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Aim of this article is to judge the empirical performance of Arch as diffusion

approximations to models of the short-term rate with stochastic volatility and as ¿lters of

the unobserved volatility. We show that the estimation of the continuous time scheme to

which a discrete time Arch model converges can be safely based on simple moment conditions

linking the discrete time to the continuous time coef¿cients. A natural substitute of a global

speci¿cation test for just-identi¿ed problems based on indirect inference shows in fact that

this approximation to diffusions gives rise to a negligible disaggregation bias. Unlike previous

literature in which standard Arch models approximated only speci¿c diffusions, our estimation

strategy relies on a new Arch that approximates any Cev-diffusion model for the conditional

volatility. A Monte-Carlo study reveals that the ¿ltering performances of this model is

remarkably good, even in the presence of an important kind of misspeci¿cation.
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Great progresses have been recently made in the estimation of stochastic differential

equations. AØÕt-Sahalia (2000) developed a maximum likelihood estimator for scalar diffusions

whereby the unknown transitional density of the model can be approximated, in closed-form,

with great accuracy. Brandt and Santa-Clara (2001) and Durham and Gallant (2001), both

building on Pedersen (1995), proposed to resort to simulating high-frequency paths of the

state variables of the continuous time model and by means of these, recover the unknown

transitional densities, hence the approximate likelihood� the same methodology is applied in a

nonparametric fashion by Nicolau (1999). The nonparametric framework is employed also by

Altissimo et al. (2001), who develop a simulated nonparametric estimator based on matching

the true density of the data and a density simulated conditionally on a continuous time model

and given values of its parameters. The unanimous conclusion of these papers is that, as

the short interest rate dynamics is concerned, traditional univariate diffusions perform poorly

relative to bivariate continuous time models where the interest rate dynamics is coupled with

its conditional volatility dynamics. This ¿nding, not unexpected, represents the continuous

time counterpart of the universal ¿nding of Arch-type effects1 in time series of ¿nancial

price changes� it ¿nds theoretical justi¿cation in the initial contribution of Nelson (1990),

where some basic ARCH models are shown to be reasonable approximations to the diffusion

processes frequently used in theoretical ¿nance models.2

In this paper we wish to study the implications of using Arch-type models as i)

continuous time approximations to diffusions as well as ii) ¿lters in continuous time models

3 +�, This paper was written while the ¿rst author was at the University of Cambridge and the second
at the Princeton University. We thank Yacine Aït-Sahalia, Pippo Altissimo, Ron Gallant, Steven Satchell,
José Scheinkman and seminar participants at Princeton University and Cambridge University, the 1998
Econometric Society European Meeting at Berlin and the 1999 Society for Computational Economics
Conference at Boston College for helpful comments. Responsibility for any views or errors in the paper
rests with the authors.

4 See, e.g., Bollerslev et al. (1994), for a survey of the Arch literature. The unanimous ¿nding of conditional
heteroskedasticity in ¿nancial data has led researchers (e.g., Hull and White, 1987� Wiggins, 1987� Longstaff and
Schwartz, 1992� Heston, 1993) to extend early asset pricing theories (e.g., Black and Scholes, 1973� Merton,
1973� Vasicek, 1977) to the case in which volatility evolves in a stochastic manner.

5 The major contribution of Nelson to this strand of research can be found in part II of the book edited by
Rossi (1996).
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with unobservable state variables.3 More precisely, a continuous time models of the short-

term rate is used as a benchmark to test whether Arch-type models are indeed useful devices

to approximate and/or support the estimation of its parameters and to recover the dynamics of

the unobservable volatility, a research topic started by Nelson (1990) and subsequently, for no

apparent reason, abandoned. Indeed, according to Campbell et al. (1997, p. 381), the empirical

properties of Arch as approximations to continuous time stochastic volatility processes “have

yet to be explored but will no doubt be the subject of future research”.

Given the empirical success of constant elasticity of variance models (Durham, 2001),

our concern is ¿rst to broaden the Arch class by developing a model that approximates any

diffusion model where volatility follows a constant elasticity of variance process (henceforth

Cev-Arch) and then to check the functioning of the model to the aims stated above. The

main steps of the estimation phase will then be to show i) that the Cev-Arch speci¿cation

that we wish to employ as a reference model converges to a continuous time model for the

short term interest rate as the sampling interval shrinks to zero, ii) that one can easily use the

likelihood function of the Cev-Arch in lieu of the true likelihood function (which cannot be

computed analytically), iii) that, for the proposed continuous time model, the discrete time

Arch approximation is indeed successful in an application based on ¿tting the dynamics of the

short term rate and, last, iv) that the model makes no signi¿cant error in recovering the ’true’

volatility of the short rate.

Let us make clear from the beginning that the main dif¿culty faced in the estimation of

our continuous time reference model is in the second and in the third of the above mentioned

four steps. Though we will provide closed-form moment conditions linking the discrete time

to the continuous time parameters and which guarantee the weak convergence of the Cev-

Arch model toward the continuous time reference model, Arch schemes are typically not

closed under temporal aggregation (Drost and Nijman, 1993 and Drost and Werker, 1996)

and, for this reason, we need to test and correct potential ‘disaggregation’ biases� in this

additional step, Arch models will be viewed as DX[LOLDU\ devices in simulation-based (indirect

6 As widely recognized, Arch models are very appealing for statistical reasons, even though there exist
alternative econometric formulations that are surveyed, for instance, in Shephard (1996).
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inference) schemes.4 To anticipate, we ¿nd that the correction made by indirect inference is

not statistically signi¿cant, a result obtained via a global speci¿cation test for just-identi¿ed

models that was originally suggested by Gouriéroux et al. (1993).5

As stated in item iv) above, beyond caring about the ability of the Cev-Arch at correctly

estimating the parameters of its continuous time limit, we also want to make sure that the

model provides a good volatility ¿ltering. This is an important step of our analysis since, for

example, if one takes the two-factor model proposed below (see eq. (1)) as data generating

process for the short rate, then bond prices will depend both on the interest rate level and on the

level of the volatility, and this latter variable becomes an essential ingredient in the practical

implementation of a term structure model with stochastic volatility. We already know, from

a theoretical standpoint, that appropriate sequences of ARCH models are able to consistently

estimate the volatility of a continuous time stochastic process as the sample frequency gets

larger and larger, even in the presence of serious misspeci¿cations (Nelson, 1992� Nelson and

Foster, 1994).6 As put by Bollerslev and Rossi (1996), “one could regard the ARCH model as

merely a device which can be used to perform ¿ltering or smoothing estimation of unobserved

volatilities” (p. xiv). We provide evidence that the desiderable ¿ltering performances of

VWDQGDUG Arch models are also shared by the Cev-Arch, as one might have expected by a

suitable interpretation of the theory (see Nelson and Foster, 1994, theorem 4.1).

7 See Gouriéroux and Monfort (1996) for a full account of simulation-based inference methods. See also
Fornari and Mele (2001) for further work related to the diffusion approximation property of Arch in a derivatives
context.

8 Our empirical ¿ndings are obtained with the same data set as Andersen and Lund (1997d), who rely on
the ef¿cient method of moments (EMM) estimation proposed by Gallant and Tauchen (1996). The advantage of
the EMM estimator is that it achieves the same ef¿ciency as the true (intractable) maximum likelihood estimator
when the auxiliary model generates a density that ‘smoothly embeds’ the true likelihood function of the discretely
sampled diffusion. It should be clear that our estimation strategy has the aim of ascertaining whether our auxiliary
model is a reasonable approximation to the continuous time model. In technical terms, we are going to focus on
the empirically dif¿cult just-identi¿ed case, a strategy originally suggested in Gouriéroux et al. (1993) (p. S108):
“[Indirect inference] methods seem particularly promising when the criterion is based on approximations of
the likelihood function, time discretization, range discretizations, linearizations, etc. In this case the method is
simpler [...] and appears as an automatic correction for the asymptotic bias implied by the approximation”. In
our context, indeed, “the asymptotic bias implied by the approximation” is given by a disaggregation bias. While
not closed under temporal aggregation, Arch models still have a natural interpretation in terms of the continuous
time models that they approximate, being very close (in terms of probability distribution) to the approximated
continuous time models when the sampling frequency is high. Furthermore, the auxiliary criteria that we construct
are based on approximations that create a natural one-to-one interpretation of the sequence of the parameters of
the auxiliary discrete time model in terms of the parameters of the continuous time model (see section 3).

9 See Bollerslev and Rossi, 1996, (p. xiii-xvii) for a brief account on the ¿ltering performances of ARCH
models as applied to continuous time stochastic volatility models.
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The paper is organized as follows. Next section presents the basic structure of our

continuous time model� it also provides intuition and preliminary results on the estimation

and ¿ltering methods to be implemented with the help of Arch models that do not constrain

the elasticity of variance to one (the Cev-Arch). The econometric strategy is fully detailed

in section 3 while empirical results are in section 4� section 5 concludes and technical

considerations and proofs are gathered in the Appendices.

�� 7KH UHIHUHQFH FRQWLQXRXV WLPH PRGHO DQG WKH &HY�$UFK SURFHVV

The continuous time model that we wish to use in this paper has an instantaneous

volatility of the short-term rate which is a constant elasticity of variance process:;A?A=
_oE� � ' E
� woE���_� n jE� �

s
oE��_` E��E��

_jE� �B ' E/ � )jE� �B�_� n �jE� �Bu#_
�
4` E��E� ��

s
�� 42` E2�E��

�
c

(1)

where @ ' E
c wc Bc /c )c �c #c 4� is a vector of parameters, ` E��, � ' �c 2, are standard

Brownian motions, and B � �� The
s
oE��-term included in the diffusion term of the short

rate equation restricts this variable to positive values only and captures an empirical regularity

known as ‘level effect’, i.e., FRHWHULV SDULEXV, the short-term rate volatility rises with the level of

the short-term rate. Allowing for more general diffusion terms such as for instance jE�� moE��m_

E_ � f�D� is possible, though it would not change dramatically our empirical results.

As stated, objective of the paper is to use Arch-type models that allow i) the estimation

of the above continuous time parameters and ii) the extraction of the unobserved short-term

rate volatility process jE��.

To this aim, consider the following Euler-Maruyama discrete time approximation of (1):;?= �o�E&n�� � �o�& ' E
� w � �o�&�� n �j�&

s
�o�& � ���E&n��

�j
B
�E&n�� � �j

B
�& ' E/ � ) � �j

B
�&��n � � �j

Bu#
�&

s
� �
h1�E&n�� (2)

where � denotes the discretization step,�
���&

�
h1�&

�
� �U(

��
f
f

�
(

�
�

s
�4s

�4 �

��
c

and E�o�&c� j�&�
"
&'� are the discretized short-term rate and volatility processes.
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It is well known that when � & f (2) converges weakly (or in distribution) to (1).7

Hence, the higher the sampling frequency, the higher should be the accuracy of, say, maximum

likelihood (ML) estimates of @ obtained with (2). Unfortunately (2) represents a discrete time

stochastic variance model for which ML methods are rather hard to implement� in addition to

this, and with reference to the second of our aims, there are no obvious techniques to ¿lter the

actual volatility path out of (2).

A natural alternative to the estimation problem is represented by Arch models when

thought of as diffusion approximations, though not every diffusion can be approximated by

an Arch scheme. To get an intuition of how the approximating property works, consider the

standard Garch(1,1) of Bollerslev (1986):

j2
?n� ' � n qj2

? n k"2?c "? � E� � j�?c ? ' fc �c � � �

where �c q and k are parameters, (�c qc k)5 -�
n, " is the residual of an observation equation,

and the index ? is an abstract notation for sample points at discrete time intervals (a more

precise notation will be introduced in the next section). Rewrite the preceding equation as:

j2
?n� � j2

? ' � �
�
�� k.E�2�� q

�
j2? n kj2

?

�
�2? � .E�2�

�
c (3)

and suppose that � � �Efc ��. Chop time so as to make ? G �& � ? � �E& n ��, & ' �c 2c � � �

and let the parameters �c qc k vary with � by introducing sequences ��c q�c k�, and then let

� & f� the resulting volatility process converges in distribution to:8

_jE� �2 '
�
/ � )jE� �2

�
_� n �jE� �2_` E2�E��c (4)

: If (1) has a unique strong solution denoted as iu+� ,> �+� ,�j��3, ZHDN FRQYHUJHQFH of
ikukn>k ��knjn@4>5>=== in (2) to iu+� ,> �+� ,�j��3 means that the ¿nite dimensional distributions of
ikukn>k ��knjn@4>5>=== converge to those of iu+� ,> �+� ,�j��3 as k & 3. See Stroock and Varadhan (1979). It
turns out that the conditions demanded by Stroock and Varadhan (1979) are dif¿cult to verify when studying the
convergence of ARCH-type models. One then may wish to make reference to the conditions suggested by Nelson
(1990).

; To obtain an intuition of this result, notice that the sequence +�q,
4

q@4 � �
x
5
q �H+x5,

�
4

q@4
is an i.i.d.

sequence of centered chi-square variates with one degree of freedom and represents the discrete version of the
Brownian motion increments gZ +5,+�,. On the other side, the re-normalizing

s
5-term in the last equation of (5)

is explained by the fact that � @ x
5 � H+x5, @ x

5 � 4 is a chi-square variate with one degree of freedom and
has a variance equal to two. The normality assumption for x is not needed to obtain the convergence.
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where ;?=
*�4��f �

3��� ' /

*�4��f �
3� E�� k� � q�� ' )

*�4��f �
3�*2

s
2k� ' ��

(5)

Equation (4) may correspond to the volatility dynamics in (1) when B ' 2, # ' � and 4 ' f.

Similarly, it is possible to show that under conditions similar to (5), the so called Taylor-

Schwert model:

j?n� � j? ' � � E�� k.Em�m�� q�j? n kj? Em�?m � .Em�m�� c

also converges in distribution to the following diffusion limit:

_jE� � ' E/ � )jE���_� n �jE� �_` E2�E� �� (6)

Equation (6) may now correspond to the volatility dynamics of (1) when B ' # ' � and 4 ' f.

As these two basic examples should make clear, standard Arch models do not converge

in distribution to any unrestricted CEV process. Rather, in their diffusion limit, Arch models

typically make the variance of volatility proportional to the square of volatility, thus restricting

the elasticity of variance to unity. Since recent evidence in Durham (2001) shows that Cev

models are indeed successful in ¿tting interest rates data, we introduce an Arch scheme that

does not force the elasticity of variance to one.9 Consider, for instance, the following model:

j2
?n� ' � n kj2#

? m�?m
2# n qj2? n k.Em�m2#�

�
j2
? � j2#

?

�
c (7)

which can also be written as:

j2
?n� � j2

? ' � �
�
�� k.Em�m2#�� q

�
j2? n kj2#

?

�
m�?m2# � .Em�m2#�

�
c

and which collapses to the Garch(1,1) (3) when # ' �. In the next section and in Appendix

A we show that under conditions similar to those of Nelson (1990), this model converges in

< This class of models can be shown to satisfy the most salient theoretical properties of an optimal volatility
¿lter as developed in the optimal ¿ltering theory of Nelson and Foster (1994, theorems 4.1 and 5.2).
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distribution to:

_jE� �2 '
�
/ � )jE� �2

�
_� n �jE��2#_` E2�E� ��

Finally, to obtain convergence results closer to model (1), we shall be considering a

generalization of (7) that sets the volatility propagation mechanism to:

jB?n� ' � n kjB#? m�?m
B# n qjB? n k.Em�mB#�

�
jB? � jB#

?

�
� (8)

As before, we will show that at a high sampling frequency, the volatility process in (8)

converges in distribution to

_jE� �B '
�
/ � )jE� �B

�
_� n �jE� �Bu#_` E2�E� �c

which may correspond to the volatility dynamics in (1) when 4 ' f. Complications arising

from the presence of correlation will be treated by introducing asymmetries in the volatility

dynamics of (8).10

2.1 )LOWHULQJ DQG LQYDULDQFH SURSHUWLHV RI WKH &HY�$UFK� SUHOLPLQDU\ 0RQWH &DUOR HYLGHQFH

The practical relevance of the ¿ltering theory for Arch models can be grasped very

simply from Figure 1, which depicts the typical ¿ltering of an Arch model as applied to a

simpli¿ed version of (1). The straight line is one weekly sampled trajectory of the volatility,

43 In the same way one can introduce nonlinear volatility dynamics into discrete time models that match any
desidered feature of the resulting diffusion limit. Consider, for instance, the following model:

�q.4 @ +4 . z,�q � +4��H+mxm,� �,�5q . � +mxqm �H+mxm,,�6@5q =

Using the methods of section 3, it can then be shown that this model converges in distribution toward:

g�+� , @ i�+�, +$ � *�+� ,,j g� .#�+� ,6@5gZ +5,+� ,>

as the sampling frequency gets higher and higher. Likewise, one can adjust both the short-term and the volatility
equation to include both variables. In this paper, however, we will only test the adequacy of Arch-type models in
the estimation and ¿ltering of system (1).
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jE� �c simulated within the following model:;?= _oE�� ' E
 � w � oE� ��_� n
s
oE� � � jE� � � _` E��E� �

_jE�� ' E/ � ) � jE� ��_� n � � jE�� � _` E2�E��
(9)

where ` E��, � ' �c 2c are standard Brownian motions, 
c wc /c ) and � are real-valued

parameters ¿xed at their estimates obtained with US data (see section 4). The dotted line

represents instead the (rescaled) volatility obtained via an Arch model ¿tted to the weekly

sampled trajectory of the short-term rate oE� �, as simulated by (9)� of course, in estimating

the Arch model, we considered ourselves constrained to RQO\ knowing the realization of the

simulated oE��. In fact, ¿gure 1 visualizes one of the simulations performed in the Monte

Carlo experiment of section 4, but such a performance is typical of the overall experiment�

this can be gauged by the very tiny RMSE between the two trajectories computed over all

the simulations.11 More precisely, when we compared the volatility trajectories ¿ltered with

equation (8) and conditional on model (1) (with parameters set at the values in Table 5) to those

directly simulated from (1), we ¿nd that their patterns are very similar and similar also to those

of ¿gure 1. Table 1 reports precise results assessing the performance of this volatility ¿ltering

based on (8), where the common concept of volatility adopted to make comparisons is the

standard deviation. The result is what we call the ‘volatility ¿ltering error’, which is de¿ned

precisely in section 4. The ¿ndings reported in Table 1 are of the same order of magnitude

as those derived from a much more detailed analysis and illustrated in section 4. Notice also

that to compare the simulated volatility to the ¿ltered volatility, the latter has to be ”rescaled

for diffusions”� techniques for treating this issue are introduced and explained in great detail

in Appendix C.

When ascertaining whether (8) is able to deliver reliable parameter estimates beyond a

consistent ¿ltering of the unobservable volatility, it would be useful if some of the parameters

of the continuous time model could be eliminated from the estimation procedure. Our guess

is that B and # can be ¿xed at their discrete-time values, after assuming a sort of time-scale

invariance. To prove this we can only resort to numerical arguments: we considered model

(1) and ¿xed 4 ' f (consistently with susequent empirical evidence reported in section 4)

and the other coef¿cients at the values in Table 1. We then simulated (1) 1,000 times with

44 In addition to section 4, see Schwartz et al., 1993, for previous related work on similar models.
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an Euler-Maruyama approximation and sampled the simulated data at a weekly frequency (in

this simulation we allow for 25 intra-week observations). All the simulated weekly paths have

1,135 points, thus matching the sample size used in the empirical analysis (see section 4).

Finally, all weekly simulated short-term rate paths were ¿tted by a conditionally Gaussian

AR(1) model of the form:

o? ' �f n ��o?3� n
s
o?3�"? (�f, �� constants),

with (8) as volatility propagation equation.

Table 1 reports the results of the experiment. We begin with the case related to the

empirical evidence provided in section 4: there, we ¿nd that ¿tting (8) to actual US short-term

rate data produces estimates of B and # that are both statistically not distinguishable from unity.

Now Table 1 shows that when the data generating process in (1) has B ' # ' �, then (8) also

reproduces, on average, approximately the same ML estimates of B and #. Results not reported

here reveal that the same phenomenon occurs with other possible combinations of B and #. As

an example, Table 1 reports Monte Carlo results concerning the case in which B ' 2 and # ' �
2

in (8). Based on this evidence we remove B and # from the parameter vector @ and ¿x them at

their discrete time ML-based estimates.

2.2 6RPH DGGLWLRQDO FKDUDFWHULVWLFV RI WKH FRQWLQXRXV WLPH &HY PRGHO

Beyond providing a framework for CEV-type volatility modeling, (1) differs

signi¿cantly from previous stochastic volatility models, since it does not constrain the

‘volatility concept’ to be ‘variance’ or ‘standard deviation’� rather, in (1) B is a new parameter

that must be estimated from data. In the empirical section of the paper, for instance, we uncover

evidence that B �' � and, as already stated, that # �' �.12 To understand the inÀuence of B on

the dynamics of jB
| it may be interesting to recall that with # ' � and positive mean-reversion,

the volatility process jB, B � �, has a steady state distribution that is an inverted Gamma with

mean /
)

(e.g., lemma 3.1 p. 217 in Fornari and Mele, 1997@)� the stationary distribution of j

45 Engle and Lee (1996) ¿tted a restricted version of the volatility equation of model (1) to stock returns,
namely for � @ 5, and supported a model in which the volatility of volatility raised linearly with the square of
volatility, as our empirical ¿ndings do.
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is consequently given by

sBEj� �
B �
�
2/
�2

�2)n�2

�2

K
�
2)n�2

�2

� j
3 2B)nEBn���2

�2 i T

�
�
2/

�2 j
3B
�

(10)

(see lemma A.2, p. 227, in Fornari and Mele, 1997@). As shown by Fornari and Mele

(2000(chapter 5), the density sBE�� tends to shrink to the left as B decreases.

The volatility equation in (1) encompasses other formulations already encountered in

the stochastic volatility literature (see, for instance, Ball and Roma, 1994, and Taylor, 1994,

for a list of the typical models in the stochastic volatility option pricing area). This is the

case, for instance, of the non-stationary models of Hull and White (1987) or Johnson and

Shanno (1987), to which our volatility equation reduces when / � f. By Itô’s lemma, indeed,

Y � *L} j2 is solution of

_YE�� '
�
�
2)n �2

B
n 2

/

B
i T

�
�
B

2
YE� �

��
_� n

2�

B
_
�
4` E�� n

s
�� 42` E2�

�
�

(11)

Hence log-volatility mean-reverts in a QRQ�OLQHDU manner when / 9' f. Therefore, (11)

is rather different from the OLQHDU mean-reverting process for the log-volatility adopted in

Wiggins (1987) in a stochastic volatility option pricing domain and in Andersen and Lund

(1997@) or Gallant and Tauchen (1998) in a interest rate framework. To see this in more detail,

consider the linear mean reverting model utilized in Andersen and Lund,

_YE� � '
�
k � qYE��

�
_� n 1_` E� �

where ` is a standard Brownian motion and kc qc 1 are real constants. By Itô’s lemma, in this

model jB is the solution of

_jE��B '

#
ekB n 1

2
B2

H
jE��B � qjE� �B � *L} jE� �B

$
_� n

1B

2
jE� �B_` E� �c (12)

which becomes of course also the starting point of Wiggins (1987 eq. (2) p. 353 and eq. (15)

p. 361) when B � �. Although the volatility of volatility in (12) rises linearly with j2B, as in

(1) when # ' �, the drift behaves rather differently in the two volatility equations.
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Figure 2 (panel A) depicts a comparison between the stationary densities that are

generated by (11) and (12). The ¿rst is given by (10) and has been produced using the estimates

of section 4� the latter is just a log-normal density, and has been produced using the estimates

of Andersen and Lund (1997K). While the two models approximately put the same probability

masses on low levels of volatility, our model puts relatively more masses on high values of

volatility. An explanation of such a phenomenon can be found by comparing the drift functions

of the two models: as is clear from ¿gure 2 (panel B), the two drift functions are of the same

order of magnitude when volatility is low� once volatility visits higher regions, however, the

Andersen-Lund linear drift function pulls volatility towards its steady state expected value

more rapidly than the drift function of our model. This implies that our model generates

relatively more frequent episodes of high volatility than the Andersen-Lund model. Naturally,

our model does not encompass the Andersen-Lund scheme, but it should be more Àexible in

practice due to the presence of the additional parameter B in the volatility equation: should

the volatility equation in (1) be misspeci¿ed, such an additional parameter might give the

model additional Àexibility in ¿tting the statistical properties of the true volatility generating

mechanism.

�� 6WDWLVWLFDO LQIHUHQFH

As reported in the Introduction, various methods have been recently proposed to estimate

the parameters of a diffusion when sampling is not continuous, a situation in which the main

dif¿culty of ML methods arises from the likelihood function implied by the measure induced

by a discretely sampled diffusion being unavailable in explicit form.13

In this paper we follow the natural alternative consisting in making use of a (tractable)

exact likelihood function of a class of approximating models. The main idea, presented in the

previous section, consists in resorting to a suitably chosen class of ARCH models converging

in distribution to the solution of (1) as the sampling frequency gets in¿nite. However, since the

resulting likelihood function refers to a model converging in distribution to the solution of (1)

46 Following Lo (1988), ML estimation might turn out to be feasible if the transition density of iu+�,j��3
in (1) could be computed easily. Since this is not the case here — as in virtually all continuous time stochastic
volatility models — ML is computationally demanding, since it would require to implement a numerical solution
to a multi-dimensional partial differential equation at each iteration of the optimization algorithm. The likelihood
would then be recovered by integrating out with respect to volatility.
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that is QRW an Euler approximation of (1), we call the resulting criterion ‘quasi-approximated’

likelihood function.

The advantage of the quasi-approximated ML estimator is that it requires negligible

computational efforts. Its main drawback is that it is not necessarily consistent, as Arch

models are typically not closed under temporal aggregation� owing to this, a one-to-

one correspondence between convergence in distribution of the discrete time models and

disaggregation from a diffusion is not guaranteed.14 To quantify such potential drawbacks

of the procedure, we show how to construct a very precise testing procedure of the validity of

the moment conditions needed to guarantee the convergence to well-de¿ned diffusion limits�

as it turns out, such a testing procedure also gives information about the relevance of the

disaggregation bias. Our strategy is based on the consistency test originally suggested by

Gouriéroux et al. (1993, section 4.2), and it can be viewed as the natural substitute of a global

speci¿cation test in just-identi¿ed problems.

3.1 4XDVL�DSSUR[LPDWHG OLNHOLKRRG IXQFWLRQV

The rationale behind the quasi-approximated ML estimator that we propose lies in the

weak convergence of a class of Arch models towards the solution of (1). We start with

considering the restricted version of (1) that sets # � �( theorem 3.2 below treats the general

case. With # ' �, a model approximating (1) can be a discrete time approximation of the

short-term rate equation in (1) modi¿ed by introducing the so-called asymmetric-power Arch

model of Ding et al. (1993):

;AAAA?AAAA=
{o?n� ' {o? n 
{ � w{ � {o? n {j?n�

s
{o? � {�?n�

{"? ' {�? � {j?c {�?I
{
� � Efc ��

{j
B
?n� ' �{ n k{Em{"?m � � � {"?�

B n q{ � {j
B
?

(13)

where the indexing ? ' fc �c � � � refers to consecutive observations sampled at the same

frequency { (weekly, say), 
{c w{c �{ are of the form %{ ' %E{� � {, with 
E{�c wE{� real

parameters and �E{� : fc k{c q{ � fc � 5 E��c ��c B : f. Finally, � allows for the

47 Theoretically, such a correspondence exists only when the concept of an ARCH model is weakened (Drost
and Nijman, 1993, and Drost and Werker, 1996). Furthermore, Corradi (2000) recently criticized the conditions
in Nelson (1990) , necesary to achieve the convergence of the basic GARCH(1,1) to a diffusion� see footnote 16
for details on how to adapt Corradi’s critique to our setup.
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leverage effect originally observed by Black (1976), and incorporated by Nelson (1991) in

Arch-type models. To keep things relatively simple, we take advantage of the assumed time-

scale invariance for EBc #�� we also assume that � shares the same property.

Heuristically, to obtain the weak convergence towards the solution of (1), chop time as

�& � ? � �E& n ��:;AAAA?AAAA=
�o�E&n�� ' �o�& n 
� � w� � �o�& n �j�E&n��

s
�o�& � ���E&n��

�"�& ' ���& � �j�&c
���&I

�
� �Efc ��

�j
B
�E&n�� � �j

B
�& ' �� � E� � k� m���&mB E� � �r&�B�

3 B

2 � q���j
B
�&

(14)

(with r& ' signE���&� and, ;� : fc Ei
�jc iw�ji��jc ik�jc iq�j� 5 UD
n and � 5 E��cn��),

and impose suitable Lipschitz conditions on the ‘�-drift’ as well as non-explosion conditions

on the ‘
s
�-diffusion’ terms of volatility.

Nelson (1996, p. 19) was one of the ¿rst to suggest a model of the kind of (14) as

a discrete time approximation of a continuous time model for the short-term rate. More

speci¿cally, Nelson (1996) took B � 2 and � � f in (14), and pointed out that the resulting

scheme is the model of Brenner et al. (1996), slightly changed to admit a diffusion limit.

While the empirical results of this paper suggest a simpli¿cation of (1) in which B is one and

4 is nil, we provide here more general results that can be useful when applied to different data

sets and/or related problems. As originally remarked by Nelson (1996), the kind of results that

we are going to provide can be useful especially when a researcher is interested in the ¿ltering

performances of model (13) when 4 is not nil in (1).15

To save space, we shall be avoiding technical discussion on the construction of the

measure space in (14): technical details can be found in Nelson (1990) and are those exploited

in Fornari and Mele (1997@c K and 2000) (see also Duan, 1997, for related work). We only

introduce notation for the ¿ltration generated by i�o�E�3��c� jB
��j

&
�'�, which is I�&, and which

will be used in appendix A. Let the symbol , denote weak convergence. Recall that if a

random variable % is general error distributed then its density is written as
v i TE3 �

2
Q3vv �%�v�

2�nv
3�QvKEv3��

,

48 We slightly complicate the theoretical analysis allowing standardized residuals to be general error
distributed� however, such a possibility is not subsequently considered in the empirical section of the paper,
since Engle and Lee (1996) (see their tables 2 and 4) obtained indirect estimates that seemed to be dependent on
the distributional assumption made for the auxiliary model.
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where u2
v �

KEv3��

22*vKE�v3��
c v : f and KE�� is the Gamma function. The following convergence

result is an extension of theorem 2.3 p. 211 in Fornari and Mele (1997@) that allows for

the presence of the instantaneous correlation between i�o�&j&'fc�cuuu and i�jB�&j&'fc�cuuu as �

shrinks to nil:

THEOREM 3.1: /HW6Bcv '
2
2B
v
3�Q2B

v KE 2Bn�
v

�

KEv3��
c ?Bcv '

2
B
v
3�QB

vKE
Bn�
v

�

KEv3��
c DQG OHW ���&I

�
EH JHQHUDO

HUURU GLVWULEXWHG� /HW:

)� � �� ?BcvEE� � ��B n E� n ��B�k� � q�c(15)

�� �
t
E6Bcv � ?2Bcv�EE� � ��2B n E� n ��2B�� 2?2BcvE� � ��BE� n ��B � k�c

4 �
2
B3vn�

v uBn�
v KEBn2

v
� � EE� � ��B � E� n ��B�

KEv3��
t
E6Bcv � ?2Bcv�EE�� ��2B n E� n ��2B�� 2?2BcvE� � ��BE� n ��B

(16)

DQG VXSSRVH WKDW *�4��f �
3�
� ' 
c *�4��f �

3�w� ' w DQG:

*�4��f �
3��� ' / 5 Efc4�c

*�4��f �
3�)� ' ) 	4c

*�4��f �
3�*2�� ' � 	4�

(17)

7KHQ� i�o�E&3��c� jB�&j&'fc�cuuu , ioE� �c jE� �Bj�Df DV � & fc ZKHUH ioE� �c jE� �Bj�Df DUH

VROXWLRQV RI (1) ZKHQ # � �.

Let, in addition:

�1�& �

������&I
�

���B E�� �r&�
B � .E

������&I
�

���B E� � �r&�
B�t

E6Bcv � ?2Bcv�EE� � ��2B n E� n ��2B�� 2?2BcvE�� ��BE� n ��B
c

then the preceding approximation result says that when � shrinks to zero and the moment

conditions in (17) are ful¿lled, the distribution of the sample paths generated by the following
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model, ;?= �o�E&n�� � �o�& ' E
� � w� � �o�&� n �j�E&n��
s

�o�& � ���E&n��

�j
B
�E&n�� � �j

B
�& ' E�� � )� � �j

B
�&� n �� � �j

B
�& � �1�&

(18)

gets ‘closer and closer’ to the distribution generated by the sample paths generated by (1),

with 4 given by (16). Comparing (13) to (18) then suggests an estimator based on moment

conditions� speci¿cally, the TXDVL�DSSUR[LPDWHG ML (q-aml) estimators of /c)c � that we

propose are

/q-aml � {3�*2 e�{c

)q-aml � {3�e){c

�q-aml � {3�*2e�{c

(19)

where e){c
e�{ are obtained by means of (15)-(16) computed in correspondence of the qml

estimator of model (13), e�{ is the qml estimator of �{ of model (13). The q-aml estimator of

B is the qml estimator of B in model (13), and the q-aml estimators of 
 and w are as those of /

and ) above. Finally, the q-aml estimator of 4 is obtained by plugging the qml estimators of

(Bc vc �) in formula (16).16

While recognizing that weak convergence results such as those contained in theorem

3.1 are obviously related to parametrization issues, in the empirical section we ¿nd that not

only the parametrization in (14) provides a reasonably good picture of the volatility dynamics,

consistently with the theoretical results of Nelson and Foster (1994), but it even passes the

49 The estimators in (19) are based on the moment conditions (17) and as we noted before, they may be
affected by a disaggregation bias� furthermore, Corradi (2000) questions the realism of the moment conditions
that Nelson (1990) originally imposed to show the weak convergence of the Garch(1,1) towards a continuous time
stochastic volatility model. Her reasoning can be generalized here as follows. In the third equation of (14), the
term generating the diffusion terms of volatility is proportional to +k�

�

5�k, � mkxknm� , which is of course Rs+
s
k,

under the third moment condition in (17). In other terms, a condition for a diffusion to be obtained is to scale the
variance of mkxknm� with a diverging sequence. In general, one would generate diffusion terms with �k � mkxknm�,
where �k � R+kt,> t 5 U. This leaves three alternatives:

– a) ^ ' �3B
2

.

– b) ^ 	 �3B
2

.

– c) ^ : �3B
2

.
The ¿rst condition is another way to express the condition under which (14) has a well-de¿ned diffusion

limit� the second condition implies that (14) does not converge to any diffusion limit� the third condition implies
a ‘degenerate’ diffusion limit, i.e. with identically zero diffusion terms.
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global consistency test that checks, ex-post, the accuracy of the approximation in (15)-(16)

and that we present below.

Consider now the case of interest to this paper based on generalizing both (7) and (8) by

means of the following model:;AAAAAA?AAAAAA=

{o?n� ' {o? n 
{ � w{ � {o? n {j?n�
s

{o? � {�?n�

{"? ' {�? � {j?c
{�?I
{
� }e_v

{j
B
?n� ' �{ n k{Em{"?m � � � {"?�

B# n q{ � {j
B
?

nk{ � .
�
Em{�?m � � � {�?�B#

�
�
�
{j

B
? � {j

B#
?

�
�

(20)

Chopping time in (20) as in (13), and rearranging, yields:;AAAAAAAA?AAAAAAAA=

�o�E&n�� ' �o�& n 
� � w� � �o�& n �j�E&n��
s

�o�& � ���E&n��

�"�& ' ���& � �j�&c
���&I

�
� }e_v

�j
B
�E&n�� � �j

B
�& ' �� �

�
�� �3

B#

2 .
q
m���&m

B# E�� �r&�
B#
r
k� � q�

�
�j

B
�&

nk� �
�
m���&m

B# E�� �r&�B# � .
q
m���&m

B# E� � �r&�B#
r�

�3
B#

2 j
B#

�&�

(21)

We have:

THEOREM 3.2: /HW

)� � � � ?B#cvEE�� ��B# n E� n ��B#�k� � q�c(22)

�� �
t
E6B#cv � ?2B#cv�EE�� ��2B# n E� n ��2B#�� 2?2B#cvE�� ��B#E� n ��B# � k�c(23)

DQG

4 �
2
B#3vn�

v uB#n�
v KE B#n2

v
� � EE� � ��B# � E� n ��B#�

KEv3��
t
E6B#cv � ?2B#cv�EE�� ��2B# n E� n ��2B#�� 2?2B#cvE�� ��B#E� n ��B#

� (24)
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6XSSRVH WKDW *�4��f �
3�
� ' 
, *�4��f �

3�w� ' w DQG:

*�4��f �
3��� ' / 5 Efc4�c

*�4��f �
3�)� ' ) 	4c

*�4��f �
3�*2�� ' � 	4�

(25)

Then, i�o�E&3��c� j
B
�&j&'fc�cuuu , ioE� �c jE� �Bj�Df as � & fc where ioE� �c jE� �Bj�Df are

solutions of (1) and i�o�E&3��c� j
B
�&j&'fc�cuuu are solution of (21).

In the same way one can make a creative use of other asymmetric Arch models to obtain

convergence to models with correlated Brownian motions. We brieÀy show this in Appendix

A.

3.2 4XDVL LQGLUHFW LQIHUHQFH

We test and correct the potential disaggregation bias of the q-aml estimator with the

indirect inference principle. The procedure that we follow is a natural generalization of

Broze et al. (1995) and allows the volatility of the short-term rate to evolve in a stochastic

and DXWRQRPRXV manner. Formally, if we replace the normality assumption with the g.e.d.

assumption for the innovation process � in (21) (see section 3.1), the q-aml estimator of

K ' E{3�
{, {3�w{, {3�*2�{, {3�){, {3�*2�{, �, B, #, v�� in (20) is (where v is the

tail-thickness of the ged distribution):

@q-aml � eK� ' @h}4@ 
K
1�E{o( K�c

where 1�E{o( K� is the likelihood function implied by (20), � is the sample size, and {o is the

observations set, which is supposed to be a discretely sampled diffusion from (1) when the true

parameter vector is @f. Note that dimEK� : dimE@�. In the empirical implementation below,

however, we shall consider the Gaussian case in which v � 2 and, motivated by the Monte

Carlo ¿ndings reported before, we impose the time-scale invariance of B and #. As already

stated, we assume the same for �, leaving for future research the task of ascertaining whether

such a time-scale invariance of � is a reasonable assumption in practice. Accordingly, we re-

interpret K as a vector in an open subset of UD (with coordinates {3�

{, {3�

w{, {3�*2
�{,

{3�
){, {3�*2

�{), 1�E�� as a normal likelihood function with Bc # and � ¿xed at pre-speci¿ed

values (e.g. at the preliminary qml estimates obtained by ¿tting model (20), see section 4), and

@ as a vector in an open subset of UD, with coordinates 
c wc /c )c �.
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It is well known that under standard regularity conditions (appendix B), one has

asymptotic normality of the pseudo-ML estimator,

s
�

�eK� � KfE@f�
�

_$ N
�
fc

��

1
3�
" E@f( KfE@f�� � aE@f��

��

1
3�
" E@f( KfE@f��

�
c

where
��

1" E�� and aE�� are de¿ned in appendix B, and KfE�� is the so-called ELQGLQJ IXQFWLRQ:

KfE@f� ' @h} 4@ 
K
1"E@f( K�.

However, the true law of {o, as implied by the data generating mechanism, say �fE{o�, is such

that

�fE{o� *5 i1�E{o( K�c K varyingj c

and the discrete time model is expected to behave in a way that allows for a discretization bias:

KE@f� 9' @f�

The reason why we may also refer to the preceding inequality as a ‘discretization bias’ is

that when we chop time in (20) by creating sequences of the form i
�c w�c ��c k�c q�j, and

substitute the moment conditions (22)-(25) of theorem 3.2 in (21), thereby creating a stochastic

process i�o�&c� jB�&j&'fc�cuuu solution of:;?= �o�E&n�� � �o�& ' E
 � w � �o�&��n �j�E&n��
s

�o�& � ���E&n��

�j
B
�E&n�� � �j

B
�& ' E/ � ) � �j

B
�&�� n � � �j

B#

�&

s
� �1�&c

(26)

then (20) is embedded in i�o�&c� jB
�&j&'fc�cuuu (namely for � � {), although

i�o�&c� jB�&j&'fc�cuuu converges weakly to the solution of (1) under the limit conditions given

in theorem 3.2.

Indirect inference methods correct the preceding bias in the following manner. Consider

simulating (26) for small �. This is accomplished by setting �c B and # to their ML estimatese�ceB, e#, assigning values to @ ' E
c wc /c )c ��, and drawing ���&I
�

from the normal distribution�

one obtains �c�hoEr�E@� ' i�hoEr��& E@�j
�*�

&'fc r ' �c � � �c 7, where 7 is the number of simulations.

For each simulation retain the (� ) numbers �hoEr��& E@� that correspond to integer indexes of time,
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and estimate the auxiliary model on each series of simulated data:

eKE���crE@� ' @h} 4@ 
K
1�E{c�hoEr�E@�( K�c r ' �c � � �c 7c

where {c�hoEr�E�� denotes the set of the simulated short-term rate with integer indexes of time

at simulation r and interval �. In our speci¿c just-identi¿ed problem (_�4E@� ' _�4EK�), the

indirect estimator of @ is then the solution (provided it exists) of the following ¿ve-dimensional

system:

f ' eK� � �

7

S7

r'�
eKE���crE@��

If �e@�E@f� denotes the solution of the preceding system, its asymptotic distribution can be

obtained, heuristically, as follows. Expand the preceding system of equalities around @f:

eK� � �

7

S7

r'�
eKE���crE@f� '

#
�

7

S7

r'�

YeKE���cr

Y@
E@f�

$
E�e@�E@f� � @f� �

For large � , the preceding is in fact an equality in distribution, and the covariance matrix

of E �
7

S7

r'�

YeK
E��
�cr

Y@
E@f��E�e@�E@f� � @f� is the covariance matrix of eK� � �

7

S7

r'�
eKE���crE@f�, i.e.

E� n �
7
�covEeKE���crE@f��, and one has:

s
� E�e@� E@f�� @f�

_

� % 4c � & f$ N

�
fc

�
� n

�

7

�
T
3�
f KfT

�3�
f

�
c (27)

where Kf is the covariance matrix of the simulated estimator and Tf � YK
Y@
E@f�, i.e. the Jacobian

of the binding function evaluated at @f. Broze et al. (1998) proved the preceding result in

great generality — i.e. in the case of a general diffusion in U, — and to avoid bias due to

the discretization step used during the simulations (hence the label ‘quasi’-indirect inference),

they also suggested to take � ' �
3_ with _ :

�
2
. In appendix B we check the conditions of

Broze et al. (1998) that ensure that (27) holds for the scheme proposed here.

Notice also that (26) do QRW represent the Euler approximation of (1), but this is not

a disturbing feature for it has been known since Broze et al. (1998) that implementing the

indirect inference estimator just requires the weak convergence of the high frequency simulator

toward the solution of (1)� see also appendix B. For reasons of comparisons, however, the
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empirical section also considers the case in which the high frequency simulator is the Euler-

Maruyama approximation of (1) (i.e. (2)).

Finally, a global speci¿cation test for the adequacy of the approximating model (20) is

easily implemented. It is suf¿cient to use the consistency test of Gouriéroux et al. (1993,

section 4.2 and appendix 3), designed to verify the existence of a ¿xed point of the binding

function:

H0 G @f ' KE@f��

Let U denote the identity matrix in UDfD. Under Hf, one has that (see Appendix B for the

de¿nition of the terms
��

1" and a):

s
�

�eK� � �

7

S7

r'�
eKE���crE

eK� ��

_$ N

�
fc

�
U � YK

Y@
E@f�

�
��

1
3�
" a

��

1
3�
"

�
U � YK

Y@

�

E@f�

�
n

�

7

��

1
3�
" a

��

1
3�
"

�
�(28)

�� (PSLULFDO DQDO\VLV

4.1 7KH GDWD

We use weekly data for the 3-month US T-Bill rates as an approximation to the short-

term rate.17 The motivation for using weekly data lies in an attempt of avoiding problems

raised by market microstructure effects. This is the same data set used by Andersen and Lund

(1997@,K), but here we restrict attention to the sample going from May 30, 1973 to February

22, 1995, which has 1135 observations.

Raw data are converted into instantaneous ¿gures, hereafter referred to as o. Table

2 contains some preliminary statistics for o and its autocorrelation function, showing high

persistence in the data. Nonstationarity is formally tested through an augmented Dickey-Fuller

test, according to which data are borderline stationary. As an example, the statistic takes a

value of �2�e�D at lag 5, which is roughly the threshold value for rejecting nonstationarity

with a 90 percent probability� more generally, one rejects nonstationarity at the 85-90 percent

4: See Chapman et al. (1999) for an analysis concerning the validity of such an approximation.
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to the extent of the 15-th lag, but given the low power of the test, even such a slight rejection

can be symptomatic of stationarity in the data. It is worth noticing that the same kind of results

holds for the full sample originally employed in Andersen and Lund.

4.2 )LWWLQJ WKH VKRUW UDWH� DX[LOLDU\ GLVFUHWH WLPH PRGHO

We start by estimating model (20). Consistently with previous results of Andersen

and Lund (1997@) we do not ¿nd evidence of leverage effects, since the estimate of � is

not statistically signi¿cant� further, the model gives rise to stable dynamics for the volatility

process. As regards the estimates of B and #, we ¿nd that they are ��f�2S and ��ff�e,

respectively, statistically not distinguishable from unity, which allows, as mentioned in the last

section, an additional simpli¿cation to model (1) by ¿xing B ' # ' �. Such restrictions, along

with � ' f, will propagate into a much faster indirect inference phase. In the model that we

select as an auxiliary device, we thus restrict EBc #c �� � E�c �c f�. Due to numerical stability

issues, model (20) was estimated without explicitly disentangling the sample frequency, i.e.

under the restrictions EBc #c �� � E�c �c f�, the model was cast as:;?= o? ' Sf n S�o?3� n o
�*2
?3� � "?c "? � E� � j�?c � � �U((0,1)

j? ' � n k m"?3�mn qj?3�c ? ' 2c � � �c �c

(29)

where io?j�?'� denotes the observed (weekly) series, and ESfc S�c �c kc q� are real parameters.

The correspondence between the estimators of the parameters in (20) and (29) is easily written

as:

eK� � @q-aml ' {f n{� e6� c

where e6� denotes the vector of the ML estimators of the parameters in (29), {f '

E f {3� f {3� f ��, and

{� '

3EEEEC
{3� f f f f
f �{3� f f f
f f {3�*2 f f
f f f �f�.bH �{3� �{3�

f f f f�Sf� �{3�*2 f

4FFFFD c

with { ' �
D2

. Similarly, the Jacobian of the binding function that has been used to report the

t-statistics and the consistency tests in Table 6 is based on the set of parameters of the auxiliary
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model (29): to such a set of parameters is associated a binding function of the form 6 ' 6E@�,

and the relationship between the Jacobians of K and 6 is

YK

Y@
E�� ' {�

Y6

Y@
E��� (30)

Model (29) is the absolute-value model of Taylor (1986) and Schwert (1989) with normal

errors, studied by Nelson and Foster (1994) and Fornari and Mele (1997@). Its main advantage

over the more usual variance speci¿cations is that it delivers estimates of volatility that are

relatively more robust to the presence of possible outliers in the data. In this case, we also

know that the invariant distribution of the residuals is approximately a generalized Student’s-t

when B ' v (theorem 3.3 p. 218 in Fornari and Mele (1997@)), which reduces to the celebrated

Student’s-t result of Nelson (1990) when B ' v ' 2.18

As mentioned in section 3, we consider normally distributed errors only (i.e. v ' 2�,

since expanding into non-normality makes the resulting model non-stationary.19 Hence, we

are left with a speci¿cation in which EBc #c v� ' E�c �c 2�, and it is possible to show that in

this case the invariant distribution of " is more leptokurtic than the Student’s-t obtained when

EBc #c v� ' E2c �c 2�. Speci¿cally, by applying theorem 3.5 p. 218 in Fornari and Mele (1997@),

the invariant distribution of the residuals of (29) is given by

� E"� '

�
2/
�2

� 2)n�2

�2

s
2Z � K

�
2)n�2

�2

� ] "

f

%
3 2)n��2

�2 i T

�
��

2
"
2
%
32 � 2/

�
2 %

3�
�
_%c " � "s

�
c (31)

as � & f. Figure 3 compares the density in (31) with a normal density with variance equal to

E/ %)�2 where /c) and � have been ¿xed at the values shown in the second column of Table

6� its shape suggests that it should capture the usual stylized facts of the unpredictable parts of

the vast majority of ¿nancial time series.

4; To recall,  is the tail-thickness parameter of the ged distribution (see section 3.1) and � is the power to
which � is raised (see eq. (21)).

4< Such a phenomenon is also noted by Andersen and Lund (1997d), who show that a speci¿cation based
on EGARCH-type models is more stable when the errors of the model are not normal. Motivated by further
empirical ¿ndings of Andersen and Lund (1997d), we also tried to include further lags in the volatility equation,
but we did not observe any signi¿cant improvements.
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Table 3 reports the qml estimates of model (29). The condition for covariance-

stationarity of this model, reported in Theorem 3.1, i.e. 2�?�c2k n q ' f�.bH � k n q 	 �

holds for the qml estimates reported in Table 3� the persistence of the the volatility propagating

process is f�bb�.

Table 4 presents summary statistics of the volatility ¿ltered by the model (not yet

”rescaled for diffusions”), and Figure 4 depicts its behavior in the sample. For reasons of

comparisons, we also depict the ¿rst differences of o. The model appears to successfully

capture some stylized features of the data, including the high volatility induced by the

‘Monetary Experiment’ of the early 80’s. It is also worth noticing that perhaps due to such an

isolated and yet relatively persistent episode, the long run volatility as implied by the parameter

estimates attains the value of �
�3f�.bHuk3q ' �D�eDH��f3�, which is more than twice the average

value of the ¿ltered volatility for the whole sample. Because the estimated volatility wanders

in a range of variation of about f�f2S, however, such a difference is negligible: when we

compute the ratio of the difference between the long run and average volatility to the range of

variation, we ¿nd that it equals f��2�.

4.3 &RUUHFWLRQ RI WKH GLVFUHWL]DWLRQ ELDV� FRQVLVWHQF\ WHVWV� DQG ¿OWHULQJ

The second column of Table 5 reports the q-aml estimates of the continuous time model

to which (20) converges based on (8)-(10). To correct their potential disaggregation bias we

implement the indirect inference setup by simulating system (1) with the Euler-Maruyama

approximation20 (2) with �
3� � ��ff, which corresponds to generating 25 sub-intervals

within a week. With an observations set of � ' ���D, this implies that � ' �
3,, with

, * ��f�b� :
�
2
, guarateeing that the conditions developed in Broze et al. (1998) to avoid

simulation biases are ful¿lled. We use 7 ' Df simulations. The estimation results are in the

third column of Table 5. The correction made by indirect inference does not appear to matter:

none of the q-aml estimates lies outside the usual 95 percent probability bands around the

corresponding indirect inference estimates and, more importantly, when we formally checked

the adequacy of the auxiliary model through the consistency test described in section 3, we

found that the adjustment speed of the short-term rate is the only parameter that does not pass

the test at the standard 95 percent level.

53 Using (26) as simulation device does not alter our estimation results.
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Such ¿ndings are of special interest here since Drost and Nijman (1993) showed that

Arch models aggregate only when one weakens the very concept of Arch, introducing the

so-called weak-Arch process� more importantly, Drost and Werker (1996) generalized the

Drost and Nijman setting by introducing the so-called Arch diffusion which is, heuristically,

the continuous time stochastic volatility process whose implied discrete differences form a

weak-Arch process. A natural interpretation of our empirical ¿ndings is that even though the

standard Arch models do not aggregate, they still remain, for a given frequency, an excellent

approximation to the continuous time models toward which they converge in distribution, at

least insofar as they are a natural proxy to the corresponding (discrete time) weak-Arch models.

Naturally, these are issues that deserve a deep theoretical investigation that we leave for future

research.

To check that the previous estimation results do not depend on the dimension of the

simulation experiment (7 ' Df), we implement a sort of reverse exercise that consists

in looking for the Arch model that one can expect to estimate if the true data generating

mechanism happens to be (1). Speci¿cally, we simulate (1) with parameters ¿xed at the

indirect inference estimates of Table 5, sample the short-term rate at weekly frequency and

estimate model (29) with such sampled data. We repeat the experiment 5000 times, removing

the simulations for which there was not stationarity for the short-term rate and volatility

(i.e.those where the persistence was greater than one). Notice that as a by-product of such

an experiment, we will also get an assessment of the ¿ltering performance of model (29).

Table 6 provides some basic statistics of the estimates and Figure 5 displays their relative

frequencies. The distributions of the estimates are concentrated around the values of the

estimates reported in Table 3: speci¿cally, the standard 95 percent con¿dence bands of the

Monte Carlo estimates are suf¿ciently tight to ensure statistical signi¿cance� yet they contain

the ¿gures corresponding to the true estimates reported in Table 3.

The ¿ltering performance of the model is gauged in the following manner. Let

j�c? denote the volatility simulated at the ��th replication and sampled at ?, and ej�c? is

the corresponding (rescaled) Arch estimate. We are interested in evaluating the average

¿ltering error in all the simulations, iH�jDfff�'� , where H� � �
���D

S���D
?'� Ej�c? � ej�c?�.

Figure 6 displays the Monte Carlo distribution of the average ¿ltering error. It has an
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average value of b�S�0��f3D and a standard deviation of ��2.5��f3� The RMSE, de¿ned ast
�

Dfff

SDfff
�'� E

�
���D

S���D
?'�Ej�c? � ej�c?�2�, is equal to 0.0209.

The last objective of this section consists in showing that even in the presence of a kind of

misspeci¿cation which could be easily faced with in many applications involving the modeling

of interest rates, the kind of models considered in this paper still remain a valid reference,

at least insofar as one considers volatility ¿ltering issues. Suppose, in other terms, that the

data generating process (under the objective measure) is a three-factor model including the

short-term rate, stochastic volatility, and a stochastic central tendency factor, this factor being

a time varying conditional long-run mean of the short term rate. The question we want to

answer to is: are the ¿ltering results of this paper still valid when we attempt at extracting

the (unobserved) stochastic volatility of such a data generating process? In addition to its

obvious practical content, such a problem is directly related to previous theoretical work by

Nelson (1992) and Nelson and Foster (1994). As mentioned in the Introduction, these authors

produced many theoretical results based on more or less restrictive assumptions. The message

of such results is that even in the presence of serious misspeci¿cation, Arch models still remain

robust volatility ¿lters. Now we wish to ascertain whether such results hold in an experiment

in which Arch models are used to reconstruct the volatility dynamics of a three-factor data

generating process.

To this end, we implement a Monte Carlo experiment in which we ¿t model (29) to 1,000

simulated trajectories of a three-factor model that extends in a natural way model (9) as

;?=
_oE� � ' w E,E� �� oE� �� _� n

s
oE� �jE��_` E��E��

_jE�� ' E/ � )jE��� _� n �jE� �_` E2�E� �

_,E�� ' EK� � K2,E��� _� n K�

s
,E��_` E��

(32)

where ` E��, � ' �c 2c �, are standard Brownian motions, wc /c ) and � are ¿xed at the indirect

inference estimates of Table 5, and K�, � ' �c 2c �, are ¿xed at the values suggested by Andersen

and Lund (1997K), i.e. K� ' f�ff.H, K2 ' f��2D. and K� ' f�feb�c and repeat the same

expertiment as before. Table 7 provides the results. Even though model (29) is neglecting

one of the factors of (32) (namely, the stochastic central tendency factor, ,E� �), it exhibits

remarkable volatility ¿ltering properties. The Monte Carlo volatility ¿ltering error is of the

same order of magnitude as in the previous experiment and, again, the resulting dynamics
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of simulated vis-à-vis ¿ltered volatility trajectories display the same patterns as in ¿gure 1.

Considered as a (stochastic) volatility ¿lter, model (29) would be hardly rejected as a valid

tool of analysis, even in the presence of the neglected factor.

�� &RQFOXVLRQ

The intent of this paper was to explore to which extent Arch models can be practically

used for the purpose of providing parameter estimates and volatility ¿ltering in diffusion

processes. Since the VWDQGDUG Arch models that have traditionally been used in the empirical

literature do not approximate all diffusion models, we considered a reasonably wide class of

models, named CEV-Arch, that converges toward any unrestricted CEV diffusion process as

the sample frequency becomes larger and larger. While the searching strategy followed in

this paper to the aim of approximating diffusions by means of Arch can be used to construct

Arch sequences converging to yet more general diffusion processes, our central focus was the

special case of volatility following a CEV-diffusion with linear drift.

Despite the fact that the CEV coef¿cient of volatility was left unrestricted, we provided

empirical evidence supporting a model in which the (stochastic) volatility process of the

short-term rate follows a diffusion process with XQLW elasticity of variance. In addition, we

made use of simulation-based techniques to implement a global speci¿cation test for just-

identi¿ed problems and provided evidence that (suitably rescaled) ARCH estimates of relevant

parameters are statistically not distinguishable from estimates that one obtains with, say,

indirect inference methods. Finally, the volatility ¿ltering performances of the models are

excellent. Even if one extracts the volatility from a three-factor model and uses a two-factor

model only as a ¿lter, the volatility ¿ltering errors have the same order of magnitude as in the

absence of misspeci¿cation. This ¿nding suggests very simple and yet ef¿cient tools to extract

the (unobserved) volatility of a diffusion.
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Table 1

0RQWH &DUOR VWXG\ @

parameter true average median std.dev.
B � ��f.2D 1.0206 0.1273
# � ��fHeb 1.0834 0.0961
volatility ¿ltering error �� -1.1163�103e K -2.2082�103e 4.5025�103�

B 2 2.0047 1.9737 0.2474
#

�
2

0.6178 0.6132 0.1320
volatility ¿ltering error �� -1.4995��f3� S -2.3333��f3e 5.6091��f32

@ The third column reports the average ML estimates of B and # in (1) obtained by ¿tting an AR(1) model

with volatility equation given by eq. (9) to 1000 simulated weekly sampled trajectories from the stochastic

differential equation system (2). In these simulations, 
 ' 8��f3�, w ' f���c ) ' f��H and B and

# are ¿xed at the values of the second column, with A) / ' f�f�, � ' f�H when B ' # ' �, and

B) / ' 2��S � �f3�, � ' f�fS when B ' 2 and # ' �
2

. The fourth and ¿fth columns report

the Monte Carlo median and standard deviation of such estimates. The case B ' # ' � corresponds to

the actual estimates obtained in section 4. The Table also reports the Monte Carlo average (with the RMSE

and the steady state expectation of j in parentheses), median and standard deviation of the volatility ¿ltering

error.

KERMSE: ��HSfb � �f32� E/ %) ' .�HbD � �f32�(
S (RMSE: ��SSb2 � �f32�( E

t�
/ � �

2
*e
�
%) ' S��bHD � �f32��

Table 2

6XPPDU\ VWDWLVWLFV RI o

mean median maximum minimum std. dev. skewness kurtosis
0.070 0.068 0.155 0.026 0.026 0.828 3.681

$XWRFRUUHODWLRQ IXQFWLRQ RI o

lag 1 2 3 4 5 10 30 50
autocorrelation 0.995 0.998 0.979 0.971 0.961 0.914 0.789 0.696

The time series o is the short-term interest rate as de¿ned in section 4 of the main text. It is a sample of 1,135

observation of the US 3-month T-Bill rate. It is observed between May 30, 1973 and February 22, 1995.
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Table 3

40/ HVWLPDWHV RI ����@

parameter estimate t-stat K

Sf ��DD5��f3e 2�fb
E2�DH�

S� f�bb.b S�.bu�f2
Eb�HSu�f2�

� ����0��f3e e��S
E��e��

k f��Dfe ���fD
E���.S�

q f�H.2H b��b.
E��b��H�

@ QML is the quasi-maximum likelihood estimation of the short rate dynamics. K Bollerslev-Wooldridge

(1992) robust t-statistics in parentheses.

Table 4

6XPPDU\ VWDWLVWLFV RI WKH FRQGLWLRQDO YRODWLOLW\ j DV ¿OWHUHG E\ ���� @

mean median maximum minimum std. dev. skewness kurtosis
.��f2�103� D�eH��103� 2�HfD�1032 2�fe2�103� e��fS�103� 1.761 6.048

@ Not rescaled for diffusion (see Appendix C).

Table 5

3DUDPHWHU HVWLPDWHV @

parameter q-aml II II t-stat consistency tests

 0.0081 0.0082 3.04 �0.6727
w 0.1067 0.1108 2.92 �2.0855
/ 0.0418 0.0301 2.98 �1.2177
) 0.3736 0.3806 3.01 �0.1275
� 0.6540 0.8092 3.23 0.1390

@ The second column reports the estimates of the parameters in (1) obtained with the moment conditions

(18) and (20). The second column reports estimates obtained via the indirect inference (II) strategy explained

in section 3, and the third column gives the corresponding t-statistics computed using the variance in (28)

and (30) as the Jacobian of the binding function. The last column reports the ratio of each element ofeK� � �
7

S7

r'�
eKE���crE

eK�� to the corresponding standard error computed from the variance in (29) and

using (30) as the Jacobian of the binding function.
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Table 6

0RQWH &DUOR VWXG\ @

parameter average median std. dev.
Sf 1.640��f3e ��S�0�103e ���e0��f3D
S� 0.9974 0.9976 ��.S4��f3�
� 1.210��f3e ����0�103e e�e20��f3D
k 0.1548 0.1544 2�ef5��f32
q 0.8665 0.8669 2�fD6��f32

@ The second column reports the average qml estimates of the parameters in model (29) obtained by ¿tting

model (29) to 5000 simulated weekly sampled trajectories from the stochastic differential equation system (2).

In these simulations, parameters are set to their II estimates reported in the third column of Table 5. The third

and fourth columns report the Monte Carlo median and standard deviation of the simulated qml estimates.

Table 7

0RQWH &DUOR VWXG\ @

average median std. dev.
volatility ¿ltering error ���SH�D � �f3D K �S.0461�1f3D 3.9666�1f3�

@ The second column reports the average volatility ¿ltering error de¿ned in section 4 (with the RMSE and

the steady state expectation of j in parentheses) obtained by ¿tting model (29) to 1000 simulated weekly

sampled trajectories of the following three-factor model:;?=
_oE� � ' w E,E��� oE��� _� n

s
oE� �jE� �_` E��E� �

_jE� � ' E/ � )jE� �� _� n �jE� �_` E2�E� �

_,E� � ' EK� � K2,E� �� _� n K�

s
,E� �_` E��

where` E��, � ' �c 2c �, are standard Brownian motions, wc /c ) and� are ¿xed at the indirect inference

estimates of Table 5, and K�, � ' �c 2c �, are ¿xed at the values suggested by Andersen and Lund (1997K),

i.e. K� ' f�ff.H, K2 ' f��2D. and K� ' f�feb�. The third and fourth columns report the Monte

Carlo median and standard deviation of the volatility ¿ltering error.

K ERMSE: f�f2HD�( E/ %) ' .�HbD � �f32��
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Figure 1
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Figure 2
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Panel A compares the log-normal density generated by the Andersen-Lund estimates (the curve with higher

peak) and the density s�Ej� de¿ned in (10) and generated by the estimates of section 4. Panel B compares the

linear drift function generated by the Andersen-Lund estimates to the nonlinear drift function in (11) generated by

the estimates of section 4.
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Figure 3
6WDWLRQDU\ 'LVWULEXWLRQV RI (UURUV

-0.5 0 0.5
0

1

2

3

4

5

6

P(eps/sqrt(h))

N(0,(w/phi)^2)

In this Figure, � E "I
�
� is the approximate invariant distribution of the errors in model (29) rescaled by

s
� (see

(22)). � Efc E/
)
�2� is instead a normal density with standard deviation ¿xed at the steady state expectation of

the volatility process (see model (1)).

Figure 4
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Figure 5
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Figure 6
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The ¿ltering error of the conditional volatility is evaluated over 5,000 simulations as iH�jDfff�'� , where

H� ' �
���D

S���D
?'� Ej�c? � ej�c?� with 1,135 being sample size, j�c? and ej�c? the true and the predicted

volatility. The Monte Carlo distribution of the average ¿ltering error has an average of b�S� � �f3D and a

standard deviation of ��2.D � �f3�.
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$SSHQGL[ $� &RQYHUJHQFH UHVXOWV IRU VHFWLRQ �

3URRI RI WKHRUHP ���

Conditions (17) are suf¿cient to establish the weak convergence of the short-term rate

and volatility processes toward the solutions of the following stochastic differential equations:;?= _oE� � ' E
� woE� ��_� n jE� �
s
oE��_` E��E��

_jE� �B ' E/ � )jE� �B�_� n �jE� �B_` E��E� �

where i` E��E��j�Dfc � ' � and �, are IE� �-Brownian motions. This has been shown in thm.

2.3 p. 209-211 of Fornari and Mele (1997@) in the case of a geometric Brownian motion, and

the case of a square root process follows easily by an extension of another convergence result.

It remains to show that ` E��E�� can be written as:

`
E��E� � ' 4`

E��E� � n
s
� � 42`

E2�E��c � � f

with i` E2�E��j�Df another IE� �-Brownian motion. It is suf¿cient to show that the limit:

*�4
��f

�
3�
.
��

�o�& � �o�E&3��
� �

�j
B
�E&n�� � �j

B
�&

�
m I�&

�
is not ill-behaved. After that, an identi¿cation argument will do the work.

By (18), and the fact that ���&I
�

is g.e.d.Ev� for each �,

*�4
��f

�
3�
.
��
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��f
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' *�4
��f

�
3�
.

q
���&

�
k� m���&mB E� � �r&�

B
�
3 B

2 n q� � �
�
� �j

Bn�
�& m I�&

r
� s�o�E&3��

' *�4
��f

�
3�3 B

2k� � .
q
���& m���&mB E�� �r&�

B � �j
Bn�
�& m I�&

r
� s�o�E&3��

' *�4
��f

k�s
�

q�
E�� ��B � E� n ��B

� U
Un

%
Bn�

RE_%�
r
� �j

Bn�
�& � s�o�E&3��c

where RE�� denotes the g.e.d.Ev� density, or:

*�4
��f

�
3�
.
�
E�o�& � �o�E&3���E�j

B
�E&n�� � �j

B
�&� m I�&

�

' *�4
��f

k�s
�

�
E� � ��B � E� n ��B

�
g � �j

Bn�
�& � s�o�E&3��(

here,

g '
2
B3vn�

v uBn�
v KE Bn2

v
�

KEv3��
�

By using (18),

*�4
��f

k�s
�
'

�s
~
c

where ~ � E6Bcv � ?
2
Bcv�

�
E�� ��2B n E� n ��2B

�
� 2?2BcvE�� ��BE� n ��B.

Hence,

*�4
��f

�
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.
��

�o�& � �o�E&3��
� �

�j
B
�E&n�� � �j

B
�&

�
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�
'

�gs
~
j
Bn� �

s
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where:

g '
�
E�� ��B � E� n ��B

�
g�
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To identify 4, we note that this has to solve the following equation: �4 ' �I
~
g, which yields:

4 '
gs
~
�

The proof is complete.

3URRI RI WKHRUHP ���

Nearly identical to the proof of theorem 3.1.

&RQVWUXFWLRQ RI DOWHUQDWH FRQYHUJLQJ DV\PPHWULF PRGHOV

It is well known that in correspondence with a given diffusion model, there may exist

many well-behaved discrete time models converging in distribution to the given continuous

time model. Hence, we can ¿nd other examples of discrete time ARCH-type models

converging to model (1). As an example, consider the following model:

j
B
?n� ' � n qj

B
? n kE� � �r?�

B#
�
m�?mB# �.

�
m�?mB#

��
j
B#
? c � 5 E��c ��� (A1)

The main difference between model (20) and model (A1) is the way how asymmetries

in volatility are modeled. Suppose for instance that � : f in model (A1). In this case,

‘large’ negative shocks introduce more volatility than positive shocks of the same size, while

‘small’ negative shocks introduce less volatility than positive shocks of the same size. Such

a phenomenon, referred to as ‘volatility reversal’ in Fornari and Mele (1997K), seems to be

pervasive in many stock markets and in this respect, model (A1) represents another example

of the volatility-switching ARCH models that were originally introduced by Fornari and Mele

(1997K).

Our objective now is to give a sketch of the proof that (A1) converges in distribution to

(1) as the sampling frequency gets higher and higher. Consider the following approximating

scheme:

�j
B
�E&n�� � �j

B
�& ' �� � E� � q�� �j

B
�& n k�E�� �r&�

B#
q
m���&mB# � .

�
m���&mB#

�r
�
3 B#

2 �j
B
�&c
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and introduce the following moment conditions:

*�4��f �
3�
�� ' / 5 Efc4�c

*�4��f �
3�E�� q�� ' ) 	4c

*�4��f �
3�*2

�
E� n ��2B# n E� � ��2B#

�
E6B#cv � 2?2B#cv�k� ' � 	4�

(A2)

For each �, we have that

.

q
E� � �r&�

B#
�
m���&mB# � .

�
m���&mB#

��
�
3 B#

2 m I�&

r
' fc

and so the drift per unit of time is:

�
3�
.
�
�j

B
�E&n�� � �j

B
�& m I�&

�
' �

3�
�� � �

3�E�� q�� �j
B
�&�

By taking limits for � & f, and using the moment conditions (A2), we obtain the drift function

of volatility in (1).

Now consider the second order moment per unit of time �
3�
.iE�jB

�E&n�� � �j
B
�&�

2 m
I�&j. By taking limits for � & f, and using again the moment conditions in (A2), yields after

tedious computations:

*�4
��f

�
3�
.

q�
�j

B
�E&n�� � �j

B
�&

�2 m I�&

r

' *�4
��f

�
k�s
�

�2
+
.

#
E� � �r&�

2B#

�������&s
�

����2B#
$
n e?2B#cv.

�
E�� �r&�

2B#
�

�e?B#cv.
#
E�� �r&�

2B#

�������&s
�

����B#
$,

�j
2B#
�&

' *�4
��f

�
k�s
�

�2 �
E� n ��2B# n E� � ��2B#

�
E6B#cv � 2?2B#cv� �j

2B#
�& c

which gives the diffusion function of volatility in (1).
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As regards correlation issues, the proof is very similar to that of theorem 3.1:

*�4
��f

�
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��
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�j
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��f
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� .
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#�������&s
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� �j
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where

*�4
��f

.

+
���&s
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B#

#�������&s
�

����B# � 2?B#cv
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' .
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�
K

�
�
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�
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�
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v

�
K

�
2
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��
c

and h� is }e_v.

Using an identi¿cation device as in the proof of theorem 3.1, we ¿nd that:

4 '

�
E� � ��B# � E� n ��B#

�
2
B#3vn�

2 QB#n�
v

KE �
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�
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�
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�
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�
�
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�
� K

�
B#n�
v

�
K
�
2
v

��
iE� n ��2B# n E� � ��2B#j E6B#cv � 2?2B#cv�

�

In correspondence with reasonable values of Bc # and v, the term iK
�
B#n2
v

�
K
�
�
v

�
�

K
�
B#n�
v

�
K
�
2
v

�
j is strictly positive, thus restricting signE4� to be minus signE��, as in theorems.

3.1 and 3.2.

$SSHQGL[ %� 6WDQGDUG UHJXODULW\ FRQGLWLRQV DQG WKH FRQYHUJHQFH RI WKH FULWHULRQ

ASSUMPTION B1.

-T*�4� 1� E{o( K� ' 1"E@f( K�, say, uniformly in K 5 � � UD.

-T*�4�
Y21�
YKYK�

E{o( K� '
��

1" E@f( K�, say, uniformly in K 5 �. Further,
��

1" E�� is invertible.

-
ks

�
Y1�
YK

E{o( K�
l
K'KfE@f�

_$ �Efc aE@f��.
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CONVERGENCE OF THE CRITERION (Sketch). We assume as in Broze et al. (1998)

the continuity of the partial application @ :$ eKE���crE@�, and for the case 7 ' �, we de¿neeKE��� E�� � eKE���c�E�� and {hoE�� � {c�hoE��E��. It is not hard to show that under conditions

on 1�E{hoE@�( K� that parallel those in assumption B1 stated above for the direct criterion

1�E{o( K�, the simulated estimator is asymptotic normal:

s
�

�eKE��� E@�� K
E��
f E@�

�
_$ �

�
fc

��

1
E��3�
" E@( K

E��
f E@�� � aE��E@��

��

1
E��3�
" E@( K

E��
f E@��

�
c

where K
E��
f E@� ' @h} 4@ K 1

E��
" E@( K�, the limit simulation problem, and

��

1
E��

" E�� and a
E��E��

are de¿ned similarly as
��

1" E�� and aE��. Now, it follows from theorem 3.2 that the solution

of (21): i�o�&c� jB�&j&'fc�cuuu , ioE� �c jE� �Bj�Df (the solution of (1)). By this, an extension

of a result cited in Fornari and Mele (2000K) (appendix B) that shows that the solution of

(22) is unique, stationary and ergodic (for ¿xed �), and assuming the uniform continuity

of the criterion 1� E�( K�, it follows that 1�E{hoE@f�( K� , 1� E{oE@f�( K� as � & f, and

we suppose, as in Broze et al. (1998), that the convergence is uniform in K. Finally,

because T*�4� 1� E{hoE@�( K� ' 1
E��
" E@( K� and T*�4� 1� E{o( K� ' 1"E@f( K�, uniformly in

K 5 � (both by assumption), one can easily verify that for small �, this implies KE��f E@f� '

@h}4@ K 1
E��
" E@f( K� ' @h} 4@ K 1"E@f( K� ' KfE@f�. This is:

*�4
��f

K
E��
f E@f� ' KfE@f�c

while for ¿xed �, it is assumed that there exists only one solution to the system K
E��
f E@� '

KfE@f�: this has the form DE��E@f�, with *�4��fDE��E@f� ' @f. Now by proposition 6 in

Broze et al. (1998), one has that
s
�
�
�e@�E@f��DE��E@f�

� _$ N
�
fcPE��

�
(for ¿xed �), where

PE�� is such that *�4��fP
E�� ' 2T 3�

f KfT
�
f , and (28) follows for 7 ' �. In the preceding

expressions, Kf is de¿ned as the limit of KE��
f as � & f, Tf is de¿ned similarly, and KE��f is the

limit of
��

1
E��3�
" E@( KE��f E@�� � a E��E@��

��

1
E��3�
" E@( KE��f E@�� as � % 4, whereas T E��

f is the limit of�
YeK

E��
�

Y@
E@�

�
@'�E��E@f�

as � % 4. The case 7 : � is similar.
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$SSHQGL[ &� +RZ WR UHVFDOH YRODWLOLW\ IRU GLIIXVLRQV"

Here we provide details on how we rescaled ARCH-¿ltered volatility for diffusions. Let

us rewrite the ¿rst equation of the Euler-Maruyama discrete approximation of (1) in (2) as:

o? ' 
�n E� � w��o?3� n
s
�j?3�

s
o?3��?c ? ' �c � � �c h�c (C1)

where h� denotes the total number of points generated by the simulations and �? is �U(Efc ��.

Simulated data are sampled every � points. Iterating (C1) leaves:

o? '



w

q
�� E�� w���

r
n E� � w��� o?3�

n
s
�
�
j?3�

s
o?3��? n E� � w��j?32

s
o?32�?3� n E�� w��2 j?3�

s
o?3��?32

n � � �nE� � w���3� j?3�
s
o?3��?3E�3��

r
�

Because a diffusion is continuous with locally bounded paths, when � is low enough o and j

do not move too much within the unsampled � subintervals. Let us denote with o
�
?3� and j

�
?3�

the (random) representative values of o and j within the unsampled intervals that are such that

the previous equation can be written approximately as:

o? '



w

q
�� E�� w���

r
n E�� w��� o?3�

nj�
?3� �

s
�

q
�? n E� � w���?3� n � � �n E� � w���3� �?3E�3��

rt
o
�
?3��

Our objective is to estimate each point of the sequence
�
j
�
�

�
�'�c2�cuuuc h�%�

in order to use it to

¿lter the actual (discretely sampled) volatility path generated by the second equation of the

Euler-Maruyama discrete approximation of (1) in (2): ij�j
h�%�
�'� ' ijE� � ��j h�%�

�'� .
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Rewrite the previous equation as:

o? '
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q
�� E�� w���

r
n E� � w��� o?3�

nj�
?3� �

s
�

t
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t
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w

q
�� E�� w���

r
n E� � w��� o?3� n j

�
?3� �

yxxw�

�
� � E�� w��2�

�
� � E�� w��2

�
t
o
�
?3� � h��?c

where h�� is a standard Gaussian variate.

Now all the models we used in this paper actually deliver an estimate of

�� � j
�
� �

yxxw�

�
�� E�� w��2�

�
�� E� � w��2

c � ' �c 2�c � � �c h� %� � (C2)

Therefore, an estimate of each point of the sequence
�
j
�
�

�
�'�c2�cuuuc h�%�

is obtained by inverting

formula (C2) to form the desired sequence:

j
�
� '

yxxw �� E�� w��2

�

�
�� E�� w��2�

� � ��c � ' �c 2�c � � �c h� %� � (C3)

In this paper, we used:

� '
�

{ � �c { ' D2, � ' 2Dc

and the estimates of w reported in Table 6 of the main text are such that
u

�3E�3w��2

�E�3E�3w��2��
is

always close to .�2�H.

The ¿ltered series of volatility reported throughout the paper are based on formula (C3)

(see, however, below for numerical improvements of this formula). To relate the number found

before to the correction given in formula (19) for the intercept of the volatility equation, note

that:

/q-aml ' {3� �{3�*2 � e�{�
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Here the correcting term is {3�*2 ' .�2��, which in practice is very close to the conversion

factor given above.

In addition to being based on the stability of volatility within unsampled periods, the

conversion formula (C3) is based on the assumption that the (small) changes of j
s
o are not

autocorrelated. Relaxing such an assumption requires a much more complicated approach

with continuous updatings. A reliable alternative consists in ¿nding numerically a conversion

formula similar to (C3). In this paper, we proceeded in the following way. We simulated 5000

times the continuous time system (1) in correspondence of the parameter estimates found in

section 5. Then we de¿ned:

C � �

Dfff �
� h� %�

� Dfff[
�'�

h�%�[
�'�

j�E� � ��
���

c

where j�E� � �� and ��� are simulated volatility and ¿ltered volatility as of time � obtained in

the �th simulation. We found that C � S�b2H�
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