Labor Market Participation and the Business Cycle

Christian Haefke and Michael Reiter

Haefke and Reiter: Participation and the Business Cycle - p. 1/31

Labor Market Fluctuations:

 Standard RBC models: only variations in employment; Either match variability in employment or consistent with microeconometric evidence.
 Problem: Employment Variability

Labor Market Fluctuations:

- Standard RBC models: only variations in employment;
- 6 Unemployment:
 - ✓ Indivisible Labor
 - ✓ MP-style matching models

Critized for getting either the short run fluctuations or the long run response to benefit reforms wrong. Problem: previous & Unemployment Variability;

Labor Market Fluctuations:

- Standard RBC models: only variations in employment;
- **6** Unemployment:
 - ✓ Indivisible Labor
 - ✓ MP-style matching models
- **6** Labor Market Participation:
 - Endogenous search intensity;
 Endogenous participation decision

Problem: previous & Unemployment procyclical;

The Extensive Margin:

"[...] any serious model of business-cycle labor market fluctuations must account for manhour variation at the extensive margin (employment or labor-force entry decisions) as well as manhour variations at the intensive margin (hours per employee)."

James Heckman: "Comments on the Ashenfelter and Kydland Papers" *Carnegie Rochester Series on Pub-*

lic Policy, 21, 1984, 209–224.

Haefke and Reiter: Participation and the Business Cycle - p. 3/31

Why Labor Market Participation?

- Interployment Variability: Transitions to inactivity quantitatively as important as transitions to unemployment;
- Employment Variability: Transitions from inactivity second most important determinant (after job separations);

Shimer, R (2005): "Assessing the Ins and Outs"

Why Labor Market Participation?

- *©* Unemployment Variability:
- *Employment Variability*:
- A large part of the population is out of the labor force:
 US, total population: participation rate 65%
 - stdev log participation: 0.4-0.5%,
 i.e. one quarter of GDP's.
 - ✓ corr (participation,GDP): 0.6
 - Sample Period: 1/1976 12/2001
 - Data is HP-filtered ($\lambda = 100000$) and seasonally adjusted.

Participation rate = $\frac{\text{No. Employed} + \text{No. Unemployed}}{\text{Population: Participation the Business Cycle - p. 4/31}}$

What we know so far:

- The slope of the reservation wage distribution affects the labor supply elasticity (Ben-Porath 1973);
- Unemployment benefits affect the participation decision (Garibaldi, Wasmer, 2005);
- A basic matching model with participation cannot replicate core stylized facts (Shimer, 2004; Veracierto 2004), in particular unemployment rates are procyclical.

Our Key Results

- we get variability of the participation rate right (cross sectional density of home productivity)
- Implied elasticity of labor supply on extensive margin consistent with micro evidence.
- Employment variability substantially improved compared to the model without participation.
- Strongly countercyclical unemployment rate!
 Labor supply elasticity
 Time aggregation
- Additional mechanism is necessary to match unemployment variability.

The Mo	del
	Per Period Payoff
at home	h

- **6** Per period payoff h is:
 - ✓ idiosyncratic;
 - \checkmark with cross-sectional distribution F(h);

- **6** Per period payoff h is:
 - ✓ idiosyncratic;
 - \checkmark with cross-sectional distribution F(h);
- Only active searchers receive job offers;

Flow Values:at home: $rV^h = h$ searching: $rV^u = b(h) + \lambda (V^e - V^u)$

not employed: $rV^n = \max_{\{H,U\}} \{rV^h; rV^u\}$

Flow Values:

at home: $rV^h = h$ searching: $rV^u = b(h) + \lambda (V^e - V^u)$

not employed:
$$rV^n = \max_{\{H,U\}} \{rV^h; rV^u\}$$

Reservation Strategy with critical value h_c :stay at home $h > h_c$ participate $h \le h_c$

The flow value of non-employment becomes:

The Model

 $rV^n(h) =$

$$\begin{cases} h & \text{for } h > h_c \\ b(h) + \lambda^w \left(V^e(h) - V^n(h) \right) & \text{for } h \le h_c \end{cases}$$

The Model

The flow value of non-employment becomes:

$$rV^{n}(h) = \eta \left(\bar{\mathbf{V}}^{\mathbf{n}} - \mathbf{V}^{\mathbf{n}}(\mathbf{h}) \right) + \begin{cases} h & \text{for } h > h_{c} \\ b(h) + \lambda^{w} \left(V^{e}(h) - V^{n}(h) \right) & \text{for } h \le h_{c} \end{cases}$$

When *not employed*, agents receive a **new draw of home productivity** with probability η :

- life cycle considerations;
- levents in family;
- belps rationalize large gross flows.

The Employment Relationship

Value of being employed:

$$rV^{e}(h) = w(h) + \chi \left(\bar{V}^{n} - V^{e}(h) \right)$$

Value of a filled job:

$$rJ(h) = z - w(h) + \chi \left(0 - J(h)\right)$$

Free entry condition:

$$\frac{1}{q(\theta)}\phi = \int_{\underline{h}}^{h_c} J(h)dF(h)\frac{1}{F(h_c)}$$

Generalized Nash bargaining to split match surplus; Worker's bargaining share, α .

$$\alpha J(h) = (1 - \alpha) \left(V^e(h) - V^n(h) \right)$$

- By assumption all workers are equal *on* the job.
- 6 Threatpoints:

Wages

- ✓ Heterogeneous; (tractable in steady state);
- ✓ Homogeneous: Trick: Reset home productivity
 - when bargain breaks down (counterfactual implications);
 - when matched (ResetH).

Generalized Nash bargaining to split match surplus; Worker's bargaining share, α .

$$\alpha J(h) = (1 - \alpha) \left(V^e(h) - V^n(h) \right)$$

- **6** By assumption all workers are equal *on* the job.
- 6 Threatpoints:

Wages

- ✓ Heterogeneous; (tractable in steady state);
- Homogeneous: Trick: Reset home productivity
 - when bargain breaks down (counterfactual implications);
 - when matched (ResetH).
- but workers redraw anyway upon separationate Business Cycle p. 11/31

Two Useful Assumptions

ConstB All agents receive the same amount of flow utility, i.e. $b(h) \equiv b_0$.

Makes steady state wages independent of *current* home productivity.

✓ Simplifies steady state job creation condition to

$$J = \frac{\phi}{q(\theta)}.$$

Two Useful Assumptions

- **ConstB** All agents receive the same amount of flow utility, i.e. $b(h) \equiv b_0$.
- **EtaChi** The probability, η , of a new draw of home-productivity is equal to the separation probability, χ .
 - employed and non-employed receive new home-productivity with equal probability;
 - ✓ Together with **ConstB** this effectively separates the participation decision from wage determination.

Equilibrium

- Wage curve and Job creation condition
 \Rightarrow wage, labor market tightness;
- If Flow conditions (Beveridge Curve)
 ⇒ unemployment;
- Indifference between staying at home and participating $V^h(h_c) = V^u(h_c) \Rightarrow h_c$ \Rightarrow Participation Rate

Wages and Tightness

Under assumption *ConstB* job creation condition and wage curve are given by

JCC:
$$w = z - (r + \chi) \frac{\phi}{q(\theta)}$$

WC: $w = \frac{r + \chi}{r + \chi + \alpha \lambda} (1 - \alpha)b + \frac{r + \chi + \lambda}{r + \chi + \alpha \lambda} \alpha z$
 $+ (\eta - \chi) \frac{1}{r + \chi + \alpha \lambda} \int_{h_c}^{\infty} (h - h_c) dF(h)$

Wages and Tightness

Under assumption *ConstB* job creation condition and wage curve are given by

JCC:
$$w = z - (r + \chi) \frac{\phi}{q(\theta)}$$

WC: $w = \frac{r + \chi}{r + \chi + \alpha \lambda} (1 - \alpha)b + \frac{r + \chi + \lambda}{r + \chi + \alpha \lambda} \alpha z$
 $+ (\eta - \chi) \frac{1}{r + \chi + \alpha \lambda} \int_{h_c}^{\infty} (h - h_c) dF(h)$

Furthermore, under assumption *EtaChi* the wage curve is also independent of the home-sector, i.e. the reservation home productivity h_c .

In the textbook model without participation:

Assume *EtaChi*, then

$$u = \frac{\chi}{\chi + \lambda} \pi$$
$$e = \frac{\lambda}{\chi + \lambda} \pi$$

 π : Participation Rate

$$\pi = F(h_c)$$

Assume EtaChi, then

$$\pi$$
 : Participation Rate

$$\pi = F(h_c)$$

- Solution
 Ela_{e,z} = Ela_{es,z} + Ela_{π,z}
 Participation magnifies employment fluctuations;
- Solution
 Ela_{u,z} = Ela_{us,z} + Ela_{π,z}
 Participaton dampens unemployment fluctuations;

Assume *EtaChi*, then

$$\pi$$
 : Participation Rate

$$\pi = F(h_c)$$

- Solution
 Ela_{e,z} = Ela_{es,z} + Ela_{π,z}
 Participation magnifies employment fluctuations;
- Solution
 Ela_{u,z} = Ela_{us,z} + Ela_{π,z}
 Participaton dampens unemployment fluctuations;
 If $f(h_c)$ too large, unemployment procyclical.
 Haefke and Reiter: Participation and the Business Cycle p. 15/31

Standard Steady State Results

Comparative Statics (for *EtaChi* and *ConstB*):

$$\frac{d\theta}{\theta} = \frac{r + \chi + \alpha \lambda^w}{\vartheta(r + \chi) + \alpha \lambda^w} \frac{dz - db_0}{z - b_0}$$

- **(6)** The variability of labor market tightness, θ , depends on the match surplus $z b_0$.
- Endogenous participation does not affect the response of labor market tightness to variations in productivity.
- The wage, labor market tightness, and the threshold value of homeproductivity are independent of the redraw distribution, F(h).

Participation and Productivity

Proposition 2: In steady state the general equilibrium response of the participation threshold satisfies:

$$\frac{dh^c}{dz} = \frac{\alpha \lambda^w}{\vartheta(r+\chi) + \alpha \lambda^w} > 0$$

Proposition 3: The change in the participation rate is proportional to the cross sectional density of home productivities at the participation threshold:

$$\frac{dP}{dz} = f(h^c)\frac{dh^c}{dz} > 0$$

Some Limiting Cases

- **6** Frictionless limit: $\phi \to 0 \Rightarrow$
 - $\checkmark \lambda \to \infty$
 - $\checkmark w \rightarrow z$

Solution
Solution
Solution
Solution
In the participation of F(h).
Solution
Sol

Summary: Theoretical Findings

- Standard Pissarides model and standard (frictionless)
 RBC model are limiting cases of our model.
- Endogenous participation has little (or no) effect on labor market tightness and its dynamics.

(b) EtaChi: Frequency of home-productivity redraw (η) equal to exogenous rate of match separation (χ);

- **(b)** EtaChi: Frequency of home-productivity redraw (η) equal to exogenous rate of match separation (χ);
- Solution $\mathbf{\hat{\phi}}$ Vacancy posting cost ϕ : st.st unemployment rate u = 6.37%.

- **(b)** EtaChi: Frequency of home-productivity redraw (η) equal to exogenous rate of match separation (χ);
- Solution ϕ : st.st unemployment rate u = 6.37%.
- Output Description Unemployment flow utility

b = 0.615 to match semi-elasticity of 1.3;

- **(b)** EtaChi: Frequency of home-productivity redraw (η) equal to exogenous rate of match separation (χ);
- Solution ϕ : st.st unemployment rate u = 6.37%.
- Unemployment flow utility b = 0.615 to match semi-elasticity of 1.3;
- Median home productivity \bar{h} :
 steady state participation rate of 65.35%.

- **(b)** EtaChi: Frequency of home-productivity redraw (η) equal to exogenous rate of match separation (χ);
- Solution ϕ Vacancy posting cost ϕ : st.st unemployment rate u = 6.37%.
- Unemployment flow utility b = 0.615 to match semi-elasticity of 1.3;
- Median home productivity \bar{h} :
 steady state participation rate of 65.35%.
- Spread of cross sectional density of home productivity (σ):
 Match U.S. wage distribution;

The Wage - Homeproductivity Calibration

kommt noch

Micro Studies: LS Elasticities

Name	Dataset	Sample	Dependent	Model	Labor Supply
(Year)	(Years)		Variable	Approach	Elasticity
Ashenfelter	NC-Iowa				husband: 0.2
(1978)	R.I.M.				wife: 0.9
van Soest et al	Dutch SEP	mar	positive desired	structural	Own Wage: 0.6–0.75
(JoEMX, 2002)	(1995)	f	hours worked		
Kimmel & Kniesner	SIPP	sin/mar	Employment vs	FE probit	men: 0.65 – 1.08
(JME, 1998)	(1984)	m/f	Nonemployment		women: 1.85–2.41
Chang & Kim	PSID 79-92	mar	reservation wage	Calibrate	men: 0.84–0.96
(mimeo, 2005)	CPS 68-01	HH	distribution	model	women: 1.36–1.71

Estimated labor supply elasticities range from 0.2 - 2.4.

Our calibration implies 0.6.

Cyclicality of Unemployment rate

Cyclicality of Unemployment rate

Data and Benchmark

61.210

Data	Mean	$\sigma_{\mathbf{x}}$	$rac{\sigma_{\mathbf{x}}}{\sigma_{\mathbf{GDP}}}$	$ ho_{-1}$	$\rho^{\mathbf{q}}_{\mathbf{x},\mathbf{GDP}}$	$ ho^{\mathbf{m}}_{\mathbf{x},\mathbf{GDP}}$	
Participation rate	65.354	0.50	0.231	0.877	0.549		
Employment rate	61.205	1.43	0.660	0.955	0.896		
Unemployment	4.150	14.26	6.566	0.947	-0.918		
Real GDP	6888.580	2.17	1.000	0.932	1.000		
Benchmark Model							
Participation rate	65.365	0.358	0.227	0.953	0.911	0.887	
Employment rate	61.188	0.428	0.271	0.959	0.896	0.855	
Unemployment	4.177	1.084	0.703	0.611	-0.498	-0.286	

1.569

1.000

Real GDP

Haefke and Reiter: Participation and the Business Cycle - p. 24/31

1.000

1.000

0.913

Employment Variability

	Mean	$\sigma_{\mathbf{x}}$	$rac{\sigma_{\mathbf{x}}}{\sigma_{\mathbf{GDP}}}$	$ ho_{-1}$	$ ho_{\mathbf{x},\mathbf{GDP}}^{\mathbf{q}}$
Data	61.205	1.43	0.660	0.955	0.896
No Participation	61.145	0.085	0.066	0.924	0.965
Flexible, EW	61.188	0.428	0.271	0.959	0.896
Flexible, DW					
$b(h) = b_0$	61.218	0.447	0.279	0.958	0.904
b(h) = h - 0.2	61.153	0.407	0.263	0.965	0.848

Employment Variability

	Mean	$\sigma_{\mathbf{x}}$	$rac{\sigma_{\mathbf{x}}}{\sigma_{\mathbf{GDP}}}$	ρ_{-1}	$ ho_{\mathbf{x},\mathbf{GDP}}^{\mathbf{q}}$
Data	61.205	1.43	0.660	0.955	0.896
No Participation	61.145	0.085	0.066	0.924	0.965
Flexible, EW	61.188	0.428	0.271	0.959	0.896
Rigid, EW	61.063	1.227	0.513	0.936	0.981
Rigid, DW: $b(h) = h - 0.2$	61.089	1.148	0.496	0.936	0.980

Impulse Responses

INVERSIAN FOMERA

Haefke and Reiter: Participation and the Business Cycle - p. 26/31

Unemployment Variability

	Mean	$\sigma_{\mathbf{x}}$	$rac{\sigma_{\mathbf{x}}}{\sigma_{\mathbf{GDP}}}$	$ ho_{-1}$	$ ho_{\mathbf{x},\mathbf{GDP}}^{\mathbf{q}}$
Data	4.150	14.26	6.566	0.947	-0.918
No Participation	4.173	1.239	0.968	0.924	-0.965
Flexible, EW	4.177	1.084	0.703	0.611	-0.498
Flexible, DW					
$b(h) = b_0$	4.135	1.159	0.736	0.692	-0.636
b(h) = h - 0.2	4.155	1.085	0.724	0.591	0.359

Unemployment Variability

	Mean	$\sigma_{\mathbf{x}}$	$rac{\sigma_{\mathbf{x}}}{\sigma_{\mathbf{GDP}}}$	ρ_{-1}	$\rho^{\mathbf{q}}_{\mathbf{x},\mathbf{GDP}}$
Data	4.150	14.26	6.566	0.947	-0.918
No Participation	4.173	1.239	0.968	0.924	-0.965
Flexible, EW	4.177	1.084	0.703	0.611	-0.498
Rigid, EW	4.262	12.393	5.234	0.920	-0.981
Rigid, DW $b(h) = h - 0.2$	4.213	11.174	4.868	0.918	-0.982

Key Findings

- Countercylical Unemployment Rate: Time Aggregation, Labor Supply Elasticity;
- Employment Fluctuations: Participation Margin
- Unemployment Fluctuations: Wage Rigidity

Summary: Numerical Results

- Implied elasticity of labor supply consistent with micro evidence;
- Improve employment variability;
- Strongly counter-cyclical unemployment rate;
- Some wage rigidity: \rightarrow unemployment fluctuates much more than output.
- Second Results are robust to relaxing assumptions *EtaChi*, *ConstB*.

Conclusions

Two ingredients ...

- Ø Right degree of heterogeneity
- Continuous time rather than quarterly simulations
- ... help improving
 - on the matching literature in terms of variability of macro aggregates
 - on the RBC literature by making the labor supply elasticity consistent with micro evidence.

Robustness

INVERSITY POWER FAIL