 202 (1 = 7)P1(1+ 7)o

p . (29)
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Suppose that limy, o h™ 1y, = ¢, limy, 0 h™ 10, = 0 and:

limhw h’lwh = weE (0, OO),
limpoh Yo, = @ <oo, (25)
limp o h™ V29, = 9 < oo,

Then, {arn@—1).n o im0, = {r(1),0(1)°}rs0 & h | 0, where {r(7),0(7)°};>0 are
solutions of (1) and {x74(x—1),h 04y }r—0,1,.. @re solution of (21).

In the same way one can make a creative use of other asymmetric Arch models to obtain
convergence to models with correlated Brownian motions. We briefly show this in Appendix
A.

3.2 Quasi indirect inference

We test and correct the potential disaggregation bias of the g-aml estimator with the
indirect inference principle. The procedure that we follow is a natural generalization of
Broze et al. (1995) and alows the volatility of the short-term rate to evolve in a stochastic
and autonomous manner. Formally, if we replace the normality assumption with the g.e.d.
assumption for the innovation process u in (21) (see section 3.1), the g-aml estimator of
b= (A, A7104, A3 2wa, A Yo, ATV 20, 7y, 6, 1, v)"in (20) is (where v is the
tail-thickness of the ged distribution):

Qg-am = /b\N = arg ml?x £N(AT; b),

where £ (a7; b) isthelikelihood function implied by (20), /V isthe sample size, and A7 isthe
observations set, which is supposed to be a discretely sampled diffusion from (1) when the true
parameter vector is ap. Note that dim(b) > dim(a). In the empirical implementation below,
however, we shall consider the Gaussian case in which v = 2 and, motivated by the Monte
Carlo findings reported before, we impose the time-scale invariance of 6 and . As already
stated, we assume the same for ~, leaving for future research the task of ascertaining whether
such atime-scale invariance of +y is a reasonable assumption in practice. Accordingly, we re-
interpret b as a vector in an open subset of R® (with coordinates A 1ia, A 10x, A3 2w,
Ao\, A7V24,), £x5(.) asanormal likelihood function with §, 7 and ~y fixed at pre-specified
values (e.g. at the preliminary gml estimates obtained by fitting model (20), see section 4), and
a asavector in an open subset of R, with coordinates ¢, 0, @, v, 1.
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It is well known that under standard regularity conditions (appendix B), one has
asymptotic normality of the pseudo-ML estimator,

i~ o — =1
VIV (B = Bofao) ) N (0.2, (a0: bo(ao) - J(a0)- £ (a0; (o))
where €., (.) and J(.) are defined in appendix B, and by(.) is the so-called binding finction:
bo(ag) = arg max £(ap; b).

However, the true law of A7, asimplied by the data generating mechanism, say 4y (a7), issuch
that

to(ar) ¢ {€n(ar;b), bvarying},

and the discrete time model is expected to behavein away that allowsfor adiscretization bias:

b(ag) # ao.

The reason why we may also refer to the preceding inequality as a ‘discretization bias' is
that when we chop time in (20) by creating sequences of the form {¢;,, 0, wy, a, 8, }, and
substitute the moment conditions (22)-(25) of theorem 3.2 in (21), thereby creating astochastic

FOCESS {1 ThHE hO'é k0.1 solution of:
? hk 1y

Wrery — afne = (0= 0 arap)h+ wOn@e0)VarRE B URGE+)
(26)
hgi(kJrl) — w0h = (W= ol )h - hghk\/ﬁ ks
then (20) |S embedded in {hrhkuh O’ik}k:()’l’... (namely fOI‘ h = A), although

{nrnron 055 br—o,1,.. cONverges weakly to the solution of (1) under the limit conditions given
in theorem 3.2.

Indirect inference methods correct the preceding bias in the following manner. Consider
simulating (26) for small h. Thisis accomplished by setting v, 6 and  to their ML estimates
3,3, 7, assigning valuesto a = (¢, 0, w, ¢,v), and drawmg h“hk from the normal distribution;
one obtains 79 (a) = {pF(a)}Nh s =18, whereS is the number of simulations.

k=0>
For each simulation retain the (V) numbers h?f;) (a) that correspond to integer indexes of time,
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and estimate the auxiliary model on each series of smulated data:
B(J\}/L)s(a) = argmax En(anf(a);b), s=1,---,8,

where A ,7(*)(.) denotes the set of the simulated short-term rate with integer indexes of time
at smulation s and interval h. In our specific just-identified problem (dim(a) = dim(b)), the
indirect estimator of a isthen the solution (provided it exists) of thefollowing five-dimensional
system:

o-m——zsﬂmm

If nan(ao) denotes the solution of the preceding system, its asymptotic distribution can be
obtained, heuristically, as follows. Expand the preceding system of equalities around ay:

N——zsAw<>—<§z§1£%%ﬁ@mmw—%»

For large IV, the preceding is in fact an equality in distribution, and the covariance matrix

g 8b( ) s m
of (+>°5 1 2(ao))(nan(ao) — ao) is the covariance matrix of by — 52 e 1 bys(ao), ie.

(1 + £)cov(b%, (ao)), and one has:
VN (nan(ag) — ag) N 1 Ooadh [ 0—N <07 <1 + %) Volro‘/[)/1> ; (27)

whereT, isthe covariance matrix of the simulated estimator and Vo = 2%(aq), i.€. the Jacobian
of the binding function evaluated at ay. Broze et al. (1998) proved the preceding result in
great generality — i.e. in the case of a genera diffusion in R — and to avoid bias due to
the discretization step used during the simulations (hence the label * quasi’-indirect inference),
they also suggested to take h = N~ ¢ withd > % In appendix B we check the conditions of
Broze et al. (1998) that ensure that (27) holds for the scheme proposed here.

Notice also that (26) do nor represent the Euler approximation of (1), but this is not
a disturbing feature for it has been known since Broze et al. (1998) that implementing the
indirect inference estimator just requiresthe weak convergence of the high frequency simulator
toward the solution of (1); see also appendix B. For reasons of comparisons, however, the
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empirical section aso considers the case in which the high frequency simulator is the Euler-
Maruyama approximation of (1) (i.e. (2)).

Finally, a global specification test for the adequacy of the approximating model (20) is
easly implemented. It is sufficient to use the consistency test of Gouriéroux et a. (1993,
section 4.2 and appendix 3), designed to verify the existence of afixed point of the binding

function:
Ho LA = b(ao).

Let I denote the identity matrix in R>*®. Under H,, one has that (see Appendix B for the
definition of theterms ¢ and .J):

. 1 P
VN <bN s S b%ﬁl@N))
d ob P O | ob’ 1 .21 .1
28) —>N<0, <1—%(a0)> el e <I—%(a0)> g b J£m>.

4. Empirical analysis

4.1 The data

We use weekly data for the 3-month US T-Bill rates as an approximation to the short-
term rate” The motivation for using weekly data lies in an attempt of avoiding problems
raised by market microstructure effects. Thisisthe same data set used by Andersen and Lund
(1997a,b), but here we restrict attention to the sample going from May 30, 1973 to February
22,1995, which has 1135 observations.

Raw data are converted into instantaneous figures, hereafter referred to as ». Table
2 contains some preliminary statistics for » and its autocorrelation function, showing high
persistencein the data. Nonstationarity isformally tested through an augmented Dickey-Fuller
test, according to which data are borderline stationary. As an example, the statistic takes a
value of —2.435 at lag 5, which is roughly the threshold value for rejecting nonstationarity
with a 90 percent probability; more generally, one rejects nonstationarity at the 85-90 percent

17 See Chapman et a. (1999) for an analysis concerning the validity of such an approximation.
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to the extent of the 15-th lag, but given the low power of the test, even such a dight rejection
can be symptomatic of stationarity inthe data. It isworth noticing that the same kind of results
holds for the full sample originally employed in Andersen and Lund.

4.2 Fitting the short rate: auxiliary discrete time model

We start by estimating model (20). Consistently with previous results of Andersen
and Lund (19974) we do not find evidence of leverage effects, since the estimate of v is
not statistically significant; further, the model gives rise to stable dynamics for the volatility
process. As regards the estimates of 6 and n, we find that they are 1.0326 and 1.0014,
respectively, statistically not distinguishable from unity, which allows, as mentioned in the last
section, an additional simplification to model (1) by fixing 6 = n = 1. Such restrictions, along
with v = 0, will propagate into a much faster indirect inference phase. In the model that we
select as an auxiliary device, we thus restrict (6,7,) = (1,1,0). Due to numerical stability
issues, model (20) was estimated without explicitly disentangling the sample frequency, i.e.
under the restrictions (6,7,v) = (1, 1,0), the model was cast as:

{ T = Co+Cirn_1+ Ti/fl c€n, €= (u-0)p, u~NID@OZI)
(29)
o, = wHale, 1|+ 00,1, n=2,--- N,

where {r,,}_, denotes the observed (weekly) series, and (co, c1, w, o, 3) are real parameters.
The correspondence between the estimators of the parametersin (20) and (29) iseasily written

as.
by = agam = Do + Ay,

where my denotes the vector of the ML estimators of the parameters in (29), Aq =
(0 Ao A! 0),and

A0 0 0 0
0 —-A1' 0 0 0
A = 0 0 A2 0 0 ,
0 0 0 —0.798- A1 —A-1
0 0 0 0603-AY2 ¢

with A = % Similarly, the Jacobian of the binding function that has been used to report the
t-statistics and the consistency testsin Table 6 is based on the set of parameters of the auxiliary
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model (29): to such aset of parametersis associated a binding function of theformm = m(a),
and the relationship between the Jacobians of b and m is

ob om
%(-) = Alg(-)- (30)

Model (29) isthe absolute-value model of Taylor (1986) and Schwert (1989) with normal
errors, studied by Nelson and Foster (1994) and Fornari and Mele (1997q). I1ts main advantage
over the more usual variance specifications is that it delivers estimates of volatility that are
relatively more robust to the presence of possible outliers in the data. In this case, we also
know that the invariant distribution of the residualsis approximately a generalized Student’s-t
when 6 = v (theorem 3.3 p. 218 in Fornari and Mele (19974)), which reducesto the cel ebrated
Student’s-t result of Nelson (1990) when 6 = v = 2.8

As mentioned in section 3, we consider normally distributed errorsonly (i.e. v = 2),
since expanding into non-normality makes the resulting model non-stationary.’®* Hence, we
are left with a specification in which (6,7,v) = (1,1,2), and it is possible to show that in
this case the invariant distribution of ¢ is more leptokurtic than the Student’s-t obtained when
(6,n,v) = (2,1,2). Specificaly, by applying theorem 3.5 p. 218 in Fornari and Mele (1997a),
the invariant distribution of the residuals of (29) is given by

E

_w_ﬁ 1 2
P(e) = v exp <—562a:2 — w—wa:1> dr, €= - (31)

2

ash | 0. Figure 3 compares the density in (31) with anormal density with variance equal to
(w/¢)” wherew, ¢ and v have been fixed at the values shown in the second column of Table
6; its shape suggests that it should capture the usual stylized facts of the unpredictable parts of
the vast mgority of financial time series.

18 To recal, v is the tail-thickness parameter of the ged distribution (see section 3.1) and § is the power to
which o israised (see eg. (21)).

19 Such a phenomenon is aso noted by Andersen and Lund (1997c), who show that a specification based
on EGARCH-type models is more stable when the errors of the model are not normal. Motivated by further
empirical findings of Andersen and Lund (19974), we also tried to include further lags in the volatility equation,
but we did not observe any significant improvements.
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Table 3 reports the gml estimates of model (29). The condition for covariance-
stationarity of this model, reported in Theorem 3.1, i.e. 2n10a+ 3 = 0798 - a+ 3 < 1
holdsfor the gml estimates reported in Table 3; the persistence of the the volatility propagating
processis 0.993.

Table 4 presents summary statistics of the volatility filtered by the model (not yet
"rescaled for diffusions’), and Figure 4 depicts its behavior in the sample. For reasons of
comparisons, we aso depict the first differences of ». The model appears to successfully
capture some stylized features of the data, including the high volatility induced by the
‘Monetary Experiment’ of the early 80’s. It is also worth noticing that perhaps due to such an
isolated and yet relatively persistent episode, thelong run volatility asimplied by the parameter
estimates attains the value of T o750 5 — 10-458: 10~3, which is more than twice the average
value of the filtered volatility for the whole sample. Because the estimated volatility wanders
in a range of variation of about 0.026, however, such a difference is negligible: when we
compute the ratio of the difference between the long run and average volatility to the range of
variation, we find that it equals 0.321.

4.3 Correction of the discretization bias, consistency tests, and filtering

The second column of Table 5 reports the g-aml estimates of the continuous time model
to which (20) converges based on (8)-(10). To correct their potential disaggregation bias we
implement the indirect inference setup by simulating system (1) with the Euler-Maruyama
approximation® (2) with h~! = 1300, which corresponds to generating 25 sub-intervals
within a week. With an observations set of N = 1135, this implies that » = N, with
[ ~ 1.0193 > % guarateeing that the conditions developed in Broze et al. (1998) to avoid
simulation biases are fulfilled. We use S = 50 simulations. The estimation results are in the
third column of Table 5. The correction made by indirect inference does not appear to matter:
none of the g-aml estimates lies outside the usual 95 percent probability bands around the
corresponding indirect inference estimates and, more importantly, when we formally checked
the adequacy of the auxiliary model through the consistency test described in section 3, we
found that the adjustment speed of the short-term rate is the only parameter that does not pass
the test at the standard 95 percent level.

20 Using (26) as simulation device does not alter our estimation results.
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Such findings are of special interest here since Drost and Nijman (1993) showed that
Arch models aggregate only when one weakens the very concept of Arch, introducing the
so-called weak-Arch process, more importantly, Drost and Werker (1996) generalized the
Drost and Nijman setting by introducing the so-called Arch diffusion which is, heuristically,
the continuous time stochastic volatility process whose implied discrete differences form a
weak-Arch process. A natural interpretation of our empirical findingsis that even though the
standard Arch models do not aggregate, they still remain, for a given frequency, an excellent
approximation to the continuous time models toward which they converge in distribution, at
least insofar asthey are anatural proxy to the corresponding (discrete time) weak-Arch models.
Naturally, these are issues that deserve a deep theoretical investigation that we leave for future
research.

To check that the previous estimation results do not depend on the dimension of the
smulation experiment (S = 50), we implement a sort of reverse exercise that consists
in looking for the Arch model that one can expect to estimate if the true data generating
mechanism happens to be (1). Specifically, we simulate (1) with parameters fixed at the
indirect inference estimates of Table 5, sample the short-term rate at weekly frequency and
estimate model (29) with such sampled data. We repeat the experiment 5000 times, removing
the simulations for which there was not stationarity for the short-term rate and volatility
(i.ethose where the persistence was greater than one). Notice that as a by-product of such
an experiment, we will also get an assessment of the filtering performance of model (29).

Table 6 provides some basic statistics of the estimatesand Figure 5 displaystheir relative
frequencies. The distributions of the estimates are concentrated around the values of the
estimates reported in Table 3: specifically, the standard 95 percent confidence bands of the
Monte Carlo estimates are sufficiently tight to ensure statistical significance, yet they contain
the figures corresponding to the true estimates reported in Table 3.

The filtering performance of the model is gauged in the following manner. Let
o;, denote the volatility simulated at the i—th replication and sampled a », and 7, is
the corresponding (rescaled) Arch estimate. We are interested in evaluating the average
filtering error in al the simulations, {&}7%°, where & = 5= 0% (000 — Gin)-

Figure 6 displays the Monte Carlo distribution of the average filtering error. It has an
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average value of 9.610-10~° and a standard deviation of 3.275.10~% The RMSE, defined as
s SO S o, — §i)?), isequal to 0.0209.

Thelast objective of thissection consistsin showing that even in the presence of akind of
mi sspecification which could be easily faced with in many applicationsinvolving the modeling
of interest rates, the kind of models considered in this paper still remain a valid reference,
at least insofar as one considers volatility filtering issues. Suppose, in other terms, that the
data generating process (under the objective measure) is a three-factor model including the
short-term rate, stochastic volatility, and a stochastic central tendency factor, this factor being
a time varying conditional long-run mean of the short term rate. The question we want to
answer to is. are the filtering results of this paper still valid when we attempt at extracting
the (unobserved) stochastic volatility of such a data generating process? In addition to its
obvious practical content, such a problem is directly related to previous theoretical work by
Nelson (1992) and Nelson and Foster (1994). As mentioned in the Introduction, these authors
produced many theoretical results based on more or less restrictive assumptions. The message
of such resultsisthat evenin the presence of serious misspecification, Arch modelsstill remain
robust volatility filters. Now we wish to ascertain whether such results hold in an experiment
in which Arch models are used to reconstruct the volatility dynamics of a three-factor data

generating process.

To thisend, weimplement a Monte Carlo experiment in which we fit model (29) to 1,000
simulated tragjectories of athree-factor model that extends in a natural way model (9) as

dr(t) = 0((r) —r(r))dr + /r(T)o(r)dWO(r
{ do(r) = ( _900(7—))d7'+1/10( )dw<2>( ) (32)
di(t) = (b —byl())dr + b3 /1(T)dW

where W® i = 1,2 3, are standard Brownian motions, 6, w, ¢ and « are fixed at the indirect
inference estimates of Table 5, and b;,7 = 1, 2, 3, arefixed at the values suggested by Andersen
and Lund (1997b), i.e. by = 0.0078, b, = 0.1257 and b3 = 0.0493, and repeat the same
expertiment as before. Table 7 provides the results. Even though model (29) is neglecting
one of the factors of (32) (namely, the stochastic central tendency factor, I(7)), it exhibits
remarkable volatility filtering properties. The Monte Carlo volatility filtering error is of the
same order of magnitude as in the previous experiment and, again, the resulting dynamics
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of simulated vis-a-vis filtered volatility trajectories display the same patterns as in figure 1.
Considered as a (stochastic) volatility filter, model (29) would be hardly rejected as a valid
tool of analysis, even in the presence of the neglected factor.

5. Conclusion

The intent of this paper was to explore to which extent Arch models can be practically
used for the purpose of providing parameter estimates and volatility filtering in diffusion
processes. Since the standard Arch models that have traditionally been used in the empirical
literature do not approximate all diffusion models, we considered a reasonably wide class of
models, named CEV-Arch, that converges toward any unrestricted CEV diffusion process as
the sample frequency becomes larger and larger. While the searching strategy followed in
this paper to the aim of approximating diffusions by means of Arch can be used to construct
Arch sequences converging to yet more general diffusion processes, our central focus was the
specia case of volatility following a CEV-diffusion with linear drift.

Despite the fact that the CEV coefficient of volatility was left unrestricted, we provided
empirical evidence supporting a model in which the (stochastic) volatility process of the
short-term rate follows a diffusion process with unit elasticity of variance. In addition, we
made use of simulation-based techniques to implement a global specification test for just-
identified problemsand provided evidencethat (suitably rescaled) ARCH estimates of relevant
parameters are statistically not distinguishable from estimates that one obtains with, say,
indirect inference methods. Finally, the volatility filtering performances of the models are
excellent. Even if one extracts the volatility from a three-factor model and uses a two-factor
model only as afilter, the volatility filtering errors have the same order of magnitude asin the
absence of misspecification. Thisfinding suggests very simple and yet efficient toolsto extract
the (unobserved) volatility of adiffusion.
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Table
Monte Carlo study ¢
parameter true average median std.dev.
o 1 1.0725 1.0206 0.1273
n 1 1.0849 1.0834 0.0961
volatility filtering error NA -1.1163.10 *° -2.2082.10 % 4.5025.10*
o 2 2.0047 1.9737 0.2474
n L 0.6178 0.6132 0.1320

2
volatility filtering error NA -1.4995.10°3¢ -2.333310"* 5.6091.10 2

% The third column reports the average ML estimates of ¢ and 77 in (1) obtained by fitting an AR(1) model
with volatility equation given by eg. (9) to 1000 simulated weekly sampled trajectories from the stochastic
differential equation system (2). In these smulations, ¢ = 81072, 0 = 0.11, ¢ = 0.38 and § and
7 are fixed at the values of the second column, with A) w = 0.03,7 = 0.8 whené = 1 = 1, and
Byw = 2.36- 1073, ¢ = 0.06 when§ = 2andn = % The fourth and fifth columns report
the Monte Carlo median and standard deviation of such estimates. Thecase 6 = 1 = 1 corresponds to
the actua estimates obtained in section 4. The Table also reports the Monte Carlo average (with the RMSE
and the steady state expectation of ¢ in parentheses), median and standard deviation of the volatility filtering
error.

’(RMSE: 1.8609 - 1072 (w /o = 7.895 - 1072);

* RMSE: 1.6692 - 102); (\/<w —y?/4) /o = 6.1985 - 10°2).

Table

Summary statistics of r
mean median maximum minimum std. dev. skewness kurtosis
0.070 0.068 0.155 0.026 0.026 0.828 3.681

Autocorrelation function of r

lag 1 2 3 4 5 10 30 50

autocorrelation 0.995 0.998 0979 0.971 0.961 0.914 0.789 0.696

The time series 7 isthe short-term interest rate as defined in section 4 of the main text. It isa sample of 1,135

observation of the US 3-month T-Bill rate. It is observed between May 30, 1973 and February 22, 1995.
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Table

QML estimates of (29)°

parameter estimate  t-stat®
co 155510 % 000
¢ 0.9979 ST
w 1.11010°* S
a 0.1504 1376)
B 0.8728 1)

% QML is the quasi-maximum likelihood estimation of the short rate dynamics. b Bollerslev-Wooldridge

(1992) robust t-statistics in parentheses.

Table

Summary statistics of the conditional volatility o as filtered by (29) ©

mean median maximum

minimum

std. dev.  skewness kurtosis

7.102.107% 5.483.10° 2.805-10 ?

2.042.10°3

4.306-107° 1.761 6.048

% Not rescaled for diffusion (see Appendix C).

Table

Parameter estimates ®

parameter g-aml

Il t-stat consistency tests

) 0.0081
0 0.1067
w 0.0418
© 0.3736
Y 0.6540

0.0082
0.1108
0.0301
0.3806
0.8092

3.04
2.92
2.98
3.01
3.23

—0.6727
—2.0855
—1.2177
—0.1275

0.1390

® The second column reports the estimates of the parameters in (1) obtained with the moment conditions

(18) and (20). The second column reports estimates obtained via theindirect inference (11) strategy explained

in section 3, and the third column gives the corresponding t-statistics computed using the variance in (28)

and (30) as the Jacobian of the binding function. The last column reports the ratio of each element of

3 ES A( ) (bN) to the corresponding standard error computed from the variance in (29) and

using (30) as the Jacobian of the binding function.

5
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Table

Monte Carlo study ¢

parameter  average median std. dev.
Co 1.640-10* 1.610-10 * 3.340.10 °
¢ 0.9974 09976  1.764-10°3
w 1.210-10°* 1.130-10°* 4.420.10°°
« 0.1548 0.1544 2.405-102
16 0.8665 0.8669  2.056-10 2

® The second column reports the average gml estimates of the parameters in model (29) obtained by fitting
model (29) to 5000 s mulated weekly sampled trgjectories from the stochagtic differentia equation system (2).
In these simulations, parameters are set to their |1 estimates reported in the third column of Table 5. The third

and fourth columns report the Monte Carlo median and standard deviation of the s mulated gml estimates.

Table

Monte Carlo study ¢

average median std. dev.
volatility filtering error —3.6815-107°% —6.0461.10"°> 3.9666-10°

® The second column reports the average volatility filtering error defined in section 4 (with the RMSE and
the steady state expectation of ¢ in parentheses) obtained by fitting model (29) to 1000 simulated weekly

sampled trgjectories of the following three-factor model:

dr(t) = 0((r) —r(n))dr + \/r(T)o(r)dWO(r
do(r) = ( _SOU(T))dT+1/JU( )dw<2>( )
di(t) = (b — bol(7))dT + b3+ /1(7)dW®

whereWW® i = 1,2, 3, are standard Brownian motions, #, w,  and ) arefixed at theindirect inference
estimates of Table5, and b;, 7 = 1, 2, 3, arefixed at the val ues suggested by Andersen and Lund (1997)),
i.e by = 0.0078,by = 0.1257 and b3 = 0.0493. The third and fourth columns report the Monte
Carlo median and standard deviation of the voletility filtering error.

* (RMSE: 0.0285); (w /¢ = 7.895 - 10 2).
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Panel A compares the log-normal density generated by the Andersen-Lund estimates (the curve with higher
peak) and the density f 1 (0) defined in (10) and generated by the estimates of section 4. Panel B compares the
linear drift function generated by the Andersen-Lund estimates to the nonlinear drift functionin (11) generated by
the estimates of section 4.
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Figure 1

Filtered weekly volatility of o() in (1) by means of an Arch model

discretely sampled diffusion

77777 (rescaled) ARCH filter

15 7
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Figure 2
Panel A: Density comparison
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Panel B: Drift comparison
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Figure 3

Stationary Distributions of Errors
6
5

/ \P(eps/sqrt(h))
4 / \
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O i ey
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In this Figure, I° (\/Lﬁ) iss the approximate invariant distribution of the errors in model (29) rescaled by /71 (see

(22)). N(0, (i)Q) is instead a normal density with standard deviation fixed at the steady state expectation of
the volatility process (see model (1)).

Figure 4
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Figure5
Monte Carlo densities of the ARCH parameters estimates
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Figure 6
Monte Carlo filtering error
filtering error
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The filtering error of the conditional volatility is evaluated over 5,000 simulations as {&-

1
& = fiz5 D

1135
n=1

5000
i=1

where

(0in — i) with 1,135 being sample size, 0; ,, and 7 ,, the true and the predicted
volatility. The Monte Carlo distribution of the average filtering error has an average of 9.61 - 107° and a
standard deviation of 3.275 - 1072,
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Appendix A: Convergence results for section 3

Proof of theorem 3.1

Conditions (17) are sufficient to establish the weak convergence of the short-term rate
and volatility processes toward the solutions of the following stochastic differential equations:

dr(t) = (t—0r(T))dr +o(r)\/r(7)dWd(r
do(7)? = (w—o(r)’)dr + ’L/)J(T)édW(?’) (1)

where {IW0) (1)}, 50, 7 = 1 and 3, are F(7)-Brownian motions. This has been shown in thm.
2.3 p. 209-211 of Fornari and Mele (1997a) in the case of a geometric Brownian motion, and

the case of a square root process follows easily by an extension of another convergence resullt.

It remains to show that W) (1) can be written as:

W(3)( ) = pw(l) J1— W(2) ), 7>0

with {W®) (1)} 5 another F(7)-Brownian motion. It is sufficient to show that the limit:

lé{gh E{(;ﬂ"hk — nTh(k— 1)) (hgi(k+1) - hUik) | fhk}

isnot ill-behaved. After that, an identification argument will do the work.

By (18), and the fact that Lﬁ isg.e.d..., for each h,

léﬂ)lh D {(;ﬂ“hk — hWTh(k— 1)) (hgi(kﬂ) - hUik) | fhk}

= limh~ E{(% — 0 - RThk-1) t nORrkA/RTR(E-1) * huhk>

hl0
8
X(wh + (Oéh ’huhk’5 (1 - 73k)5h72 + B — 1) hgik) ’ fhk}
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= limh'E {huhk (Oéh ’huhk’5 (1 - ’Ysk)éhfg + ﬂh - 1) . hgizl ’ fhk} * A/ AT h(k—1)

hlo

= lim hflf%@h B {huhk ’huhk’6 (1-— ’Ysk)é . hgi;rl ’ fhk} “VRTh(E—1)

R10
. (07
= lim 2L {((1 =)= (1 +)°) [, aﬁ‘”lp(daﬁ)} C RO /WG D)

where p(.) denotesthe g.e.d.(,) density, or:

1%%1 h'E {(fﬂ"hk - hrh(kfl))(hgi(mrl) - hgik) ’ fhk}

[0
= 1,1&{)17}}— {A=7)" =+’ } K- woni' - VaTag1);

h
here,
PO e G
NG
By using (18),
G Y

lim — = ,
Wo Vh VZ

where Z = (ms, — n3,) (1 —7)* + (1+7)*) — 2nf ,(1 = )°(1 +7)".

Hence,
limh 'E {(hrhk — hrh(k71)> <h0_(;z 1) — hO_ik) ’ fhk} = @ oL, \/;’
hl0 (k+1) \/Z
where:

K=(1-7"=01+7)°)K.
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To identify p, we note that this has to solve the following equation: ¢p = %K which yields:

p:

S

The proof is complete.

Proof of theorem 3.2

Nearly identical to the proof of theorem 3.1.

Construction of alternate converging asymmetric models

It is well known that in correspondence with a given diffusion model, there may exist
many well-behaved discrete time models converging in distribution to the given continuous
time model. Hence, we can find other examples of discrete time ARCH-type models
converging to model (1). As an example, consider the following model:

Phr = w80+ alt = 35" ("~ B (jun7) ) o, v € (<L1). (AD

The main difference between model (20) and model (A1) is the way how asymmetries
in volatility are modeled. Suppose for instance that v > 0 in model (Al). In this case,
‘large’ negative shocks introduce more volatility than positive shocks of the same size, while
‘small’ negative shocks introduce less volatility than positive shocks of the same size. Such
a phenomenon, referred to as ‘volatility reversal’ in Fornari and Mele (1997b), seems to be
pervasive in many stock markets and in this respect, model (A1) represents another example
of the volatility-switching ARCH models that were originally introduced by Fornari and Mele
(19970).

Our objective now is to give a sketch of the proof that (A1) convergesin distribution to
(1) as the sampling frequency gets higher and higher. Consider the following approximating

scheme:

&
WOhr1) = n0me = Wn — (1= By) oy, + an(l — ysg)"" {’huhk’&? - B (’huhk’&?) } h™ % 4o,
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and introduce the following moment conditions:

limhw h’lwh = wc (0, OO),
limp 0 h (1 — 5) = p <o, (A2)
limhw h71/2 {(1 + 7)2577 + (1 - 7)2577} (mén,v - 2”277,1;)0% = ,L/} < Q.

For each h, we have that
') {(1 - ’Ysk)én (’huhk’&? - B (’huhk’&?)) hf%ﬂ ’ fhk} =0,
and so the drift per unit of timeis:
W' B (n0hgerny = w00k | Fiun) = h™lwn — h7H(1 = 5,) nomy.

By taking limitsfor / | 0, and using the moment conditions (A2), we obtain the drift function
of volatility in (1).

Now consider the second order moment per unit of time b~ ' E{(h0 1) — 1034)% |
Fnit- By taking limitsfor i | 0, and using again the moment conditionsin (A2), yields after
tedious computations:

. _ 2
lim h 1E{(ha;§(k+1) — a0hy) ]]-“hk}

hl0
rUnk

= lim <%>2 {E ((1 — sy ) 7

—dng, B ((1 — ’ysk)%"

26m
) +4ng, B (1= ys)?")

on
26m
RO pk

2
im (L 26 26 2 26
=1 1 T4 (1 —)*n —9 "

fﬁ?<¢ﬁ> {4 (=) (a0 = 205,0) 0

which gives the diffusion function of volatility in (1).

rlUnk

Vh
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As regards correlation issues, the proof is very similar to that of theorem 3.1:

1}%1 h'E {(}ﬂ"hk — hTh(k71)> (hffi(kﬂ) - hgik) | fhk}

on
. Oy rlUnk rUnk sn+1
= %ﬁ?ﬁﬂ{ VA >< Vi ””‘”’“) 'f'”“}' T
where
rURE (& o
lim E 1—ys) | | 2225 — ony,
hl0 { Vh (=) ( Vh o

— B {a(1—-sgn@)” (il - 200,0) )

e R (Y () () ()]

and u is ged,,.

Using an identification device asin the proof of theorem 3.1, we find that:

dn—v+1 Sn+1
2 v

{0 =" = ()"} Ay T )T E) T () TR}
{927 4 (L= 9)27} (o — 203,.,) |

p:

In correspondence with reasonable values of 6,7 and v, the term {I'(22)T (1) —

I (2H2) T (2)} isdtrictly positive, thusrestricting sign(p) to beminussign(v), asin theorems.
3.1and 3.2.

Appendix B: Standard regularity conditions and the convergence of the criterion
ASSUMPTION B1.

-plimy x5 (a7;0) = £..(ag;b), say, uniformly inb € B C R®.
-plimy, ZE8 (\r:b) =&, (ag; b), say, uniformly inb € B. Further, £, (.) isinvertible.

- | VN2 (o7 b) - )iN(o,J(ao)).
=bo(ao



CONVERGENCE OF THE CRITERION (Sketch). We assume as in Broze et al. (1998)
the continuity of the partia application a — 3(]\’,")5(@, and for the case S = 1, we define
B0 = 00 () and AF() = axFM(.). Itis not hard to show that under conditions
on £x(a7(a);b) that paralel those in assumption B1 stated above for the direct criterion
Ly (ar; b), the simulated estimator is asymptotic normal:

VN (5P(0) = 0§(@)) 4 N (0,80 (@ (@) - TP @) 82 (@58 (@)))

where b (a) = arg max, £ (a; b), the limit smulation problem, and &

(.) and JM(.)
are defined similarly as £.. (.) and .J(.). Now, it follows from theorem 3.2 that the solution
of (21): {n7ne.n 0op te—o,1,. = {r(7),0(7)°}r>0 (the solution of (1)). By this, an extension
of aresult cited in Fornari and Mele (20000) (appendix B) that shows that the solution of
(22) is unique, stationary and ergodic (for fixed h), and assuming the uniform continuity
of the criterion £y(.;b), it follows that £5(a7(a0); ) = Ln(ar(ae);b) as h | 0, and
we suppose, as in Broze et a. (1998), that the corvergence is uniform in b. Finally,
because plimy £ (a7(a);b) = £ (a;b) and plimy Ly (a7;b) = Loo(ao;b), uniformly in
b € B (both by assumption), one can easily verify that for small A, this implies b(()h)(ao) =
arg maxp ng,)(ao; b) = arg max; £ (ao; b) = bo(ap). Thisis:
lim bg" (a0) = bo(av).

while for fixed h, it is assumed that there exists only one solution to the system 5{"”(a) =
bo(ag): this has the form A™(ay), with lim, o A™(ag) = ao. Now by proposition 6 in
Brozeetal. (1998), onehasthat v'N (nan(ao) — AM(ao)) LA N (0, £™) (for fixed i), where
»(® is such that limy, o =™ = 2V, 'T,Vj, and (28) follows for S = 1. In the preceding
expressions, Ty is defined as the limit of T\ as . | 0, V; is defined similarly, and T is the
limitof &€ (00" () - T®(a)- £ (00 (a)) 88 NV T o0, whereas V" isthe limit of

~(h)
lag—ﬁ(a) asN T oo. Thecase S > 1 issimilar.
a=AM (ag)
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Appendix C: How to rescale volatility for diffusions?

Here we provide details on how we rescaled ARCH-filtered volatility for diffusions. Let

us rewrite the first equation of the Euler-Maruyama discrete approximation of (1) in (2) as:
rn=th+ (1 —0h)r,_1+ \/ﬁon,h/rn,lun, n=1--- N, (Cy)

where N denotes thetotal number of points generated by the simulationsand w,, isNID(0, 1).
Simulated data are sampled every ¢ points. Iterating (C1) leaves:

o= = {1= =o'} +@—onyr,,
+\/ﬁ {O_nfl\/ Tp—1Un + (1 - eh) On—9y/Tn—2Un_1 + (1 - 8h>2 On—3yTn-3Up—2

Fo b (1= 0h) o Tnffun*(gfl)} :

Because a diffusion is continuous with locally bounded paths, when . is low enough » and ¢
do not move too much within the unsampled ¢ subintervals. Let us denote with 7, | and@%
the (random) representative values of  and ¢ within the unsampled intervals that are such that

the previous equation can be written approximately as:

{1= =o'} +@—omr,,

| =~

+6i71 ) \/E {un + (1 - Qh) Up—1 + -+ (1 - Qh)€71 un*(ffl)} Fﬁrl'
Our objective is to estimate each point of the sequence {5}, , inorder to useit to
filter the actual (discretely sampled) volatility path generated by the second equation of the

Euler-Maruyama discrete approximation of (1) in (2): {oj}f:/f = {o(¢- j)}f:/f.
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Rewrite the previous equation as:

ry = 5{1 (- eh)"} (1= 0h) T

ot |- \/ﬁ\/l + (1 - 9h)2 + (1 - 9h)4 Foee+(1— gh)Q(é’*l) Rt

n—1 n—1

1—(1—6hn)

_ g{l(1W}ngh)grnﬁgﬁl.dh@(19h)zg) \/K’gﬁb

where %‘ is a standard Gaussian variate.

Now all the models we used in this paper actually deliver an estimate of

ae.Jh(lagh)%) =020, N /e (C2)
! 1—(1—06n)? T

Uj

Therefore, an estimate of each point of the sequence { Eﬁ- } is obtained by inverting

j=£,20,- N /¢
formula (C2) to form the desired sequence:

ag.J 1—(1—0h)° vy, j=0,20,--- N/l (C3)
h(1— (1—9h)2")

In this paper, we used:

1
A

and the estimates of ¢ reported in Table 6 of the main text are such that |, /}1(11((1172’}?)% is
aways closeto 7.218.

h A =52 (=25

The filtered series of volatility reported throughout the paper are based on formula (C3)
(see, however, below for numerical improvements of thisformula). To relate the number found
before to the correction given in formula (19) for the intercept of the volatility equation, note
that:

Weam = A1 ATV2 4,



Here the correcting term is A~1/2 = 7.211, which in practice is very close to the conversion

factor given above.

In addition to being based on the stability of volatility within unsampled periods, the
conversion formula (C3) is based on the assumption that the (small) changes of o/r are not
autocorrelated. Relaxing such an assumption requires a much more complicated approach
with continuous updatings. A reliable aternative consists in finding numerically a conversion
formula similar to (C3). In this paper, we proceeded in the following way. We simulated 5000
times the continuous time system (1) in correspondence of the parameter estimates found in
section 5. Then we defined:

5000 N /e
N =

5000 - (N/é) P

where o;(¢ - j) and v;; are simulated volatility and filtered volatility as of time j obtained in
the ith smulation. We found that R ~ 6.928.
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