
The Dynamic of the Volatility Skew: a Kalman

Filter Approach

Mascia Bedendo and Stewart D. Hodges
Imperial College London and University of Warwick

Preliminary draft: please do not quote

January 20, 2005

Abstract

In the last few years, a lot of attention has been devoted to the issue of understanding
and modeling the dynamic of implied volatility curves and surfaces, which is crucial for
both trading, pricing and risk management of option positions. We suggest a simple, yet
flexible, model, based on a discrete and linear Kalman filter updating of the volatility
skew. From a risk management perspective, we assess whether this model is capable of
producing good density forecasts of daily returns on a number of option portfolios, also
in comparison with two alternative specifications, the sticky-delta model and the vega-
gamma expansion. We find that our model clearly outperforms both alternatives, given
its ability to easily account for movements of different nature in the volatility curve.

Keywords: Implied volatility, Kalman filter, density forecasting.

1 Introduction

It is well known that the volatilities implied from observed option prices are
not constant across strikes and time to maturity, as the Black-Scholes model
would predict. Instead, they exhibit a smile/skew pattern across strikes for
a given time to maturity, which extends to an entire volatility surface when
different expiries are examined. These implied volatility curves and surfaces
also change through time (see Heynen [1993], Cont and da Fonseca [2001]),
raising the need for an accurate modeling of their dynamic, which is essential
for the purposes of option pricing, trading and risk management.

In order to explain these empirical deviations from the Black-Scholes
model, various attempts have been made in the literature, which can be
broadly grouped along the following directions.

A first class of models explains the existence of smiles/skews with market
frictions, which imply the existence of an entire band of arbitrage-free option
prices (see Figlewski [1989a, 1989b], and Longstaff [1995]).
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Alternative option pricing models in which the dynamic of the underlying
follows a process with jumps have been suggested, amongst the others, by
Bates [1996], Carr, Geman, Madan and Yor [2002].

A third class of models explains the existence of the volatility curve
with the variability of the volatility over time, which can be either stochas-
tic or deterministic. In stochastic volatility models (see, for example, Hull
and White [1987], Scott [1987], Heston [1993]), the instantaneous (or local)
volatility itself follows a stochastic process. The main drawback of stochastic
volatility and jump models is the inability to express directly the shape of
the implied volatility curve (or, equivalently, surface) in terms of the model
parameters. Therefore, the calibration of the model parameters to a set of
market option prices becomes very difficult, and unrealistic parameters are
often required to generate volatility curves or surfaces that are consistent
with those implied by observed option prices (see, e.g. Bakshi, Cao and Chen
[1997], Andersen and Andreasen [2000], Das and Sundaram [1999]).

The introduction of deterministic local volatility models, where the in-
stantaneous volatility is modeled as a deterministic function of time and
stock price, constituted a valid attempt to overcome this problem. By pre-
serving market completeness, these local volatility models are self-consistent,
arbitrage-free, and can be easily calibrated to match observed market volatil-
ity surfaces and curves. Relevant examples of these models are the non-
parametric implied tree approaches suggested by Dupire [1994, 1997], Der-
man and Kani [1994a, 1994b], Rubinstein [1994] and Derman, Kani and
Chriss [1996], and the parametric Normal Mixture Diffusion model of Brigo
and Mercurio [2000, 2002] and Brigo, Mercurio and Sartorelli [2003].

Local volatility models perform very well at a static level, by attain-
ing an exact (for non-parametric specifications) or almost exact (for semi-
parametric and parametric forms) calibration to the implied volatility sur-
faces observed on a given day. However, as documented by Dumas, Fleming
and Whaley [1998], the dynamic behavior of implied volatilities predicted
by these models is inconsistent with the dynamic observed in the option
markets. Besides raising the need for constant re-calibration of the model,
this drawback leads, from a risk management perspective, to inaccurate and
often unstable hedges of the option portfolios.

Motivated by the increasing evidence that option markets have become
progressively more autonomous, showing movements in option prices driven
not only by the underlying dynamic but also by specific sources of random-
ness, a new stream of literature has developed in the last few years. This
innovative branch focusses on the identification of these extra sources of
randomness in the option markets and consequently, on the investigation of
their dynamic, also in relation to the dynamic of the underlying, in order to
explain and capture the evolution of the empirical implied volatilities.

The implied volatility then becomes a financial state variable by itself.
Its dynamic properties have been studied mainly by focussing on either the
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term structure of at-the-money (ATM) implied volatility, or the volatility
skew for a given maturity. Investigations of the dynamic followed by the
entire volatility surface have begun to appear recently.

The most common approach to study the volatility dynamic consists in
identifying the number and shapes of the shocks in the implied volatility
via Principal Component Analysis (PCA) (see, for example, Skiadopoulos,
Hodges and Clewlow [1999], Alexander [2001], Derman and Kamal [1997]).

The most recent contributions involve the specification of a deterministic
or stochastic model for the implied volatility smile or surface, which fully
describes their evolution through time. The deterministic implied volatility
models introduced by Derman [1999] assume that either the per-delta or the
per-strike implied volatility surface has a deterministic evolution. Due to
their simplicity and tractability, the sticky-delta and the sticky-strike models
are currently largely used by practitioners.

A stochastic evolution of the entire smile surface characterizes the stochas-
tic implied volatility models by Schönbucher [1999], Ledoit and Santa-Clara
[1998] and Cont, da Fonseca and Durrleman [2002]. In these studies, the
prices of liquid vanilla options across a set of strikes and maturities are
taken as given, in order to derive the initial volatility surface. The dynamic
of the implied volatility is then modeled as a joint diffusion process with
the underlying. In the first two models, constraints are imposed on the drift
processes followed by the implied volatilities to ensure absence of arbitrage.
An arbitrage-free specification of future volatility smiles, when the process
for the underlying is unknown, has been investigated by Rebonato and Joshi
[2003]. In a much simpler approach, Rosenberg [2000] proposed a stochastic
evolution for the ATM implied volatility only, while keeping the shape of
the curve fixed.

Our research study fits in the latter class of stochastic implied volatil-
ity models. We suggest a very simple model for the temporal evolution of
the volatility skew for a given contract based on a linear Kalman filter ap-
proach. We first fit cubic polynomials to the empirical volatility curves. We
then assume that the cubic’s coefficients evolve through time according to
a gaussian Ornstein-Uhlenbeck process correlated with the stock price pro-
cess. The estimates for the skew coefficients are then promptly adjusted as
information from new option trades becomes available.1

Even though the Kalman filter technique seems a natural tool for finan-
cial problems of this kind, our study constitutes, to our knowledge, the first
application of this powerful and robust econometric technique to the updat-
ing of the volatility skew. The specification we suggest is intuitively simple,
easy to implement, and, since it accounts for stochastic non-parallel changes
in the volatility skew, it is appealing not only for trading, but also for risk

1In order to keep the analysis simple, we do not impose constraints to ensure an
arbitrage-free specification.
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management purposes.
In this study we investigate a simple application of the technique to the

risk management of portfolios of futures options on the S&P500.2 By im-
plementing a standard Monte Carlo technique, we produce density forecasts
of the daily changes in the marked-to-market value of four option portfolios,
sensitive to shifts of different nature in the volatility curve. The distributions
of the returns predicted by our model are then compared with the actual
daily profits and losses (P&L) on the option portfolios, across one year. A
comparison is also drawn with the portfolio returns estimated according to
two methods which are widely used in practice to model changes in implied
volatility. The first benchmark is the sticky-delta model by Derman [1999].
The second benchmark applies a Taylor expansion of Black-Scholes option
prices to account for first and second order changes in the underlying (delta
and gamma), and first order changes in the volatility level (vega). Various
evaluation techniques are employed to assess the goodness of the P&L den-
sity forecasts. A special emphasis is placed on the accuracy of the tails,
which are relevant for VaR computations.

Our main findings can be summarized as follows. First, producing accu-
rate density forecasts of daily returns on option portfolios seems to be a hard
task, even for fairly basic portfolios. Not too surprisingly, all our density
forecasts show a significant bias in the mean, given that drift components
are very difficult to estimate unless data is available over a long period of
time (we only have three years of data). Also, daily forecasts can be quite
noisy. Once we correct for the bias in the mean, the density forecasts gener-
ated from the Kalman filter model display a good fit to the actual portfolio
returns, superior to that observed for the sticky-delta and vega-gamma alter-
natives. This result holds for all the kinds of option portfolios we consider,
and indicates that more than one factor is needed to explain the dynamic
of the volatility curve itself. The Kalman filter approach suggested in this
paper seems to represent a simple, yet effective, way of taking this into
account.

The paper is structured as follows. Section 2 presents the data set that
2From the risk management perspective, very little attention has been dedicated to

the effects of the dynamic of the volatility skew/surface on the vega risk of a portfolio
of options, and on the possible interaction with other risk factors. Most studies simply
adjust the traditional Value-at-Risk (VaR) formulation to account for the Black-Scholes
vega, without worrying about the existence of a skew/surface. Malz [2001] investigated a
linear delta-vega VaR, Cárdenas et al. [1997] derived a closed formula for a delta-vega-
gamma VaR, Glasserman, Heidelberger and Shahabuddin [2001] included vega risk in an
efficient Monte Carlo simulation exercise. The most notable exception to this oversimpli-
fied treatment of the volatility risk is given by Malz [2001], who incorporated smile effects
on VaR by letting implied volatilities of options with a different delta vary in correlated
fashion. Also, Cont, da Fonseca and Durrleman [2002] and Fengler, Härdle and Villa
[2001] hinted at the possibility of performing scenario simulations, for VaR purposes, of
the joint evolution of the option portfolio and the underlying, on the basis of their principal
components.
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we use. In Section 3 we describe the Kalman filter model for the dynamic
of the volatility skew, whereas the two alternative methods investigated in
this study are presented in Section 4. Section 5 deals with the estimation
of our model and the two benchmarks. Section 6 illustrates the criteria for
building the option portfolios. Section 7 discusses and evaluates the density
forecasts obtained from the Monte Carlo exercise. Section 8 concludes.

2 The Data Set

Our data set consists of daily data on quarterly3 futures options on the S&P
500 index traded at the Chicago Mercantile Exchange over the period 1998-
2001. The first three years are employed to estimate the parameters of the
models, whereas the assessment of their out-of-sample forecasting properties
is carried out over the last year.

We only use closing option prices on the quarterly contract closest to
expiry, except for the days within two weeks to expiration, when we roll on
to the next contract. This is to ensure that we always refer to a very liquid
contract with a wide range of strikes.

The usual no-arbitrage restrictions for futures options (see Hull [2002])
are applied to filter the option data. Also, we use the Barone-Adesi and
Whaley [1987] approximation for American options to derive pseudo-European
prices.

Throughout the entire analysis, we exclude in-the-money (ITM) options,
which are less liquid and more sensitive to non-synchronicity pricing errors
than out-of-the-money (OTM) options.

We also filter out some options with extreme strikes, which may have
very low liquidity. In particular, we eliminate the options traded at the
minimum price (tick), as well as those options for which a change in the
premium equal to the tick size yields a change in the corresponding implied
volatility larger than 15%. After applying all the relevant filters, we end
up with an average number of strikes/options of 78 a day on the relevant
futures contract, with a minimum of 44 and a maximum of 99. These options
on average span a range of deltas (defined as the ratio between strike and
futures price, K/F ) between 0.66 and 1.18.

We employ daily closing prices of the index futures from the CME over
the period 1998-2001 to estimate the model for the returns on the underlying.

3March, June, September and December expiries.
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3 The Kalman Filter Model for the Dynamic of
the Volatility Curve

The first step of our analysis is the choice of a method for fitting the volatility
curve as a function of the level of moneyness. We opt for a cubic polynomial,
such that:

σK = α0 + α1 ∗m + α2 ∗m2 + α3 ∗m3 + ε (1)

m denotes the measure of moneyness which, following Natenberg [1994],
is expressed as ln(K/F )√

τ
, i.e. the natural log of the ratio between strike and

underlying futures price, normalized by the square root of time to maturity.4

Since we cannot work with fixed time to maturity options, the normalization
corrects for the effect of τ shrinking over time, and yields more meaningful
estimates for the polynomial coefficients.

In Eq. (1), σK denotes the market implied volatility for an option with
strike K, α0 is the estimated level of the ATM implied volatility (with log
moneyness equal to 0), and the coefficients α1, α2 and α3 capture, respec-
tively, the slope, curvature and skewness of the volatility skew.

The cubic is easy to implement, has only four coefficients of immediate
interpretation, and provides a good fit to the observed volatility curves.
In Fig. 1 we report, as an illustrative example, plots of both the market
and the fitted implied volatilities for the March 1999 contract, with time to
expiration of one, two and three months.

The updating of the skew coefficients is performed by means of a discrete
time linear Kalman filter (see Harvey [1989]). The 4× 1 state vector of the
coefficients, denoted as xt, evolves under the system equation:

xt = at + Utxt−1 + Ctut (2)

at = At ∗ µ
t
, where At represents the 4 × 4 matrix having mean reversion

coefficients on the main diagonal, and µ
t
is the vector of the long run means.

Ut = I−At, and CtC
′
t = Vt is the covariance matrix of the error terms of the

process. ut ∼ N(0, 1) are serially uncorrelated disturbances, independent of
xt−1.

The skew coefficients are not directly observable. Instead, we observe an
n× 1 vector of market implied volatilities σK,t, which is related to xt by the
observation equation:

σK,t = Gtxt + Dtvt (3)

where Gt is the n × 4 matrix with elements [G]i,j = mj−1
i , DtD

′
t = Rt

represents the n×n measurement noise covariance matrix, and vt ∼ N(0, 1)
are again serially uncorrelated disturbances, independent of xt. Since the

4The time to maturity is computed as the number of calendar days to expiry divided
by the total number of days in the calendar year.
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number of observed implied volatilities can be small (even one only), this
method is particularly suitable for practitioners, who need to update the
volatility skew as soon as new trades occur.

We use x̂t and St to denote, respectively, Et−1[xt] and Vart−1[xt], before
observing σK,t. Finally, we assume that the initial distribution of x1 is
multivariate Normal with known values for x̂1 and S1.

According to this state space model, our optimal forecast x̂t for the
skew coefficients xt (as well as its covariance St) is first adjusted according
to the observed σK,t. This updated quantity then evolves under the system
equation, to produce the new optimal forecast x̂t+1 for the next period. The
updating equations for both expected value and covariance are given by:

x̂t+1 = Ut+1

[
I − StG

′
tT
−1
t Gt

]
x̂t + KtσK,t + at+1 (4)

St+1 = Ut+1

[
St − StG

′
tT
−1
t GtSt

]
U ′

t+1 + Ct+1C
′
t+1 (5)

where Tt = GtStG
′
t + DtD

′
t, and Kt = Ut+1StG

′
tT
−1
t .

At each time t, after observing the market volatility skew, we produce
one-day-ahead forecasts for the expected value of the coefficient vector x̂t+1

and the covariance matrix St+1. In fact, at each step we produce complete
density forecasts of the evolution of the skew, since xt+1 ∼ N(x̂t+1, St+1).

In order to translate the density forecasts of the skew (expressed in terms
of log moneyness) into forecasts for the distribution of the daily changes in
the value of our option portfolios (expressed in terms of strikes), we also
need to produce one-day-ahead forecasts of the distribution of the log re-
turns on the underlying futures. We choose to model the returns on the
underlying following an EGARCH(1,1) model with normally distributed er-
rors (correlated with the errors from the coefficients’ model), which is both
simple to estimate and rich enough to allow for leverage effect and time
varying volatility.

4 Two Alternative Models for the Dynamic of the
Volatility Curve

The performance of the Kalman filter method at describing the dynamic of
the volatility skew is compared with that of two alternative models widely
used in practice.

4.1 The sticky-delta model

The sticky-delta model was first discussed by Derman [1999], who described
it as the method commonly used by traders to predict the evolution of the
volatility curve in a situation of stable trending markets.
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Following the sticky-delta model, the volatility curve for a fixed maturity
is parametrized as:

σK = σATM − b(K − F ) (6)

where b > 0 yields the volatility skew. The fixed strike volatilities increase
with the futures level, whereas σATM is independent of the underlying and
fixed. Therefore, the volatility curve changes if measured in terms of strikes,
but it is fixed if measured with respect to moneyness (or, equivalently, delta).

The only factor that affects the volatility skew in this very popular model
is the evolution of the underlying asset. As before, we model the dynamic
of the equity futures with an EGARCH specification with normal errors.

4.2 The vega-gamma model

One of the standard approaches adopted by risk managers in order to mea-
sure the risk of an option portfolio, involves applying a Taylor series expan-
sion of Black-Scholes option prices around the risk factors. The variables
that affect option prices are the changes in the value of underlying asset
and volatility (which are stochastic), and the changes in the time to expiry
(which are deterministic).

According to this technique, the change in value of the option portfolio
∆Π is approximated by:5

∆Π =
∂Π
∂F

∆F +
∂Π
∂τ

∆τ +
∂Π
∂σ

∆σ +
1
2

∂2Π
∂F 2

(∆F )2

= δ∆F + Θ∆τ + V ∆σ +
1
2
Γ(∆F )2

where δ (delta), Θ (theta), V (vega) and Γ (gamma) represent the sensitiv-
ities of the portfolio’s value to variations in the risk factors.

Since, in our case, we deal with delta-neutral portfolios and we consider
profits and losses on the portfolios at a daily level, the approximation can
be simplified to:6

∆Π = V ∆σ +
1
2
Γ(∆F )2 (7)

The computation of both V and Γ relies on specific assumptions on the
option valuation model. Given that we work with futures options, we use
Black’s model for option pricing (the corresponding formulations for V and
Γ can be found in Hull [2002]). The vega (gamma) exposure of a single
option position is computed as the option vega (gamma) times the number
of options in the position. The vega (gamma) exposure of a portfolio of
options on the same underlying, which is our case, is simply the sum of the
vega (gamma) exposures of the single options.

5The remaining higher order terms of the series expansion can be safely neglected.
6We have also performed the calculations including the effect of changing time to

maturity, but the difference in the results was negligible.
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In the vega-gamma model there are two sources of risk whose dynamic
needs to be modeled: the underlying and the implied volatility. Only par-
allel changes in the volatility curve are allowed, with the implied volatil-
ities of all options changing by the same amount ∆σ. For our purpose,
it is then sufficient to model the evolution of the ATM implied volatil-
ity σATM . Following a conventional approach, we assume that the ATM
implied volatility follows a mean reverting process with Gaussian innova-
tions: ∆σATM = αATM (µATM −σATM,t−1) + σvol

ATMξt. For consistency with
the other two methods, the evolution of the underlying is modeled by an
EGARCH model with normal errors, correlated with the disturbances in
the volatility process.

It is worth noticing that both benchmark models can be interpreted as
special cases of the more general Kalman filter specification. The sticky-
delta model represents an oversimplified version, where all the volatility
skew coefficients are constant, and the only factor which evolves is the un-
derlying asset. The vega-gamma model constitutes a special case, where
both the ATM level α0 and the underlying evolve stochastically (and in a
correlated fashion). The remaining coefficients of the volatility curve are
instead constant. As an alternative to the approach followed in this work
(i.e. individual estimation and assessment of the single models), the valid-
ity of the different specifications could therefore be assessed by testing the
appropriate restrictions in the more general model.

5 The Estimation of the Models

In this section we present the results from the estimation of the parameters
of the Kalman filter, the sticky-delta and the vega-gamma models, over the
period 1998-2000. We can set the parameters to be constant, or we can
let them vary at each time step. In our application, the first assumption
would probably be too strong, since we test our model over one year, and
the second one would be unnecessarily computationally intensive, given that
we do not expect the model parameters to change significantly on a daily
basis. Therefore, we choose to re-estimate the parameters of our models
every quarter, over a rolling window of three years of data.7

For the estimation of the Kalman filter model we first calculate the skew
coefficients for each day of the estimation window. Plots of the time series of
the four coefficients are reported in Fig. 2, and their autocorrelation func-
tions are displayed in Fig. 3.8 For all the coefficients, the autocorrelation
function shows an exponential decay which can be conveniently represented

7The four estimation windows are: Jan.98 - Dec.00, Mar.98 - Feb.01, Jun.98 - May01,
Sep.98 - Aug.01.

8The plots refer to the first estimation period, but the patterns stay the same if we
consider the other three windows.
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by an AR(1)/Ornstein-Uhlenbeck process. Therefore, the assumption made
for the system equation in (2) seems appropriate.9

The skew coefficients are then employed to estimate At, µt and Vt from
the system equation, by means of a linear simultaneous equation estimation
technique. The estimates for the diagonal elements of At,10 and for µt,
computed on each of the four estimation windows, are reported in Table 1.
Table 2 refers to the correlation matrices associated with Vt, which are more
intelligible than the corresponding covariance matrices.

As already suggested by the inspection of the autocorrelation functions,
the slope coefficient reverts towards its long run mean very slowly. A slightly
faster mean reversion characterizes the ATM volatility level, whereas con-
siderably higher (although slightly decreasing through time) mean reversion
coefficients are estimated for both curvature and skewness. The analysis of
the correlation matrix of the error terms of the process reveals that the high-
est correlation occurs between curvature and skewness (' 0.8). A correlation
of around 0.45 relates curvature and slope. Smaller correlations are found
between ATM level and curvature, and ATM level and slope. In both cases,
however, the correlation coefficients increase (in absolute terms) through
time, from a value of, respectively, −0.20 and −0.27 to a level of −0.36 and
−0.34. Very small correlations are found between slope and skewness, and
ATM level and skewness.

Considering that the fit of the cubic polynomial to the market implied
volatility skew is better the closer we are to the ATM level, and less accurate
as far OTM we move, the estimate for the measurement error covariance
matrix is based on a grouping in buckets of log moneyness.11 We select ten
buckets of log moneyness, in consideration of the ranges of log moneyness
in our data set, and for each of them we calculate the standard deviation of
the measurement error across the estimation period. The results, displayed
in Table 3, suggest that there is a significant variability in the estimated
measurement error volatility which, for deep OTM puts and calls, turns out
to be, respectively, four and five times its value for ATM options (0.2%).

The estimates of the coefficients of the EGARCH model for the dynamics
of the underlying are presented in Table 4 (with standard errors in brack-
ets). As expected, there is a statistically significant leverage effect in our
series, captured by the coefficient γ. In order to investigate whether the
dynamic of underlying asset and skew coefficients are related, we calculate
empirical correlation coefficients between the futures daily log returns and
the daily changes in each of the skew coefficients, over the four estimation

9The spikes in both time series and autocorrelation function for the slope coefficient
are due to the effect of the change in time to maturity when we roll on to the following
contract, not completely captured by the normalization of the log moneyness measure.

10The off-diagonal elements of At are very small and statistically insignificant.
11The measurement error matrix Dt is estimated only once, since its quarterly estimates

turned out to be not significantly different from each other.
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windows. Only the correlations between log returns and 1) ATM volatility
level; 2) slope coefficient; turn out to be statistically significant, and basi-
cally constant around the values of −0.82 and 0.32, respectively, for all the
estimation periods.12

For the purposes of the sticky-delta model, only the estimates of the
EGARCH model are needed, since the underlying is the only stochastic
variable.

For the vega-gamma model, the estimates of the EGARCH specification
are again relevant for modeling the dynamic of the underlying. We then
estimate the coefficients of a mean reverting Gaussian process for the ATM
implied volatility (see Table 5). To account for the correlation between the
two risk factors, we use again the empirical correlation coefficient of −0.82.

6 The Option Portfolios

In order to assess the goodness of the linear Kalman filter technique at
modeling the dynamic of the volatility curve for risk management purposes,
we test how well this method predicts the actual daily variations in the
marked-to-market value of option portfolios sensitive to changes of different
nature in the volatility curve.

We consider the following four option portfolios:

• A short straddle (short one call and one put ATM), which is sensitive
to changes in the level of the ATM implied volatility. The portfolio’s
value decreases (increases) when the volatility level goes up (down).

• A long risk reversal (short one OTM put and long one OTM call),
sensitive to changes in the slope of the volatility smile. A loss (profit)
occurs when the slope increases (decreases).

• A long butterfly spread (long one call and one put OTM, short one
call and one put ATM), sensitive to changes in the curvature of the
volatility smile. The portfolio loses (gains) value when the curvature
decreases (increases).

• A long “Mexican hat” (long two calls and two puts OTM, short one
call and one put ATM), which is vega-neutral.

Each portfolio is made delta-neutral by assuming the appropriate posi-
tion in the underlying future.13

12We have also checked for the presence of residual non-linear dependence between log
returns and volatility coefficients not captured by the model. No significant pattern could
be identified.

13The analysis of the corresponding portfolios of opposite sign (long straddle, short risk
reversal, short butterfly spread, short “Mexican hat”) would be redundant. We remind
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For practical implementation, the ATM options are those with strike
price closest to the current level of the underlying. The choice of the OTM
options for our portfolios is based on two levels of moneyness (defined, for
this purpose, as the ratio between the strike and the underlying futures
price), one for the OTM puts and one for the OTM calls, equidistant from
the ATM level. A trade-off exists between choosing OTM options too close
to the ATM, which are highly liquid also for a short time to expiry but not
very sensitive to non-parallel changes in the volatility curve, and selecting
too far OTM options, which are very sensitive to different sources of changes
in volatility, but become too illiquid as time to maturity approaches. In our
case, a ratio K/F of 0.92 for OTM puts and of 1.08 for OTM calls seems to
represent a satisfactory compromise.

Each day of the testing period (year 2001) we build the four delta-neutral
portfolios from our data set, and we calculate their marked-to-market value
on both that day and the following day, in order to compute the actual
change in value.

7 Density Forecasts of the Changes in Option Port-
folios’ Value

For each of the three models, parametrized according to the estimates ob-
tained in Section 5, we produce daily forecasts of the changes in value of
the four option portfolios, over the year 2001.14 In order to assess these
distributional forecasts not only in relative, but also in absolute terms, a
comparison is drawn with the actual daily changes in the portfolios’ value
across the year. Particular attention is paid to the tails of the density fore-
casts, which are especially relevant for risk management purposes.

7.1 Derivation of the density forecasts

The density forecasts of the changes in option portfolios’ value are derived
by means of a simple Monte Carlo simulation exercise.

In the Kalman filter model, we start with initial estimates x̂1 and S1,
at the beginning of the testing period. For simplicity, the coefficients of the
cubic fitted to the empirical volatility curve on the last day of the estimation
period are chosen as x̂1. S1 is set equal to the covariance matrix of the
stationary distribution of the multivariate Ornstein-Uhlenbeck process in
Eq. (2), S1 = C(A + A′)−1C ′. Subsequent estimates x̂t and St are obtained
through the updating Eqs. (4.4) and (4.5).

the reader that the upper percentiles of the distributions of the changes in value for the
original portfolios correspond to the lower percentiles of the distributions for the portfolios
with opposite sign.

14It is worth emphasizing that in our work we only consider out-of-sample density
forecasts.
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Each day t we draw 5, 000 correlated samples from N(x̂t, St) for the skew
coefficients, and N(0, σt) for the log returns on the underlying future, where
σt is obtained from the EGARCH model. Once we possess forecasts for
the underlying level at time t, we can calculate the log moneyness (again,
at t) for the strikes of the options included in the four portfolios at time
t − 1. We then obtain forecasts for the corresponding implied volatility
levels, via the cubic polynomial in Eq. (1), with coefficients equal to the
coefficient forecasts for time t. The resulting implied volatilities are placed
into Black’s formula to derive the forecasts for the marked-to-market value
of the options in the portfolios. Since we repeat this procedure 5, 000 times,
we obtain an entire density forecast of the changes in the marked-to-market
portfolios’ value.

In order to produce density forecasts from the sticky-delta model, each
day t we draw 5, 000 samples from N(0, σt), the distribution of the log
returns on the underlying. For each sample we compute the forecasted
value of the underlying at t, and the new levels of log moneyness for all the
options included in the four portfolios at time t − 1. We then move along
the volatility curve observed at t− 1. The implied volatilities corresponding
to the updated levels of log moneyness are placed into Black’s formula to
obtain forecasts of the new marked-to-market option prices.

In the vega-gamma model, each day we draw 5, 000 correlated sam-
ples from N(αATM (µATM − σATM,t−1), σvol

ATM ) for the changes in the ATM
volatility level, and N(0, σt) for the log returns on the underlying future. We
then obtain 5, 000 pairs (∆σATM , (∆F )2) which, combined with the vega
and gamma exposures (V and Γ) computed for the four option portfolios at
t− 1, yield density forecasts of the changes in portfolios’ value.

7.2 Assessment of the density forecasts

At this stage, we must assess whether the density forecasts produced by the
Kalman filter method represent good forecasts of the actual daily changes
in the value of the four option portfolios. These density forecasts are also
compared to the corresponding forecasts obtained from the sticky-delta and
vega-gamma specifications.

First of all, we find that the density forecasts produced by all models turn
out to be significantly biased in the mean. If we believe in market efficiency,
our daily density forecasts should be always centered around zero, in order
to rule out any significant degree of predictability in the market. Instead,
we consistently observe non-zero estimates for the mean of our daily return
distributions and this leads to unrealistically high values for the annualized
Sharpe ratios. In detail, we estimate average Sharpe ratios ranging between
3.5 (for the butterfly spread) and 6 (for the risk reversal), according to the
Kalman filter approach. Even higher Sharpe ratios are estimated from the
other two approaches (see Table 7). A bias in the mean can be system-
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atically observed in the density forecasts of any option portfolio, whatever
approach is used to derive them. Therefore, rather than a model-dependent
misspecification problem, this seems to be a more generic issue that affects
all approaches, although in a different way. Given the generality of the is-
sue, we believe that it is mainly due to the well-known problem of producing
unbiased estimates of the drift component of a model over too short time
series. Also, it is worth reminding that here we do not impose no-arbitrage
conditions on the drift and we work with predefined portfolios, which are
not necessarily arbitrage-free. Finally, we produce density forecasts over a
very short time horizon (i.e. one day), and this could introduce additional
noise in our estimates. Unfortunately, given the nature of the dataset avail-
able, no immediate solution to this problem can be easily found in our case.
We simply choose to re-center the densities of the portfolio returns on zero,
in order to better focus on the remaining features of our forecasts, which
should be much less affected than the drift by the sampling variation. After
applying this correction, we then move on to appraise the performance of
the different models for each portfolio.

If a sequence of one-step-ahead density forecasts pt of the variable rt

is correct, then the series of Probability Integral Transforms (PIT) zt =∫ rt
−∞ pt(y)dy ∼ i.i.d. U(0, 1) or, equivalently, the series of the normalized

transforms xt = Φ−1(zt) ∼ i.i.d. N(0, 1). In Figs. 4 - 7 we plot the empirical
cumulative distribution functions (CDF) of the zt series obtained from each
model, against the theoretical 45◦ line, for all option portfolios. A simple
visual inspection of the plots highlights the superiority of the Kalman filter
forecasts for the daily returns for each of the option portfolios. It is worth
noticing that most density forecasts (in particular from the sticky delta
and the vega-gamma approach) appear to be still affected by some kind of
bias, additional to the one in drift discussed previously. This suggests that
forecasting daily changes in value of option portfolios is not a straightforward
task and this issue should not be underestimated by risk managers.

In order to be more precise about the different nature of such biases,
the graphical approach is integrated with a more formal analysis. As sug-
gested by Berkowitz [2001], we use log likelihood ratio (LR) tests on the
transformed xt series to test for the null hypotheses of independence (LR1),
i.i.d.(0, 1) (LR2), zero mean (LR3), and unit variance (LR4). The results
from the implementation of the LR testing techniques are displayed in Table
6. The values for the LR1 test indicate that the independence of the PIT se-
ries is never a problem. Instead, the joint hypothesis of i.i.d.(0, 1) cannot be
rejected only for the density forecasts of changes in value of the straddle and
the butterfly spread produced by the Kalman filter model. This evidence
highlights the existence of biases in the first two moments of our distribu-
tional forecasts. Since the rejection of the null hypothesis in LR tests is only
based on the first two moments, we also compute a Jarque-Bera test for nor-
mality. The outcomes of the Jarque-Bera test reveal that the normality of
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the PIT series is often rejected, with the exceptions of the straddle (Kalman
filter) and the mexican hat (Kalman filter and sticky-delta). Therefore, de-
tecting potential misspecifications in higher moments of the distributional
forecasts becomes relevant.

For a better comparison between actual and forecasted daily P&L, we
then compute basic summary statistics for both the time series of the actual
daily changes in the values of the portfolios, and the three equally-weighted
mixtures (one for each model) of the single density forecasts derived for each
day of the testing period.15 The summary statistics (mean, standard devi-
ation, variance, skewness and excess kurtosis) for the four option portfolios
are reported in Table 7.

The analysis of the tails of the density forecasts is also relevant, both
as part of a more general and complete assessment of the goodness of our
forecasts, and for VaR computations. Following Barone-Adesi, Giannopou-
los and Vosper [2002], in order to evaluate whether our density forecasts are
appropriate for the calculation of conventional risk measures, we proceed as
follows. We compute the 1-day VaR at both 99% and 95% confidence levels
as, respectively, the 1st and the 5th percentile of the forecasted distribution
of the changes in value of the option portfolios. We then record the number
of breaks over the entire testing period, which occur when the actual loss is
larger (in absolute value) than the estimated VaR. We also compute the 95th

and the 99th percentiles, together with the corresponding number of breaks,
which are relevant in terms of VaR calculations for the option portfolios of
opposite sign. The number of breaks recorded for both lower and upper
percentiles of the density forecasts obtained from the different models, as a
percentage of the total number of days in the testing period, are displayed in
Table 8, for each of the option portfolios. If the VaR forecasts were correct,
we would expect a percentage of breaks of around 1% for both the 1st and
the 99th percentiles, and of 5% for both the 5th and the 95th percentiles. The
figures indicate that the Kalman filter model produces the best forecasts of
both lower and upper tails for all the option portfolios of interest.

Having briefly described the evaluation techniques, we can now focus
on the appraisal of the density forecasts of the returns for each of the four
option portfolios.

7.2.1 The Short Straddle

The summary statistics in Table 7 indicate that the time series of the actual
changes in the value of the short straddle position is highly skewed to the
right (skewness of −2.45) and leptokurtic (excess kurtosis of 10.86). The
density forecasts obtained from the Kalman filter model seem to provide

15This method yields more accurate results than the simple averaging of the summary
statistics of the individual density forecasts across time.
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the best fit (both in the body and in the tails) to the actual portfolio re-
turns, although they show lower variance and less skewness and fat-tailness
compared to the time series of the actual returns. The superior performance
of these forecasts is evident from both the CDF plot and the number of VaR
breaks.

The density forecasts which seem to best reproduce the skewness and
the fat-tailness of the actual returns are those generated by the sticky-delta
model. Such forecasts, however, present an upward bias in the variance and
a severe misspecification in the right tail, as reported in Table 8, and also
evident from the CDF plot.

Since the returns on a straddle position only depend on changes in
the ATM volatility level, we are not too surprised to observe that the
vega-gamma model produces density forecasts whose fit is better than that
of sticky-delta forecasts (but still worse than that of Kalman filter fore-
casts). As for the Kalman filter approach, the forecasts cannot reproduce
the amount of asymmetry and leptokurtosis observed in the data. We can
also detect an upward bias in the second moment and a slight misspecifica-
tion of the right tail.

7.2.2 The Long Risk Reversal

The distribution of the realized returns of the long risk reversal portfolio
over time turns out to be slightly negatively skewed (skewness of −0.82)
and moderately leptokurtic (excess kurtosis of 4.04). According to all our
evaluation techniques, the density forecasts obtained from the Kalman filter
approach show again the best fit to the actual returns, even though the
higher moments are again slightly underestimated.

The sticky delta model instead generates forecasts characterized by se-
vere upward biases in both the variance and the skewness of the distribu-
tions. Such biases induce significant misspecifications not only in the body
but also in the tails of the density forecasts, as evident from the CDF plot
and Table 8.

The density forecasts from the vega-gamma model are even more biased
(very low variance and very high skewness and kurtosis compared to the
actual returns on the option portfolio), due to the fact that this model
cannot account for pure changes in the slope of the volatility curve. The large
underestimation of the dispersion measure explains the huge misspecification
of both tails, with remarkably high percentages of VaR breaks.

7.2.3 The Long Butterfly Spread

The sample summary statistics of the time series of the actual returns on the
long butterfly spread portfolio reveal the presence of a moderate negative
skewness (−1.07) and excess kurtosis (2.80). An overall good fit to the
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actual portfolio returns is observed for the density forecasts generated from
the Kalman filter approach which, however, are affected by an upward bias
in the asymmetry and fat-tailness measures.

Much less accurate density forecasts are obtained from either the sticky-
delta or the vega-gamma model, which cannot easily account for changes
in the curvature of the volatility skew. In this case, significant upward
biases affect not only the higher moments of the distributions, but also the
variance. The presence of such biases explains the misspecification in the
tails, measured by the percentage of VaR breaks.

7.2.4 The Long “Mexican Hat”

The time series of the actual daily returns on the long “Mexican hat” vega-
neutral position displays a sample variance of 2.53, and very pronounced
higher moments (skewness of 2.55 and excess kurtosis of 22.65). Similar
values for the higher moments can be observed only for the mixture of density
forecasts generated from the sticky-delta model, which, however, exhibits a
significant downward bias in the variance, easily detectable from the CDF
plot. This bias in the second moment induces the misspecification in the
tails reported in Table 8.

The density forecasts generated from the Kalman filter approach are
instead less asymmetric (skewness coefficients around 1.34) and leptokurtic
(excess kurtosis around 10.79) but they provide once more the best fit to the
actual returns on the option portfolio. The density forecasts from the vega-
gamma model also suffer from a severe downward bias in higher moments,
which is accompanied by an obvious upward misspecification of the variance
(3.42). For both models, the relatively high percentage of VaR breaks in
the right tail (around 9% at 95% confidence level) is a consequence of the
failure to correctly capture the strong positive asymmetry observed in the
actual stream of profits and losses.

Although none of the approaches investigated here seems to be capable
of generating correct density forecasts of the daily returns on all our option
portfolios,16 in relative terms we express a strong preference for the discrete
Kalman filter as a model for the dynamic of the volatility skew. According
to all our evaluation techniques, this method outperforms, both in the body
and in the tails of the distribution, the alternative specifications at producing
daily forecasts of the changes in the marked-to-market value of some basic
option portfolios. This finding holds not only for option portfolios which are
sensitive to movements in slope and curvature of the volatility curve and
therefore are harder to capture for the other approaches, but also for those
sensitive to parallel changes in the curve or vega-neutral. The returns on
the latter portfolios, however, are characterized by very pronounced higher

16See results from the LR2 joint test of i.i.d.(0, 1).
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moments that the Kalman filter technique seems to underestimate. The
sticky-delta model performs better at replicating the highly asymmetric and
leptokurtic shape of the return distribution, but this advantage is offset by
the presence of severe misspecifications in the second moment and in the
tails of the density forecasts.

In the light of our outcomes, we can conclude that, on the whole, the
Kalman filter approach constitutes a very promising method for modeling
the evolution of the volatility skew, given its ability to easily account for
changes in level, slope, curvature and skewness of the curve, especially rele-
vant for risk management purposes. This is consistent with the findings of
some recent studies on the dynamic of the volatility curve via component
analysis,17 according to which more than one factor are needed to describe
the movements of the curve, and these factors are not perfectly correlated
with the underlying asset.18 In fact, we find that even the 2-factors vega-
gamma specification is not sufficient to correctly predict the evolution of the
volatility skew.

8 Conclusions and Further Research

Considering the importance of predicting the evolution of the volatility
skews/surfaces for pricing, trading and risk management purposes, we have
suggested here for the first time a discrete Kalman filter model for the dy-
namic of the volatility skew.

From a risk management point of view, we have assessed whether this
model is capable of generating good density forecasts of the daily returns
on a number of option portfolios exposed to variations of different nature in
the volatility curve. The results have also been contrasted with those based
on density forecasts obtained from two widely used benchmark models, the
1-factor sticky-delta and the 2-factor vega-gamma.

Two main conclusions can be derived from our analysis. First, produc-
ing good forecasts of daily changes in the marked-to-market value of option
portfolios is much harder than most risk managers believe. None of the
methods investigated here yields correct forecasts for all the four option
portfolios. A significant bias in the mean, probably due to the excessive
sampling variation of the estimates over a short estimation period, affects
all the density forecasts. Additional biases in higher moments are also re-
ported for some forecasts. Second, on the whole, the Kalman filter method
outperforms the alternative models for all the option portfolios considered
here. Our method is easy to implement, of immediate interpretation, and

17See, for example, Skiadopoulos, Hodges and Clewlow [1999], Alexander [2001], Cont
and da Fonseca [2002].

18In this respect, it could be interesting to re-express our correlated skew coefficients in
terms of these orthogonal factors.
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very flexible, given that it accounts for various factors/sources of randomness
in the option markets.

Further work aimed at improving our Kalman filter specification includes
the following: 1) the inclusion of time dependence in the model parameters
(long run mean, mean-reversion coefficients, etc.); 2) the inclusion of the
specification for the log returns on the underlying into the Kalman filter state
space model; 3) additional tests on the effects of the seasonality induced by
the decreasing time to maturity on the coefficients, moments estimates, etc.
Also, it would be interesting to repeat the analysis for a weekly, instead
of daily, forecast horizon, and assess its impact on the bias in the drift
component. The generic issue of the bias in the mean also deserves further
investigation.

On a different line, it would be interesting to compare the Kalman fil-
ter updating of the volatility skew against richer alternatives than the ones
explored in this work. For risk management purposes, a meaningful com-
parison could be drawn, for example, with the filtered historical simulation
approach devised by Barone-Adesi, Giannopoulos and Vosper [2002].
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Table 1: Estimates of At and µt - Kalman filter model.

1st estimation period 2nd estimation period

Diag. At µt Diag. At µt

Level 0.0541 0.2155 0.0573 0.2192
Slope 0.0169 -0.1229 0.0195 -0.1316
Curvature 0.1625 0.1112 0.1578 0.1111
Skewness 0.1782 0.1033 0.1761 0.1005

3rd estimation period 4th estimation period

Diag. At µt Diag. At µt

Level 0.0593 0.2218 0.0508 0.2163
Slope 0.0189 -0.1222 0.0189 -0.1200
Curvature 0.1320 0.1142 0.1208 0.1176
Skewness 0.1699 0.0999 0.1672 0.0992
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Table 3: Estimates of measurement error volatility per buckets of log mon-
eyness - Kalman filter model.

Buckets log moneyness Std. dev. measurement error

≤ −0.50 0.0097
> −0.50, ≤ −0.40 0.0086
> −0.40, ≤ −0.30 0.0059
> −0.30, ≤ −0.20 0.0043
> −0.20, ≤ −0.10 0.0030
> −0.10, ≤ −0.01 0.0028
> −0.01, ≤ 0.01 0.0023
> 0.01, ≤ 0.10 0.0037
> 0.10, ≤ 0.20 0.0072
> 0.20 0.0123
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Table 5: Estimates of mean reverting model for ATM volatility.

Estimation period
1st 2nd 3rd 4th

µATM 0.2112 0.2171 0.2198 0.2146
αATM 0.0573 0.0602 0.0647 0.0564
σvol

ATM 0.0133 0.0133 0.0135 0.0112

Table 6: Density forecasts tests - H0 : xt ∼ i.i.d. N(0, 1).

Straddle Risk-reversal

K.F. Sticky-∆ V − Γ K.F. Sticky-∆ V-Γ

LR1 (independence) (3.84) 0.01 0.59 0.05 1.28 3.27 0.09
LR2 (i.i.d.(0, 1)) (7.81) *10.83 *131.81 *28.04 5.18 *49.29 *554.15
LR3 (zero mean) (3.84) 0.09 2.34 0.95 0.28 0.81 *7.10
LR4 (unit variance) (3.84) *10.70 *124.08 *19.39 3.39 *42.58 *519.05
Jarque-Bera (5.99) 1.63 *64.91 *16.19 *21.70 *186.22 *18.00

Butterfly spread Mexican hat

K.F. Sticky-∆ V-Γ K.F. Sticky-∆ V-Γ

LR1 (independence) (3.84) 1.15 0.10 2.11 0.02 0.02 0.44
LR2 (i.i.d.(0, 1)) (7.81) 1.50 *113.25 *18.06 *11.85 *201.21 *44.16
LR3 (zero mean) (3.84) 0.11 2.11 3.08 0.67 0.37 *5.80
LR4 (unit variance) (3.84) 0.19 *107.97 *14.83 *10.95 *199.83 *34.61
Jarque-Bera (5.99) *7.08 *85.00 *25.82 4.72 4.58 *32.22

Critical values at 5% in brackets.
* rejected at 5% confidence level.
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Table 7: Summary statistics for actual profits and losses and density fore-
casts.

Mean Std.dev. Variance Skew Exc. Kurt. Sharpe R.

Straddle
Sample 0.221 2.862 8.189 -2.451 10.864 -
Kalman filter 0.000 2.449 5.996 -1.713 7.862 4.603
Sticky-∆ 0.000 3.056 9.340 -2.271 8.616 3.471
Vega-gamma 0.000 3.070 9.423 -1.556 5.004 5.883

Risk-reversal
Sample 0.072 0.515 0.265 -0.816 4.037 -
Kalman filter 0.000 0.507 0.257 -0.491 2.786 6.308
Sticky-∆ 0.000 0.650 0.422 1.543 4.858 10.148
Vega-gamma 0.000 0.170 0.029 1.907 13.154 7.970

Butterfly spread
Sample 0.122 1.118 1.251 -1.066 2.801 -
Kalman filter 0.000 1.101 1.211 -1.490 5.644 3.376
Sticky-∆ 0.000 1.243 1.545 -2.419 12.104 4.108
Vega-gamma 0.000 1.434 2.057 -1.764 8.810 4.718

Mexican hat
Sample -0.078 1.590 2.528 2.548 22.646 -
Kalman filter 0.000 1.576 2.484 1.340 10.792 4.094
Sticky-∆ 0.000 1.500 2.250 2.877 24.710 7.055
Vega-gamma 0.000 1.849 3.420 0.794 7.347 4.734
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Table 8: Percentage of VaR breaks.

Lower percentiles Upper percentiles
1% 5% 99% 95%

Straddle
Kalman filter 1.08% 5.25% 1.50% 5.25%
Sticky- ∆ 0.42% 4.17% 13.33% 13.75%
Vega-gamma 0.42% 5.00% 1.25% 3.33%

Risk-reversal
Kalman filter 1.67% 5.42% 0.83% 4.58%
Sticky- ∆ 9.58% 9.58% 0.00% 1.25%
Vega-gamma 31.25% 37.08% 14.58% 27.08%

Butterfly spread
Kalman filter 1.50% 5.25% 1.25% 3.75%
Sticky- ∆ 0.83% 4.58% 12.08% 12.08%
Vega-gamma 0.42% 2.92% 0.83% 2.08%

Mexican hat
Kalman filter 1.25% 5.83% 3.75% 8.33%
Sticky- ∆ 14.58% 16.25% 7.92% 13.33%
Vega-gamma 2.50% 5.00% 6.67% 10.00%
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Figure 1: Cubic fit to the implied volatility curve for three expiries of the
March 99 contract.
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Figure 2: Time series of the volatility skew coefficients (Jan.98 - Dec.00).
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Figure 3: Autocorrelation functions of the volatility skew coefficients (Jan.98
- Dec.00).
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Figure 4: CDF plots of goodness-of-fit - short straddle.
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Figure 5: CDF plots of goodness-of-fit - long risk reversal.

34



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Kalman Filter model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Sticky Delta model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Vega Gamma model

Figure 6: CDF plots of goodness-of-fit - long butterfly spread.
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Figure 7: CDF plots of goodness-of-fit - long Mexican hat.
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