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Abstract

We study auctions under restricted communication. Bidders have valuations in a compact

interval, but can only report one of a �nite number of messages. We provide a characterization

of welfare as well as revenue maximizing auctions in the symmetric independent private values

case when bidders report simultaneously. We show that the seller choosing how to allocate the

�xed communication capacity allocates it evenly over the bidders. The optimal auction is asym-

metric, contrasting the symmetry of optimal auctions when communication is not restricted.

The analysis is extended to the case of multiple identical objects and single unit demand.

Finally, we characterize welfare maximizing auctions under restricted communication when

two bidders report sequentially and there are only two periods of reporting. These auctions can

be thought of as a two step procedure. In the �rst step, the �rst bidder chooses a price from a

�nite menu of prices. In the second step the object is o¤ered to the second bidder at a higher

price. If the second bidder accepts it he receives the object and pays the o¤ered price, otherwise

the �rst bidder receives the object at the price he chose.

1 Introduction

Surprisingly little attention has been paid to how information is transmitted in auctions. Most

often the issue of communication is sidestepped by applying the celebrated revelation principle (see

Myerson (1979) and Myerson (1981)), thus enabling bidders to report their valuations. We consider
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Wolinsky for their continuous guidance and support. I would like to thank Liad Blumrosen, Federico Bugni, Eddie
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optimal auction design when bidders cannot fully report their valuations due to communication re-

straints. Such a setup arises in many observed auctions where bidding is discretized or incremental.

Perhaps the most natural application is the design of Internet auctions, where the communication

is in the binary code, thus rendering the message space �nite (see Blumrosen, Nisan and Segal

(2007)).

Outline and Results. We consider optimal auction design, both under welfare and revenue

maximization, when bidders cannot fully report their valuations due to communication restraints.

We use the independent private values setup (IPV) where bidders have values distributed on a

compact interval but are only allowed to choose a report from a �nite set of messages. A similar

model was studied by Blumrosen, Nisan and Segal (2007) (henceforth BNS). Direct comparison

between their and our results is provided below.

We start with the model in which the seller is selling a single indivisible object. The seller

commits to a mechanism, bidders observe their valuations and simultaneously report one of the

�nite number of messages they can use. Allocations and transfers are executed on the basis of

reported messages. We start the analysis by showing that equilibria are in threshold strategies

which enables us to show existence of a welfare maximizing equilibrium. The analysis in our paper

di¤ers from the analysis under no restrictions on communication in the sense that we need to deal

with reporting strategies as well as the mechanism. Nuisance that is avoided when communication

is costless by applying the revelation principle and focusing on equilibria with truthful reporting.

In our case it is not a priori clear what truthful reporting means, nor is it clear what reporting

strategies maximize the objective.

We proceed to show that information transmission of the bidder with the highest communication

capacity1 is restricted by the communication capacity of all the remaining bidders. In particular,

if there are only two bidders and one of them, say bidder 2, can choose among k messages, then at

most k + 1 messages of bidder 1 are welfare relevant. Indeed, the seller is comparing the expected

valuations of the two bidders given their reports and the strategies they are using. To each message

of bidder 2 corresponds an expected value, therefore all together k expected values. Fixing bidder

2�s behavior, the only welfare-relevant information provided by bidder 1 is whether his valuation

is above the highest expected value of bidder 2, between the highest and the second highest,..., or

1Cardinality of the message space.
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below the lowest. Hence at most k + 1 distinct messages from bidder 1 are relevant.

The above stated result enables us to characterize welfare optimizing equilibria in the two bidder

case. Optimal equilibria are asymmetric both in strategies as well as in the allocation rule even

when both bidders are ex ante symmetric.2 In an example borrowed from BNS both bidders have

uniformly distributed valuations over the interval [0; 1] and the cardinality of both bidders�message

spaces is two. The highest welfare is achieved when one bidder, say bidder 1, uses threshold 2
3 and

the other bidder threshold 1
3 . The allocation rule assigns the object to bidder 1 unless he reports

his lower partition cell and bidder 2 his higher partition cell; in later case the object is awarded to

bidder 2. Transfers to support this equilibrium are Vickrey type transfers: the winning bidder pays

the lowest value he could have, report according to his strategy, and still win. Interesting property

of strategies in the welfare optimal equilibrium is what BNS call mutual centeredness. Notice that

in the above outlined example bidder 1�s highest threshold is equal to the expectation of bidder 2�s

higher partition cell and bidder 2�s threshold is the expectation of bidder 1�s lower partition cell.

A similar property holds for the general case when bidders do not have the same distribution of

valuations or the same cardinality of message spaces.

Symmetry is often required for legal, fairness or other purposes. In view of this we characterize

the cost of imposing symmetry restrictions on a two bidder mechanism when bidders are ex ante

symmetric. If equilibria are required to be fully symmetric, same strategies and ties broken by a �ip

of a fair coin, one needs almost twice as many messages for each bidder to achieve the same welfare as

when no such symmetry requirements are imposed. More precisely, welfare obtained in the welfare

maximizing equilibrium where each bidder has k possible messages is equal to the welfare obtained

in the best symmetric equilibrium with each of the bidders having 2k � 1 messages. In the above

example, we argued that the highest welfare is achieved when bidder 1 uses threshold 2
3 and bidder

2 threshold 1
3 . Welfare in that mechanism is equal to the highest welfare achieved in the mechanism

in which each bidder can use 3 messages and equilibrium is required to be symmetric. The later

equilibrium has both bidders reporting according to a threshold strategy with two thresholds: 1
3 ,

2
3 .

Using similar analysis, the problem of welfare maximization can be solved for the case when

seller�s value for the object is positive and commonly known. This in turn enables one to solve

2We refer to bidders as symmetric when they have both, the same distribution over their values, F , and the same
cardinality of the message space, k.
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the revenue maximization problem under the standard assumption of regular distributions. Due

to Myerson (1981) the problem of revenue maximization can be transformed into the problem of

maximization of virtual valuations given that they are no smaller than 0, which is equivalent to the

problem of welfare maximization after virtual valuations are reinterpreted as the actual valuations.

The above results provide a solution to a more general problem in which the seller can decide

how to distribute a �xed amount of communication capacity between the two bidders. In particular,

he distributes the number of messages evenly.

In our main result we provide a characterization of welfare optimal auctions3 when the seller

can choose how to distribute �xed amount of communication capacity but is required to assign at

least one message to each bidder and all the bidders have valuations distributed with the same

distribution F . The problem can be thought of as follows. First the seller decides how to assign a

�xed number of thresholds. For example, suppose there are three bidders and the seller can use at

most nine messages. This corresponds to six thresholds in total since we require that each bidder has

at least one message. One can �x values of arbitrary six thresholds and see what is the optimal way

to assign them to bidders. We show that the optimal assignment is a priority assignment in which

thresholds are assigned in a round robin fashion: bidder 1 obtains the highest threshold, bidder 2

the second highest, bidder 3 the third and then one starts with bidder 1 again.4 For a graphical

representation of the priority assignment see Figure 2 below. The priority assignment implies that

bidder 1�s top partition cell is the highest in the strong set order, bidder 2�s top partition cell

second highest, bidder 3�s third highest and then one starts with bidder 1 again. Because bidders

have the same distributions the same chain of inequalities holds for expected values of the partition

cells. But this in turn yields the optimal allocation rule: the object is allocated to the bidder

reporting the highest partition cell according to the strong set order. Due to the nature of the

priority assignment the optimal allocation rule is the same no matter what the set of thresholds

one starts with. The second step is easy: one maximizes welfare over all the possible values of

thresholds while holding the assignment and the allocation rule �xed. Optimal thresholds satisfy a

similar property as in the two bidder case, i.e. bidder 1�s highest threshold is a convex combination

of the expected value of bidder 2�s top partition cell and bidder 3�s top partition cell. The weights

are the relative probabilities of the respective bidder having the value in the top partition cell given

3As in the two bidder case, we extend the analysis to pro�t maximization after solving the problem of welfare
maximization when the seller has a commonly known positive valuation.

4This is, of course, up to relabling of bidders.
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that at least one of the two bidders has it. The other thresholds are characterized similarly.

We also show how analysis can be extended to the problem of allocating multiple identical

objects to the symmetric bidders with a single unit demand.

The above analysis assumes that the bidders report messages simultaneously. The next logical

step is to explore welfare and pro�t maximization under sequential reporting. Here, as opposed

to when there are no restrictions on communication, simultaneous reporting is not without loss of

generality when cardinalities of bidders�message spaces are �xed. We study 2 bidder mechanisms

with two periods of reporting. After the seller commits to the mechanism, bidder 1 reports one of

k1 messages, bidder 2 observes it and reports himself. The allocation and transfers are executed

on the basis of the two reports. We show that the optimal welfare achieved in such a mechanism is

equal to the optimal welfare in a simultaneous mechanism where bidder 1 has k1 possible messages

and bidder 2 has k1 + 1. The optimal mechanism can be thought of as the seller o¤ering a menu

of k1 prices to bidder 1. After bidder 1 chooses one of the prices, bidder 2 is o¤ered the object

at a higher price. If he accepts he obtains the object and pays the price he was o¤ered, otherwise

bidder 1 obtains the object at the price he chose. An analogous result is obtained under revenue

maximization.

Related Literature In the paper most closely related to ours Blumrosen, Nisan and Segal

(2007) study the e¤ects of restricted communication in auctions. They show that the information-

ally optimal strategies are threshold strategies and that they can be supported as an equilibrium.

We in addition show that all the equilibria are in threshold strategies and that the relevant commu-

nication of the bidder with the highest communication capacity is restricted by the communication

capacity of all the remaining bidders, which is novel. This enables us to provide an alternative way

to characterize the optimal equilibria of two bidder mechanisms where bidders have independently

distributed signals and each has a message space of an arbitrary �nite cardinality. BNS characterize

the optimal two bidder equilibria when bidders have the same cardinality of the message space.

The two bidder two messages example with uniform distribution is also due to BNS. On the other

side, characterization of the cost of requiring symmetry is new.

For more than two bidders BNS have only been able to provide characterization under the

assumption that all the bidders have the same distribution and each has cardinality of the message

space equal to two. We solve a more general problem, still requiring symmetric distributions, by
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showing that the seller optimally distributes the communication capacities evenly over the bidders.

Moreover we characterize the optimal equilibria under such a distribution of communication capac-

ity. Our characterization of the pro�t maximizing equilibria is tighter even when restricted to their

environment; i.e. bidders choose between two messages. Characterization for multiple identical

objects and a single unit demand is also novel.

BNS provide a two bidder - two message example showing that sequential reporting with the

same number of messages can do better than simultaneous reporting if the bidder to report second

is revealed the �rst bidder�s report. They proceed to show that at least as high a welfare as in any I

bidder sequential reporting mechanism with communication requirement m (meaning that the sum

of bits used by all the bidders is m) can be achieved by a simultaneous reporting mechanism with

communication requirement no larger than mI. While this provides a general bound, we, on the

other side, exactly characterize welfare and pro�t maximizing equilibria of two bidder mechanisms

with two rounds of sequential reporting. BNS�s result apply only to the welfare.

Blumrosen and Feldman (2006) study restricted communication in a general mechanism design

problem. Among other things they show the optimality of threshold strategies under the assumption

of multilinear and single crossing social-value function.

Possibility of having restricted communication was already considered in Myerson (1979) and

Myerson (1981), though in di¤erent context. Myerson�s work implies that neither bidders, nor

the seller, can be made better o¤ by restricting communication. Wilson (1989) and McAfee (2002)

analyze the role of priority services in industries where spot markets would be expensive to organize.

In Wilson�s model the core of the problem is uncertainty of supply while in our case supply is

commonly known but the demand is uncertain (at least from the seller�s point of view). Yet in

di¤erent setup, equilibria of similar form to ours are obtained by Bergemann and Pesendorfer

(2007), though through a di¤erent channel. In our model bidders are unable to fully communicate

their valuations, while in their model the bidders are not fully informed of the value due to the

restrictions imposed on them by the seller.

Various papers study restricted communication in a �xed auction setting. Some examples are

Rothkopf and Harstad (1994) in oral auctions and Athey (2001) in the �rst price auction. We, on

the other side, are deriving the optimal auction.

Milgrom (2007) looks at a di¤erent kind of communication restrictions. He studies e¤ects of

restricted communication in combinatorial auctions where bidders instead of submitting bids for
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all the possible packages submit bids for a subset of those.

Dynamic auctions having a �avor of limited communication arise in numerous papers. For exam-

ple, Sandholm and Gilpin (2006) analyze take-it-or-leave-it auctions in which seller is sequentially

making o¤ers to the bidders until a bidder accepts an o¤er; also see Kress & Boutilier (2004).

2 The Model

2.1 Preferences

A single indivisible object is to be sold to one of the bidders indexed by i 2 f1; 2; :::; Ig. Each

bidder i�s private value, vi; is distributed with a commonly known atomless distribution function

Fi over a compact interval Vi = [0; 1]. In addition we assume that the distribution function allows

for everywhere positive density fi: Let

V =
I
�
i=1
Vi = [0; 1]

I :

As usual, we adopt the notation v = (vi; v�i). Prior to the auction, bidder i�s valuation vi is

independently drawn from the distribution Fi and revealed only to the bidder himself. The seller

can be thought of as bidder 0, his commonly known valuation being v0. Mostly we will be dealing

with the case v0 = 0. Instances when this assumption is dropped will be clearly denoted, though.

Bidders are assumed to maximize their quasi-linear utilities

U (vi; Qi; Ti) = viQi � Ti;

where Qi is bidder i�s probability of receiving the object and Ti his monetary transfer.

2.2 Information Structure and Strategies

Here is where our model departs from the classical mechanism design literature as presented say

in Krishna (2002) Chapter 5. As opposed to the case of unrestricted communication, each bidder
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has predetermined set of messages Mi of �nite cardinality.5,6 Let ki � jMij denote the cardinality

of the set Mi for all i; and let Mi = fm1;m2; :::;mkig. Furthermore, we denote M =
I
�
i=1
Mi with a

representative element m.

After observing their valuations bidders report to the seller simultaneously. In particular, after

observing a private value vi bidder i reports a message from Mi according to a reporting strategy

�i, where

�i : Vi !Mi:

The vector of strategies, or strategy pro�le, is denoted � = (�1; �2; :::; �I), the set of strategies

for bidder i is Si, and the set of strategies S =
I
�
i=1
Si.

2.3 Mechanism

The mechanism determines the allocation, possibly stochastic, of the object in question and pay-

ments made by the bidders given the vector of reported messages. The allocation is

Q :M ! [0; 1]I+1 ;

where i-th coordinate of Q (m), denoted Qi (m), is interpreted as bidder i�s probability of winning

the object given the reported messages, and Q0 (m) the probability that the seller retains the object.

As usual Qi (m) � 0 for every i and every m; and
IX
i=0

Qi (m) = 1. In the urge to suppress as much

notation as possible we will de�ne bidder i�s expected probability of winning the object given his

own signal vi, the strategies � and the allocation rule Qi as

qi
�
�i (vi) ; ��i

�
= Ev�iQi (� (v)) :

The payment scheme can be represented as

T :
I
�
i=1
Mi ! RI ;

5One could more generally say that the mechanism designer can pick the message space for each player to be up
to the cardinality ki. This would only complicate the notation as it will be easy to see that the mechanism designer
would always (weakly) prefer to use set of messages with the largest allowed cardinality.

6Later in the paper we will look at the more general setup in which total number of messages is �xed and the
seller can choose how to allocate them over the bidders.
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where i-th coordinate of T (m), denoted Ti (m), is bidder i�s payment given the pro�le of reports

m. Again, ti
�
�i (vi) ; ��i

�
denotes the expected payment of bidder i with value vi under the pro�le

of strategies � :

ti
�
�i (vi) ; ��i

�
= Ev�iTi (� (v)) :

De�nition 1 A mechanism (M;Q; T ) consists of sets of possible messages Mi for each i, an al-

location rule Q and a payment rule T as de�ned above. The set of all mechanisms with I bidders

and ki = jMij messages for each bidder i is denoted by GIk1;k2;:::;kI .

Most of the time M will be �xed and clear from the context. In such a case we will use (Q;T )

to denote a mechanism.

We are ready to explicitly describe bidders�behavior. The mechanism de�nes a Bayesian game

in which each bidder is choosing a reporting strategy, �i, to maximize his expected payo¤ given

other bidders�strategies:

ui (�; vi; qi; ti) = qi
�
�i (vi) ; ��i

�
vi � ti

�
�i (vi) ; ��i

�
:

We require that the mechanism and the strategies satisfy the interim incentive constraints, i.e. for

every i:

qi
�
�i (vi) ; ��i

�
vi � ti

�
�i (vi) ; ��i

�
� qi

�
�i
�
v0i
�
; ��i

�
vi � ti

�
�i
�
v0i
�
; ��i

�
;

for every vi; v0i 2 Vi, and the interim participation constraint (IR):

ui (�; vi; qi; ti) � 0

for every vi 2 Vi: While the above incentive constraints are somewhat more permissible than is

usual they are still necessary for a Bayesian equilibrium. To be more precise, we will be looking at

the equilibria of the model, where equilibrium entails reporting strategies �, on one side, and the

mechanism given by an allocation rule Q and transfers T , on the other. Instead of inspecting the

conditions of a Bayesian equilibrium one can resort to incentive compatibility (Myerson (1979))

though perhaps in our context it might be more prudent to say that a certain mechanism (Q;T )

is incentive compatible with respect to the particular pro�le of strategies �. This contrasts the
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analysis usually applied in the setting without bounds on communication. There one would apply

the revelation principle and focus on equilibria in truthful reporting strategies. From that point

on incentive conditions are imposed to obtain the mechanism which supports truthful reporting as

an equilibrium. Something similar could be replicated in our context. Instead of explicitly dealing

with reporting strategies we could use a model where bidders can fully report their values but

only such allocation rules and transfers can be used, for which there exists k1 partition of the �rst

dimension of V , k2 partition of second dimension of V , etc., and both the allocation rule and the

transfers are measurable with respect to the algebra induced by the product partition. We did not

�nd such an approach particularly fruitful.

Furthermore, while truthful reporting is a natural candidate for a pro�le of strategies to prevail

in the IPV model without restrictions on communication, in our model it is neither clear what

truthful reporting is, nor what reporting strategies will be optimal in an equilibrium we are looking

for, be it welfare or pro�t maximizing. Therefore equilibria with di¤erent reporting strategies will

have to be considered.

We accrued enough notation to de�ne the welfare of an equilibrium.

De�nition 2 Let w (g; �) denote the expected welfare of an equilibrium of reporting strategies �

and a mechanism g � (M;Q; T ), i.e.

w (g; �) = Ev2[0;1]I

"
IX
i=0

Qi (� (v)) � vi

#

:

In addition let w�I;(k1;k2;:::;kI) denote the maximal expected welfare of equilibria in which each

bidder i has ki possible messages, i.e.

w�I;(k1;k2;:::;kI) = sup
g2GI;(k1;k2;:::;kI)

w (g; �) :

When k1 = k2 = ::: = kI we write w�I;k. On the other side expected pro�t is the sum of expected

payments.

De�nition 3 Let � (g; �) denote the expected pro�t of an equilibrium of reporting strategies � and
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a mechanism g � (M;Q; T ) ; i.e.

� (g; �) = Ev2[0;1]I

"
IX
i=1

Ti (� (v))

#
;

and let ��I;(k1;k2;:::;kI) denote the maximal expected pro�t of equilibria in which each bidder i has ki

possible messages.

3 Welfare maximizing mechanisms

3.1 General Setup

In this section we provide basic results concerning welfare maximizing mechanisms and reporting

strategies. More precise characterization under various assumptions is provided in the subsequent

sections.

First part of the analysis follows a rather standard route. Normally one would proceed to show

that the incentive compatibility implies monotonicity of qi in vi. Something similar can be done

here. Nothing precludes us from using some of the technology of the direct revelation mechanism.7

Fix an equilibrium, that is �;Q and T , and write with a slight abuse of notation

qi (vi) = qi
��
�i (vi) ; ��i

��
:

Imposing incentive compatibility yields qi (vi) vi� ti (vi) � qi (v
0
i) vi� ti (v0i) and qi (v0i) v0i� ti (v0i) �

qi (vi) v
0
i�ti (vi) for any vi; v0i 2 [0; 1] : Combining the last two equations gives [qi (vi)� qi (v0i)] [vi � v0i] �

0. The range of qi is restricted by the cardinality of message space of bidder i, rendering qi weakly

monotonic.

The following observation will make our life much easier. Every equilibrium has an outcome

equivalent equilibrium of the same mechanism in threshold strategies. To be more precise, if pro�le

� is an equilibrium of the mechanism with an allocation rule Q, and transfers T , then there exists

an outcome equivalent threshold reporting equilibrium �0 for the �xed Q and T .

7What we use is the fact that if an equilibrium is �xed one can use the composite function of the reporting rules
and the allocation.
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By a threshold strategy we mean a strategy in which for every vi < v0i such that �i (vi) =

�i (v
0
i), v

00
i 2 [vi; v0i] implies �i (v00i ) = �i (vi).

Lemma 1 Fix a mechanism (M;Q; T ) : Any equilibrium reporting strategies can be replicated by

threshold strategies.

Proof. Proofs of all the results are provided in the Appendices.

By the observation above we know that qi is weakly increasing in vi. Therefore if bidder i is

sending the same message for both valuations vi and v0i, such that vi < v0i, and thus inducing the

same expected probability of winning the object, it has to be the case that he is also winning with

the same expected probability for all the intermediate values. But then he is either reporting the

same message at those values or he is reporting something else but still winning the object with

the same expected probability. In the later case we can without loss of generality have the bidder

report the same message on the whole interval.8

Lemma 1 claims that equilibrium can be replicated by a threshold strategy because technically

there do exist equilibria with non-threshold strategies. As is noted above, those strategies are not

very interesting since some bidder is using more than one message to convey the same meaning.

Those messages can, for our purposes, be treated as one.

Threshold strategy can be described by a set of thresholds. We will adopt the habit of denoting

the highest threshold of bidder i by ci1, the second highest by c
i
2, etc. Analogously the message

reported when bidder i observes a value in the interval
�
ci1; 1

�
is denoted by m1, the message if he

observes a value in the interval [c2; c1) will be m2, etc. For example, if bidder i has jMij = k then

his strategy can be described by a vector of thresholds ci =
�
ci1; c

i
2; ::; c

i
k�1
�
. This reduces problem

of having to deal with Lebesgue measurable functions in k[0;1] to dealing with elements in [0; 1]k :

Let us pause for a moment and try to see where the analysis is leading us. In the unrestricted

IPV model solving for the welfare optimal mechanism is rather easy. One invokes the revelation

principle which �xes the message spaces and reduces dimensionality of the problem by mapping

the reporting strategy and the allocation rule of each bidder into one object. That is, instead of

looking for reporting strategies, allocations and transfers, one only needs to look for the later two

Of course the mechanism has to satisfy some properties, like incentive compatibility and individual

rationality. Timing of those (ex ante, interim, ex post) depends on the preferences of the author.

8This might not be true if one were to consider interdependent values.
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Before mentioned conditions, are easily dealt with in the basic model. Even more, it is easy to

achieve truthful reporting of bidders by appropriately setting the transfers. The optimal welfare is

then achieved by allocating the object to the bidder with the highest value.

In our model the revelation principle does not provide much help, as pointed out earlier. The

main problem is that the welfare optimizing reporting strategy is far from obvious. Clearly, truthful

direct reporting is not going to help, as it is not clear what truthful reporting in our model would

mean. So far we have managed to reduce the set of strategies we need to consider by establishing

that it is enough to look at the set of threshold strategies.

On the other side dealing with the mechanism is much more rewarding. Most of the time we will

be concerned with the allocation rules since transfers, �rst, do not enter the welfare directly, and

second, will not cause much trouble. Perhaps it is more natural to think of the mechanism as �xed

and of bidders as choosing their strategies. At this juncture we will make use of the alternative

approach, though. Let � be some �xed pro�le of threshold strategies. We will look at all the

mechanisms for which � is an equilibrium and select those that achieve the highest welfare. Let a

welfare optimal allocation rule given � be denoted Q� (�) and transfers T � (�). Here Q� (�) and

T � (�) are functions from
I
�
i=1
Mi into [0; 1]

I and RI+ respectively.

The next lemma shows that we can restrict the attention to a narrow set of allocation rules.

Lemma 2 Fix a threshold strategy �. Allocation rule Q� (�) maximizes the welfare for a given

pro�le of strategies �; i¤ it satis�es the following property. For every i and every m 2M

Q�i (�) (m) > 0 only if for every j; E [Vi j �i (Vi) = mi] � E
�
Vj j �j (Vj) = mj

�
:

Moreover, there exists T � (�) such that � is an equilibrium of the mechanism (Q� (�) ; T � (�)).

Q� (�) maximizes the welfare for a �xed pro�le of strategies � i¤ for every pro�le of reports, m,

the object is allocated to the bidder with the highest expected value. Di¤erently, for a �xed � ex

ante welfare maximization is equivalent to interim welfare maximization.

Some clari�cation is needed. Let � be some threshold strategy pro�le and Q� (�) as above.

Q� (�) can be supported by the following Vickrey type transfers. If bidder i wins the object with

a positive probability he pays the smallest value he could have, report according to his strategy

�i and still win the object with some positive probability, p; multiplied by p. If he is not awarded
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the object at all he does not have to pay. Let us try to clarify the issue by the means of a simple

example.

Example 1 Two bidders have valuations independently distributed with the uniform distribution

over [0; 1]. In addition jM1j = jM2j = 2, so each bidder can use one of the two messages. Let our

� be a threshold strategy such that both bidders use threshold 0:5. If a bidder observes valuation in

[0:5; 1] he reports m1, otherwise m2. An allocation rule Q� (�), is as follows: Q�1 (m1;m1) = 0:3;

Q�1 (m1;m2) = 1, Q�1 (m2;m1) = 0, Q�1 (m2;m2) = 0:7, where the �rst argument of Q�1 is bidder

10s and the second bidder 20s message, and Q�2 = 1�Q�1 . It is easy to see that such an allocation

rule satis�es the properties required by Lemma 2. Now, the equilibrium transfer from bidder 1 when

(m1;m1) is reported is T �1 (m1;m1) = 0:15. Indeed, the smallest valuation he could have, report

according to his strategy and win with positive probability is 0:5, and the probability with which he

wins is 0.3. Hence the transfer 0:15. Transfers for the other reports can be derived analogously. It

is routine to verify that the pro�le of strategies � is indeed an equilibrium of (Q�; T �).

Verifying that � is an equilibrium of (Q� (�) ; T � (�)) follows the usual thread of reasoning.

A winning bidder can not have a pro�table deviation because either he would have to overbid

(remember here tiebreaking might be an event of positive probability, therefore a winning bidder

might want to overbid to clinch the object with probability 1) and then pay more than he values the

object or he would underbid, gain nothing, but possibly win the object with a smaller probability

while still paying the same price. A loosing bidder might only be able to raise his payo¤ by

overbidding but then again he would have to pay more for a positive probability of winning an

object than it is worth to him.

It might be worth pointing out that Q� (�) can be taken to be deterministic. After all, when two

(or more) bidders have the same expected value given the strategies and reports, it is irrelevant who

is awarded the object. Hence, one of them can get it with probability 1. In such a case transfers

T � (�) are easier to specify: the winning bidder pays the smallest valuation he could have, report

according to his prescribed strategy and still win the object.

Next theorem establishes existence of a welfare optimal equilibrium. That is, of a combination of

strategies �� and an incentive compatible mechanism (Q� (��) ; T � (��)) that maximize the welfare.

Theorem 1 Welfare maximizing equilibrium exists.
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Such an equilibrium is in dominant strategies; it is also ex post individually rational. This is of

course due to the nature of Vickrey type transfers.

An alternative approach was taken by BNS. They show that even if one allows for any strategy

pro�le and allocation/transfer rules (without requiring it to be an equilibrium)9 one obtains the

same result, i.e. threshold strategies coupled with the appropriate Q� achieve the highest welfare.

A strategy pro�le conveying the most information needed for the welfare maximization, even when

bidders naively follow their strategies, is in threshold strategies. This is, of course, also true in the

unrestricted IPV model. One could not dream of doing better than have bidders report truthfully

and award the object to the bidder with the highest value.

The following proposition originally appeared in BNS, Theorem 3.1. We provide an alternative

proof in the Appendix A.

Proposition 1 Optimal welfare is achieved with threshold strategies.

The optimal allocation rule is characterized by Lemma 2. Since we are not requiring strategies

to form an equilibrium, transfers can remain unspeci�ed.

Similar observation as under equilibrium analysis applies. If one is willing to think of strategies

in which two or more messages are used to convey the same meaning as threshold strategies, then

any welfare maximizing strategy is essentially equivalent10 to a threshold strategy. There is a minor

technical di¤erence though, hence the quali�er �essentially�. Under equilibrium analysis equilibrium

behavior and thus welfare maximization is required for every possible pro�le of valuations. Whereas,

when one is maximizing ex ante welfare over all the possible strategies, unruly behavior is possible

on the set of measure zero.

The above results lay a foundation for the further analysis in this paper. We established that

a welfare optimizing equilibrium exist and, moreover, is in threshold strategies. The next result

provides an additional insight into nature of communication under welfare maximization.

Let us inspect an example �rst. In the two bidder case, no larger welfare can be achieved by a

mechanism in which bidder 1 can use �ve messages and bidder 2 can use two, than by a mechanism

in which bidder 1 can use three messages and bidder 2, two. Indeed, for each of bidder 2�s messages

expected valuation given his message and strategy can be computed. Let V 21 be the expected

9That is, one is maximizing over all the � and assuming that bidders do not deviate.
10L1 equivalent.
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valuation when bidder 2 reports m1 and V 22 when he reports m2. Without loss of generality we can

assume V 21 � V 22 . Since the only relevant information is whose valuation, or expected valuation, is

larger, bidder 1 can do no better than report whether his valuation is above V 21 , between V
2
1 and

V 22 , or below V 22 . Thus at most three messages of bidder 1 are welfare relevant.

While it is intuitive that higher welfare can be achieved by increasing the number of possible

messages for both bidders, as will be shown below, the same is not necessarily true when com-

munication capacity of one bidder is increased. After all, higher welfare is achieved by a direct

comparison. Increasing the richness of structure for one bidder will not help if one has nothing to

match it to on the other side.

A general statement for two bidders would say that as soon as jk1 � k2j > 1; one bidder has

messages that are irrelevant for welfare. More precisely, let k1 � k2 and de�ne k = min fk1; k2 + 1g.

Then

w�2;(k1;k2) = w�2;(k;k2):

The optimal welfare in a two bidder mechanism with cardinalities of message space k1 and k2

is equal to the optimal welfare when k1 is replaced with k. Similar reasoning extends to the case

of I bidders.

Proposition 2 Let k1 � k2 � ::: � kI and de�ne k = min
�
k1;

IP
i=2
ki + 1

�
. Then

w�I;(k1;k2;:::;kI) = w�I;(k;k2;:::;kI):

If a bidder has too many messages at his disposal some of them will not contribute to the

welfare. Let the bidder with the highest cardinality of the message space be bidder 1. One can

devise a ranking of all the remaining bidders�expected values for each message they report. Now,

the best one can do in terms of welfare is to let bidder 1 (truthfully) report whether his expected

value is above the highest of those in the ranking, between the highest and the second highest, etc.

To achieve this, at most
IP
i=2
ki + 1 messages are needed, meaning that what the bidder with the

highest cardinality of the message space is able to communicate is bounded by the communication

capability of all the remaining bidders.
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3.2 Two bidders

Welfare optimizing equilibrium for the case of two bidders was �rst provided by BNS. For com-

pleteness we provide the result here and suggest an alternative method to obtain it. In addition,

we provide a result for symmetric bidders11 relating welfare maximizing equilibria to welfare max-

imizing equilibria under the requirement that the mechanism and strategies be symmetric. Char-

acterization of communication cost of symmetry sheds light onto origins and causes of asymmetry

of welfare maximizing equilibria.

A setup with two bidders is considered here. Assumptions about preferences and distributions

are as stated in Section 2. We will make great use of results established in previous sections.

Theorem 1 enables us to restrict attention to threshold strategies. Furthermore, by Proposition

2 we only need to solve the problem in which k1 and k2 are such that jk1 � k2j � 1. The other

cases reduce to this one. Without loss of generality we can assume that k1 � k2 and de�ne

k = min fk1; k2 + 1g, as in Proposition 2.

We call a pro�le of threshold strategies c� mutually centered12 if it is a solution to either of

the following two systems of equation:

c1�n = E
�
V2 j c2�n�1 � V2 � c2�n

�
; for n = 1; :::; k � 1 (1)

c2�n = E
�
V1 j c1�n � V1 � c1�n+1

�
; for n = 1; :::; k2 � 1

or

c1�n = E
�
V2 j c2�n � V2 � c2�n+1

�
; (2)

c2�n = E
�
V1 j c1�n�1 � V1 � c1�n

�
;

for n = 1; :::; k2 � 1; where ci0 = 1 and cin = 0 for n � minfk; kig and i 2 f1; 2g. In a pro�le of

mutually centered strategies either bidder 1�s highest threshold is the expectation of the bidder

2�s top partition cell, bidder 2�s highest threshold the expectation of the bidder 1�s second highest

partition cell, etc., or the roles of the two bidders�are reversed. One way or another, we get an

unambiguous ranking over the expected valuations given the reported messages. It is rather easy

11With the same prior distribution function, that is F1 = F2 = F , and the same cardinality of the message space,
jM1j = jM2j = k:
12The term coined by BNS.
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to see that a threshold strategy satisfying this properties exists.13 Furthermore, Lemma 2 provides

a characterization of a welfare maximizing allocation rule Q� (c�) for c�. In particular, the object

is allocated to the bidder reporting the higher partition cell, where higher refers to the strong set

order.

De�nition 4 Inspired by BNS, we call an equilibrium a priority equilibrium if it uses mutu-

ally centered strategies, c�, and an allocation rule, Q� (c�) ; which awards the object to the bidder

reporting higher partition cell.14

The next proposition characterizes welfare maximizing equilibria. The result was �rst provided

by BNS, Theorem 3:1 and Theorem 3:5, for the case jM1j = jM2j = k:

Proposition 3 Optimal welfare in a 2 bidder auction with jM1j = k1; jM2j = k2 is achieved in a

priority equilibrium.

Proposition 3 provides a necessary condition for the equilibrium. In the case of k1 = k2, the

proposition, and the proof, is silent as to whether one should use system of equations (1) or (2). For

the case when k1 > k2 we can be somewhat more precise, though. In that case system of equations

(1) applies at the optimum, and therefore the allocation rule Q� is pinned down.

Although some intuition can be grasped from Figure 1 below, a short explanation will be

helpful. The optimal mechanism works as follows: bidder i observes his private valuation and

reports the message mn when his valuation belongs to the interval
�
cin; c

i
n�1

�
; n 2 f1; :::; kig.15

The seller observes the reports and awards the object to the bidder with the highest expected

value given strategies c�: Mechanism in a welfare maximizing equilibrium is asymmetric, as are

the reporting strategies. For example, one of the two bidders, denote him by j, has priority

over the other. That is, if the reports are (m1;m1) the object is awarded to bidder j: Indeed

E
�
Vj j �j (Vj) = m1

�
> E

�
V�j j ��j (Vj) = m1

�
, since cj0 = c�j0 and cj1 = E

h
V�j j c�j0 � V � c�j1

i
.

The same is true more generally. Whenever the two bidders report the same message bidder j

wins the object. When the reports are di¤erent the bidder with the higher message wins, where by

higher we mean the message with the lower index.

13BNS claim uniqueness. Their proof is unfortunately erroneous.
14The term �priority�stems from the fact that when both bidders report the same message, assuming that message

m1 corresponds to the highest partition cell etc., ties are consistently broken in the favor of one bidder. The de�nition
was introduced by BNS in the setup where both bidders have the same number of messages.
15When his valuation is 1 he reports message m1.
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Clearer intuition can be given as to why welfare optimal thresholds are mutually centered.

Focusing on the prioritized bidder j; it is easy to see that the only thing that changes between

him reporting message m1 and m2 is whether he wins or loses against bidder �j who reported

m1: Therefore, when bidder j�s value vj is equal to c
j�
1 conditional expected welfare should not

depend on whether he reports m1 or m2. Suppose it did and suppose it would be strictly better if

he reported m1. Then, by continuity, reporting m1 would also be welfare optimal for values just

below c1�1 , which would contradict the optimality of the threshold. But if at vj = cj�1 it should be

irrelevant for welfare whether bidder j is loosing or winning against bidder �j who is reporting m1,

it has to be the case that cj�1 equals the expected valuation of bidder �j when the later is reporting

the top partition cell. That is, cj�1 = E
h
V�j j 1 � V�j � c�j�1

i
. The same intuition applies for other

thresholds.

To make the analysis more vivid we provide a simple example originally appearing in BNS.

Example 2 We consider the case of two bidders, each of which has two possible messages and the

prior distribution over their messages is uniform on the interval [0; 1]. The welfare maximizing

mechanism, with corresponding equilibrium, is the one in which bidder 1�s threshold is 2=3. That

is, if his valuation is in the interval [2=3; 1] he reports �1 (v1) = m1, otherwise he reports m2.

Bidder 20s threshold is 1=3. The allocation rule is Q1 (m1;m1) = Q1 (m1;m2) = Q1 (m2;m2) =

1; Q1 (m2;m1) = 0, where the �rst argument of Q1 (�; �) is bidder 10s report, and Q2 (mn;ml) =

1 � Q1 (mn;ml), where n; l 2 f1; 2g : Transfers are given by T1 (m1;m1) =
2
3 ; T1 (m1;m2) =

T2 (m2;m1) = T2 (m2;m2) = 0 and T2 (m2;m1) =
1
3 ; T2 (m1;m1) = T2 (m1;m2) = T2 (m2;m2) = 0.

Welfare in this case is 35
54 . For comparison, if no restrictions are imposed on communication

one can achieve welfare of 23 =
36
54 ; as in Vickrey (1961). Although we severely reduced means of

communication the decrease in welfare is only about 2:8%.

Even in the case where both bidders have the same prior distribution over valuations, F1 = F2 =

F , the welfare optimizing equilibria are asymmetric. Asymmetry is twofold, both in strategies as

well as in the mechanism. This brings us to another point. Symmetric treatment of bidders is

often required in an auction, either for legal purposes or for fairness. In the fallowing paragraphs

we characterize the relation between welfare optimal equilibria and welfare optimal symmetric

equilibria.

Symmetric setup allows for the clearest analysis; i.e. F1 = F2 = F , jM1j = jM2j = k. Starting
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with an asymmetric setup would cause ambiguities with de�nition of symmetric strategy as well

as mechanism. We call strategies symmetric if �1 (�) = �2 (�) = � (�), and mechanism symmetric if

Q1 (ml;mn) = Q2 (mn;ml) and T1 (mn;ml) = T2 (ml;mn) for every n; l 2 f1; :::; kg ; where the �rst

argument of all allocation and transfer rules is bidder 1�s message and the second bidder 2�s.

Requiring symmetric treatment of the two bidders can be interpreted in two ways. On one side,

one could require that the equilibrium be symmetric, that way the allocation is symmetric not only

given the messages, but also given the values of the two bidders. On the other side, one could

require a weaker condition, that the allocation rule be symmetric. We will not express preference

over those two treatments and, luckily enough, analysis will not require it.

Let us elaborate on the issue. If one is to require symmetric equilibrium the optimal allocation

rule awards the object to the bidder reporting higher partition cell, where in the case of equivalent

reports each bidder obtains the object with probability one half. Characterization of welfare optimal

strategies (requiring that both bidders use the same strategy) is now easily obtained from the �rst

order condition to be

c�n = E
�
X j c�n�1 � X � c�n+1

�
for every n 2 f1; 2; :::; k � 1g, where each bidder�s strategy is given by the vector of thresholds�
c�1; c

�
2; :::; c

�
k�1
�
:

As pointed out earlier one could alternatively just require that the allocation rule be symmetric.

Fortunately enough we show that the optimal welfare can still be achieved in symmetric strategies.

Lemma 3 Optimal welfare in a symmetric mechanism can be achieved with symmetric strategies.

From this point on we talk about optimal symmetric equilibria when requiring symmetry. As

the proof of the preceding lemma already hints, there is a rather interesting link between optimal

equilibria and optimal symmetric equilibria. Exploring it further yields a sharper insight into and

intuition for the cause of asymmetry in the welfare optimal equilibria.

Let ec = �ec11;ec21;ec12; :::;ec1k�1;ec2k�1� be a vector of threshold strategies satisfying ec11 � ec21 � ec12 �
::: � ec1k�1 � ec2k�1. Notice that we do not require mutual centeredness here. What this structure
does give us, though, is an order over expected values conditional on reports, no matter what

the underlying distribution F is. Remember, such a threshold strategy can be supported as an

equilibrium by an allocation rule (and appropriate transfers) allocating the object to bidder 1
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unless the message of bidder 2 has a lower index, in which case the object is awarded to bidder 2.

Finally, de�ne bc1 = ec11;bc2 = ec21; :::;bc2k�3 = ec1k�1;bc2k�2 = ec2k�1:
Proposition 4 Let F1 = F2 = F , jM1j = jM2j = k and let ec be a vector of threshold strategies as
above. The welfare obtained by the equilibrium with ec and the allocation rule awarding the object
to the bidder with the highest expected value, eQ (ec), is equal to the welfare obtained by a symmetric
equilibrium in which both bidders use a strategy described by thresholds bc1;bc2; :::;bc2k�2, combined
with the allocation rule bQ (bc), which always awards the object to the bidder reporting the higher
partition cell.16

Furthermore, the maximal welfare achieved in an equilibrium of a mechanism with jM1j =

jM2j = k is equal to the maximal welfare achieved in a symmetric equilibrium of a mechanism with

jM1j = jM2j = 2k � 1:

The above proposition provides a strong relation between welfare optimizing equilibria and

the best one can do when requiring symmetry of play. In particular, if one requires symmetric

equilibria, one needs almost twice as many messages for each bidder to achieve the highest welfare

obtained under no symmetry requirements.

The result can be explained as follows. De�ne Tj = [bcj ;bcj�1) for j = 2; :::; 2k�2 and T1 = [bc1; 1] :
We say that a bidder with a valuation v is of type Tj if v 2 Tj . The lower the j the higher the type

the bidder is. For the �xed strategy, the seller cannot distinguish between two valuations in an

interval [bcj ;bcj�1), therefore we might as well bunch them into a type. Optimally the bidder with

the higher type should win the object,17 and if the two bidders are of the same type the object

can be awarded to either bidder. Strategy bc does not distinguish between all the types for each
bidder,18 i.e. when bidder 1 is of type T1 he can indeed report so, but he can not report whether

he is of type T2 or type T3; he can at most report that he is of T2 [ T3. This turns out not to be

an issue in the two bidder case.

When bidder 1 is of type T1 he wins no matter what type bidder 2 is. When bidder 2 is of

type T1 he wins against all the types of bidder 1, except T1. But if both bidders are of type T1 the

welfare does not depend on who is awarded the object so it might as well be bidder 1. When bidder

16The tie breaking rule here is irrelevant. For example, if both report the same partition element the winner could
be decided by a �ip of a fair coin.
17The allocation rule used is the one that awards the object to the bidder with a higher expected value given the

messages and the strategies used.
18 It is not measurable with respect to the algebra induced by types.
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1 is of type T2, therefore reporting message m2, he can only lose if bidder 2 reports m1. But this

can only happen in an equilibrium if bidder 2 is either of type T1 or T2. In either of the two cases

it is welfare optimal to award him the object. Following the same reasoning we see that a bidder

of a certain type never looses against a bidder of a lower type. Hence the equilibrium described by

thresholds ec = �ec11;ec21;ec12; :::;ec1k�1;ec2k�1� is welfare equivalent to the symmetric equilibrium where

each of the bidders has a strategy described by thresholds bc1;bc2; :::;bc2k�2.

Bidder 1 Bidder 2 Bidder  1 Bidder 2

1

c1

c3

0

1

c2

c4

0

1 1

0

T1

T2

T3

T4

T5

c1

c2

c3

c4

c1

c2

c3

c4

0

Figure 1: A symmetric two bidder - three message case.

Until now we assumed that the object to be auctioned has no value to the seller, i.e. v0 = 0.

While this is rather convenient, it might be of interest to explore relaxing this assumption. This

will be of great bene�t to us when considering the revenue maximization.

Here we shall assume jM1j = jM2j = k and F1 = F2 = F . An informed reader will ob-

serve that the analysis to follow easily extends to the asymmetric case, both in distributions and

cardinality of the message space. Before we proceed some additional notation is required. Let
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c# =
�
c1#1 ; c2#1 ; c1#2 ; :::; c1#k�1; c

2#
k�1

�
be de�ned by:

c2#k�1 = v0;

c1#k�1 =
F
�
c2#k�2

�
�F

�
c2#k�1

�
F
�
c2#k�2

� E
h
V j c2#k�2 � V � c2#k�1

i
+

F
�
c2#k�1

�
F
�
c2#k�2

�v0;
c2#k�2 = E

h
V j c1#k�2 � V � c1#k�1

i
;

c1#k�2 = E
h
V j c2#k�3 � V � c2#k�2

i
;

:::

c2#1 = E
h
V j c1#1 � V � c1#2

i
;

c1#1 = E
h
V j 1 � V � c2#1

i
.

Strategy pro�le c# closely resembles a mutually centered pro�le of strategies. The slight di¤er-

ence is that bidder 2�s lowest threshold equals the seller�s value and all the other thresholds build

on it.

De�nition 5 An equilibrium is called a modi�ed priority equilibrium if it uses the strategies

given by c# and an allocation rule that awards the object to the bidder with the highest expected

value unless both bidders report their lowest partition cell in which case the object is allocated to

the seller.

The following proposition originally appeared in BNS.

Proposition 5 For any v0, optimal welfare is achieved in a priority equilibrium or a modi�ed

priority equilibrium.

Having the seller with a commonly known value v0 guarantees expected welfare of at least v0.

There is no need to distinguish between values below v0 as in that case the seller will be awarded

the object anyway. More precisely, any strategy that has some bidder reporting more than one

message with conditional valuation not exceeding v0 can be improved upon.19 Those messages can

be merged into one, while the expected value given the new message is still maintained below v0.

The additional message can now be used to separate the values above v0 and increase e¢ ciency.

19Remember that we are dealing with the case where both bidders have k messages and thus messages are a scarce
resource. In the case where one bidder has signi�cantly more messages to his disposal than the other some messages
will have to be wasted.
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Therefore at most one message is used to convey the meaning �my expected value is bellow v0�. If

v0 is small it might not be a good idea to even bother using a message for such a purpose. In that

case the problem is best solved as if neglecting the seller�s value altogether.

Furthermore, if it is indeed optimal for bidder 2 to announce for some values that his expected

value is below v0, it should be so for all v < v0. It will never be optimal to set c2k�1 < v0. If bidder

2 tries to signal that his value is below v0; he might as well do that for all such values. That is,

instead of reporting message mk for values in [0; a), for some a < v0, he should do it for [0; v0).

Intuition for the thresholds given by c# is similar to the case of mutually centered strategies.

Slight modi�cation is needed for c1#k�1. When bidder 1
0s valuation is c1#k�1 it should not matter for

welfare whether he reports mk�1 or mk. The only two cases where this matter is when bidder 2�s

valuation is either in
h
c2#k�1; c

2#
k�2

�
or in

h
0; c2#k�1

�
. But c1#k�1 is set to just o¤set this e¤ect.

Sharper characterization can be given in certain cases.

Corollary 1 Let v0 � E [V ] : Then the optimal welfare is achieved in a modi�ed priority equilib-

rium.

By Proposition 5 we know the optimal welfare is achieved in a priority or in a modi�ed priority

equilibrium. If it were to be in a priority equilibrium then the lowest partition cell of either bidder

would have expected value below E [V ] and therefore below v0. But then optimally the seller would

retain the object, contradicting the fact that equilibrium is a priority equilibrium.

Finally, we present an example which should enlighten this notationally intense analysis.

Example 3 Two bidders have valuations uniformly distributed over the interval [0; 1]. As we

already know, the optimal thresholds in the case when the object has no value for the seller, i.e.

v0 = 0, are c�1 =
2
3 , where c

�
1 is optimal threshold of bidder 1, and c

�
2 =

1
3 , where c

�
2, is the optimal

threshold of bidder 2. The optimal welfare is w� = 35
54 .

When v0 > 0 Proposition 5 tells us that optimal welfare can be achieved by a priority or a

modi�ed priority equilibrium. We computed ex ante welfare achieved in the priority equilibrium.

As of the modi�ed priority equilibrium. It is easily seen to be the case that c1# = 1+v20
2 and c2# = v20,

where object is allocated to bidder 1 if he reports the top cell, to bidder 2 if he reports the top cell

and bidder 1 the bottom cell and the seller retains the object if both bidders report the bottom cell.

The welfare is then w# (v0) =
5+2v20+v

4
0

8 : On the other side, E
�
X j c1# � X � 0

�
=

1+v20
4 ; which
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is no larger than v0 as long as v0 > 2 �
p
3. Remember, we need E

�
X j c1# � X � 0

�
� v0; for

the seller should optimally retain the object when bidders report their lower partition cell. Now,

w (v0) is strictly increasing in v0, so let v0 be such that w (v0) = 35
54 . An easy computation shows

v0 =

r
4
3

q
2
3 � 1 � 0:298. Thus as long as

v0 �
r

4
3

q
2
3 � 1;

which is indeed larger than 2 �
p
3, welfare in the modi�ed priority equilibrium is at least as high

as in the priority equilibrium w (bc) � w (c�). The analysis above shows that for v0 <

r
4
3

q
2
3 � 1

the highest welfare is achieved in the priority equilibrium with tresholds (c�1; c
�
2) =

�
2
3 ;
1
3

�
and for

v0 �
r

4
3

q
2
3 � 1 the highest welfare can be obtained by the modi�ed priority equilibrium with

tresholds
�
c1#; c2#

�
=
�
1+v20
2 ; v20

�
:

3.3 More than two bidders

In the two bidders case the characterization is readily obtained by observing that expected values

corresponding to two bidders� messages need to satisfy a particular order structure. Either it

has to be the case that E [V1 j �1 (V1) = m1] � E [V2 j �2 (V2) = m1] � E [X1 j �1 (V1) = m2] � :::

or a similar chain of inequalities should hold with the roles of the two bidders interchanged. In

any case the idea is that for no two messages should some bidder�s conditional expectations come

consecutive in such a ranking, for this would be a waste of welfare relevant information.20 The

order of conditional expected values given the messages allows one to recover the optimal allocation

rule. After all, Lemma 2 implies that the object should always be allocated to the bidder with the

highest conditional expected value. Now the optimal strategies are easily shown to be mutually

centered from the �rst order conditions.

The case of multiple bidders turns out to be somewhat harder to solve. A similar line of

reasoning as outlined in the preceding paragraph shows that if one was to devise a ranking of

expected valuations corresponding to bidders�messages, for no bidder two expected valuations

20We are refering to the case jk1 � k2j � 1, which is the only interesting.
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should appear consecutive. While this gave the full structure in the two bidder case this is not so

in general. For a more precise characterization subtler analysis is needed.

In what follows we provide a characterization for the case of three ex ante symmetric bidders,

each of them having message space of equal cardinality, jM1j = jM2j = jM3j = k and F1 = F2 =

F3 = F , where F , as earlier, is an atomless distribution function on some compact interval, say

[0; 1], with everywhere positive density f . The analysis for the case of I bidders is a straightforward

extension, though rather notationally intractable.

By Lemma 1 we can restrict the analysis to threshold strategies, in particular, to threshold

strategies with k � 1 thresholds. We denote thresholds of bidder i by ci1; ci2; :::; cik�1. One can

entertain many di¤erent scenarios as of what a welfare maximizing equilibrium looks like: it might

be the case that c11 � c21 � c12 � c31 � c22 � c32 � :::, or maybe c11 � c21 � c31 � c12 � c22 � c32 � :::,

or maybe again something completely di¤erent. Not knowing the order of thresholds and thus the

order of conditional expected values given the reports seems to be an obstacle to obtaining a closed

form solution for the welfare. Luckily enough there is a way around that.

The following tools will help our analysis. Any pro�le of threshold strategies21 can be described

by a set of thresholds C = fc1; c2; :::; c3k�3g � [0; 1], where c1 � c2 � ::: � c3k�3, and a function

that assigns k � 1 thresholds to each of the bidders. More precisely:

De�nition 6 Function

� : fc1; c2; :::; c3k�3g ! f1; 2; 3g ;

with the restriction
����1 fig�� = k � 1 for each i 2 f1; 2; 3g ; is called an assignment function.

Assignment function assigns to each bidder k�1 thresholds from the set fc1; c2; :::; c3k�3g. Any

pro�le of threshold strategies can now be described by a pair C and �: In addition we de�ne the

priority assignment �� by

�� (c3j+1) = 1,

�� (c3j+2) = 2;

�� (c3j+3) = 3;

where j 2 f0; 1; 2; :::; k � 2g. The priority assignment assigns the thresholds in a round robin

21Remember we showed earlier that any pro�le of threshold strategies can be supported as an equilibrium.
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fashion: the highest threshold is assigned to bidder 1, second highest to bidder 2, third to bidder

3, fourth again to bidder 1, etc. For further intuition see Figure 2.

0
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1

0

1

Bidder 1 Bidder 2 Bidder 3

c1

c4

c2

c5

c3

c6

T1

T2

T3

T4

T5

T6

T7

Figure 2: Threshold strategies generated by the priority assignment. The actual thresholds are
denoted by dots.

The pro�le of strategies represented by some set of thresholds C and the priority assignment ��

has a very convenient property. The ordering of conditional expectations given the bidders�reports

is

E [X j 1 � X � c1] > E [X j 1 � X � c2] > E [X j 1 � X � c3] > (3)

> E [X j c1 � X � c4] > ::: > E [X j c3k�3 � X � 0] : (4)

For every pro�le of strategies that can be represented by a priority assignment, welfare is

maximized by the following allocation rule Q�: Q� awards the object to bidder 1 if none of the

other two bidders reports a higher partition cell,22 to bidder 2 if bidder 1 reports a lower cell and

bidder 3 does not report a higher, and to bidder 3 in the remaining cases. Now we are ready to

state the result. Again, we should like to point out that the analysis extends to any number of

bidders I.

Theorem 2 The highest welfare in an equilibrium of a mechanism with 3 symmetric bidders is

22Suppose bidders 1; 2 and 3 report messages ms;mp;mq respectively. Then Q1 (ms;mp;mq) = 1 i¤ s � min fp; qg
and 0 otherwise.
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achieved with an allocation rule Q� and a pro�le of threshold strategies given by the priority assign-

ment �� and a set of thresholds
�
c�1; c

�
2; :::; c

�
3k�3

	
characterized by:

c�j =
F(c�j�1)[F(c�j�2)�F(c�j+1)]

F(c�j�2)F(c�j�1)�F(c�j+1)F(c�j+2)
E
�
X j c�j�2 � X � c�j+1

�
(5)

+
F(c�j+1)[F(c�j�1)�F(c�j+2)]

F(c�i�2)F(c�j�1)�F(c�j+1)F(c�j+2)
E
�
X j c�j�1 � X � c�j+2

�
;

for j 2 f1; 2; :::; 3k � 3g :

As usual, cj = 1 for j � 0 and cj = 0 for j � 3k � 2. The above threshold strategies and the

allocation rule can be supported as an equilibrium by the Vickrey type transfers T � (c�; ��).

We will now outline the idea of the proof. As we already pointed out, for di¤erent threshold

strategies di¤erent allocation rules are optimal. All of them have the same characteristic: the

object is awarded to a bidder with the highest expected value given the reported messages and

threshold strategies. See Lemma 2. As we also pointed out earlier, one can not establish the order

of expected values without explicitly writing down the equations for the particular distribution F .

This fact can be remedied.

We �x the set of thresholds C as described above and look for the pro�le of strategies with the

highest welfare among the strategies that can be described by C. Maximization is thus over the

assignment functions and allocation rules. We establish that the optimal welfare is achieved by

the priority assignment �� and the allocation rule Q�. The details of the proof can be found in the

Appendix C; some intuition is provided below.

The outlined analysis brakes down the set of all possible strategies into smaller sets after which

the local optima for each of these subsets of strategies are computed. Local optima have two things

in common. First, the reporting strategies can be described by a set of thresholds and the priority

assignment. Second, all of the local optima use the same allocation rule Q�. Now one can optimize

over the set of local optima holding the assignment function and the allocation rule �xed. This is

a much simpler problem.

The next couple of paragraphs serve the purpose of explaining why the priority assignment

maximizes the welfare for the �xed set of thresholds. Rather than providing the proof here we

outline a certain characteristic of the priority assignment or the pro�le of strategies given by it. Fix

c1 > c2 > ::: > c3k�3 and de�ne types as follows: T1 = [c1; 1] ; Tj = [cj ; cj�1) for j = 2; :::; 3k � 2.

Optimally one would like to communicate as much information as possible. The best one could
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hope for given the restrictions would be to fully communicate types. The highest welfare one could

achieve in such a case would be:

w (c) =
3k�2X
j=1

n
F (cj�1)

2 + F (cj�1)F (cj) + F (cj)
2
o
[F (cj�1)� F (cj)]E [X j X 2 Tj ] :

Unfortunately this is not the case in our model. Here we focus on the pro�le of strategies

generated by the priority assignment and the allocation rule Q�. We compare the welfare obtained

with full reporting of types to the welfare obtained under the priority assignment. First we consider

what happens with welfare when each of the bidders is of type T1. When bidder 1 is of type T1,

he wins no matter what partition cells the other bidders report. When bidder 2 is of type T1, he

wins the object unless bidder 1 is of type T1. If both of them are of the same type there is no loss

of welfare by awarding the object to bidder 1. Things take a bad turn when bidder 3 is of type T1.

He wins unless bidder 1 is of type T1, or bidder 2 is of type T1 or T2. Under the priority assignment

bidder 2 can not report whether he is type T1 or T2, but rather that he is T1 [ T2. But now the

problem is that when bidder 3 is of type T1, bidder 2 of type T2, and bidder 1 of a type lower than

T1, the object will be awarded to bidder 2 and not to 3 as would be welfare optimal. See the �gure

below. In such a case we say that bidder 3 of type T1 loses against bidder 2 of type T2.23 It should

be quite intuitive that given the values of thresholds there is no conceivable way in which one could

do better. No other assignment function can improve the welfare. For details see the proof in the

Appendix C.

Considering further cases, with bidder 1 of type T2 and so forth, one can see that under the

priority assignment for every type Tj there exists exactly one bidder of that type who is losing

against exactly one other bidder of type Tj+1.

Instead of welfare w we now get:

w (q�; ��; c) =

3k�2X
j=1

n
F (cj�1)

2 + F (cj�1)F (cj) + F (cj)
2
o
[F (cj�1)� F (cj)]E [X j X 2 Tj ]

�
3k�2X
j=1

F (cj�1) [F (cj�1)� F (cj)] [F (cj)� F (cj+1)] fE [X j X 2 Tj ]� E [X j X 2 Tj+1]g :

The �rst part of the right hand-side represents the welfare one would achieve if all bidders could

23To be more speci�c: bidder 3 of type T1 loses agains bidder 2 of type T2 when bidder 1 is of at most type T2.
We will often omit the last part in hope that this does not couse too much confusion.
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Figure 3: Bidder 3 of type T1 is losing against bidder 2 of type T2, when bidder 1 is not type T1:

fully report their type, whereas the second is the loss of welfare incurred because they cannot do

so.

Finally we are ready to say something about the optimal thresholds provided by the theorem.

Similar intuition as in the 2 bidder case can be provided. At the optimum it should not matter,

from the welfare point of view, whether the bidder observing value cj reports the message mj ,

which corresponds to interval [cj ; cj�3) ;24 or mj+1; which corresponds to the interval [cj+3; cj) :

If, for example, it would be strictly welfare improving for him to report mj ; then by continuity

that would also be the case for the values just bellow the threshold cj , which would contradict the

optimality. What changes between reporting mj and mj+1 is whether the bidder wins against the

other two bidders when they report the message corresponding to [cj�2; cj+1) or [cj�1; cj+2), but

the expected value when that occurs is given by the equation (5).

For clarity we started with the requirement jM1j = jM2j = jM3j = k. The same results can be

obtained with a weaker assumption. Let jM1j = k1, jM2j = k2 and jM3j = k3: We can label the

bidders so that k1 � k2 � k3. As long as k1 � k3 � 1, the same analysis as above applies. Some

caution is required. In the completely symmetric case we could relabel the bidders as we wanted,

whereas in the more general case the bidder with the highest threshold needs to be a bidder with

the highest cardinality of message space.

24Bidder with treshold cj also has tresholds cj�3 and cj+3 under the priority assignment.
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Before proceeding to revenue maximization let us point out another interesting result.

Corollary 2 Let K = 3k for some k 2 N, � = f(k1; k2; k3) : ki 2 N for i 2 f1; 2; 3g and k1 + k2 + k3 = Kg.

Then

w�3;k = max
(k1;k2;k3)2�

w�3;(k1;k2;k3):

The result can be easily modi�ed for K that is not divisible by 3. The Corollary states that

the highest welfare among mechanisms with the same total number of messages is achieved by the

one in which all the bidders have the same cardinality of the message space.25 If the social planner

(the seller) could chose how to distribute communication capacity he would allocate it evenly over

the bidders. Or di¤erently, one could think of the seller as assigning a �xed set of thresholds. He

assigns the highest threshold to bidder 1, the second highest to bidder 2, etc.

The result given by the corollary follows from the proof since we never use the restriction����1 fig�� = k � 1. Therefore, �� does the best for any set of thresholds even when assignments can

distribute thresholds arbitrarily.

As in the 2 bidder case we can now characterize the welfare optimizing equilibria for the case

v0 > 0. We assume k1 = k2 = k3 = k, although as before the analysis is easily modi�ed for the case

max fk1; k2; k3g�min fk1; k2; k3g � 1. As in the two bidders case we call an equilibrium a priority

equilibrium if it is as in the Theorem 2. To de�ne the modi�ed priority equilibrium we de�ne the

appropriate thresholds.

Let

c#3k�3 = v0 (6)

c#3k�4 =
F
�
c#3k�6

�
�F

�
c#3k�3

�
F
�
c#3k�6

� E
h
X j c#3k�6 � X � c#3k�3

i
+

F
�
c#3k�3

�
F
�
c#3k�6

�v0
c#3k�5 =

F
�
c#3k�7

�
�F

�
c#3k�4

�
F
�
c#3k�7

�
+F

�
c#3k�6

�
�F

�
c#3k�7

�
F
�
c#3k�6

�E hX j c#3k�7 � X � c#3k�4

i
+

+
F
�
c#3k�6

�
�F

�
c#3k�3

�
F
�
c#3k�7

�
+F

�
c#3k�6

�
�F

�
c#3k�7

�
F
�
c#3k�6

�E hX j c#3k�6 � X � c#3k�3

i
+

+
F
�
c#3k�4

�
F
�
c#3k�3

�
F
�
c#3k�7

�
+F

�
c#3k�6

�
�F

�
c#3k�7

�
F
�
c#3k�6

�v0:

Thresholds c#1 through c#3k�6 are as in Theorem 2 after replacing indices � with #. For the

25The requirement is that each bidder gets at least one message.
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strategies de�ned by c#; the optimal allocation rule Q# allocates the object as Q�; except in the

case where all 3 bidders report their lowest partition cell, in which case the object is retained by

the seller. Now we can say that an equilibrium is a modi�ed priority equilibrium if the reporting

strategies can be described by thresholds satisfying conditions (6), a priority assignment, �� and the

allocation rule Q#. Clearly this can be supported as an equilibrium by the Vickrey type transfers

as before.

Next theorem is analogous to Proposition 5.

Theorem 3 Let v0 > 0. Optimal welfare is achieved in a priority or in a modi�ed priority equi-

librium.

We do not provide a formal proof, as it is easily obtained by combining considerations given in

proof of Theorem 2 and Proposition 5.

The theorem states that when the seller�s value is strictly positive it either does not matter and

the optimal equilibrium is as in the case v0 = 0, or it does matter and the thresholds are given

by the system of equations (6). In the later case the object is allocated as in the optimal priority

equilibrium except when all the bidders report their lowest partition cell in which case the seller

retains the object.

4 Revenue Maximization

So far the focus was on welfare rather than revenue maximization. This is purely for expositional

value, as the problem of revenue maximization can be transformed into welfare maximization (see

Myerson (1981)).

Revenue maximization hardly needs an introduction. Seminal work by Myerson (1981) and Riley

and Samuelson (1981) has laid a cornerstone for many a work since. The two afore mentioned

papers impose no restriction on communication, neither does most of the subsequent literature.

The prominent counterexample is the paper by BNS. They provide a characterization of pro�t

maximizing equilibria for the case of 2 bidders where each of them has a regular but not necessarily

identical distribution and for the case of I bidders where each has 2 possible messages and all have

the same regular distribution over valuations.

We provide a solution to a more general problem by showing that the pro�t maximizing seller

distributes communication capacity evenly over the bidders and characterizing pro�t maximizing
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equilibria under such a uniform distribution. Even for the case where each bidder has only two

possible messages our characterization is sharper than the one of BNS. While allowing for any

number of bidders, we require they all have the same regular distribution function, F , over [0; 1].26

Let F be the distribution function and f its density. f is regular if the virtual valuation,

 (v) � v � 1�F (v)
f(v) ; is a monotone, strictly increasing function of v. The key observation we use is

the one of Myerson (1981) showing equivalence between maximal expected revenue and expected

value of the maximum of virtual valuation (provided it is nonnegative). Myerson was, however,

operating under no restrictions on communication. Nothing prevents us from replicating Myerson�s

exercise even under the assumption of restricted message spaces. The main point from Myerson�s

exercise that is relevant to us is that for every pro�le of valuation v the object is allocated to the

bidder with the highest virtual valuation given that it surpasses 0; otherwise the auctioneer retains

the object.

The problem of revenue maximization can be solved the following way. Using Myerson�s tech-

niques it can be transformed into the maximization over virtual valuations. Now one can solve

the optimal welfare problem, as above, where virtual valuations are treated as actual valuations.

Notice that the original distribution over the valuation of the bidder is not the distribution of the

virtual valuation. The issue is easily dealt with when the virtual valuation is strictly increasing,

which is why we made the assumption of regular distributions in the �rst place. In particular, if F

is the distribution of the valuation, G (t) = F
�
 �1 (t)

�
is the distribution of the virtual valuation.

Now is also clearer why attention was devoted to the welfare maximization under the assump-

tion that the auctioneer has a positive value of the object. Even if we are solving the revenue

maximization problem under the assumption that the seller has no value for the object, the trans-

formed problem might be one of welfare maximization under the assumption that the seller�s value

is above the lowest value bidders could entertain. For example if all the bidders have uniformly

distributed values over [0; 1], the transformed problem has the values uniformly distributed over

the interval [�1; 1] and the seller has value v0 = 0. After one solves for optimal thresholds in the

transformed problem, one can map those strategies into strategies in the original problem.

Theorem 4 Let jMij = ki and Fi = F for every i 2 f1; 2; :::; Ig and some regular distribution

function F , and let max fk1; k2; :::; kig � min fk1; k2; :::; kig � 1. Then the revenue maximizing

individually rational equilibrium is achieved by a modi�ed priority equilibrium.
26As pointed out earlier BNS require the same assumption for the case of more than 2 bidders.
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As a clari�cation, a modi�ed priority equilibrium in a literal sense corresponds to the modi�ed

priority equilibrium of the auxiliary welfare maximization problem of maximization over virtual

valuations. The result obtained in such a problem has to be mapped back into our primary setup.

Notice that the characterization here is stronger than the one in BNS. Their result states that the

welfare maximizing equilibrium is achieved in a priority or in a modi�ed priority equilibrium (BNS

Theorem 4.2).

Now, an analogous result to Corollary 1 can be stated for revenue maximization.

Corollary 3 Let K = 3k for k 2 N; k � 2, and � = f(k1; k2; k3) : ki 2 N for i 2 f1; 2; 3g and k1 + k2 + k3 = Kg.27

Then

��k = max
(k1;k2;k3)2�

��k1;k2;k3 :

Results from welfare maximization can be naturally imbedded into the revenue maximization

environment. Among the mechanisms using K messages altogether, mechanisms with uniform

distribution of messages over the bidders do the best. To put it di¤erently, if the seller can choose

how to allocate communication capacity he should allocate it evenly. After noticing symmetry

between the problem of welfare and pro�t maximization, we can provide an analogous result to

Proposition 2. Let k be de�ned as in Proposition 2.

Proposition 6

��k1;k2;:::;kI = ��k;k2;:::;kI

Since the problem of pro�t maximization is solved by converting it into the problem of welfare

maximization the result is immediate.

5 Multiple Identical Units and Single Unit Demand

In an IPV setting with no restrictions on communication, the problem of allocating multiple iden-

tical units to bidders with a single unit demand is treated much like the problem of allocating a

single object. Under no restrictions on communication, one �xes the reporting strategies of bidders

so that they report truthfully and modi�es the allocation rule and transfers in the obvious way.

Our setup, on the other side, requires that we also deal with the reporting strategies.
27Assumption that K is divisible by 3 is made only for clarity of exposition.

34



In this section we provide a characterization of welfare optimal equilibria when each bidder has

single unit demand and multiple identical objects are to be sold. We provide some general results

as well as a more precise characterization in the symmetric case. The case of three bidders is

considered, as more general case would bring about notational chaos while contributing very little

to the exposition.

The only interesting case, of course, is the one of selling two objects. The case of three objects

is rather trivial since the welfare is optimized by awarding an object to each of the bidders without

any questions asked.

Let F1; F2 and F3 be distributions of bidders�valuations. As earlier we require that distributions

be atomless with everywhere positive density. For convenience we assume they are on [0; 1]. As

before, let jM1j = k1; jM2j = k2 and jM3j = k3. We assume that v0 = 0 for ease of exposition.

Analysis is easily extended to the case v0 > 0 by use of techniques developed above.

With a slight modi�cation a mechanism can be de�ned much like in Section 2. Although we

still require Qi (m) 2 [0; 1] for every pro�le of messages m, since we have single unit demand, we

now have
3X
i=1

Qi (m) � 2.

The results from the beginning of Section 2 still go through. That is, an equilibrium strategy

can be replicated by a threshold strategy and optimal welfare can be achieved by an equilibrium

in threshold strategies. Furthermore, any threshold strategy is an equilibrium of the mechanism

in which, given the reports and the strategies, the two bidders with the highest expected values

obtain the object. The transfers to support such equilibria are the Vickrey type transfers adapted

to the environment: a bidder�s payment equals the lowest value he could have, report according to

the equilibrium strategy and win the object.

Natural modi�cation of Proposition 2 can be stated for the environment at hand. Expected

values given the strategy and reported message can be calculated for bidders 2 and 3. This yields

at most k2 + k3 values. On the other side, as opposed to the single unit supply, we do not really

care whether bidder 1�s valuation is the highest or the second highest. Either way he is awarded a

unit. Therefore at most k2 + k3 messages of bidder 1 are welfare relevant.
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Proposition 7 Let k = min fk1; k2 + k3g : Then

w�3;(k1;k2) = w�3;(k;k2):

In the remainder of the section we provide a characterization of welfare optimizing equilibria,

as in the single object case, for the case of symmetric bidders, i.e. F1 = F2 = F3 = F and

jM1j = jM2j = jM3j = k.

Let Q� be de�ned as follows. Suppose bidders 1; 2 and 3 report messages ms;mp and mq

respectively. Then Q�1 (ms;mp;mq) = 1 as long as max fp; qg � s and Q�1 (ms;mp;mq) = 0 oth-

erwise. Q�2 (ms;mp;mq) = 1 if p � q or s > p and Q�2 (ms;mp;mq) = 0 otherwise. Finally

Q�3 (ms;mp;mq) = 1 if max fs; pg > q and Q�3 (ms;mp;mq) = 0 otherwise.

Q� awards an object to bidder 1 if neither of the remaining bidders reports a higher ranked

message, to bidder 2 if bidder 3 does not report a higher ranked message or bidder 1 reports a

lower ranked message and to bidder 3 if at least one of the other two bidders reports a lower ranked

message. It is easy to verify that such an allocation rule satis�es the above requisite properties.

Theorem 5 The optimal welfare is achieved by the allocation rule Q� and the pro�le of threshold

strategies characterized by the assignment rule �� and the set of thresholds
�
c�1; c

�
2; :::; c

�
3k�3

	
given

by:

c�j =
[1�F(c�j�1)][F(c�j�2)�F(c�j+1)]

F(c�j�2)+F(c�j�1)�F(c�j�1)F(c�j�2)�F(c�j+1)�F(c�j+2)+F(c�j+1)F(c�j+2)
E
�
X j c�j�2 � X � c�j+1

�
+

[1�F(c�j+1)][F(c�j�1)�F(c�j+2)]
F(c�j�2)+F(c�j�1)�F(c�j�1)F(c�j�2)�F(c�j+1)�F(c�j+2)+F(c�j+1)F(c�j+2)

E
�
X j c�j�1 � X � c�j+2

�
;

for j 2 f1; 2; :::; 3k � 3g.

Again, c�j = 0 for j > 3k � 3 and c�j = 1 for j < 1. The intuition can be grasped through

the following example. Suppose bidder 1 observes value c�4. Given his value it should not matter

whether he reports message m2 corresponding to [c�4; c
�
1], or message m3 corresponding to [c�7; c

�
4).

If the conditional welfare were di¤erent in those two cases, suppose it were strictly higher when

bidder 1 reports m2. Then by continuity the same would be true for values just above c�4. But then

the original threshold could possibly not be optimal.

Whether bidder 1 is reporting m2 or m3 has an e¤ect on welfare in two cases: (1) when bidder

3 reports the partition cell [c�3; 1] and bidder 2 reports [c
�
5; c

�
2] and (2) when bidder 3 reports the

36



partition cell [c�6; c
�
3] and bidder 2 reports either [c

�
5; c

�
2] or [c

�
2; 1]. But then at the optimum c�4 should

be set to o¤set those two possibilities.

Finally we can write the expected welfare of an optimal equilibrium as

w�k =
3k�2X
j=1

h
3F
�
c�j�1

�
� F

�
c�j�1

�2
+ 3F

�
c�j
�
� F

�
c�j
�2 � F �c�j�1�F �c�j�i �F �c�j�1�� F �c�j�� �

�E
�
X j c�j�1 � X � c�j

�
�
3k�2X
j=1

�
1� F

�
c�j
�� �

F
�
c�j
�
� F

�
c�j+1

�� �
F
�
c�j�1

�
� F

�
c�j
��
�

�
�
E
�
X j c�j�1 � X � c�j

�
� E

�
X j c�j � X � c�j+1

��
:

The �rst line can be interpreted as the welfare which one would achieve if all the bidders had

thresholds
�
c�1; c

�
2; :::; c

�
3k�3

	
. The second line is the loss incurred because one cannot do so.

6 Sequential Reporting

6.1 Short Introduction

So far we were explicitly assuming simultaneous reporting.28 BNS provide an example with two

bidders, the uniform distribution over [0; 1] and two messages for each bidder to show that a

sequential mechanism can achieve strictly higher welfare with the same amount of communication.

More precisely, the seller commits to a mechanism, one of the bidders reports �rst (bidder 1), the

report is revealed to the second bidder after which the second bidder reports himself. Letting the

bidder who reports second condition on the �rst bidder�s report enables one to achieve strictly

higher welfare than in the case when no such conditioning is allowed. It is true, though, that

communication by which the second bidder is informed of �rst bidder�s report is not accounted for.

The observation above contrasts the revelation principle (see Myerson (1979) and Myerson

(1981)), which implies that any welfare obtained in an equilibrium of an auction mechanism can be

obtained by an equilibrium of a direct revelation mechanism. Welfare of the optimal mechanism

with sequential reporting in which bidders use a certain number of messages can not be replicated

by the simultaneous reporting of bidders with the same total number of messages for each bidder.

Clearly, welfare achieved in a Bayesian equilibrium of a mechanism with restricted communica-

28The bidders could report sequentially but no information should be transmitted between them.

37



tion can be replicated by a mechanism in which there are no communication requirements. BNS

show that at least as high a welfare as in a sequential I-bidder mechanism with m bits29 can be

achieved in an equilibrium of a simultaneous mechanism with mI bits (Theorem 6.1). Again, the

communication by which bidders are informed about other bidders�reports is not accounted for in

the calculation. While BNS provide a bound we show an exact characterization for a two bidder

two period case.

In what follows we solve for welfare and pro�t maximizing equilibria of the following types of

two bidders mechanisms. The seller commits to a mechanism and bidders observe their private

values. First to report is bidder 1; he chooses one of a �nite number of messages. Bidder 2 observes

it and chooses one of the �nite number of messages himself. Finally the allocation and transfers

are executed on the basis of the two reports. Two assumptions should be emphasized: First, there

are only two periods of reporting. While this is more general than simultaneous reporting it is still

somewhat restrictive. Second, requiring that in each period only one bidder sends a message is

restrictive given that we are using only two periods of reporting. Finally one can observe that our

equilibria achieve the highest welfare among all two bidders 1 bit mechanisms, be it simultaneous

or sequential.30

6.2 Model

The assumptions on preferences and on distributions of the two bidders are the same as in the

previous sections. The di¤erences are in timing, information, and consequently, in strategies. We

assume that bidder 1 reports �rst: he observes his private valuation v1 and reports a message, i.e.

�1 : V1 !M1:

Bidder 2 reports after observing his own valuation and bidder 1�s message, i.e.

�2 : V2 �M1 !M2:

29m bits = 2m messages.
30 If one is willing to sidestep dealing with bits, one can state, more generally, that this kind of equilibrium is

optimal if each bidder can use up to at most 3 messages. In that case no more than two periods make sense.
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On the other side a mechanism is de�ned as earlier. The allocation rule is

Q :M1 �M2 ! [0; 1]3 ;

and the transfer scheme

T :M1 �M2 ! R2+:

We impose the following incentive constraints. After bidder 2 observes �1 (v1) :

Q2 (�1 (v1) ; �2 (v2; �1 (v1))) v2 � T2 (�1 (v1) ; �2 (v2; �1 (v1))) (7)

� Q2
�
�1 (v1) ; �2

�
v02; �1 (v1)

��
v2 � T2

�
�1 (v1) ; �2

�
v02; �1 (v1)

��
;

for every v2; v02. Bidder 1 has no prior information but his own signal, thus for every v1 :Z
[Q1 (�1 (v1) ; �2 (v2; �1 (v1))) v1 � T1 (�1 (v1) ; �2 (v2; �1 (v1)))] f2 (v2) dv2 (8)

�
Z �

Q1
�
�1
�
v01
�
; �2

�
v2; �1

�
v01
���

v1 � T1
�
�1
�
v01
�
; �2

�
v2; �1

�
v01
����

f2 (v2) dv2

for every v01 2 [0; 1]. The above IC constraints are somewhat generous: we only require that under

the prescribed strategies none of the bidders wants to deviate to an action that he was supposed to

be played for some valuation. Deviations to messages that were not supposed to be used according

to his prescribed strategy are allowed. We solve the welfare and the pro�t maximization problem

under this relaxed problem and argue that the solution is indeed a Bayesian equilibrium.

Equivalently loose participation constraints are:

Q2 (�1 (v1) ; �2 (v2; �1 (v1))) v2 � T2 (�1 (v1) ; �2 (v2; �1 (v1))) � 0;

for every v1 and v2, for bidder 2, andZ
[Q1 (�1 (v1) ; �2 (v2; �1 (v1))) v1 � T1 (�1 (v1) ; �2 (v2; �1 (v1)))] f2 (v2) dv2 � 0

for every v1 for bidder 1. By using methodology of Lemma 1 one can easily see that strategies

satisfying conditions (7) and (8) have to be threshold strategies.31 Perhaps a clari�cation is in

31Again, up to equating messages for which the bidder wins with the same expected probability.
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order: �2 is a threshold strategy with respect to �1 if �2 (�; �1 (v1)) is a threshold strategy for every

v1. Then � = (�1; �2) is in threshold strategies if �1 is a threshold strategy and �2 is a threshold

strategy with respect to �1. The proof of the following Lemma is omitted because of its simplicity.

Lemma 4 For any pro�le of strategies � and a mechanism (Q;T ) satisfying IC conditions � is in

threshold strategies.

We denote bidder 1�s thresholds by c = (c1; :::; ck1�1) where c1 � c2 � ::: � ck1�1. As above,

the message corresponding to bidder 1�s top partition cell is m1, to second highest m2, etc. Bidder

2�s thresholds after observing message mj ; j 2 f1; 2; :::; k1g, are d (mj) =
�
dj1; d

j
2; :::; d

j
k2�1

�
. A

strategy of bidder 2 is d = (d (m1) ; d (m2) ; :::; d (mk1)). Remainder of the analysis draws heavily

on the results obtained in the setup with simultaneous reporting; therefore we are somewhat less

formal. We will neglect the incentive constraints at �rst. That is, we will try to �nd the largest

welfare one can obtain in threshold strategies assuming that bidders blindly follow the prescribed

strategies. In the end we will show that such strategies and the optimal allocation rule can indeed

be supported as a Bayesian equilibrium.

For any �xed pro�le of threshold strategies given by (c; d) ; the optimal allocation rule Q�

adheres to the characterization of Lemma 2. Given the threshold strategies and the reports, the

object is allocated to the bidder with the highest expected value. In any equilibrium in the second

round of reporting, bidder 1�s message and the corresponding expected value are known; therefore

the only relevant information from bidder 2 is whether his value is above or below the expected

value of bidder 1. But then at most two message of bidder 2 are relevant, i.e. there is one threshold.

We label the two messages by U and D, the �rst corresponding to the upper partition cell and the

later to the lower.32 With a slight abuse of notation we denote bidder 2�s threshold after observing

message mj by dj ; now, d = (d1; d2; :::; dk1). Making use of Proposition 2 and the fact that bidder

1 has k1 messages, one observes that there is no need to partition bidder 2�s valuation interval into

more than k1 + 1 partition cells. This, in turn, means that the highest welfare achieved in our

mechanism with two periods of sequential reporting is no larger than the welfare one can achieve

by simultaneous reporting where bidder 1 has k1 and bidder 2, k1+1 messages, i.e. w�2;(k1;k1+1). In

what follows we show that this upper bound on welfare can be achieved.
32To be more precise. If k2 > 2 one should specify what happens if bidder 2 announces one of the messages that

are not supposed to be reported in the equilibrium. There are several ways of remedying this problem, one of them
being: if bidder 2 announces a message which was not supposed to occur he obtains the object with probability zero
and does not pay.
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Let c� and d� be mutually centered strategies, as given by the System of Equations (2), i.e.

d�1 = E [V1 j 1 � V1 � c�1] ; c
�
1 = E [V2 j d�1 � V1 � d�2], etc. Here d

�
j is bidder 2�s threshold after

bidder 1 reported message mj , for j 2 f1; :::; k1g. The optimal allocation rule, Q�, awards the

object to the bidder with the highest expected value:

Q�1 (mj ; U) = 1�Q�2 (mj ; U) = 0,

Q�1 (mj ; D) = 1�Q�2 (mj ; D) = 1,

for all j 2 f1; 2; :::; k1g : Now we are only left to specify the transfers to support mutually centered

strategies (c�; d�) and the allocation rule Q� as an equilibrium. Bidder 2�s transfers are33

T �2 (mj ; U) = d�j ; (9)

T �2 (mj ; D) = 0:

for j 2 f1; :::; k1g. These are the usual Vickrey type transfers. If bidder 2 wins, the payment he

has to make is equal to the smallest valuation he could have, report according to his threshold and

still win. Bidder 1�s transfers are somewhat more interesting:

T �1 (mj ; U) = 0;

T �1 (mj ; D) =

k1X
i=j

F2(d�i )�F2(d�i+1)
F2(d�j)

c�i ;

for all j 2 f1; :::; k1g : Bidder 1�s transfers can be interpreted as expected Vickrey transfers. That

is, if bidder 1 wins after reporting mj , bidder 2�s message only reveals that bidder 2�s valuation is inh
0; d�j

i
. If bidder 1 would have reported mj+1 the information obtained from bidder 2 would have

been di¤erent. The transfer of bidder 1 accounts for that. When he reports mj he wins the object

with probability F2
�
d�j

�
. Given that he wins, bidder 2�s valuation is in the interval

h
d�j+1; d

�
j

i
with probability

F2(d�j)�F2(d�j+1)
F2(d�j)

, in which case bidder 1 could have value c�j ; report according to his

strategy and still win. Given that bidder 1 wins, bidder 2�s valuation is in the interval
h
d�j+2; d

�
j+1

i
with probability

F2(d�j+1)�F2(d�j+2)
F2(d�j)

, whence bidder 1 would need to value the object at least c�j+1;

33Notice that the optimal transfers depend, not only on the reports, but on the treshold strategies (c�; d�). Presently
we supress this in notation hopeing that no confusion will arise.
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report according to his prescribed threshold strategy and still win. The rest of the explanation

follows the same pattern.

Proposition 8 Optimal welfare of a two period mechanism with sequential reporting can be achieved

in a Bayesian equilibrium with mutually centered strategies, (c�; d�), and the mechanism (Q�; T �) :

All the usual disclaimers apply. Mutual centeredness is a necessary condition for an equilibrium;

thus there might exist mutually centered strategies that are not welfare optimizing. Furthermore,

we lay no claims on uniqueness of a welfare optimal equilibrium. Since the optimal transfers depend

directly on the strategies, the same observations apply to them. On the other side, the allocation

rule is pinned down. Though there might be multiple mutually centered pro�les of strategies that

achieve the optimal equilibrium, in all of the optimal equilibria the allocation rule is the same, i.e.

Q�.

The above analysis deals with the case v0 = 0. Analysis can be easily extended to the case

v0 > 0. Fix v0. Let c# and d# be vectors of thresholds as given in the system of equations (6),34

i.e.

d#k1 = v0;

c#k1�1 =
F2
�
d#k1�1

�
�F2

�
d#k1

�
F2
�
d#k1�1

� E
h
V2 j d#k1�1 � V2 � d#k1

i
+

F2
�
d#k1

�
F2
�
d#k1�1

�v0;

etc. The accompanying allocation rule, Q#, is as Q� except for the reports (mk1 ; D) when the object

is retained by the seller. The supporting transfers are similar as above. Bidder 2, his transfers

denoted T#2 ; pays the lowest value he could have, report according to his threshold strategy, given

bidder 1�s report, and still win. Bidder 1�s transfers are expected Vickrey transfers modi�ed to

account for the fact that the seller might retain the object:

T#1 (mj ; U) = T#1 (mk1 ; D) = 0; for all j 2 f1; 2; :::; k1g

T#1 (mj ; D) =

k1�1X
i=j

F2
�
d#i

�
�F2

�
d#i+1

�
F2
�
d#j

� c#i ; for all j 2 f1; 2; :::; k1 � 1g :

The result can now be stated to say that the welfare optimal equilibrium is achieved in an equi-

librium with mutually centered strategies (c�; d�) and (Q�; T �) or in an equilibrium with modi�ed

34
�
c#; d#

�
depends on v0, although we suppress this in notation.
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mutually centered strategies
�
c#; d#

�
and the mechanism

�
Q#; T#

�
.

Finally, one can tackle the problem of revenue maximization by transforming it into the auxiliary

problem of welfare maximization in which virtual valuations are treated as actual valuations. After

solving the auxiliary problem one can map the solution back into the original setup.

7 Concluding Remarks

We provide a novel analysis of auctions with restricted communication. Several lessons are to be

taken from it. First, when communication is restricted the revelation principle does not apply

in the usual sense: simultaneous reporting of bidders is not without loss of generality. Second,

communication transmitted by the bidder with the highest cardinality of the message space is

bounded by the sum of cardinalities of the message spaces of all the remaining bidders (plus

one). Relevant information stems from comparison of bidders�valuations. Third, when bidders

have symmetric distributions the seller optimally distributes communication capacity evenly over

the bidders, although the auction they bid in afterwards is asymmetric. Finally, we provide an

equivalence result between the maximal welfare of a certain mechanism with simultaneous reporting

and the maximal welfare achieved in a two bidder two period sequential mechanism.

We explore the e¤ects of bounded communication in the best understood auction environment,

that is, in the IPV model with a single indivisible object. Although we provide quite a com-

prehensive analysis much work is still to be done. In future work we plan to explore restricted

communication in various other settings, such as auctions with interdependent values (some pre-

liminary work was done by Blumrosen and Feldman (2006)) and bilateral bargaining.

References

[1] S. Athey, Single Crossing Properties and the Existence of Pure Strategy Equilibria in Games

of Incomplete Information, Econometrica 69 (2001), 861-889

[2] D. Bergemann, M. Pesendorfer, Information Structures in Optimal Auctions, Journal of Eco-

nomic Theory (2007), forthcoming

43



[3] L. Blumrosen, M. Feldman, Implementation With a Bounded Action Space, In Proceedings of

the 7th ACM Conference of Electronic Commerce (2006)

[4] L. Blumrosen, N. Nisan, I. Segal, Auctions with Severely Bounded Communication, Journal

of Arti�cial Intelligence Research 28 (2007), 233-266

[5] P. Dasgupta, E. Maskin, E¢ cient Auctions, Quarterly Journal of Economics CXV (2000),

341-388

[6] A. Kress, C. Boutilier, A Study of Limited Precision, Incremental Elicitation In Auctions, In

The 3rd International Joint Conference of Autonomous Agents and Multiagent Systems (2004)

[7] V. Krishna, Auction Theory, San Diego, (2002)

[8] R.P. McAfee, Coarse Matching, Econometrica 70 (2002), 2025-2034

[9] P. Milgrom, Simpli�ed Mechanisms with Applications to Sponsored Search and Package Auc-

tions, mimeo (2007)

[10] R.B. Myerson, Incentive Compatibility and The Bargaining Problem, Econometrica 47 (1979),

61-73

[11] R.B. Myerson, Optimal Auction Design, Mathematics of Operations Research 6 (1981), 58-73

[12] M.H. Rothkopf, R.M. Harstad, On the Role of Discrete Bid Levels in Oral Auctions, European

Journal of Operational Research 74 (1994), 572-581

[13] M.H. Rothkopf, T.J. Teisberg, E.P.Kahn, Why are Vickrey Auctions Rare, Journal of Political

Economy 98 (1990), 94 - 109

[14] J.G. Riley, W.F. Samuelson, Optimal Auctions, American Economic Review 71 (1981) 381-392

[15] T. Sandholm, A. Gilpin, Sequences of Take-it-or-Leave-it O¤ers: Near-Optimal Auctions With-

out full Valuation Revelation, In Fifth International Joint Conference on Autonomous Agents

and Multiagents Systems (2006), 1127-1134

[16] W. Vickrey, Counterspeculation, Auctions, and Competitive Sealed Tenders, Journal of Fi-

nance 16 (1961) 8-37

44



[17] R. Wilson, E¢ cient and Competitive Rationing, Econometrica 57 (1989) 1-40

Appendix A. Proofs of Subsection 3.1

Proof of Lemma 1. Let � be an equilibrium of an incentive compatible mechanism (Q;T ). Let

vi < v0i be such that �i (vi) = �i (v
0
i) and v

00
i 2 [vi; v0i] . By incentive compatibility we have

q
�
�i (vi) ; ��i

�
vi � ti

�
�i (vi) ; ��i

�
� q

�
�i
�
v00i
�
; ��i

�
vi � ti

�
�i
�
v00i
�
; ��i

�
:

By interchanging vi and v00i and consolidating the two inequalities one obtains

�
qi
�
�i (vi) ; ��i

�
� qi

�
�i
�
v00i
�
; ��i

�� �
vi � v00i

�
� 0;

which in turn implies qi
�
�i (vi) ; ��i

�
� qi

�
�i (v

00
i ) ; ��i

�
. Similarly qi

�
�i (v

00
i ) ; ��i

�
� qi

�
�i (v

0
i) ; ��i

�
.

Now, since �i (vi) = �i (v
0
i) we have qi

�
�i (vi) ; ��i

�
= qi

�
�i (v

00
i ) ; ��i

�
= qi

�
�i (v

0
i) ; ��i

�
. There-

fore either �i (v
00
i ) = �i (vi) or �i (v

00
i ) 6= �i (vi) ; but then one can identify �i (v

00
i ) with �i (vi) since

qi
�
�i (vi) ; ��i

�
= qi

�
�i (v

00
i ) ; ��i

�
in any case.

Proof of Lemma 2. Fix the pro�le of reporting strategies �. Let (Q;T ) be some incentive com-

patible mechanism for �. If for every realization of a message pro�le a bidder (or possibly bidders)

with the highest expected value wins, we are done. Otherwise there exists some combination of

reports � (v) and two bidders i and j such that E [Vi j �i (Vi) = �i (vi)] < E
�
Vj j �j (Vj) = �j (vj)

�
and qi

�
�i (vi) ; ��i

�
> 0. It is easy to see that retaining the same thresholds, given by the strategy

� , and always awarding the object to the bidder with the highest expected value conditional on

the reports yields no smaller expected welfare. Let Q� (�) be some such allocation rule. We only

need to check that this allocation can actually be supported by transfers. Indeed, Vickrey transfers

tailored to our setup will do: if a bidder wins the object with positive probability, he pays the

lowest possible valuation he could have, report according to his strategy and still win with positive

probability, say p, multiplied by p. To make it even simpler, one can take Q� (�) to be deterministic

and the winning bidder pays the smallest valuation he could have, report according to his strategy

and still win the object.
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The other direction is immediate.

Proof of Theorem 1. By Lemma 1 and Lemma 2 we can con�ne ourselves to threshold strategies,

c; and an allocation rules of type Q� (c). Now we only need to establish the existence of an optimal

threshold strategy.

Let Ci be the set of all threshold strategies for bidder i; i.e. Ci =
n
ci 2 [0; 1]ki�1 : ci1 � ci2 � ::: � cik1�1

o
.

Using the properties of Q� (c�), welfare as a function of a pro�le of threshold strategies, c; can now

be written as

w (c) =

k1�1X
t1=1

k2�1X
t2=1

:::

kI�1X
tI=1

Pr
�
c1t1 � V1 � c1t1+1

�
Pr
�
c2t2 � V2 � c2t2+1

�
� ::: � Pr

�
cItI � Vn � cItI+1

�
(10)

�max
�
E
�
V1 j c1t1 � V1 � c1t1+1

�
; E
�
V2 j c2t2 � V2 � c2t2+1

�
; :::; E

�
VI j cItI � V3 � cItI+1

�	
;

where Pr
�
citi � Vi � citi+1

�
= Fi

�
citi
�
�Fi

�
citi+1

�
for each i. Clearly the set C =

n
�
i=1
Ci is compact in

Rk1+k2+:::+kI�I . Furthermore, w is continuous in c, which establishes the existence of an optimum,

i.e. c� and Q� (c�). We already argued in the text that c� and Q� (c�) can be supported by the

Vickrey type transfers T � (c�).

Proof of Proposition 1. Fix a strategy � and an allocation rule Q. Transfers here are of no

importance.

Welfare can be written as

w =
P
j

(Z " P
m�j

Pr (m�j)Qj
�
�j (vj) ;m�j

�#
vjdFj

)
(11)

=

Z "P
m�i

Pr (m�i)Qi (�i (vi) ;m�i)

#
vidFi +

P
j 6=i

(Z " P
m�j

Pr (m�j)Qj
�
�j (vj) ;m�j

�#
vjdFj

)
;

where

Pr (m�j) =

Z
1[��j(v�j)=m�j]dF�j :

In addition, de�ne

qj
�
�j (vj)

�
=

"P
m�i

Pr (m�j)Qj
�
�j (vj) ;m�j

�#

for any j 2 f1; 2; :::; Ig :

Notice that the second term on the right hand side of the equation (11) depends only on the
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measure (induced by Fi) on which bidder i reports a certain message and not on particular values for

which he does it. In particular, any strategy, �0i; that uses each message with the same probability

as strategy �i; leaves that term unaltered.

Without loss of generality (one can always relabel the messages)

qi (mi1) � qi (mi2) � ::: � qi (mik) :

Now, we de�ne a new threshold strategy, �0i, for bidder i by

�0i (vi) = mi1 for vi 2 [c1; 1] , where c1 is de�ned by
1Z

c1

dFi =

Z
1[�i(vi)=mi1]dFi;

�0i (vi) = mi2 for vi 2 [c2; c1] , where c2 is de�ned by
c1Z
c2

dFi =

Z
1[�i(vi)=mi2]dFi,

etc. Such a strategy is well de�ned. The claim is that by replacing strategy �i with �
0
i and holding

strategies of other bidders and the allocation rule �xed the welfare does not decrease.

Indeed, clearly
tZ
0

qi
�
�0i (vi)

�
dFi �

tZ
0

qi (�i (vi)) dFi

for every t 2 [0; 1] and
1Z
0

qi
�
�0i (vi)

�
dFi =

1Z
0

qi (�i (vi)) dFi:

Then by the �rst order stochastic dominance type of an argument

Z
viqi (�i (vi)) dFi �

Z
viqi

�
�0i (vi)

�
dFi:

Going from �i to �
0
i, we shift the mass at which bidder i is reporting message mi1 and therefore

winning the object with the highest expected probability. This forms an interval for the highest

valuations while keeping the probability with which message mi1 is reported constant. Next we

shift the mass at which bidder i is reporting message mi2 just below the interval at which the

bidder reports m1i and so on. Clearly �0i is a threshold strategy. It is also rather easy to verify that

it increases the �rst term in the above equation for welfare (we already claimed that the second
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term is unaltered) and thus it does not decrease welfare. Finally, we can repeat the procedure over

all the bidders to obtain a threshold strategy �0 that achieves at least as high a welfare as � did.

Now we can show that the optimal threshold strategy exists the same way as in the proof of the

Theorem 1.

Proof of Proposition 2. The proposition is trivial in the case k1 �
IP
i=2
ki+1. Let k1 >

IP
i=2
ki+1

and let �� be some welfare maximizing pro�le of strategies whose existence was proved in Theorem

1. For all the bidder 2 through I one can compute expected values corresponding to each of their

partition cells and form a ranking of those expected values. The only information of importance

under welfare maximization is whose value is the highest. All the welfare-relevant information is

whether bidder 1�s expected value is higher than the highest in the ranking of the remaining bidders,

below the highest but above the second highest, etc., thus using at most
IP
i=2
ki + 1 messages.

Appendix B. Proofs of Subsection 3.2

Proof of Proposition 3. As already noted in the text, by Theorem 1 we can restrict ourselves

to threshold strategies, and by Proposition 2 we only need to consider the case jk1 � k2j � 1.

The proof proceeds by induction over the cardinality of message space, where it is assumed that

k1 � k2. Characterization is readily obtained when k1 = k2 = 2. We then show that a strictly

higher welfare can be achieved with k1 = 3, k2 = 2 and all the messages are used and characterize

the optimal strategies. One then proceeds the same way to the case of k1 = k2 = 3:

More formally. Characterization is easily obtained for the case jM1j = jM2j = 2. Each bidders�

strategy is described by a single threshold. We denote bidder 1�s threshold by c1 and bidder 2�s by

c2. Now, given the threshold strategies c =
�
c1; c2

�
only two things can happen, either

E
�
V1 j 1 � V1 � c1

�
� E

�
V2 j 1 � V2 � c2

�
(12)

and the optimal welfare (given the strategy described by the thresholds c) is

w (c) = [1� F1 (c1)]E
�
X1 j 1 � V1 � c1

�
+ F1

�
c1
� �
1� F2

�
c2
��
E
�
V2 j 1 � V2 � c2

�
+F1 (c1)F2 (c2)E

�
X1 j c1 � V1 � 0

�
;

or the roles of bidder 1 and 2 are reversed. Remember, the allocation we are using allocates,
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conditioning on the strategies, the object to the bidder with the highest expected value given the

observed reports.

Either way, taking the �rst order conditions will give us mutual centeredness. As we already

proved, the optimum exists, and it is clearly not on the boundary. Thus it is either the case that

c1� = E
�
V2 j 1 � V2 � c2�

�
; (13)

c2� = E
�
V1 j c1� � V1 � 0

�
;

or

c2� = E
�
V1 j 1 � V1 � c1�

�
;

c1� = E
�
V2 j c2� � V2 � 0

�
:

The remainder of the proof follows an inductive step. We show that the strategies have to be

mutually centered for the case of one bidder having cardinality of message space three and the

other two. From there we proceed to the case when both bidders have three possible messages.

Suppose jM1j = jM2j+1 = 3, the other case is handled the same way. In the optimal solution for

the case of two messages for each bidder, c� =
�
c1�; c2�

�
; it either has to be the case that inequality

(12) holds with the strict inequality (mutual centeredness) or the reversed inequality holds.

In the �rst case, we have the following order (see the system of equations (13)):

E
�
V1 j 1 � V1 � c1�

�
> E

�
V2 j 1 � V2 � c2�

�
> E

�
V1 j c1� � V1 � 0

�
> E

�
V2 j c2� � V2 � 0

�
,

and the welfare

w�2;2 =
�
1� F1

�
c1�
��
E
�
V1 j 1 � V1 � c1�

�
+ F1

�
c1�
� �
1� F2

�
c2�
��
E
�
V2 j 1 � V2 � c2�

�
+F1

�
c1�
�
F2
�
c2�
�
E
�
V1 j c1� � V1 � 0

�
.

Holding the �rst threshold of bidder 1 �xed, and relabeling it to c11 = c1�; we can set his second
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threshold, c12, so that

E
�
V1 j c11 � V1 � c12

�
> E

�
V2 j c2� � V2 � 0

�
> E

�
V1 j c12 � V1 � 0

�
;

thus making use of all three messages. We denote the welfare under these new strategies, and

the corresponding new allocation rule, w3;2. Now

w3;2 � w�2;2 =
�
F1
�
c11
�
� F1

�
c12
��
F2
�
c2�
�
E
�
V1 j c11 � V1 � c12

�
+ F1

�
c12
�
F2
�
c2�
�
E
�
V2 j c2� � V2 � 0

�
�F1

�
c11
�
F2
�
c2�
�
E
�
V1 j c11 � V1 � 0

�
= F1

�
c12
�
F2 (c

�
2)
�
E
�
V2 j c2� � V2 � 0

�
� E

�
V1 j c12 � V1 � 0

�	
> 0:

This shows that by utilizing all three messages of bidder 1 and two messages of bidder 2 we

can achieve strictly higher welfare than by using 2 messages of each bidder. We denote the optimal

threshold strategy for the case jM1j = jM2j + 1 = 3 by c� =
�
c1�1 ; c

1�
2 ; c

2�
1

�
. The above statement

implies that it has to be the case that

E
�
V1 j 1 � V1 � c1�1

�
� E

�
V2 j 1 � V2 � c2�1

�
� E

�
V1 j c1�1 � V1 � c1�2

�
� E

�
V2 j c2�1 � V2 � 0

�
� E

h
V1 j c1

�
2 � V1 � 0

i
.

Suppose not. Then in a ranking, as above, it would have to be the case that two bidder 1�s

expected values would come in consecutive, thus conveying the same message. But we already

know that by utilizing all three messages a higher welfare can be achieved. The thresholds can now

be characterized from the �rst order conditions:

c1�1 = E
�
V2 j 1 � V2 � c2�1

�
;

c1�2 = E
�
V2 j c2�1 � V2 � 0

�
;

c2�1 = E
�
V1 j c1�1 � V1 � c1�2

�
.

In the second case, instead of adding an additional message of bidder 1 at the bottom, one

adds it at the top.

Next we prove the result for jM1j = jM2j = 3. Since in the case jM1j = jM2j + 1 = 3,

E
�
V1 j 1 � V1 � c1�1

�
> E

�
V2 j 1 � V2 � c2�1

�
, one can add a threshold at the top for bidder 2 and
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increase the welfare. Hence w�3;3 > w�3;2. As in the previous case, one argues that the expected

values, given the partition cells of both bidders, have to alternate. This yields two possible cases.

Either E
�
V1 j 1 � V1 � c11

�
� E

�
V2 j 1 � V2 � c21

�
, or the other way around. In either case one can

write out the welfare and obtain mutually centered strategies from the �rst order conditions.

The process can be iterated to obtain a solution for the general case jM1j = k1, jM2j = k2, for

any k1; k2 such that max fk1; k2g � 2. The case k1 = k2 = 1 is not particularly interesting as there

are no thresholds, and the case of jk1 � k2j > 1 can be reduced to the case jk1 � k2j = 1.

Proof of Lemma 3. For ease of exposition and clarity we provide a proof for k = 3. The proof

is easily, albeit with notational inconvenience, extended to the general case.

Let c = (c1; c2) and d = (d1; d2) be the threshold strategies of bidder 1 and 2 respectively. Given

that the allocation rule is symmetric, the welfare is

w = 0:5

3X
i=1

[F (ci�1)� F (ci)] [F (di�1)� F (di)] fE [V j ci�1 � V � ci] + E [V j di�1 � V � di]g+

+
2X
i=1

([F (ci�1)� F (ci)]F (di)E [V j ci�1 � V � ci] + F (ci) [F (di�1)� F (di)]E [V j di�1 � V � di])

= 0:5

8<: [1� F (c1)]E [X j 1 � X � c1] + F (c1) [1� F (d2)]E [X j 1 � X � d2] +

F (c1)F (d2)E [X j c1 � X]

9=;+
0:5

8<: [1� F (d1)]E [X j 1 � X � d1] + F (d1) [1� F (c2)]E [X j 1 � X � c2] +

F (d1)F (c2)E [X j d1 � X]

9=; ;

where the second equality follows after some rearranging. The crucial point to see is that the

maximization over c1 and d2 (the �rst summand) is separated from maximization over c2 and d1:

The �rst summand is equivalent to a half of the welfare where each bidder has 2 messages and

bidder 1 has the priority. We already know this has a solution. Let such optimal thresholds be

c1 = a� and d2 = b�.

Since bidders have the same distribution, the second summand represent the same problem:

it represents welfare maximization when both bidders have two messages and bidder 2 has the

priority. But then the same solution can be applied: d1 = a�; c2 = b�.

Thus we have a solution c1 = d1 = a� and c2 = d2 = b�, which proves our claim.

Proof of Proposition 4. The �rst part of the proposition was proved in the text. For the second

51



part, showing the equivalence between two welfare maximizing equilibria, let w be the welfare of the

optimal equilibrium when jM1j = jM2j = k and w0 be the optimal welfare achieved in a symmetric

equilibrium of a mechanism with jM1j = jM2j = 2k � 1. If w0 > w then one can obtain welfare w0

in a mechanism with jM1j = jM2j = k by setting c11 = c1; c
2
1 = c2; :::; c

2
k�1 = c2k�2. But then clearly

w is not the optimal welfare. The case w0 < w is handled similarly.

Proof of Proposition 5. In the text we explained why in a welfare maximizing optimum no

threshold is below v0. The remainder of the analysis is split into two cases, depending on whether

given the optimal vector of thresholds, ec, we have E �X j c1k�1 � X � 0
�
� v0 or E

�
X j c1k�1 � X � 0

�
>

v0. That is, the cases depend on whether bidder 1�s lowest message is conveying that his expected

value is above or below v0. In the �rst case c2k�1 has to be equal to v0; in the other case v0 > 0 is

nonbinding and the solution is equal to the one in the case v0 = 0.

If E
�
X j c1k�1 � X � 0

�
< v0, then when both bidders report message mk the object is awarded

to the seller. This case corresponds to maximizing

w =

k�2X
j=0

F
�
c2j

� c1jZ
c1j+1

vdF (v) +

k�2X
j=0

F
�
c1j+1

� c2jZ
c2j+1

vdF (v) + F
�
c1k�1

�
F
�
c2k�1

�
v0 (14)

s.t. E
�
X j c1k�1 � X � 0

�
� v0 . (15)

If, on the other side, E
�
X j c1k�1 � X � 0

�
� v; then bidder 1 obtains the object when both

bidders bid mk. The relevant maximization problem is

w =
k�2X
j=0

F
�
c2j

� c1jZ
c1j+1

vdF (v) +
k�2X
j=0

F
�
c1j+1

� c2jZ
c2j+1

vdF (v) + F
�
c2k�1

� c1k�1Z
0

vdF (v) (16)

s.t. E
�
X j c1k�1 � X � 0

�
� v0 (17)

One obtains the highest welfare by computing the optimum of both problems and comparing which

is higher.

Some clari�cations may be needed. When the condition of the problem de�ned in (14) is not

binding, one obtains bc2k�1 = v0. If the welfare is to be optimized, it should not matter whether the

bidder with the value bc2k�1 is reporting message mk or mk�1. The only thing that changes between

those two messages is whether bidder 2 is winning or losing against the seller with the value v0.
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Even more, if one was to solve this problem, not paying attention to the condition would lead to a

system of equations much like the one in (1) with the only di¤erence being

c1k�1 =
[F(c2k�2)�F(c2k�1)]

F(c2k�2)
E
�
X j c2k�2 � X � c2k�1

�
+

F(c2k�1)
F(c2k�2)

v0

c2k�1 = v0:

Furthermore, if it happens to be the case that after solving the unrestricted problem one gets

E
�
X j bc1k�1 � X � 0

�
� v0, the actual equation for the welfare that one should apply is (16). But,

raising the threshold bc2k�1 up to the level E �X j bc1k�1 � X � 0
�
; one does not decrease the welfare.

Therefore the solution is the solution to the system of equations under the problem where the

seller�s value is 0.

Appendix C. Proofs of Subsection 3.3

Proof of Theorem 2. Let us brie�y describe the mechanics of the proof before we plunge into

formalities. As hinted in the paragraphs following the theorem, the proof proceeds in two steps.

In the �rst step we maximize welfare over a subset of strategies. In particular, we �x values of

3k� 3 thresholds, c1 > c2 > c3 > ::: > c3k�3; and look at the optima over all the possible threshold

strategies generated by these thresholds (each bidder having k�1 thresholds). We sidestep dealing

with incentives until the very end of the proof, where we show that the welfare optimal equilibrium

of strategies and allocation rule can be supported as an equilibrium with appropriate transfers.

In the second step we observe that these local optima have a rather convenient property: the

strategies are induced by the priority assignment �� and the optimal allocation rule is Q�. Now we

can �x those two and optimize the system over the sets of thresholds.

Step 1. As noted in the text, every threshold strategy pro�le in which each bidder uses k � 1

thresholds can be described by a set of thresholds and an assignment rule �. We �x values of 3k�3

thresholds in [0; 1], c1 > c2 > c3 > ::: > c3k�3. The case where inequalities are weak will be

commented upon later. Type Tj is de�ned to be [cj ; cj�1), where c0 = 1 and c3k�2 = 0. We call

the type Tj higher than Tk when j < k.

For any allocation rule, Q, total welfare can be obtained from computing the welfare for every

combination of types and summing it over all the possibilities. We use notation �i (Tj) to denote

�i (x) when x 2 Tj . All the combinations of types can be covered by the following procedure: We
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start with bidder 1 being type T1 and consider all the combinations of bidder 2 and 3, then we

consider bidder 2 being type T1, bidder 1 being any type but T1 and bidder 3 being any type. Next,

we have bidder 3 being type T1 and bidders 2 and 3 any type but type T1. Going through with

types T2 and on, one analyses all the possibilities. The important property of the procedure is that

when one considers a certain bidder of a certain type one need not consider other bidders being of

a higher type since this was taken care of in previous steps.

The next couple paragraphs use the point made in the text. It would be welfare optimal, given

the thresholds, if each bidder could reveal his type. Since this is not the case, there is some loss

in welfare compared to the case where all the bidders could fully report their types Tj . Notice the

resemblance to the analysis in the symmetric two bidder case. We bound the loss from below and

show that the priority assignment, ��, and the allocation rule Q� achieve that bound. The bound

is given type by type: for each type, Tj , there exists at least one bidder of this type, i1, who loses

against exactly one bidder, i2, of type Tj+1 when the third bidder, i3, is of at most type Tj+1. That

is, when the bidder i1 is of type Tj , bidder i2 of type Tj+1 and bidder i3 of at most type Tj+1, bidder

i2 is awarded the object. Figure 3 provides a graphical representation of the case when bidder 3 of

type T1 loses against bidder 2 of type T2 when bidder 1 is of at most type T1.

Optimal welfare, given the �xed thresholds, would be achieved if all the types would win against

all the lower types. Again, it is irrelevant who wins when multiple bidders are of the same type

and this type is the highest. If full communication of types was possible, then the welfare achieved

from at least one bidder being of type Tj and nobody else being a higher type would be:

wj = [F (cj�1)� F (cj)]
(

3X
i=1

F (cj�1)
3�i F (cj)

i�1
)
E [X j cj�1 � X � cj ] ;

and the total welfare

w =

3k�2X
j=1

wj :

The equation for wj can be thought of as follows. When bidder 1 is of type Tj , and thus has

expected value E [X j cj�1 � X � cj ], which happens with probability [F (cj�1)� F (cj)] ; he wins

against both other bidders of at most type Tj , which happens with probability F (cj�1)
2. When

bidder 2 is of type Tj he obtains the object when bidder 1 is of at most type Tj+1 and bidder 3 of

at most Tj , which happens with probability F (cj�1)F (cj) : And when bidder 3 is of type Tj ; he
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is awarded the object when both other bidders are of a lower type which happens with probability

F (cj)
2. Summing over all wj yields total welfare w.

Unfortunately, achieving this welfare is unattainable under our communication restrictions. As

already hinted we derive what is the smallest loss in comparison to w that can be achieved. We �x

an assignment rule � and a type Tj , where j < 3k � 2. Let � (Tj) = 1. This is just for convenience;

we could always relabel the bidders. At this point we just want to obtain a lower bound on the

welfare when at least one of the bidders is type Tj and nobody else is of a higher type.

Let a be the smallest l 2 N such that � (cj+l) = 2.35 That is, cj+a is the �rst threshold after cj
that is assigned to bidder 2 under the assignment �. Then we have � (cj+a) = 2. Similarly, let b be

the smallest l 2 N such that � (cj+l) = 3. Hence, � (cj+b) = 3. Again without loss of generality we

can assume a < b (otherwise relabel the bidders). We denote the message the bidders report when

they observe Tj by mj . Maximization of welfare for types Tj implies that when one bidder is of

type Tj , therefore reporting mj , and the other bidders are reporting lower partition cells, then he

should be allocated the object.

There are a couple of cases to consider. When bidders 1 and 2 report message mj and bidder 3

reports a lower message, the object is optimally allocated to bidder 1. Why, if it was allocated to

bidder 2 then it would also be allocated to him when he was either of the types Tj+1; Tj+2; :::; Tj+a;36

therefore bidder 1 of type Tj would be losing against all this lower types of bidder 2. The same

kind of comparisons show that whenever bidder 1 reports mj and no higher messages are reported

by the other two bidders, bidder 1 should win the object.

Comparison between bidders 2 and 3 shows that the object should be awarded to bidder 2 when

the two of them report message mj and bidder 1 reports a lower message. Now the welfare from

types Tj is

wj = [F (cj�1)� F (cj)]F (cj�1)2E [X j cj�1 � X � cj ] +

[F (cj�1)� F (cj)]F (cj�1)F (cj)E [X j cj�1 � X � cj ] +

[F (cj�1)� F (cj)]F (cj)F (cj+a)E [X j cj�1 � X � cj ] +

[F (cj�1)� F (cj)]F (cj) [F (cj)� F (cj+a)]E [X j cj � X � cj+a] ;

35One can always think of threshold c3k�1 = 0 as being allocated to all of the bidders; therefore a is well de�ned.
36The �rst threshold below cj that is assinged to bidder 2 is cj+a. Therefore he is reporting the same message for

all those types.
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where the �rst summand is the welfare achieved when bidder 1 is of type Tj and the other two

bidders are at most of type Tj . The second summand is due to bidder 2 being type Tj , bidder 1

being at most type Tj+1 and bidder 3 being at most type Tj . Last two summands are due to bidder

3 being type Tj and bidder 1 being at most type Tj+1. The �rst part comes from the fact that he

is winning against types of bidder 2 up to Tj+a+1; and the second part that he is losing against all

the type Tj+1 through Tj+a of bidder 2.

wj can now be rewritten:

wj = wj�[F (cj�1)� F (cj)]F (cj) [F (cj)� F (cj+a)] fE [X j cj�1 � X � cj ]� E [X j cj � X � cj+a]g :

The welfare from bidder being type Tj is the optimal welfare one would achieve with full commu-

nication of types minus the loss incurred due to the fact that bidder 3 of type Tj is losing against

lower types of bidder 2. Loss is clearly minimized by setting a to 1. That is, by an assignment rule

�0 such that �0 (cj) = 1; �0 (cj+1) = 2. For a = 1 the only case where a bidder of type Tj loses against

a bidder of a lower type is when bidder 3 is of type Tj ; bidder 2 is of type Tj�1 and bidder 1 is of

a type lower than Tj , thus reporting message bellow mj :

The analysis above shows that even if we could adapt the allocation rule as we wanted to for

every type Tj ; the best one could achieve with the given thresholds is that for each type there is one

bidder that is losing against exactly one bidder of exactly one type lower. Although the analysis so

far has not pinned down the value of b; we show it to be optimally set at 2. Also notice that a = 1

says that it is never optimal to allocate two consecutive thresholds to the same bidder.

First, one can easily see that the priority assignment, ��, together with an allocation rule that

gives the highest priority to bidder 1 and the second highest to bidder 2; attains this optimum.

That is, of the types T1; only bidder 3 is loosing against type T2 of bidder 2 when bidder 1 is of

at most T2. When of type T2 bidder 1 is losing against bidder 3 of type T3, when bidder 2 is of at

most type T3, etc. For every type Tj , there is exactly one bidder who is losing against exactly one

other bidder of type Tj+1 when the third bidder is of at most Tj+1.

Indeed one can show that the priority assignment �� is the only assignment that achieves the

optimum, up to the relabeling of bidders. We start the analysis with type T1. Without loss of

generality let �� (c1) = 1. By the above characterization (a = 1) one of the other two bidders

should obtain c2. Again without loss of generality let �� (c2) = 2. Now suppose �� (c3) = 1. Two

56



things could happen. When bidder 1 reports m2, bidder 2 reports m2 and bidder 3 reports m1;

either bidder 3 is awarded the object and then types T3 and T4 of bidder 3 are winning against type

T2 of bidder 1, or bidder 1 is awarded the object in which case bidder 3 of type T1 is losing against

bidder 1 of types 2 and 3. Iterating the process, one can see that �� does strictly better than any

other assignment rule.37

The following should be observed: the optimal allocation rule awards the object to bidder 1

unless one of the other two bidders report a higher message; it is awarded to bidder 2 if bidder

1 reports a lower message and bidder 3 reports at most as high a message; and it is awarded to

bidder 3 if both other bidder are reporting strictly lower messages.

That is, Q� is de�ned as follows. Let mk be bidder 1�s message, ml bidder 2�s and mn bidder

3�s, then Q�1(mk;ml;mn) = 1 if k � max fl; ng and 0 otherwise. Q�2(mk;ml;mn) = 1 if l �

max fk + 1; ng and 0 otherwise and �nally Q�3(mk;ml;mn) = 1 if n � max fk + 1; l + 1g and 0

otherwise.

Step 2. What we proved above is that for every set of thresholds as above one does the best

by using priority assignment, ��, and the allocation rule Q�.

Welfare can now be written as

w (q�; ��; c) =
3k�2X
j=1

F (cj�2)F (cj�1)

cj�3Z
cj

xdF:

Maximizing over c yields

c�j =
F(c�j�1)[F(c�j�2)�F(c�j+1)]

F(c�j�2)F(c�j�1)�F(c�j+1)F(c�j+2)
E
�
X j c�j�2 � X � c�j+1

�
(18)

+
F(c�j+1)[F(c�j�1)�F(c�j+2)]

F(c�i�2)F(c�j�1)�F(c�j+1)F(c�j+2)
E
�
X j c�j�1 � X � c�j+2

�
;

for every j 2 f1; 2; :::; 3k � 3g :It is easy to see that welfare is maximized in the interior. That is it

cannot happen that for some j c�j = c�j+1. Therefore our consideration of the case c1 > c2 > ::: >

c3k�3 is justi�ed.

Proof of Theorem 3. The existence theorem can be easily modi�ed to account for v0 > 0:

Knowing that the welfare optimal equilibrium exists, only two things can happen. Either the seller

37Up to the relabling of bidders.
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never retains the object and the optimal equilibrium is the priority equilibrium, or he retains the

object for some reports in which case it is easy to show that an optimal equilibrium is a modi�ed

priority equilibrium by slightly modifying the proofs of Theorem 2 and Proposition 5.

Appendix D. Proofs of Sections 4, 5 and 6
Most of the results of Section 4 build on previous results in the paper. Here we only provide a

sketch of the proof of Theorem 4.

Proof of Theorem 4. How one can transform the problem of pro�t maximization into an

auxiliary problem of welfare maximization was described in the text; for further details one should

see BNS. We denote the random variable corresponding to the virtual valuation by W and its

support by [w;w] : From Theorem 3 we know that the solution to the auxiliary problem is either a

priority or a modi�ed priority equilibrium. Now we argue that it cannot be a priority equilibrium.

The crucial observation that we use is that the expected value of the virtual valuation is 0 (see

Krishna (2002), p. 69). Suppose the optimal welfare in the auxiliary problem could be achieved in

a priority equilibrium. Without loss of generality we can assume that bidder 1 is the one who is

awarded the object when all the bidders report their lowest partition cell. Let c be bidder 1�s lowest

threshold in an optimal priority equilibrium; clearly c < w: Then E [W j c �W � w] < E [W ] = 0;

which means that when all the bidders are reporting their lowest partition cell the welfare can be

increased if the seller retains the object, contradicting the assumed optimality of the priority game.

Proof of Proposition 8. In the text we establish that at most two messages of bidder 2 are

relevant when he is called upon to report. That is, given the strategy and the observed message of

bidder 1; the only relevant information is whether bidder 2�s valuation is above or below bidder 1�s

expected valuation. On the other side, k1 messages of bidder 1 partition his valuation space into k1

partition cells. Proposition 2 implies that at most k1 + 1 messages of bidder 2 are informationally

relevant. Alternatively, optimal welfare of our two bidder mechanism with two periods of reporting

is bounded above by the optimal welfare of the simultaneous reporting mechanism where bidder 1

has k1 messages and bidder 2 has k1 + 1; i.e. w�2;(k1;k1+1): We need to show that this upper bound

can be attained in a Bayesian equilibrium of the mechanism with sequential reporting.

Let c1�� and c2�� be mutually centered threshold strategies of bidder 1 and 2 respectively in

some welfare optimal equilibrium under simultaneous reporting and jM1j = k1 = jM2j�1. De�ning
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c�j = c1��j for j 2 f1; 2; :::; k1 � 1g and d�j = c2��j for j 2 f1; 2; :::; k1g one can readily see that the

strategy given by (c�; d�) combined with the allocation rule Q� achieves welfare w�2;(k1;k1+1) if the

bidders can be induced to report according to it. Bidder 2�s incentives are easily aligned by the

transfers, T �2 ; which require him to pay (when he wins) the lowest valuation he could have, report

according to his threshold and still win given the bidder 1�s report. If he is not awarded the object

he does not need to pay. Bidder 1�s transfers require a little more work. Let�s start at the bottom.

Suppose that bidder 1 announces mk1 and bidder 2 reports D. In such a case bidder 1 is awarded

the object and we can de�ne T �1 (mk1 ; D) = 0. Clearly T
�
1 (mj ; U) = 0 for all j 2 f1; 2; :::; k1g. Now

consider that bidder 1 reports mk1�1 and bidder 2 reports D. If the threshold strategy is to be an

equilibrium then when bidder 1�s valuation is c�k1�1 he should just be indi¤erent between reporting

message mk1 and mk1�1, i.e.:

F2
�
d�k1�1

� �
c�k1�1 � T

�
1 (mk1�1; D)

�
= F2

�
d�k1
�
c�k1�1.

But this yields the transfer given by the equation (9). It is easy to see now that for all valuations

above c�k1�1 bidder 1 prefers to report mk1�1 over mk1 . By recursively applying the logic above one

can obtain all the remaining transfers.
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