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1 Introduction

One of the most well-known models of non-expected utility preferences is Gul (1991)’s

model of Disappointment Aversion (henceforth DA). Its popularity is related both to

the intuitive nature of the model, where the value of each outcome is determined rela-

tively to an endogenously-defined “expected” payoff, capturing reference dependence;

and because it generalizes expected utility by adding only one parameter. Despite its

appeal, there is one limitation to its applicability: the value of each lottery is the solu-

tion of an equation that changes with the lottery—a so-called implicit representation.

The (explicit) utility representation is instead unknown. This may be a concern if one

wishes to apply this model, for example, to carry out monotone comparative statics

exercises. The same concern applies to the broader class of Betweenness preferences,

studied in Dekel (1986) and Chew (1989) and to which the DA model belongs; for

such preferences only an implicit representation is known, while the explicit one is still

elusive.1

The goal of this paper is to address these issues. First, we provide an explicit rep-

resentation for DA preferences, showing that it can be easily obtained using solely the

components of its implicit one. Second, we generalize this result: we provide an ex-

plicit representation for Betweenness preferences that satisfy either Negative Certainty

Independence (Dillenberger, 2010; Cerreia-Vioglio et al., 2015), or its positive version,

Positive Certainty Independence. Third, we show how our approach may be useful to

identify parameters of the model and in comparative statics exercises.

Let p be a lottery over monetary outcomes. Its value according to the DA model

is the unique v that solves

v = Ep(kv) (1)

where kv is given by

kv (x) =

{
u (x) u (x) ≤ v
u(x)+βv

1+β
u (x) > v

.

Here u is a utility function over money and β ∈ (−1,∞) is the coefficient of either

disappointment aversion (β > 0) or elation seeking (β < 0). Note that this is an

implicit equation, as the value v appears on both sides of Equation (1). In this model

the value v is similar to expected utility, except that the individual gives an additional

weight β to disappointing outcomes—those with a utility lower than the value of the

lottery itself.2 The DA model is thus a model of endogenous reference dependence:

possible payoffs generate disappointment (or elation) depending on how their utilities

1This is the case not only for the broad class, but also for most of its special cases. A notable

exception is Chew and MacCrimmon (1979a,b)’s model of weighted-utility.
2To see this, note that the value of a simple lottery p can be equivalently defined as the unique v
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compare to an endogenously-determined value—the utility of the lottery.3 When β > 0,

the disappointing outcomes receive greater weight, whereas the opposite is true for

β < 0, justifying the terms disappointment aversion/elation seeking. If β = 0, the

model reduces to expected utility.

In Section 3 we show that these preferences admit the following explicit represen-

tation. When β > 0, the case of disappointment aversion, preferences are represented

by

V (p) = min
v

k−1
v (Ep (kv)) ,

while when β ∈ (−1, 0), the case of elation seeking, they are represented by

V (p) = max
v

k−1
v (Ep (kv)) .

This means that one can easily construct an explicit representation for preferences in

this class using solely the components of the implicit representation in Equation (1)—

taking the min or the max of the certainty equivalents computed using each of the

possible utilities involved.

After formally stating the result above for DA preferences (Theorem 3), we discuss

an explicit representation for general Betweenness preferences that also satisfy Negative

Certainty Independence (Theorem 4), or its counterpart (Positive Certainty Indepen-

dence). The previous results are corollaries of this more general theorem. Again, the

explicit representation is the minimum (resp., maximum) of the certainty equivalents

using the functions (called local utilities) present in Dekel (1986)’s implicit represen-

tation.

There are at least two benefits of having an explicit representation. The first is

conceptual: it may help capturing the mental process adopted by the agent. While

highly idealized, one can imagine a cautious decision process that involves the max min

criterion. It is perhaps less plausible to take the solution of an implicit equation as a

descriptive decision making procedure. That said, this argument is not behavioral, but

relies on going beyond the standard ‘as if’ approach.4

The second and possibly main advantage of an explicit representation is practical:

it facilitates the application of these models by allowing for a better understanding

that solves

v =

∑
{x:u(x)>v} u(x)p(x) + (1 + β)

∑
{x:u(x)≤v} u(x)p(x)

1 + β
∑
{x:u(x)≤v} p(x)

.

3We should stress that this is conceptually and behaviorally distinct from other models of endoge-

nous reference dependence under risk, e.g., Köszegi and Rabin (2006, 2007). For example, the DA

model satisfies Betweenness, while both models above do not. See Masatlioglu and Raymond (2016)

for further discussion on the implications of these alternative models.
4A related argument appears in Chapter 17 of Gilboa (2009) and in Dekel and Lipman (2010).
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of optimization problems with these preferences. This is particularly relevant because

DA preferences, while continuous, are not even Gateaux differentiable (Safra and Segal,

2009). Therefore, one cannot apply standard differential methods or Machina (1982)’s

local utility approach and its extensions to the Gateaux case.

In Section 4 we start demonstrating the practical benefit of our approach, by show-

ing that it can be useful to identify the parameters of DA preferences from behavior:

while it is known that both u and β are unique (the former up to positive affine transfor-

mations), using the original implicit representation it is not easy to see how to easily

pin-point them from behavioral data. Our approach, instead, offers a way to do so

directly, identifying u independently of β.

With this identification in hand, in Section 5 we discuss optimization and appli-

cations. Using Sion’s minmax theorem in conjunction with our characterizations, we

show that the solution to a maximization problem over a convex and compact set of

options with DA preferences must coincide with the solution of the original problem

under expected utility, but with the agent being more risk averse. The key point is

not that disappointment aversion increases risk aversion, but rather that the solution

under disappointment aversion must also be a solution under expected utility, with a

more concave utility. That is, solving the problem under disappointment aversion is

tantamount to solving it with expected utility with higher risk aversion. As the latter

is typically easier to solve, this may greatly simplify the problem when it comes to

comparative statics.

We illustrate the usefulness of this result with a variety of applications. We show

that, in a standard portfolio problem, a disappointment averse agent invests less in the

risky asset compared to an expected utility agent with the same utility over outcomes;

that the set of justifiable actions in general, and rationalizable strategies in a game in

particular, is smaller if we make agents elation seeking; and that in a simple problem of

Bayesian Persuasion, making the sender of information disappointment averse reduces

the revealed information.

2 Preliminaries

Consider a nontrivial compact interval [w, b] ⊆ R of monetary prizes. Let ∆ be the

set of lotteries (Borel probability measures) over [w, b], endowed with the topology of

weak convergence. We denote by x, y, z generic elements of [w, b]; by p, q, r generic

elements of ∆; and by δx ∈ ∆ the degenerate lottery (Dirac measure at x) that gives

the prize x ∈ [w, b] with certainty. We denote by C ([w, b]) the space of continuous

functions on [w, b] and endow it with the topology induced by the supnorm. The set

Unor ⊆ C ([w, b]) is the collection of all strictly increasing and continuous functions
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v : [w, b]→ R such that v (w) = 0 and v (b) = 1. Given p ∈ ∆ and a strictly increasing

v ∈ C ([w, b]), we define c (p, v) = v−1 (Ep (v)). Lastly, <FSD denotes the First Order

Stochastic Dominance relation, that is, p <FSD q means Ep (v) ≥ Eq (v) for all v ∈ Unor.

The primitive of our analysis is a binary relation < over ∆. The symmetric and

asymmetric parts of < are denoted by ∼ and, respectively, �. A certainty equivalent

of a lottery p ∈ ∆ is a prize xp ∈ [w, b] such that δxp ∼ p. Throughout the paper, we

focus on binary relations < that satisfy the following three standard assumptions.

A 1 (Weak Order) The relation < is complete and transitive.

A 2 (Continuity) For each q ∈ ∆, the sets {p ∈ ∆ : p < q} and {p ∈ ∆ : q < p} are

closed.

A 3 (Strict First Order Stochastic Dominance) For each p, q ∈ ∆

p �FSD q =⇒ p � q.

Betweenness Preferences. We study binary relations that satisfy the following

assumption:

A 4 (Betweenness) For each p, q ∈ ∆ and λ ∈ [0, 1]

p ∼ q =⇒ p ∼ λp+ (1− λ) q ∼ q.

Betweenness implies neutrality toward mixing: if satisfied, then the agent has no

preference for, or aversion to, mixing between indifferent lotteries. Binary relations

satisfying this property were studied by Dekel (1986) and Chew (1989).

We say that a binary relation is a Betweenness preference if and only if it satisfies

Weak Order, Continuity, Strict First Order Stochastic Dominance, and Betweenness.

Dekel (1986) proves a version of the following result:5

Theorem 1 (Dekel, 1986) If < is a Betweenness preference, then there exists a func-

tion k : [w, b]× [0, 1]→ R such that:

5Dekel’s original result deals with a general set of consequences and considers a weaker form of

monotonicity. At the same time, it uses a stronger form of Betweenness. Given these differences, we

prove Theorem 1 in Appendix A. For convenience, we focus on the normalized representation (that

is, k satisfies the condition in point 3). In Remark 4 in Appendix A we comment on how to use our

results for unnormalized representations. Also observe that even though k (·, 0) and k (·, 1) are not

assumed to be continuous, they are implicitly assumed to be integrable, given Equation (2) in the

representation.
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1. x 7→ k (x, t) is strictly increasing and continuous on [w, b] for all t ∈ (0, 1),

2. t 7→ k (x, t) is continuous on (0, 1) for all x ∈ [w, b],

3. k (w, t) = 0 and k (b, t) = 1 for all t ∈ [0, 1],

4. < can be represented by a continuous utility function which strictly preserves first

order stochastic dominance, V̂ : ∆ → [0, 1], where for each p ∈ ∆, V̂ (p) is the

unique number in [0, 1] such that∫
[w,b]

k
(
x, V̂ (p)

)
dp = V̂ (p) . (2)

Fixing t, the function k (·, t) is called the local utility at t. The function k thus

summarizes the collection of local utilities, one for each t ∈ [0, 1]. While the theorem

above provides a representation for Betweenness preferences, it does not provide an

explicit one: indeed, V̂ is the solution to Equation (2), thus a fixed point of a functional

equation.

An important class of Betweenness preferences is the one generated by Gul (1991)’s

model of Disappointment Aversion (DA). These preferences admit a continuous utility

function Ṽ : ∆→ R such that, for each p ∈ ∆, Ṽ (p) is the unique number that solves∫
[w,b]

k̃
(
x, Ṽ (p)

)
dp = Ṽ (p) (3)

where k̃ : [w, b]× Imu→ R is defined by

k̃ (x, s) =

{
u (x) if u (x) ≤ s
u(x)+βs

1+β
if u (x) > s

∀x ∈ [w, b] , ∀s ∈ Imu; (4)

here u is a strictly increasing continuous utility function from [w, b] to R and β ∈
(−1,∞).6 We discussed its interpretation in the Introduction. We say that a binary

relation is a DA preference with parameters (u, β) if and only if it admits a utility

function Ṽ which satisfies (3).

Negative Certainty Independence. As noted by Dillenberger (2010), a DA

preference with β > 0 satisfies the following axiom.

A 5 (Negative Certainty Independence) For each p, q ∈ ∆, x ∈ [w, b], and λ ∈
[0, 1]

p < δx =⇒ λp+ (1− λ) q < λδx + (1− λ) q. (5)
6A careful inspection of (4) also suggests that two types of normalizations are due to link the

implicit representation of Gul (1991) to the one of Dekel (1986) as in Theorem 1. In proving our

results below, we also address these minor technical points (see Remark 4).
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Negative Certainty Independence, initially suggested by Dillenberger (2010), is

meant to capture the certainty effect. It states that if the sure outcome x is not

enough to compensate the agent for the risky prospect p, then mixing it with any

other lottery, thus eliminating its certainty appeal, will not result in the mixture of δx

being more attractive than the corresponding mixture of p. The opposite condition,

termed Positive Certainty Independence, simply inverts the role of p and δx in (5).

We say that a binary relation is a Cautious Expected Utility preference if and only

if it satisfies Weak Order, Continuity, Strict First Order Stochastic Dominance, and

Negative Certainty Independence. Cerreia-Vioglio et al. (2015) prove the following:7

Theorem 2 (Cerreia-Vioglio, Dillenberger, Ortoleva, 2015) If < is a Cautious

Expected Utility preference, then there exists W ⊆ Unor such that V : ∆ → R, defined

by

V (p) = inf
v∈W

c (p, v) ∀p ∈ ∆, (6)

is a continuous utility representation of <.

3 Explicit representations

We start by providing an explicit representation of DA preferences.

Theorem 3 Let < be a DA preference with parameters (u, β) andWda =
{
k̃ (·, z)

}
z∈Imu

.

The following statements are true:

1. If β > 0, then V : ∆→ R, defined by

V (p) = min
v∈Wda

c (p, v) ∀p ∈ ∆, (7)

is a continuous utility representation of <.

2. If β = 0, then V : ∆→ R, defined by

V (p) = c (p, u) ∀p ∈ ∆, (8)

is a continuous utility representation of <.

3. If β < 0, then V : ∆→ R, defined by

V (p) = max
v∈Wda

c (p, v) ∀p ∈ ∆,

is a continuous utility representation of <.
7More precisely, Cerreia-Vioglio et al. (2015) state the result below as an equivalence using a

weaker form of monotonicity. However, for ease of comparison with Theorem 1, we provide it using

Strict First Order Stochastic Dominance. In Remark 3 in Appendix A, we also discuss the uniqueness

features of the representation. See also Cerreia-Vioglio et al. (2015, Theorem 2).
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In the case of disappointment aversion (β > 0), our utility representation is the

smallest of the certainty equivalents obtained using the local utilities. In the opposite

case of elation seeking (β < 0), it is instead the largest. Thus, the difference between

the two behaviors is not only in the way in which disappointing/elating outcomes are

weighted, but also in how they are aggregated—using the min or the max.

As discussed above, when β > 0, Gul’s model satisfies Negative Certainty Indepen-

dence. We thus know that it must admit a Cautious Expected Utility representation.

However, from previous results we do not know which utilities are used. The content

of Theorem 3 is to show that this involves precisely the local utilities used in the im-

plicit representation. Thus, the explicit representation can be derived directly from

the implicit one. When β < 0, the model does not satisfy Negative Certainty Inde-

pendence, but its counterpart Positive Certainty Independence (Artstein-Avidan and

Dillenberger, 2015). In this case the individual is elation seeking, and violates expected

utility in a way opposite to the certainty effect.

A General Result. We now generalize Theorem 3 showing that any Between-

ness preference that satisfies Negative Certainty Independence also admits an explicit

representation of the Cautious Expected Utility form, where the utilities in W are the

local ones obtained in Theorem 1, that is, Wbet = {k (·, t)}t∈(0,1).

Theorem 4 Let < be a Betweenness preference. The following statements are equiv-

alent:

(i) < satisfies Negative Certainty Independence;

(ii) The functional V : ∆→ R, defined by

V (p) = min
v∈Wbet

c (p, v) ∀p ∈ ∆, (9)

is a continuous utility representation of <. In particular, for each p ∈ ∆\ {δw, δb}
the function vp = k

(
·, V̂ (p)

)
is such that

vp ∈ argminv∈Wbet
c (p, v) . (10)

Like in the case of the previous result, the contribution of Theorem 4 does not

lie in showing that these preferences admit an explicit representation of the Cautious

Expected Utility class—this was already known (it follows from Theorem 2). As before,

the contribution lies in showing that the utilities involved are exactly the local utilities

identified in Theorem 1 and included inWbet. Here too, the explicit representation can

be derived directly from the implicit one. In addition, Equation (10) shows that the

local utility giving the implicit representation of Dekel (1986) is also the one achieving

the minimum in representation (9).
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Remark 1 A specular version of this theorem also holds for Positive Certainty Inde-

pendence. In particular, by keeping the same premises, Theorem 4 takes a similar form

with (i) and (ii) replaced by:

(i)’ < satisfies Positive Certainty Independence;

(ii)’ The functional V : ∆→ R, defined by

V (p) = max
v∈Wbet

c (p, v) ∀p ∈ ∆, (11)

is a continuous utility representation of <. In particular, for each p ∈ ∆\ {δw, δb}
the function vp = k

(
·, V̂ (p)

)
is such that

vp ∈ argmaxv∈Wbet
c (p, v) . (12)

O

While Theorem 4 provides an explicit characterization for Betweenness preferences

that satisfy Negative Certainty Independence, a natural question is how to check if a

given Betweenness preference satisfies Negative Certainty Independence. In Appendix

B we show how this could be easily done using only the properties of the local utilities.

This result allows us to derive an example of a Betweenness preference that satisfies

Negative Certainty Independence, but does not belong to the class of DA preferences.

Example 1 Consider a Betweenness preference with local utilities k : [0, 1]×[0, 1]→ R
defined as

k (x, t) =

{
x if x ≤ t

x(x− t) + t if x > t
∀x ∈ [0, 1] ,∀t ∈ [0, 1] .

This is a special case of Chew (1985)’s model of semi-implicit weighted utility, where

[w, b] is set to be equal to [0, 1]. It retains the idea of disappointment aversion, but

allows the weight, x− t, to depend on x. In Appendix B we show that this preference

relation satisfies Negative Certainty Independence and therefore admits an explicit

representation as in Theorem 4 with the utilities above. O

4 Behavioral identification of parameters

Even though in the DA model both the utility function u and the disappointment

aversion parameter β are unique (the former up to positive affine transformations),

we are not aware of simple ways of identifying them from behavior. We now use

our approach to derive an identification technique, as well as a behavioral notion of

comparative disappointment aversion.
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The expected utility core. In what follows it will be useful to recall the notion

of expected utility core of a preference relation <, i.e., the subrelation <′ defined as

p <′ q ⇐⇒ λp+ (1− λ) r < λq + (1− λ) r ∀λ ∈ (0, 1] ,∀r ∈ ∆.

That is, p <′ q if not only p is preferred to q, but this ranking is preserved even if

both are mixed with another lottery. Under expected utility, we have <=<′; however,

in general the two may not coincide and, in this case, <′ is incomplete. This notion

is central in proving our main results above and in the study of Cautious Expected

Utility preferences.8 We now show that it is also useful for the identification of the

parameters characterizing a DA preference.

Behavioral identification of parameters. We begin by recalling how iden-

tification works under expected utility. Consider an expected utility agent with a

continuous and strictly increasing von Neumann-Morgenstern utility u. If we normal-

ize u(b) = 1 and u(w) = 0, it is known that for each x ∈ [w, b] we can identify u(x)

by

u(x) = max{λ ∈ [0, 1] : δx < λδb + (1− λ)δw}.

That is, when u is normalized, the utility of x is equal to the highest of the weights λ

that, if given to the best prize, keeps δx preferred to λδb + (1 − λ)δw. Because under

expected utility < coincides with <′, this can be equivalently stated as

u(x) = max{λ ∈ [0, 1] : δx <
′ λδb + (1− λ)δw}.

We now show that for a DA preference with parameters (u, β), where <′ and < cease

to coincide whenever β 6= 0, it is this latter formula that allows us to identify the

utility u independently from β. Before stating our result, recall that two von Neumann-

Morgenstern functions u, ū ∈ C ([w, b]) are cardinally equivalent if and only if u = aū+b

where a > 0 and b ∈ R. It is easy to see that if (u, β) represents a DA preference <,

so does (ū, β) , provided u and ū are cardinally equivalent. Recall that given a lottery

p and a preference relation <, we denote by xp the certainty equivalent of p.

Proposition 1 Let < be a DA preference with parameters (u, β). The following state-

ments are true:

1. If β ≥ 0, then u is cardinally equivalent to

ū(x) = max {λ ∈ [0, 1] : δx <
′ λδb + (1− λ)δw} ∀x ∈ [w, b]

8See also Remark 3 and Propositions 5-7 in Appendix A. Under our assumptions, <′ is the largest

subrelation of < that satisfies Independence. See Cerreia-Vioglio (2009); Cerreia-Vioglio et al. (2015,

2017).
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and if we define p̄ = 1
2
δb + 1

2
δw, then the exact value of β is

β =
1

ū(xp̄)
− 2 =

1

max{λ ∈ [0, 1] : δxp̄ <′ λδb + (1− λ)δw}
− 2.

2. If β ≤ 0, then u is cardinally equivalent to

ū(x) = min {λ ∈ [0, 1] : λδb + (1− λ)δw <
′ δx} ∀x ∈ [w, b]

and if we define p̄ = 1
2
δb + 1

2
δw, then the exact value of β is

β =
1

ū(xp̄)
− 2 =

1

min{λ ∈ [0, 1] : λδb + (1− λ)δw <′ δxp̄}
− 2.

To distinguish behaviorally between the two cases above, i.e., β ≥ 0 (resp., β ≤
0), recall that by Theorem 3 they correspond to Negative (resp., Positive) Certainty

Independence.

Moreover, in both cases above the value of β can be determined using any binary

lottery between the best and the worst outcomes—not just p̄. This is because, for a

DA preference with parameters (u, β), for each λ ∈ [0, 1]

u(xλδb+(1−λ)δw) = Ṽ (λδb + (1− λ) δw) =
λu(b) + (1 + β)(1− λ)u(w)

1 + β(1− λ)
.

Since u is cardinally equivalent to ū, if we define p̂ = λδb + (1 − λ)δw, then ū(xp̂) =
λ

1+β(1−λ)
, which means β = 1

1−λ [ λ
ū(xp̂)

− 1].

Comparative Disappointment Aversion. The result above also allows us to

derive simple comparative statics, showing how to behaviorally identify when one agent

is more disappointment averse than the other, i.e., has higher β fixing the utility

function u.

Proposition 2 Let <1 and <2 be two DA preferences with parameters (u1, β1) and

(u2, β2) , with β1, β2 ≥ 0. The following statements are equivalent:

(i) u1 is cardinally equivalent to u2 and β1 ≥ β2;

(ii) For each p ∈ ∆ and x ∈ [w, b]

δx <
′
1 p ⇐⇒ δx <

′
2 p and δx <2 p =⇒ δx <1 p.

In words, an agent is more disappointment averse than the other, if the two agents

have the same risk attitudes in terms of the expected utility core, but the first agent

is more risk averse than the second in terms of final choices.

Now that we understand the behavioral meaning of comparing two agents with iden-

tical u solely in terms of their coefficient β, we can proceed to illustrate how our explicit

representations can be used to provide comparative statics results in applications.
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5 Optimization and applications

5.1 Explicit representations and optimization

Typically in economic models, agents need to pick the best action from a convex and

compact set of alternatives. However, explicitly solving such problems with Between-

ness preferences or even just obtaining qualitative predictions, can be nontrivial: as

pointed out in the introduction, standard differential methods cannot be used, as DA

preferences are not even Gateaux differentiable. We now show how our explicit repre-

sentation results might help.

Consider a Betweenness preference< that satisfies Negative Certainty Independence—

for DA preferences, this corresponds to the typical case of β ≥ 0. By Theorem 4, < is

represented by

V (p) = min
v∈Wbet

c (p, v) ∀p ∈ ∆ (13)

where Wbet = {k (·, t)}t∈(0,1). We further assume:

(a) k (·, t) is strictly increasing on [w, b] for all t ∈ [0, 1];

(b) k is jointly continuous on [w, b]× [0, 1].

Note that both assumptions are satisfied by DA preferences as well as the prefer-

ences in Example 1 (see also Remark 4 in Appendix A).

Proposition 3 Let < be a Betweenness preference that satisfies Negative Certainty

Independence and such that k satisfies (a) and (b). If A ⊆ ∆ is convex and compact,

then

max
p∈A

min
v∈co(Wbet)

c (p, v) = min
v∈co(Wbet)

max
p∈A

c (p, v) .

In particular, if p∗ ∈ A is such that V (p∗) ≥ V (p) for all p ∈ A, then there exists

v̂ ∈ co (Wbet) such that Ep∗ (v̂) ≥ Ep (v̂) for all p ∈ A.

Proposition 3 shows that any alternative that maximizes the original preference in

A is also a maximizer of an expected utility preference with von Neumann-Morgenstern

utility v̂ which is a convex combination of the utilities in Wbet. Note that this result

was derived exploiting the explicit representation in (13). This result holds because

the map (p, v) 7→ c (p, v) satisfies all the conditions of Sion’s minmax theorem and so

do the sets A and co (Wbet), leading to the equality in Proposition 3 and the existence

of a saddle point.

To see the usefulness of this result, consider a maximization problem of the form

maxV (p) subject to p ∈ A (14)

where V : ∆→ R is continuous and represents the agent’s preferences. For simplicity,

assume also it admits a unique maximizer. As it is often the case, assume that V has
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been first considered to be an expected utility functional with a strictly increasing and

continuous von Neumann-Morgenstern function u, and call p∗EU the solution of (14).

Now suppose that we are interested in knowing what happens when agents are instead

disappointment averse (β > 0), and call p∗DA the solution for this case. How do the

predictions of the model change? Proposition 3 simplifies answering this question. It

shows that p∗DA must also be the solution of the same optimization problem, but for

an expected utility agent with von Neumann-Morgenstern function v̂ ∈ co (Wbet). It

follows from the shape of the functions in Wbet that each v ∈ co (Wbet) is more con-

cave than u, which is easy to see because our characterization theorems give a precise

functional form to these functions. Therefore, the solution to the problem with a DA

preference must coincide with the solution of the original problem under expected util-

ity, but with the agent being more risk averse. This means that monotone comparative

statics exercises in terms of introducing disappointment aversion are equivalent to ones

under expected utility in terms of concavity of u. As the latter are typically easier to

solve, or at least use more familiar techniques, this may simplify the problem. The

conceptual contribution here does not lie in showing that introducing disappointment

aversion increases risk aversion—this is already well-known (Gul, 1991). Rather, it lies

in showing that the solution under disappointment aversion must also be a solution

under expected utility with a more risk averse agent.

Remark 2 In the optimization problem above, alternatives are lotteries and agents’

preferences are over ∆. A different common formalization of the problem in (14) is

instead the following: the agent chooses an action from a set A, a state of the world

from a state space S realizes, and the decision maker receives a monetary outcome

specified by the function g : A × S → R. Suppose A and S are separable metric

spaces where the latter is endowed with the Borel σ-algebra. Also assume that g is

measurable with respect to s and bounded, i.e., Im g ⊆ [w, b]. The decision maker

has a Borel probability measure µ over S and preferences over ∆, represented by the

function V : ∆ → R. Each action a thus induces a probability measure over [w, b],

say pa,µ ∈ ∆, where pa,µ is the distribution of g (a, ·) : S → R under µ. That is,

pa,µ (B) = µ ({s ∈ S : g (a, s) ∈ B}) for all Borel sets B of [w, b].

We assume that the agent is probabilistically sophisticated: given a belief µ on S,

she values each action solely in terms of its distribution over payoffs, that is, if a, b ∈ A
are such that pa,µ = pb,µ, then the agent is indifferent between a and b. Problem (14)

then becomes

maxV (pa,µ) subject to a ∈ A. (15)

In Appendix A, we show that a result similar to Proposition 3 also holds in this setting

with an identical conceptual interpretation (cf. Propositions 8 and 9). O
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5.2 Applications

We now present a list of applications of our previous results. The common feature is

that they almost all follow rather immediately from a combination of our compara-

tive statics and known results in the literature. This is because we have proved that

introducing disappointment aversion yields the same monotone comparative statics of

increasing risk aversion within expected utility.

Portfolio choice. Consider a standard two assets portfolio problem a la Arrow

(noting we are in the framework of Remark 2). The risky asset r : S → [0,∞) is a

simple nonconstant measurable random variable which pays a return r (s) if state s

realizes. The risk free asset is instead a constant random variable rf : S → [0,∞). To

avoid trivial cases, assume that Eµ (r) > rf .

A decision maker has wealth W > 0 which she has to allocate between r and

rf . Denote by a and W − a the amounts invested, respectively, in the risky and the

risk-free assets. Assume short-selling and borrowing are not allowed, which implies

a ∈ [0,W ] = A. Assume also that ar (s) + (W − a) rf (s) ∈ [w, b] for all a ∈ A and

for all s ∈ S. Denote by a∗EU the optimal allocation of a decision maker with expected

utility preferences (β = 0) and a von Neumann-Morgenstern utility u such that u′ > 0

and u′′ < 0. Denote by a∗DA the optimal allocation of a disappointment averse agent

(β > 0) with the same u. It is easy to show that both solutions are unique.

Corollary 1 a∗DA ≤ a∗EU.

Recall that, under expected utility, increasing risk aversion reduces the absolute invest-

ment in the risky asset. Since we have shown that the same comparative statics holds

if we make the agent disappointment averse, the result that disappointment averse

decision makers invest less in the risky asset follows.

Justifiability and rationalizability. A decision maker chooses an action a ∈
A without knowing which state of the world s ∈ S will realize and receives a monetary

payoff g (a, s) (again, we are in the framework of Remark 2). Denote by ∆ (S) the set

of Borel probability measures on S.

The set of justifiable actions is the set of actions that are optimal for some belief

µ. That is,

JV = {a ∈ A : ∃µ ∈ ∆ (S) s.t. V (pa,µ) ≥ V (pb,µ) ∀b ∈ A} .

This set and the corresponding operator are commonly used in game theory to derive

rationalizable strategies: at the initial iteration, A is the set of actions of player i and
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S = A−i is the profile of the opponents’ actions. We are interested in: How is the set

of justifiable actions affected by disappointment aversion? Denote by JDA and JEU,

respectively, the set of justifiable actions of a DA agent with parameters (u, β) and

that of an expected utility agent with utility u.

Corollary 2 Let g : A × S → R be jointly continuous. If β < 0 and S is compact,

then JDA ⊆ JEU.

In words, making the agent elation seeking shrinks the set of justifiable actions.

To see why, recall that it is known that increasing risk aversion increases the set of

justifiable actions (Battigalli et al., 2016; Weinstein, 2016); then the same comparative

statics holds here, as moving from β = 0 to negative β decreases risk aversion.

The result above does not cover the case β > 0. To see why, note that the set

of justifiable actions is a union of argmax sets (JV = ∪µ∈∆(S) argmaxa∈A V (pa,µ)),

while our results for monotone comparative statics are in terms of argmax sets. By

our maxmin results with DA preferences, we have that if either β > 0 or β < 0, then

JV ⊆ ∪v∈Wda
Jv. If β < 0, then each v is less risk averse than u and Jv ⊆ Ju for all v,

yielding JV ⊆ Ju. But if β > 0, then each v is more risk averse than u and Ju ⊆ Jv
for all v, and the same conclusion cannot be derived.

Bayesian persuasion. We now consider the implications of adding disappoint-

ment aversion to a problem of Bayesian persuasion. We focus on the special case

studied in Dworczak and Martini (2019, Section VI.A). Sender and Receiver share a

full-support prior r with continuous cdf and expectation µ̄ on a state of the world

x ∈ [0, 1]. Sender observes the state before Receiver’s choice and chooses a disclo-

sure policy, which she commits to before observing the state. Receiver chooses action

e ∈ [0, ē] where ē ≤ 1. Following Dworczak and Martini (2019), we focus on the case

in which both Sender and Receiver’s utility, uS and uR respectively, depend only on

Receiver’s posterior mean y and action e:

uS (e, y) = (1− σ)ey uR(y, e) = σye− eα where 0 < σ < 1 and α > 1.

In equilibrium, Sender’s utility can be rewritten as

u (y) = (1− σ)e∗(y)y ∀y ∈ [0, 1] (16)

where e∗(y) is Receiver’s optimal action.9 As standard in this literature, Sender’s

problem amounts to choosing a distribution over Receiver’s posteriors; and since here

9For example, these would be the utilities in which Sender was selling a project of value xe to

Receiver for a price (1 − σ)ye, with ye being the value of the project for Receiver at the time of

purchase and σ reflecting bargaining power.
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only their mean matter, this simplifies to choosing a distribution over posterior means.

Note that fully revealing the state corresponds to generating a distribution of posterior

means equal to r; while revealing less information implies a disclosure policy p of

which r is a mean preserving spread—denote this by p ≥MPS r.
10 Sender’s problem

thus corresponds to choosing a distribution from the set A = {p ∈ ∆ : p ≥MPS r}.
We now compare two cases: when Sender follows expected utility with utility as in

(16); and when Sender is disappointment averse with u as in (16) and β > 0. Denote

by p∗EU and p∗DA the optimal disclosure policy in each of the two cases (p∗EU is the

solution computed by Dworczak and Martini 2019; see also the proof of Proposition 4).

To make the problem interesting, we assume 0 < µ̄ < ȳ < 1, where ȳ is the smallest

posterior mean for which Receiver chooses the maximum action ē.11

Proposition 4 p∗DA ≥MPS p
∗
EU.

If Sender is disappointment averse, then it is optimal to reveal less information than

the case of expected utility. Intuitively, the more information is transmitted, the more

variation is in Receiver’s action. Disappointment aversion increases Sender’s desire to

avoid this volatility and thus to communicate less information.

10Formally, for each p, q ∈ ∆, we write p ≥MPS q if and only if Ep (v) ≥ Eq (v) for all real-valued,

continuous, and concave functions v on [0, 1]. In other words, ≥MPS is the concave order over ∆.
11If, instead, we had µ̄ ≥ ȳ, then an optimal strategy for both types of Senders would be to simply

reveal nothing, that is, δµ̄.
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Appendix
In Appendix A, we provide the proofs of all the results in the paper. In Appendix B,

we give a condition that allows to check whether or not a given Betweenness preference

satisfies Negative Certainty Independence. This condition is instrumental in proving

the statement contained in Example 1.

A Proofs
Roadmap. We begin by proving Theorem 1, a mildly modified version of Dekel’s

representation result. We proceed by recalling the notion of expected utility core and

its role for Cautious Expected Utility preferences (Formula (19) and Remark 3). Using

it, we characterize the expected utility core of Betweenness preferences (Propositions

5-7). These allow us to prove our most general representation result, Theorem 4 (resp.,

Remark 1). We then focus our attention to DA preferences. First, we discuss the issue

of renormalization of Gul’s locals (Remark 4); with this in mind, we prove Theorem

3 as a special case of Theorem 4. We then move to the proofs of our identification

results (Propositions 1 and 2). Finally, we prove our maxmin result (Proposition 3)

which allows us to discuss some monotone comparative statics applications.

Proof of Theorem 1. Compared to (Dekel, 1986, Proposition 2), we only need to

prove that the following form of Betweenness holds

p < q =⇒ p < λp+ (1− λ) q < q ∀λ ∈ (0, 1)

and

p � q =⇒ p � λp+ (1− λ) q � q ∀λ ∈ (0, 1) .

The proof of the first implication is routine (see, e.g., the techniques in (Cerreia-Vioglio

et al., 2011, Lemma 56)). As for the second, suppose p � q. By the first implication,

we have that p < λp + (1− λ) q < q for all λ ∈ (0, 1). By contradiction, assume that

there exists λ̄ ∈ (0, 1) such that p ∼ λ̄p+
(
1− λ̄

)
q. We have two cases:

1. p = δb. Since p � q, we obtain that δb = p 6= q, yielding that p �FSD λ̄p +(
1− λ̄

)
q. Since < satisfies Strict First Order Stochastic Dominance, we can

conclude that p � λ̄p+
(
1− λ̄

)
q, a contradiction.

2. p 6= δb. Since < satisfies Betweenness, it follows that

1 ≥ λ ≥ λ̄⇒ λp+ (1− λ) q ∼ p. (17)

Since < satisfies Strict First Order Stochastic Dominance, we have that γp +

(1− γ) δb � p for all γ ∈ (0, 1). By (17) and since < satisfies Strict First Order
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Stochastic Dominance, we can conclude that

1 ≥ λ ≥ λ̄ =⇒ λ (γp+ (1− γ) δb) + (1− λ) q � p ∀γ ∈ (0, 1) .

Next, we are going to define an ancillary object rη,γ = η (γp+ (1− γ)δb)+(1−η)q

for all η, γ ∈ (0, 1). Note that for each η, γ ∈ (0, 1) and for each λ ∈
(
λ̄, 1
)
⊆

(0, 1), we have that

λp+ (1− λ) rη,γ =

= λp+ (1− λ) [η (γp+ (1− γ)δb) + (1− η) q]

= (λ+ (1− λ) ηγ) p

+ (1− λ− (1− λ) ηγ)

[
(1− λ) η (1− γ)

(1− λ− (1− λ) ηγ)
δb +

(1− λ) (1− η)

(1− λ− (1− λ) ηγ)
q

]
.

Since γp+ (1− γ)δb � p � q for all γ ∈ (0, 1) and < satisfies Continuity, for each

γ ∈ (0, 1) there exists η̄γ ∈ (0, 1) such that rη̄γ ,γ = η̄γ (γp+ (1− γ)δb)+(1−η̄γ)q ∼
p. Since < satisfies Betweenness, λp+ (1− λ) rη̄γ ,γ ∼ p for all λ ∈

(
λ̄, 1
)

and for

all γ ∈ (0, 1). Fix a generic γ ∈ (0, 1). Choose λ ∈
(
λ̄, 1
)

close enough to 1, so

that λ̂ = λ+ (1− λ) η̄γγ ∈
(
λ̄, 1
)
. Note that

r̂
def
=

(1− λ) η̄γ (1− γ)

(1− λ− (1− λ) η̄γγ)
δb +

(1− λ) (1− η̄γ)
(1− λ− (1− λ) η̄γγ)

q �FSD q.

By the characterization of λp+ (1− λ) rη̄γ ,γ, we can also conclude that

(λ+ (1− λ) η̄γγ) p+ (1− λ− (1− λ) η̄γγ) r̂ ∼ p. (18)

By (17) and (18), we can conclude that λ̂ ∈
(
λ̄, 1
)
,

λ̂p+
(

1− λ̂
)
r̂ ∼ p ∼ λ̂p+

(
1− λ̂

)
q and λ̂p+

(
1− λ̂

)
r̂ �FSD λ̂p+

(
1− λ̂

)
q.

Since < satisfies Strict First Order Stochastic Dominance, it follows that λ̂p +(
1− λ̂

)
r̂ � λ̂p +

(
1− λ̂

)
q, a contradiction. A similar proof yields that λp +

(1− λ) q � q for all λ ∈ (0, 1). �

We recall the definition of expected utility core of <, i.e., the subrelation <′ defined

as:12

p <′ q ⇐⇒ λp+ (1− λ) r < λq + (1− λ) r ∀λ ∈ (0, 1] ,∀r ∈ ∆. (19)

This notion is useful for three reasons. First, as Remark 3 below shows, in order

to find a (canonical) representation of a Cautious Expected Utility preference, it is

12Under Axioms A 1-2, one can show that <′ satisfies all the assumptions of expected utility with

possibly the exception of completeness. See Cerreia-Vioglio (2009); Cerreia-Vioglio et al. (2015, 2017).
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sufficient to find an expected multi-utility representation of <′. This is instrumental in

proving Theorem 4 (cf. Proposition 7). Second, <′ allows to retrieve the parameters

characterizing a DA preference from behavioral data (cf. Propositions 1 and 2). Third,

as shown by Cerreia-Vioglio et al. (2017), in general <′ summarizes the risk attitudes

of the decision maker irrespective of whether or not < satisfies Negative Certainty

Independence. In particular, < is averse to Mean Preserving Spreads if and only if <′

is, which is equivalent to have all the utilities representing the latter being concave.

Remark 3 In addition to what is stated in Theorem 2, it can also be shown that the

following are true:

1. There exists a set W ⊆ Unor such that

p <′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ W (20)

and V : ∆→ R defined as in Equation (6) is a continuous utility representation

of <.

2. If W ⊆ Unor satisfies (20), then it satisfies (6).

3. The set W ⊆ Unor can be chosen to be

Wmax− nor = {v ∈ Unor : p <′ q =⇒ Ep (v) ≥ Eq (v)} .

4. If W ⊆ Unor satisfies (20), then

W ⊆Wmax− nor as well as co (W) = cl (Wmax− nor) .

In particular, this latter result, paired with point 2, allows us to discuss unique-

ness of the representation in (6). In fact, a canonical representation W , that is

a set in Unor that also represents <′, represents < and is unique up to the closed

convex hull. O

We next prove a few results pertaining to the expected utility core of a Betweenness

preference. These results rely on some of the techniques developed in Cerreia-Vioglio

et al. (2017). We start with a definition and an observation. Define K : ∆× [0, 1]→ R
by

K (r, t) =

∫
[w,b]

k (x, t) dr ∀r ∈ ∆,∀t ∈ [0, 1] .
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It is immediate to see that K is affine wrt the first component. Note that for each

r ∈ ∆ and for each t ∈ [0, 1]

K
(
r, V̂ (r)

)
=

∫
[w,b]

k
(
x, V̂ (r)

)
dr = V̂ (r) = V̂ (r) k (b, t) +

(
1− V̂ (r)

)
k (w, t)

=

∫
[w,b]

k (x, t) d
(
V̂ (r) δb +

(
1− V̂ (r)

)
δw

)
= K

(
V̂ (r) δb +

(
1− V̂ (r)

)
δw, t

)
.

Finally, we have that for each p ∈ ∆ the number V̂ (p) ∈ [0, 1] is the unique number

such that

V̂ (p) = K
(
p, V̂ (p)

)
.

Proposition 5 Let < be a Betweenness preference. If K (p, t) ≥ K (q, t) for all t ∈
(0, 1), then p < q.

Proof. Consider p, q ∈ ∆. By contradiction, assume that K (p, t) ≥ K (q, t) for all

t ∈ (0, 1) and q � p. We have two cases: either q = δb or q 6= δb. In the first case,

note that 1 ≥ K (p, t) ≥ K (q, t) = 1 for all t ∈ (0, 1), that is, K (p, t) = 1 for all

t ∈ (0, 1). Since each k (·, t) is strictly increasing and normalized, we can conclude that

p = δb = q, a contradiction with q � p. In the second case, we have that V̂ (q) ∈ (0, 1).

On the one hand, since < admits a representation a la Dekel, note that

V̂ (q) = K
(
q, V̂ (q)

)
≤ K

(
p, V̂ (q)

)
. (21)

On the other hand, by working hypothesis, we have q � p which implies that V̂ (q) >

V̂ (p). It follows that

V̂ (q) > V̂ (p) = K
(
V̂ (p) δb +

(
1− V̂ (p)

)
δw, V̂ (q)

)
= K

(
V̂ (p) δb +

(
1− V̂ (p)

)
δw, V̂ (p)

)
= V̂ (p) = K

(
p, V̂ (p)

)
.

In particular, it follows that

K
(
V̂ (p) δb +

(
1− V̂ (p)

)
δw, V̂ (p)

)
= V̂ (p) = K

(
p, V̂ (p)

)
(22)

and

V̂ (q) > K
(
V̂ (p) δb +

(
1− V̂ (p)

)
δw, V̂ (q)

)
. (23)

Define r = V̂ (p) δb +
(

1− V̂ (p)
)
δw. By (21) and (23) and since K is affine wrt the

first component, it follows that there exists λ ∈ (0, 1] such that

K
(
λp+ (1− λ) r, V̂ (q)

)
= V̂ (q) ,
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proving that λp+(1− λ) r ∼ q. By (22), we have that r ∼ p. Since < is a Betweenness

preference, this yields that p ∼ λp + (1− λ) r ∼ r. We can conclude that q � p ∼
λp+ (1− λ) r ∼ q, a contradiction. �

Proposition 6 Let < be a Betweenness preference. If p <′ q, then K (p, t) ≥ K (q, t)

for all t ∈ (0, 1).

Proof. Consider p, q ∈ ∆. By contradiction, assume that p <′ q and that there exists

t̄ ∈ (0, 1) such that K (p, t̄) < K (q, t̄). Then, there exist λ ∈ (0, 1] and y ∈ [w, b] such

that V̂ (λp+ (1− λ) δy) = t̄.13 It follows that

t̄ = K (λp+ (1− λ) δy, t̄) = λK (p, t̄) + (1− λ)K (δy, t̄)

< λK (q, t̄) + (1− λ)K (δy, t̄) = K (λq + (1− λ) δy, t̄) .

Define r1 = λp + (1− λ) δy and r2 = λq + (1− λ) δy so that t̄ = V̂ (r1). In particular,

we obtain that

V̂ (r1) < K
(
r2, V̂ (r1)

)
. (24)

Since p <′ q and <′ satisfies Independence, it follows that r1 <′ r2. Since <′ is a

subrelation of <, this implies that r1 < r2, that is, V̂ (r1) ≥ V̂ (r2). Define r3 =

V̂ (r2) δb +
(

1− V̂ (r2)
)
δw. On the one hand, it is immediate to see that r2 ∼ r3. On

the other hand, by (24), we obtain that

K
(
r3, V̂ (r1)

)
= V̂ (r2) ≤ V̂ (r1) < K

(
r2, V̂ (r1)

)
.

Since K is affine wrt the first component, there exists γ ∈ [0, 1) such that

K
(
γr2 + (1− γ) r3, V̂ (r1)

)
= V̂ (r1) ,

yielding that γr2 + (1− γ) r3 ∼ r1. Since < satisfies Betweenness and r2 ∼ r3, this

yields that

r2 ∼ γr2 + (1− γ) r3 ∼ r1.

We can then conclude that V̂ (r2) = V̂ (r1), that is, V̂ (r1) = V̂ (r2) = K
(
r2, V̂ (r2)

)
=

K
(
r2, V̂ (r1)

)
, a contradiction with (24). �

Proposition 7 If < is a Betweenness preference, then

p <′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ Wbet.

Moreover, the set Wbet is either a singleton or infinite.

13If V̂ (p) ≥ t̄ > 0 = V̂ (δw), then y = w and if V̂ (p) < t̄ < 1 = V̂ (δb), then y = b. The existence of

λ is then granted by the continuity of V̂ .
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Proof. Define <′′ by

p <′′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ Wbet.

By Proposition 6, we have that if p <′ q, then K (p, t) ≥ K (q, t) for all t ∈ (0, 1), that

is, p <′′ q. By Proposition 5, if p <′′ q, that is K (p, t) ≥ K (q, t) for all t ∈ (0, 1), then

p < q. By (Cerreia-Vioglio et al., 2017, Lemma 1 and Footnote 10), we can conclude

that p <′′ q implies p <′ q, proving that <′′ coincides with <′. Finally, assume that

Wbet is not a singleton. It follows that there exist t1, t2 ∈ (0, 1) and x̄ ∈ (w, b) such

that k (x̄, t1) 6= k (x̄, t2). Without loss of generality, assume that k (x̄, t1) < k (x̄, t2).

By contradiction, assume that |Wbet| ∈ N. By the intermediate value theorem and

since k (x̄, ·) is continuous on (0, 1), it follows that

{k (x̄, t)}t∈(0,1) ⊇ [k (x̄, t1) , k (x̄, t2)] .

Since k (x̄, t1) < k (x̄, t2), it follows that
∣∣∣{k (x̄, t)}t∈(0,1)

∣∣∣ = ∞, a contradiction with∣∣∣{k (x̄, t)}t∈(0,1)

∣∣∣ ≤ |Wbet| ∈ N. �

We now prove Theorem 4.

Proof of Theorem 4. (ii) implies (i). By (Cerreia-Vioglio et al., 2015, Theorem

1), the statement trivially follows.

(i) implies (ii). Since < is a Betweenness preference, it satisfies Weak Order,

Continuity, and Strict First Order Stochastic Dominance. By Theorem 2 and Remark

3, and sinceWbet = {k (·, t)}t∈(0,1) represents <′, it follows thatW in (6) can be chosen

to be Wbet. This yields (6) and, in particular, (9) with inf in place of min. Note that

for each v ∈ Wbet we have that V (δw) = w = c (δw, v) and V (δb) = b = c (δb, v). Thus

the inf is attained for δw and δb. The proof below yields that the inf is attained at

each p ∈ ∆, proving (9).

We next prove (10). Consider p ∈ ∆\ {δw, δb}. Since < satisfies Strict First Order

Stochastic Dominance, we have that V̂ (p) ∈ (0, 1) and it is the unique number in [0, 1]

such that ∫
[w,b]

k
(
x, V̂ (p)

)
dp = V̂ (p) . (25)

Define vp = k
(
·, V̂ (p)

)
∈ Wbet. Define x̄ ∈ [w, b] to be such that x̄ = c (p, vp). Note

that

vp (x̄) = vp (c (p, vp)) = vp

(
v−1
p

(∫
[w,b]

k
(
x, V̂ (p)

)
dp

))
=

∫
[w,b]

k
(
x, V̂ (p)

)
dp.

By (25), it follows that ∫
[w,b]

k
(
x, V̂ (p)

)
dδx̄ = vp (x̄) = V̂ (p) .
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Since < is a Betweenness preference, we can conclude that V̂ (δx̄) = V̂ (p), that is,

δx̄ ∼ p and so x̄ = xp.
14 This yields that

V (p) = xp = x̄ = c (p, vp) ,

proving that the inf is attained at vp. �

Proof of Remark 1. (i)’ implies (ii)’. Since < satisfies Weak Order, Continuity,

and Strict First Order Stochastic Dominance, there exists a continuous utility function

V : ∆ → R such that V (δx) = x for all x ∈ [w, b]. By Proposition 7, the expected

utility core <′ of < admits an expected multi-utility representation with set Wbet.

Define V̄ : ∆ → R by V̄ (p) = supv∈Wbet
c (p, v) for all p ∈ ∆. We next show that

V = V̄ . Fix p ∈ ∆. Note that V̄ (p) , V (p) ∈ [w, b]. By construction, it is immediate

to see that

c
(
δV̄ (p), v

′) = V̄ (p) = sup
v∈Wbet

c (p, v) ≥ c (p, v′) ∀v′ ∈ Wbet.

By Proposition 7, this yields that δV̄ (p) <
′ p. Since <′ is a subrelation of <, we can

conclude that δV̄ (p) < p, that is, V̄ (p) = V
(
δV̄ (p)

)
≥ V (p), proving that V̄ ≥ V . By

contradiction, assume that V̄ 6≤ V . It would follow that there exists p ∈ ∆ such that

V̄ (p) > V (p). This would imply that there exists y ∈ [w, b] such that V̄ (p) > y >

V (p). We could conclude that δy < p. By Proposition 7 and since < satisfies Positive

Certainty Independence, we could conclude that δy <′ p, that is, y = c (δy, v) ≥ c (p, v)

for all v ∈ Wbet, yielding that V̄ (p) > y ≥ supv∈Wbet
c (p, v) = V̄ (p), a contradiction.

This proves that

V (p) = sup
v∈Wbet

c (p, v) ∀p ∈ ∆.

In order to prove that (12) and (11) hold, the same arguments used in proving (10)

and (9) apply.

(ii)’ implies (i)’. Consider x ∈ [w, b] and p, q ∈ ∆ as well as λ ∈ [0, 1]. Note that

δx < p =⇒ sup
v∈Wbet

c (δx, v) ≥ sup
v∈Wbet

c (p, v) =⇒ x ≥ sup
v∈Wbet

c (p, v)

=⇒ c (δx, v) = x ≥ c (p, v) ∀v ∈ Wbet =⇒ δx <
′ p

=⇒ λδx + (1− λ) q < λp+ (1− λ) q,

proving that < satisfies Positive Certainty Independence. �

14Recall that a Betweenness preference is a binary relation on ∆ which satisfies Weak Order, Con-

tinuity, Strict First Order Stochastic Dominance, and Betweenness. In this case, given p ∈ ∆, xp is

the unique number such that δxp
∼ p.
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Remark 4 As already observed, a careful inspection of Gul’s model formulation (see

(4)) suggests that two types of normalizations are due to link the implicit Gul’s rep-

resentation to Dekel’s one. In order to do so, we define few objects: α : Imu → R,

γ : Imu→ R, g : [0, 1]→ R, V̂ : ∆→ R and k : [w, b]× [0, 1]→ R. We set

α (s) =
1

k̃ (b, s)− k̃ (w, s)
and γ (s) =

−k̃ (w, s)

k̃ (b, s)− k̃ (w, s)
∀s ∈ Imu.

We also set

g (λ) = Ṽ (λδb + (1− λ) δw) ∀λ ∈ [0, 1]

and, since g is strictly increasing, continuous, and Im g = Imu = Im Ṽ ,

V̂ (p) = g−1
(
Ṽ (p)

)
∀p ∈ ∆.

Finally, we set

k (x, t) = α (g (t)) k̃ (x, g (t)) + γ (g (t)) ∀x ∈ [w, b] ,∀t ∈ [0, 1] .

It is easy to check that k and V̂ satisfy all the assumptions of Theorem 1.15 Since

k (·, t) = α (g (t)) k̃ (·, g (t)) + γ (g (t)) ∀t ∈ [0, 1]

and g : [0, 1] → Imu is strictly increasing, continuous, and onto, we have that for

each t ∈ [0, 1] there exists an element z ∈ Imu such that k (·, t) is a positive affine

transformation of k̃ (·, z). Similarly, for each z ∈ Imu there exists an element t ∈ [0, 1]

such that k̃ (·, z) is a positive affine transformation of k (·, t). Recall that Wda ={
k̃ (·, z)

}
z∈Imu

. In particular, this implies that infv∈Wbet
c (p, v) = minv∈Wda

c (p, v) for

all p ∈ ∆ as well as supv∈Wbet
c (p, v) = maxv∈Wda

c (p, v). O

Proof of Theorem 3. 1 and 2. By Dillenberger (2010) and Artstein-Avidan and

Dillenberger (2015) and since β ≥ 0, it follows that < satisfies Negative Certainty

Independence. By Theorem 4 and Remark 4, it follows that if β ≥ 0, then V : ∆→ R,

defined by

V (p) = min
v∈Wbet

c (p, v) = min
v∈Wda

c (p, v) ∀p ∈ ∆

is a continuous utility representation of < whereWbet = {k (·, t)}t∈(0,1). Thus, if β > 0,

then (7) follows. If β = 0, then Wda = {u} and (8) follows.

3. By Dillenberger (2010) and Artstein-Avidan and Dillenberger (2015) and since

β ∈ (−1, 0), it follows that < satisfies Positive Certainty Independence. By Remarks

1 and 4, it follows that if β ∈ (−1, 0), then V : ∆→ R, defined by

V (p) = max
v∈Wbet

c (p, v) = max
v∈Wda

c (p, v) ∀p ∈ ∆

15Indeed, points 1 and 2 are satisfied on [0, 1] and not just (0, 1).
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is a continuous utility representation of < where Wbet = {k (·, t)}t∈(0,1). �

We next prove our results on the behavioral identification of parameters for DA

preferences.

Proof of Proposition 1. Before starting, define by ū the positive and affine trans-

formation of u such that ū (w) = 0 and ū (b) = 1. Recall that (ū, β) also represents <.

We denote by Wda the corresponding set of local utilities given by k̃ defined as in (4)

and computed with (ū, β). By Proposition 7 and Remark 4, recall that <′ is such that

p <′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ Wda ⇐⇒ c (p, v) ≥ c (q, v) ∀v ∈ Wda. (26)

We list four facts that are going to be useful:

1. For each v ∈ Wda there exists a strictly increasing and continuous function fv :

Im ū→ R such that v = fv ◦ ū.

2. For each v ∈ Wda, if β ≥ 0 (resp., β ≤ 0), then fv is concave (resp., convex).

3. ū ∈ Wda.

4. Since < is a DA preference, recall that for each x ∈ [w, b] and for each λ ∈ [0, 1]

Ṽ (δx) = ū (x) and Ṽ (λδb + (1− λ) δw) =
λū(b) + (1 + β)(1− λ)ū(w)

1 + β(1− λ)
.

If p̄ = 1
2
δb + 1

2
δw, then

ū (xp̄) =
1

2

1

1 + β/2
=⇒ β =

1

ū (xp̄)
− 2.

1. By points 1 and 2 and since β ≥ 0, we have that if p ∈ ∆ and x ∈ [w, b]

x ≥ c (p, ū) =⇒ x ≥ c (p, v) ∀v ∈ Wda.

By point 3, we have that

x ≥ c (p, v) ∀v ∈ Wda =⇒ x ≥ c (p, ū) ,

yielding that

x ≥ c (p, ū) ⇐⇒ x ≥ c (p, v) ∀v ∈ Wda. (27)

By (26) and (27) and since ū (w) = 0 = ū (b) − 1, we can conclude that for each

x ∈ [w, b]

max {λ ∈ [0, 1] : δx <
′ λδb + (1− λ) δw} = max {λ ∈ [0, 1] : x ≥ c (λδb + (1− λ) δw, ū)}

= max
{
λ ∈ [0, 1] : x ≥ ū−1 (λ)

}
= ū (x) .
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By point 4, we conclude that

β =
1

ū (xp̄)
− 2 =

1

max
{
λ ∈ [0, 1] : δxp̄ <′ λδb + (1− λ) δw

} − 2,

proving the statement.

2. By points 1 and 2 and since β ≤ 0, we have that if p ∈ ∆ and x ∈ [w, b]

c (p, ū) ≥ x =⇒ c (p, v) ≥ x ∀v ∈ Wda.

By point 3, we have that

c (p, v) ≥ x ∀v ∈ Wda =⇒ c (p, ū) ≥ x,

yielding that

c (p, ū) ≥ x ⇐⇒ c (p, v) ≥ x ∀v ∈ Wda. (28)

By (26) and (28) and since ū (w) = 0 = ū (b) − 1, we can conclude that for each

x ∈ [w, b]

min {λ ∈ [0, 1] : λδb + (1− λ) δw <
′ δx} = min {λ ∈ [0, 1] : c (λδb + (1− λ) δw, ū) ≥ x}

= min
{
λ ∈ [0, 1] : ū−1 (λ) ≥ x

}
= ū (x) .

By point 4, we conclude that

β =
1

ū (xp̄)
− 2 =

1

min
{
λ ∈ [0, 1] : λδb + (1− λ) δw <′ δxp̄

} − 2,

proving the statement. �

Proof of Proposition 2. We adopt the same normalizations and objects of Proposi-

tion 1. Since we have two preferences we index the corresponding objects by 1 and 2.

Before starting, recall that Vi : ∆→ R, defined by

Vi (p) = min
v∈Wi

da

c (p, v) ∀p ∈ ∆,

represents <i for i ∈ {1, 2}.
(i) implies (ii). Since ū1 and ū2 are normalized and u1 is cardinally equivalent to

u2, we have that ū1 = ū2. Define ū = ū1 = ū2. By (26) and (27), we have that for each

x ∈ [w, b] and for each p ∈ ∆

δx <
′
1 p ⇐⇒ x ≥ c (p, v) ∀v ∈ W1

da ⇐⇒ x ≥ c (p, ū)

⇐⇒ x ≥ c (p, v) ∀v ∈ W2
da ⇐⇒ δx <

′
2 p.
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Since β1 ≥ β2 ≥ 0, for each v ∈ W2
da there exists ṽ ∈ W1

da which is a strictly increasing,

continuous, and concave transformation of v. This implies that

min
v∈W2

da

c (p, v) ≥ min
v∈W1

da

c (p, v) ∀p ∈ ∆.

Since the functional on the left-hand (resp., right-hand) side represents <2 (resp., <1),

it follows that for each x ∈ [w, b] and for each p ∈ ∆

δx <2 p =⇒ δx <1 p,

proving the implication.

(ii) implies (i). By (26) and (27), we have that for each x ∈ [w, b] and for each

p ∈ ∆

x ≥ c (p, ū1) ⇐⇒ x ≥ c (p, v) ∀v ∈ W1
da

⇐⇒ δx <
′
1 p ⇐⇒ δx <

′
2 p

⇐⇒ x ≥ c (p, v) ∀v ∈ W2
da ⇐⇒ x ≥ c (p, ū2) ,

yielding that ū1 is an affine transformation of ū2. Since ū1 and ū2 are normalized, it

follows that ū1 = ū2, in particular, proving that u1 and u2 are cardinally equivalent.

Define p̄ = 1
2
δb + 1

2
δw. Let xi,p̄ be the certainty equivalent of <i. Since ū1 is equal to

ū2, let ū = ū1 = ū2. By Proposition 1 and its proof, we have that

β1 =
1

ū (x1,p̄)
− 2 and β2 =

1

ū (x2,p̄)
− 2.

Since <1 is more risk averse than <2, we have that x2,p̄ ≥ x1,p̄, that is, β1 ≥ β2. �

Proof of Proposition 3. Define W = co (Wbet). Given the assumptions, W is

convex and compact and (13) holds with W in place of Wbet.
16 First, note that the

16Since k : [w, b] × [0, 1] → R is jointly continuous and k (x, t) ∈ [0, 1] for all x ∈ [w, b] and

all t ∈ [0, 1], it follows that Wbet = {k (·, t)}t∈(0,1) is a (uniformly) bounded and equicontinuous

family of functions in C ([w, b]). This implies that the convex hull of Wbet, co (Wbet), is bounded and

equicontinuous. Since closure in supnorm preserves boundedness and equicontinuity, we can conclude

that co (Wbet) = cl (co (Wbet)) is a bounded and equicontinuous family of functions of C ([w, b]). By

Arzela-Ascoli Theorem, co (Wbet) is compact. Finally, we are left to show that co (Wbet) is a subset

of Unor. Clearly, each v ∈ co (Wbet) is continuous and such that v (w) = 0 and v (b) = 1. Thus, we

only need to prove that v is strictly increasing. Let x, y ∈ [w, b] be such that x > y. Since k is strictly

increasing in the first argument and continuous in the second, we have that there exists t̄ ∈ [0, 1] and

ε > 0 such that

inf
v∈Wbet

[v (x)− v (y)] ≥ min
t∈[0,1]

[k (x, t)− k (y, t)] = k (x, t̄)− k (y, t̄) ≥ ε > 0.

It is immediate to show that infv∈co(Wbet) [v (x)− v (y)] ≥ ε, yielding that infv∈co(Wbet) [v (x)− v (y)] ≥
ε. This implies that v (x) > v (y) for all v ∈ co (Wbet). Since x and y were arbitrarily chosen, this

shows that each element of co (Wbet) is strictly increasing.
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map c : ∆×W → [w, b], defined by

c (p, v) = v−1 (Ep (v)) ∀ (p, v) ∈ ∆×W ,

is quasiconcave and upper semicontinuous in the first argument and quasiconvex and

lower semicontinuous in the second argument. By Sion’s minimax theorem and since

A is a convex and compact set of ∆, this implies that

max
p∈A

min
v∈W

c (p, v) = min
v∈W

max
p∈A

c (p, v) .

Let v̂ ∈ W be such that maxp∈A c (p, v̂) ≤ maxp∈A c (p, v) for all v ∈ W . Note that

max
p∈A

min
v∈W

c (p, v) = max
p∈A

V (p) = V (p∗) = min
v∈W

c (p∗, v) ≤ c (p∗, v̂)

≤ max
p∈A

c (p, v̂) ≤ min
v∈W

max
p∈A

c (p, v) .

Since maxp∈A minv∈W c (p, v) = minv∈W maxp∈A c (p, v), this yields that

c (p∗, v̂) = max
p∈A

c (p, v̂) ,

proving the statement. �

We next move to the applications contained in Section 5.2. We begin by offering,

in a framework action-space, two versions of Proposition 3. The first, for β > 0, is

key to prove our result on portfolio choice. The second, for β < 0, is needed to prove

our result on justifiability. We then discuss our Bayesian Persuasion application. This

latter one is a direct consequence of Proposition 3.

Proposition 8 Consider the framework of Remark 2 and the problem in (15). If

1. < is a DA preference with parameters (u, β) where β > 0;

2. A is a compact and convex subset of a separable normed vector space;

3. a 7→ u (g (a, s)) is continuous and concave for all s ∈ S;

4. a∗ ∈ A is such that V (pa∗,µ) ≥ V (pa,µ) for all a ∈ A;

then, there exists v̂ ∈ co (Wbet) such that Epa∗,µ (v̂) ≥ Epa,µ (v̂) for all a ∈ A.

Proof. Given Theorem 3 and Remark 4, defineW = co (Wbet). Given the assumptions,

W is convex and compact and (13) holds with W in place of Wbet (cf. the proof of

Proposition 3). Recall that for each v ∈ W there exists a strictly increasing, continuous,
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and concave function fv : Imu→ [0, 1] such that v = fv ◦u. By the Change of Variable

Theorem, this implies that

c (pa,µ, v) = v−1
(
Epa,µ (v)

)
= v−1

(∫
[w,b]

fv (u (x)) dpa,µ

)
= v−1

((∫
S

fv (u (g (a, s))) dµ

))
∀a ∈ A, ∀v ∈ W .

Since a 7→ u (g (a, s)) is concave for all s ∈ S, it follows that a 7→ fv (u (g (a, s))) is

concave for all s ∈ S. This implies that a 7→ c (pa,µ, v) is quasiconcave on A for all

v ∈ W . It is immediate to verify that a 7→ c (pa,µ, v) is upper semicontinuous on A for

all v ∈ W . By standard arguments, it also follows that v 7→ c (pa,µ, v) is quasiconvex

and lower semicontinuous onW for all a ∈ A. By Sion’s minimax theorem, this implies

that

max
a∈A

V (pa,µ) = max
a∈A

min
v∈W

c (pa,µ, v) = min
v∈W

max
a∈A

c (pa,µ, v) .

Let v̂ ∈ W be such that maxa∈A c (pa,µ, v̂) ≤ maxa∈A c (pa,µ, v) for all v ∈ W . Note that

max
a∈A

min
v∈W

c (pa,µ, v) = max
a∈A

V (pa,µ) = V (pa∗,µ) = min
v∈W

c (pa∗,µ, v) ≤ c (pa∗,µ, v̂)

≤ max
a∈A

c (pa,µ, v̂) ≤ min
v∈W

max
a∈A

c (pa,µ, v) .

Since maxa∈A minv∈W c (pa,µ, v) = minv∈W maxa∈A c (pa,µ, v), this yields that

c (pa∗,µ, v̂) = max
a∈A

c (pa,µ, v̂) ,

proving the statement. �

Proof of Corollary 1. First, observe that A = [0,W ] and g (a, s) = ar (s) +

(W − a) rf (s) for all a ∈ A and for all s ∈ S. Clearly, A is a compact and convex

subset of a separable normed vector space. Since r is measurable and rf is constant,

s 7→ g (a, s) is measurable for all a ∈ A. Finally, by construction, a 7→ g (a, s) is

continuous and affine for all s ∈ S. Since u′′ < 0, u is concave and, in particular,

a 7→ u (g (a, s)) is continuous and concave for all s ∈ S. By Proposition 8, there exists

v̂ ∈ co (Wbet) such that Epa∗
DA

,µ
(v̂) ≥ Epa,µ (v̂) for all a ∈ A. In other words, a∗DA is the

solution of the portfolio problem for a decision maker who is expected utility and more

risk averse than u. It is well-known that this implies that a∗DA ≤ a∗EU. �

Proposition 9 Consider the framework of Remark 2 and the problem in (15). If

1. < is a DA preference with parameters (u, β) where β < 0;

2. a∗ ∈ A is such that V (pa∗,µ) ≥ V (pa,µ) for all a ∈ A;
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then, there exists v̂ ∈ Wbet such that Epa∗,µ (v̂) ≥ Epa,µ (v̂) for all a ∈ A.

Proof. By Theorem 3 and Remark 4, we have that V (pa∗,µ) = c (pa∗,µ, v̂) for some

v̂ ∈ Wbet. By Theorem 3 and assumption, we have that

c (pa∗,µ, v̂) = V (pa∗,µ) ≥ V (pa,µ) = max
v∈Wbet

c (pa,µ, v) ≥ c (pa,µ, v̂) ∀a ∈ A,

proving the statement. �

Proof of Corollary 2. Given a strictly increasing and continuous von Neumann-

Morgenstern function v : [w, b]→ R, we denote by Jv the set of justifiable actions for

the expected utility preference generated by v. If a ∈ JDA, then there exists µ ∈ ∆ (S)

such that V (pa,µ) ≥ V (pb,µ) for all b ∈ A where V is the functional in point 3 of

Theorem 3 (see also Remark 4). By Proposition 9, we have that there exists v̂ ∈ Wbet

such that c (pa,µ, v̂) ≥ c (pb,µ, v̂) for all b ∈ A, that is, a ∈ Jv̂. Since β < 0, we

have that u is more risk averse than v̂. By Battigalli et al. (2016), this implies that

Jv̂ ⊆ Ju = JEU. We can conclude that a ∈ Ju = JEU. Since a was arbitrarily chosen,

the statement follows. �

Proof of Proposition 4. Let [w, b] = [0, 1]. Denote by B the Borel σ-algebra of

[0, 1]. Given p ∈ ∆, we denote by e (p) the expectation of p. Denote by < Sender’s

DA preference with parameters (u, β) where u is as in (16) and β > 0. Assume < is

represented by V : ∆→ R as in Theorem 3. The problem of Sender is

maxV (p) subject to p ∈ A (29)

where A = {p ∈ ∆ : p ≥MPS r}. Before starting, we need some notation. Given an

element p ∈ ∆, we denote by Fp : [0, 1] → [0, 1] the cumulative distribution of p,

that is, Fp (t) = p ([0, t]) for all t ∈ [0, 1]. Standard calculations show that in (16)

we have e∗ (y) = min
{(

σy
α

) 1
α−1 , ē

}
for all y ∈ [0, 1] and ȳ = (α/σ) ēα−1. Dworczak

and Martini (2019, Proposition 3) prove that if e (r) = µ̄ < ȳ, then a solution of (29)

for the expected utility agent with u as in (16) is p∗EU with cumulative distribution

FEU : [0, 1]→ [0, 1] defined by

FEU (x) =


Fr (x) x < x?

Fr (x?) x? ≤ x < ȳ

1 x ≥ ȳ

∀x ∈ [0, 1]

where x? is such that the probability s, defined by s (B) = r (B ∩ [x?, 1]) /r ([x?, 1])

for all B ∈ B, satisfies e (s) = ȳ. Define FDA = Fp∗DA
where p∗DA is a solution to (29).

Finally, define Uconc to be the set of all functions v : [0, 1] → R which are continuous

and concave. We can begin.
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SinceA is compact and V is continuous, let p∗DA be a solution of (29). By Proposition

3 and since A is convex, there exists v̂ ∈ co (Wbet) such that

Ep∗DA
(v̂) ≥ Ep (v̂) ∀p ∈ A. (30)

By contradiction, assume that p∗DA 6≥MPS p
∗
EU.17 Define ΦDA,ΦEU : [0, 1]→ R by

ΦDA (t) =

∫ t

0

FDA (x) dx and ΦEU (t) =

∫ t

0

FEU (x) dx ∀t ∈ [0, 1] .

It is immediate to see that ΦDA and ΦEU are continuous functions. Since, by construc-

tion, p∗EU, p
∗
DA ≥MPS r, we necessarily have that ΦDA (0) = ΦEU (0) as well as

ΦDA (1) =

∫ 1

0

FDA (x) dx =

∫ 1

0

Fr (x) dx =

∫ 1

0

FEU (x) dx = ΦEU (1) . (31)

Since p∗DA 6≥MPS p
∗
EU, this yields that there exists t̄ ∈ (0, 1) such that

ΦDA (t̄) =

∫ t̄

0

FDA (x) dx >

∫ t̄

0

FEU (x) dx = ΦEU (t̄) . (32)

Since p∗DA ≥MPS r and FEU (x) = Fr (x) for all x ∈ [0, x?], we can conclude that

ΦDA (t) =

∫ t

0

FDA (x) dx ≤
∫ t

0

Fr (x) dx =

∫ t

0

FEU (x) dx = ΦEU (t) ∀t ∈ [0, x?] .

This implies that t̄ in (32) must belong to (x?, 1). Since ΦDA and ΦEU are continuous

as well as ΦDA (x?) ≤ ΦEU (x?) and ΦDA (t̄) > ΦEU (t̄) for some t̄ ∈ (x?, 1), we have that

t̂ = min {t ∈ [x?, 1] : ΦDA (t) = ΦEU (t)}

is well defined. Note that t̄ > t̂ ≥ x? and t̂ ≤ ȳ.18,19 By (31), we have that∫ t̂

0

FDA (x) dx+

∫ 1

t̂

FDA (x) dx = ΦDA (1) = ΦEU (1) =

∫ t̂

0

FEU (x) dx+

∫ 1

t̂

FEU (x) dx,

17Recall that, equivalently, p ≥MPS q if and only if
∫ t

0
Fp (x) dx ≤

∫ t
0
Fq (x) dx for all t ∈ [0, 1] and∫ 1

0
Fp (x) dx =

∫ 1

0
Fq (x) dx.

18Otherwise, t̄ ≤ t̂. We have two cases:

1. t̄ = t̂. In this case, we would have that

0 = ΦDA

(
t̂
)
− ΦEU

(
t̂
)

= ΦDA (t̄)− ΦEU (t̄) > 0,

a contradiction.

2. t̄ < t̂. In this case, we would have that

ΦDA (x?)− ΦEU (x?) ≤ 0 < ΦDA (t̄)− ΦEU (t̄) .

Since ΦDA − ΦEU is a continuous function on [x?, t̄], this would imply that there exists t̃ ∈ [x?, t̄] ⊆
[x?, 1] such that

ΦDA

(
t̃
)
− ΦEU

(
t̃
)

= 0,

that is, t̃ ≤ t̄ < t̂ ≤ t̃, a contradiction.
19By contradiction, assume that t̂ > ȳ. Since FEU is such that FEU (x) = 1 ≥ FDA (x) for all
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yielding that ∫ 1

t̂

FDA (x) dx =

∫ 1

t̂

FEU (x) dx.

Next, we show that t̄ can be chosen to be ȳ. First, by (32) and since ΦDA

(
t̂
)

= ΦEU

(
t̂
)
,

observe that

ΦDA

(
t̂
)

+

∫ t̄

t̂

FDA (x) dx =

∫ t̂

0

FDA (x) dx+

∫ t̄

t̂

FDA (x) dx =

∫ t̄

0

FDA (x) dx

>

∫ t̄

0

FEU (x) dx =

∫ t̂

0

FEU (x) dx+

∫ t̄

t̂

FEU (x) dx

= ΦEU

(
t̂
)

+

∫ t̄

t̂

FEU (x) dx,

yielding that ∫ t̄

t̂

FDA (x) dx >

∫ t̄

t̂

FEU (x) dx. (33)

Since FEU is such that FEU (x) = 1 ≥ FDA (x) for all x ∈ [ȳ, 1], note that if t̄ ≥ ȳ, then

0 <

∫ t̄

t̂

[FDA (x)− FEU (x)] dx =

∫ ȳ

t̂

[FDA (x)− FEU (x)] dx+

∫ t̄

ȳ

[FDA (x)− FEU (x)] dx

≤
∫ ȳ

t̂

[FDA (x)− FEU (x)] dx.

This implies that ΦDA (ȳ) > ΦEU (ȳ). Since FEU (x) = FEU (x?) for all x ∈ [x?, ȳ),

viceversa, if t̄ < ȳ, then it follows that FDA (t̄) > FEU (t̄). It follows that FDA (x) ≥
FDA (t̄) > FEU (t̄) = FEU (x?) = FEU (x) for all x ∈ [t̄, ȳ) ⊆ [x?, ȳ), yielding that∫ ȳ

t̂

[FDA (x)− FEU (x)] dx =

∫ t̄

t̂

[FDA (x)− FEU (x)] dx+

∫ ȳ

t̄

[FDA (x)− FEU (x)] dx > 0.

This implies that ΦDA (ȳ) > ΦEU (ȳ). It follows that∫ ȳ

t̂

FDA (x) dx+

∫ 1

ȳ

FDA (x) dx =

∫ 1

t̂

FDA (x) dx =

∫ 1

t̂

FEU (x) dx =

∫ ȳ

t̂

FEU (x) dx+

∫ 1

ȳ

FEU (x) dx.

x ∈ [ȳ, 1]. This would imply that

ΦEU (t̄) =

∫ t̄

0

FEU (x) dx =

∫ t̂

0

FEU (x) dx+

∫ t̄

t̂

FEU (x) dx = ΦEU

(
t̂
)

+

∫ t̄

t̂

FEU (x) dx

= ΦDA

(
t̂
)

+

∫ t̄

t̂

FEU (x) dx ≥ ΦDA

(
t̂
)

+

∫ t̄

t̂

FDA (x) dx

=

∫ t̂

0

FDA (x) dx+

∫ t̄

t̂

FDA (x) dx =

∫ t̄

0

FDA (x) dx = ΦDA (t̄) ,

a contradiction with (32).
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By (33) and since t̄ can be chosen to be ȳ, this yields that

0 <

∫ ȳ

t̂

FDA (x) dx−
∫ ȳ

t̂

FEU (x) dx =

∫ 1

ȳ

FEU (x) dx−
∫ 1

ȳ

FDA (x) dx.

Since
∫ 1

ȳ
FEU (x) dx −

∫ 1

ȳ
FDA (x) dx > 0 and FEU (x) = 1 ≥ FDA (x) for all x ∈ [ȳ, 1],

we have that FDA (ȳ) < 1 and, in particular, p∗DA ((ȳ, 1]) > 0. Since e (p∗DA) = e (r) < ȳ,

note also that 1 > p∗DA ([ȳ, 1]) ≥ p∗DA ((ȳ, 1]) > 0. With this in mind, define qDA (B) =

p∗DA (B ∩ [0, ȳ)) /p∗DA ([0, ȳ)) and rDA (B) = p∗DA (B ∩ [ȳ, 1]) /p∗DA ([ȳ, 1]) for all B ∈ B.

Since p∗DA ([ȳ, 1]) ∈ (0, 1), qDA and rDA are well defined elements of ∆. Let also λ be

p∗DA ([0, ȳ)) = 1 − p∗DA ([ȳ, 1]) ∈ (0, 1). Note that p∗DA = λqDA + (1− λ) rDA as well as

e (qDA) ∈ [0, ȳ) and e (rDA) = y ∈ [ȳ, 1]. We now have two cases:

* y = ȳ. It would follow that e (rDA) = y = ȳ, yielding that rDA = δȳ. This would

imply that p∗DA = λqDA +(1− λ) rDA = λqDA +(1− λ) δȳ. In particular, we would

have that FDA (ȳ) = 1, a contradiction.

** y > ȳ. Since λ ∈ (0, 1) and e (qDA) < ȳ < e (rDA), consider ε, τ ∈ (0,min {λ, 1− λ})
such that τ

τ+ε
e (qDA) + ε

τ+ε
e (rDA) = ȳ. It follows that (λ− τ) , (1− λ− ε) ∈

(0, 1). Consider the probability

p̂DA = (λ− τ) qDA + (τ + ε) δȳ + (1− λ− ε) rDA.

Since e
(

τ
τ+ε

qDA + ε
τ+ε

rDA

)
= ȳ, note that

Eδȳ (v) ≥ E τ
τ+ε

qDA+ ε
τ+ε

rDA
(v) =

τ

τ + ε
EqDA

(v) +
ε

τ + ε
ErDA

(v) ∀v ∈ Uconc.

This implies that

Ep̂DA
(v) = E(λ−τ)qDA+(τ+ε)δȳ+(1−λ−ε)rDA

(v)

= (λ− τ)EqDA
(v) + (τ + ε)Eδȳ (v) + (1− λ− ε)ErDA

(v)

= λEqDA
(v) + (1− λ)ErDA

(v)

+ (τ + ε)

(
Eδȳ (v)− τ

τ + ε
EqDA

(v)− ε

τ + ε
ErDA

(v)

)
≥ λEqDA

(v) + (1− λ)ErDA
(v) = EλqDA+(1−λ)rDA

(v) = Ep∗DA
(v) ∀v ∈ Uconc

that is, p̂DA ≥MPS p
∗
DA ≥MPS r and, in particular, p̂DA ∈ A. Finally, note that the

affine function ` : [0, 1] → R, defined by ` (x) = (1− σ) ēx for all x ∈ [0, 1], is

such that

` (x) > u (x) ∀x ∈ (0, ȳ) and ` (x) = u (x) ∀x ∈ [ȳ, 1] ∪ {0} .
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Note also that supp qDA 6= {0}.20 This implies that

u (ȳ) = ` (ȳ) = `

(
e

(
τ

τ + ε
qDA +

ε

τ + ε
rDA

))
= E τ

τ+ε
qDA+ ε

τ+ε
rDA

(`)

=
τ

τ + ε
EqDA

(`) +
ε

τ + ε
ErDA

(`) >
τ

τ + ε
EqDA

(u) +
ε

τ + ε
ErDA

(u)

= E τ
τ+ε

qDA+ ε
τ+ε

rDA
(u) .

Since v̂ is a continuous, strictly increasing, and concave transformation of u, we

have that

Eδȳ (v̂) = v̂ (ȳ) > E τ
τ+ε

qDA+ ε
τ+ε

rDA
(v̂) =

τ

τ + ε
EqDA

(v̂) +
ε

τ + ε
ErDA

(v̂) .

We can conclude that

Ep̂DA
(v̂) = E(λ−τ)qDA+(τ+ε)δȳ+(1−λ−ε)rDA

(v̂)

= (λ− τ)EqDA
(v̂) + (τ + ε)Eδȳ (v̂) + (1− λ− ε)ErDA

(v̂)

= λEqDA
(v̂) + (1− λ)ErDA

(v̂)

+ (τ + ε)

(
Eδȳ (v̂)− τ

τ + ε
EqDA

(v̂)− ε

τ + ε
ErDA

(v̂)

)
> λEqDA

(v̂) + (1− λ)ErDA
(v̂) = EλqDA+(1−λ)rDA

(v̂) = Ep∗DA
(v̂) ,

a contradiction with (30).

Cases * and ** prove the statement. �

20If supp qDA = {0}, there would exist k ∈ (0, 1) such that FDA (x) = k for all x ∈ [0, ȳ). In

this case, note that Fr (0) ≥ FDA (0). Otherwise, since Fr is continuous, if Fr (0) < FDA (0), then

there would exist x̄ ∈ [0, 1] such that Fr (x) < FDA (0) for all x ∈ [0, x̄]. It would follow that

Fr (x) < FDA (0) ≤ FDA (x) for all x ∈ [0, x̄], yielding that∫ x̄

0

Fr (x) dx <

∫ x̄

0

FDA (x) dx,

a contradiction with p∗DA ≥MPS r. Since FEU (x) = Fr (x) for all x ∈ [0, x?] and Fr (0) ≥ FDA (0), it

follows that FEU (x) = Fr (x) ≥ Fr (0) ≥ FDA (0) = FDA (x) for all x ∈ [0, x?]. Moreover, FEU (x) =

FEU (x?) ≥ FDA (0) = FDA (x) for all x ∈ [x?, ȳ). Finally, since FEU (x) = 1 ≥ FDA (x) for all

x ∈ [ȳ, 1], we can conclude that FEU (x) ≥ FDA (x) for all x ∈ [0, 1]. This would yield that∫ t̄

0

FDA (x) dx ≤
∫ t̄

0

FEU (x) dx,

a contradiction with (32).
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B When do Betweenness preferences satisfy NCI?

While Theorem 4 provides an explicit characterization for Betweenness preferences

that satisfy Negative Certainty Independence, a natural question is how to actually

check if a given Betweenness preference does or does not satisfy Negative Certainty

Independence. The next result, paired with the next remark, provides a rather simple

tool to answer this question, solely in terms of the functional form of k. We conclude

the appendix by illustrating its use, by proving the results in Example 1.

In stating these results, the following notation will be useful: given f : [0, 1]→ [0, 1],

we say that f is convex (resp., concave) at t ∈ (0, 1) if and only if for each n ∈ N,

{ti}ni=1 ⊆ [0, 1], and {λi}ni=1 ⊆ [0, 1] such that
∑n

i=1 λi = 1

t =
n∑
i=1

λiti =⇒ f (t) ≤
n∑
i=1

λif (ti) (resp., ≥ ).

For each s, t ∈ (0, 1), define fs,t to be the transformation from k (·, t) to k (·, s), that is,

fs,t : [0, 1] → [0, 1] is such that k (x, s) = fs,t(k (x, t)) for all x ∈ [w, b]. Note that fs,t

must exist since k (·, t) and k (·, s) are strictly increasing and continuous. Moreover,

fs,t is strictly increasing, continuous, and such that fs,t (0) = 0 and fs,t (1) = 1.

Proposition 10 Let < be a Betweenness preference. The following statements are

equivalent:

(i) For each t ∈ (0, 1) and for each s ∈ (0, 1) the function fs,t is convex (resp.,

concave) at t;

(ii) < satisfies Negative (resp., Positive) Certainty Independence.

Proposition 10 characterizes Negative Certainty Independence within the class of

Betweenness preferences, just in terms of the parameters of their representation. In

fact, testing Negative (resp., Positive) Certainty Independence amounts to checking

if for each t ∈ (0, 1) the transformations fs,t are convex (resp., concave) at t for all

s ∈ (0, 1). This is a handy tool since fs,t = k(·, s) ◦ k−1(·, t) and is thus computable.

Moreover, checking convexity and concavity at t is rather simple in light of Remark 5

below.

Proof of Proposition 10. Before starting, define V : ∆→ R by

V (p) = inf
v∈Wbet

c (p, v) (resp., = sup
v∈Wbet

c (p, v) ) ∀p ∈ ∆.

Define vt = k (·, t) for all t ∈ [0, 1]. Denote also by ∆0 the subset of ∆ of all simple

lotteries (convex linear combinations of Dirac measures), that is, ∆0 = co
(
{δx}x∈[w,b]

)
.
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Claim: If s, t ∈ (0, 1) and fs,t is convex (resp., concave) at t, then for each p ∈ ∆0

Ep (vt) = t =⇒ c (p, vt) ≤ c (p, vs) (resp., ≥ ).

Proof of the Claim. Let p ∈ ∆0 and Ep (vt) = t. If p = δx, then the statement is

trivially true, since c (p, vs) = x = c (p, vt). Otherwise, we have that there exist n ∈
N\ {1}, {xi}ni=1 ⊆ [w, b], and {λi}ni=1 ⊆ [0, 1] such that

∑n
i=1 λi = 1 and

∑n
i=1 λiδxi = p.

Define ti = vt (xi) ∈ [0, 1] for all i ∈ {1, ..., n}. Since Ep (vt) = t, this implies that∑n
i=1 λiti =

∑n
i=1 λivt (xi) = Ep (vt) = t. Since fs,t is convex (resp., concave) at t, it

follows that

fs,t (Ep (vt)) = fs,t (t) ≤
n∑
i=1

λifs,t (ti) =
n∑
i=1

λifs,t (vt (xi)) =
n∑
i=1

λivs (xi) = Ep (vs) (resp., ≥ ).

Since vs = fs,t ◦ vt, we have that fs,t = vs ◦ v−1
t . This implies that c (p, vt) ≤ c (p, vs)

(resp., ≥). �

(i) implies (ii). Let p ∈ ∆\ {δw, δb}. Since < satisfies Strict First Order Stochastic

Dominance, we can conclude that V̂ (p) ∈ (0, 1) and it is the unique number in [0, 1]

such that ∫
[w,b]

k
(
x, V̂ (p)

)
dp = V̂ (p) .

Define t = V̂ (p) and consider vt. Let also s be an element of (0, 1) and consider

vs as well as fs,t. Since ∆0 is dense in ∆ and < satisfies Weak Order, Continuity,

and Strict First Order Stochastic Dominance, we have that there exists a sequence

{pn}n∈N ⊆ ∆0 such that pn ∼ p for all n ∈ N and pn → p. The condition pn ∼ p yields

that Epn (vt) = t for all n ∈ N. By the previous claim and since {pn}n∈N ⊆ ∆0 and fs,t

is convex (resp., concave) at t, this implies that c (pn, vt) ≤ c (pn, vs) (resp., ≥) for all

n ∈ N. By passing to the limit and since s ∈ (0, 1) was arbitrarily chosen, we obtain

that

c (p, vt) ≤ c (p, vs) (resp., ≥ ) ∀s ∈ (0, 1) .

We can conclude that

V (p) = min
s∈(0,1)

c (p, vs) = min
v∈Wbet

c (p, v) = c (p, vt)

(resp., V (p) = max
s∈(0,1)

c (p, vs) = max
v∈Wbet

c (p, v) = c (p, vt)).

By using the same technique in the proof of (i) implies (ii) in Theorem 4, we have that

x̄ = c (p, vt) is such that p ∼ δx̄,
21 that is, x̄ = xp. Since p ∈ ∆\ {δw, δb} was arbitrarily

21Recall that p ∈ ∆\ {δw, δb} and V̂ (p) ∈ (0, 1) where the latter is the unique number in [0, 1] such
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chosen, we obtain that V (p) = xp for all p ∈ ∆.22 This implies that V is a utility

representation of <. Since < satisfies Continuity and V (δx) = x for all x ∈ [w, b],

it is immediate to see that V is continuous. By Theorem 4 (resp., Remark 1), this

implies that < satisfies Negative Certainty Independence (resp., Positive Certainty

Independence).

(ii) implies (i). By Theorem 4 (resp., Remark 1), we have that V : ∆ → R,

defined by

V (p) = min
v∈Wbet

c (p, v) = min
s∈(0,1)

c (p, vs) ∀p ∈ ∆

(resp., V (p) = max
v∈Wbet

c (p, v) = max
s∈(0,1)

c (p, vs) ∀p ∈ ∆),

is a continuous utility representation of <. By contradiction, assume that there exist

t ∈ (0, 1) and s′ ∈ (0, 1) such that fs′,t is not convex (resp., concave) at t. It follows

that there exist n ∈ N\ {1}, {ti}ni=1 ⊆ [0, 1], and {λi}ni=1 ⊆ [0, 1] such that
∑n

i=1 λi = 1

and t =
∑n

i=1 λiti as well as fs′,t (t) >
∑n

i=1 λifs′,t (ti) (resp., <). Consider {xi}ni=1

such that vt (xi) = ti. Define p ∈ ∆0 to be such that p =
∑n

i=1 λiδxi . It follows that

Ep (vt) =
∑n

i=1 λivt (xi) =
∑n

i=1 λiti = t. Since < is a Betweenness preference, this

implies that p ∼ δx̄ where x̄ = c (p, vt). In particular, this implies that xp = x̄. At the

same time, we also have that

fs′,t (Ep (vt)) = fs′,t (t) >
n∑
i=1

λifs′,t (ti) =
n∑
i=1

λifs′,t (vt (xi)) =
n∑
i=1

λivs′ (xi) = Ep (vs′) (resp., < ).

Since fs′,t = vs′ ◦ v−1
t , we can conclude that

min
s∈(0,1)

c (p, vs) = V (p) = xp = c (p, vt) > c (p, vs′) ≥ min
s∈(0,1)

c (p, vs)

(resp., max
s∈(0,1)

c (p, vs) = V (p) = xp = c (p, vt) < c (p, vs′) ≤ max
s∈(0,1)

c (p, vs)),

a contradiction. �

that ∫
[w,b]

k
(
x, V̂ (p)

)
dp = V̂ (p) .

Recall also that vt = k
(
·, V̂ (p)

)
∈ Wbet and t = V̂ (p). Define x̄ ∈ [w, b] to be such that x̄ = c (p, vt).

Note that

vt (x̄) = vt (c (p, vt)) = vt

(
v−1
t

(∫
[w,b]

k
(
x, V̂ (p)

)
dp

))
=

∫
[w,b]

k
(
x, V̂ (p)

)
dp.

It follows that ∫
[w,b]

k
(
x, V̂ (p)

)
dδx̄ = vt (x̄) = V̂ (p) .

Since < is a Betweenness preference, we can conclude that V̂ (δx̄) = V̂ (p), that is, δx̄ ∼ p and so

x̄ = xp.
22Clearly, V (δx) = x if either x = w or x = b.
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Remark 5 Convexity at t is implied by the following sufficient condition: the subd-

ifferential of fs,t is nonempty at t, ∂fs,t (t) 6= ∅. This takes a simple geometric inter-

pretation, as it amounts to saying that the graph of fs,t is supported by a line at the

point (t, fs,t (t)), that is, there exists a function g : [0, 1]→ R such that g (t′) = mt′+ l

for all t′ ∈ [0, 1], where l,m ∈ R and fs,t (t) = g (t) as well as g (t′) ≤ fs,t (t′) for all

t′ ∈ [0, 1]. O

Proof. Denote fs,t simply by f . Let t ∈ (0, 1). Assume that f : [0, 1] → [0, 1] is such

that ∂f (t) 6= ∅. By assumption, it follows that there exists m ∈ R such that

f (t′)− f (t) ≥ m (t′ − t) ∀t′ ∈ [0, 1] .

Define g : [0, 1] → R by g (t′) = mt′ + l for all t′ ∈ [0, 1] where l = f (t) −mt. Note

that

f (t) = g (t) and g (t′) ≤ f (t′) ∀t′ ∈ [0, 1] .

Next consider n ∈ N, {ti}ni=1 ⊆ [0, 1], and {λi}ni=1 ⊆ [0, 1] such that
∑n

i=1 λi = 1 and∑n
i=1 λiti = t. It follows that

f (t) = g (t) = g

(
n∑
i=1

λiti

)
=

n∑
i=1

λig (ti) ≤
n∑
i=1

λif (ti) ,

proving convexity at t. �

We conclude by putting into use the results above, showing that the Betweenness

preference in Example 1 satisfies Negative Certainty Independence.

Proof of Example 1. For each t ∈ [0, 1] define vt (x) = k (x, t) for all x ∈ [0, 1].

Given s, t ∈ (0, 1), we need to show that f = vs ◦ v−1
t is convex at t. Before starting,

observe that v−1
t : [0, 1]→ R

v−1
t (x) =

{
x if x ≤ t

t+
√
t2+4(x−t)

2
if x > t

∀x ∈ [0, 1] .

Clearly, if s = t, then f = vs ◦ v−1
t is the identity on [0, 1] and it is convex at t. We

then have two cases:

1. t > s. In this case, we have that for each x ∈ [0, 1]

f (x) = vs
(
v−1
t (x)

)
=


x if x ≤ s

x2 − sx+ s if s < x ≤ t(
t+
√
t2+4(x−t)

2

)2

− s
(
t+
√
t2+4(x−t)

2

)
+ s if x > t

.

Consider g : [0, 1] → R to be such that g (x) = m (x− t) + f (t) and m =

max {2t− s, 1}. We have three cases:
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(a) 0 ≤ t′ ≤ s. Note that

g (0) = f (t)−mt ≤ f (t)− t = t2 − st+ s− t = (t− 1) (t− s) < 0.

We can conclude that

g (t′) = m (t′ − t) + f (t) ≤ f (t) + t′ − t
= t′ + f (t)− t ≤ t′ = f (t′) .

(b) s < t′ ≤ t. Define h : [0, 1]→ R by h (x) = x2−sx+s for all x ∈ [0, 1]. Note

that h (t) = f (t) and h′ (t) = 2t− s ≤ m, yielding h′ (t) (t′ − t) ≥ m (t′ − t)
for all t′ ≤ t. Since h is convex, we have that

f (t′) = h (t′) ≥ h′ (t) (t′ − t)+h (t) ≥ m (t′ − t)+f (t) = g (t′) ∀t′ ∈ (s, t] .

(c) t′ > t. Define h̃ : [t, 1]→ R by h̃ (x) =

(
t+
√
t2+4(x−t)

2

)2

−s
(
t+
√
t2+4(x−t)

2

)
+

s for all x ∈ [t, 1]. It follows that h̃ is concave. Note that h̃ (t) = f (t) = g (t).

Since h̃ is concave and g is affine, it is enough to verify that h̃ (1) ≥ g (1)

to prove that f (t′) = h̃ (t′) ≥ g (t′) for all t′ ∈ [t, 1]. Since t ∈ (0, 1) and

h̃ (1) = 1, observe that if m = 2t− s, then

g (1) = m (1− t) + f (t) = (2t− s) (1− t) + t2 − st+ s

= 2t− 2t2 − s+ st+ t2 − st+ s

= 2t− t2 = t+ t (1− t) ≤ 1 = h̃ (1) .

Since 0 < s < t < 1, if m = 1, then

g (1)− h̃ (1) = g (1)− 1 = 1− t+ f (t)− 1 = 1− t+ t2 − st+ s− 1

= −t+ t2 − st+ s = t (t− 1) + s (1− t)
= (t− s) (t− 1) < 0,

proving that g (1) < h̃ (1).

Subpoints a–c just showed that the subdifferential of f is nonempty at t and, in

particular, f is convex at t.

2. t < s. In this case, we have that for each x ∈ [0, 1]

f (x) = vs
(
v−1
t (x)

)
=


x if x ≤ t

t+
√
t2+4(x−t)

2
if t < x ≤ s̄(

t+
√
t2+4(x−t)

2

)2

− s
(
t+
√
t2+4(x−t)

2

)
+ s if x > s̄
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where s̄ is such that
t+
√
t2+4(s̄−t)

2
= s.23 Consider g : [0, 1] → R to be such that

g (x) = x. We have three cases:

(a) 0 ≤ t′ ≤ t. Clearly, we have that f (t′) ≥ g (t′).

(b) t < t′ ≤ s̄. Define h : [t, s̄] → R by h (x) =
t+
√
t2+4(x−t)

2
for all x ∈ [t, s̄].

Since h is concave and g is affine, if we verify that h (t) ≥ g (t) and h (s̄) ≥
g (s̄), then f (t′) = h (t′) ≥ g (t′) for all t′ ∈ [t, s̄]. Note that h (t) = t = g (t).

On the other hand, we have that

h (s̄) =
t+
√
t2 + 4(s̄− t)

2
≥
t+
√
t2 + 4s̄ (s̄− t)

2

=
t+
√
t2 + 4s̄2 − 4s̄t

2
=
t+
√

(2s̄− t)2

2
= s̄ = g (s̄) .

(c) t′ > s̄. Define h̃ : [s̄, 1]→ R by h̃ (x) =

(
t+
√
t2+4(x−t)

2

)2

−s
(
t+
√
t2+4(x−t)

2

)
+

s for all x ∈ [s̄, 1]. Since h̃ is convex, h̃ (1) = 1, and h̃′ (1) = 2−s
2−t ∈ (0, 1), we

have that

h̃ (t′) ≥ h̃′ (1) (t′ − 1) + h̃ (1) ≥ 1 (t′ − 1) + h̃ (1)

= t′ − 1 + 1 = t′ = g (t′) ∀t′ ∈ [s̄, 1] .

Subpoints a–c just showed that the subdifferential of f is nonempty at t and, in

particular, f is convex at t. �
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