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Abstract 
This paper employs distribution dynamics and patent data to study the empirical dynamics of 
technological specialization in industrial countries. Large countries spread innovation activities 
across a wider range of technologies and their specialization level in a field displays lower 
probability to move around its initial level (country size effects). Mobility is high and asymmetric: 
it is difficult to improve specialization in very disadvantaged technologies, while high comparative 
advantages revert towards lower specialization levels. These findings undermine the theory of 
technological accumulation and path-dependence, its implication of persistence in trade 
specialization patterns and the effectiveness of targeted industrial and technology policies.  
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I INTRODUCTION 

 

In the past years, technological change has attracted the attention of many economists working 

within different fields. Industrial economists modeled R&D investment decisions by private 

enterprises to understand how technical change influences the dynamics of competition and how the 

resulting market or industry structure in turn affects technical change. Recent developments in 

macroeconomic growth theory use this interpretation to explain sustained growth of per-capita 

productivity, comparative advantage and trade of countries. There is now a large literature suggesting 

that the link between technology, competitiveness and growth is an important one, but its implications 

require additional assumptions on the cross border mobility of R&D output, which is in turn 

determined by the characteristics of knowledge. 

On the one side, knowledge is often considered as a public good with the economic property 

of non-rivalry in use (Romer 1990): this should favor the diffusion of knowledge within and across 

national borders. On the other side, the literature on innovation (Nelson and Winter, 1982; Dosi, 1988; 
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Malerba 1992) has emphasized how knowledge may be specific to the agent who has produced it 

or/and to the environment where it has been produced (because, for example, it is complementary to 

specific knowledge and skills available only in the firm or country that has done the R&D). This 

would go in favor of limited international mobility of R&D output1 and would imply the existence of 

reinforcing effects: the more a country innovates today, the higher the probability it can innovate in 

the future. 

In endogenous growth theory models the creation of knowledge through private R&D yields 

positive external effects: part of the new knowledge adds to a public stock, accessible to all firms 

doing R&D themselves, thus reducing every firm’s costs of future R&D. Over time, the public stock 

of knowledge grows, allowing more differentiated or higher quality products to be introduced without 

a continual increase in the amount of resources spent in R&D activities2. This is referred to as 

knowledge spillovers, so called because the benefit of innovation accrues not only to the innovator, but 

“spills over” to other firms by raising the level of knowledge upon which new innovations can be 

based. Thus, knowledge spillovers serve as endogenous engine of economic growth.  

The distribution of countries’ output per capita and their comparative advantages are then 

determined by the process of technical progress in one country being independent from that in the 

others. Perfect technology diffusion (i.e. new ideas flowing as quickly to other countries as they flow 

within countries) favors the convergence of per capita output levels and leaves factor endowments as 

the sole determinants of trade patterns. However, if there are impediments to technology diffusion 

across national borders and the rate of knowledge spillover is much stronger within nations than across 

them3, differences in levels of per capita output across countries will be persistent and the patterns of 

trade can exhibit path-dependence and lock-in (as a consequence of reinforcing effects characterizing 

a country's technological change). Small initial inter-country differences lead then to divergence in 

                                                 
1 It would also, at least partially, explain why an increasing share of international technology transfer takes place 
within multinational corporations. 
2 See, for example, Grossman and Helpman (1991). 
3 Jaffe (1989), Jaffe et al. (1993), Bottazzi and Peri (1999) suggest this, among others. Keller (2000) finds 
evidence pointing to the relevance of geographical proximity, but also shows that the detrimental effect of 
geographical distance on international technology diffusion has fallen by about 20 percent over the period 1970-
1995. 
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specialization patterns and growth4. 

Recent empirical studies on trade dynamics5 have found persistence in the trade patterns of 

industrial countries, a fact whose origin may lie in the nature of technological progress or in the 

relatively stable position of advanced countries in the international economy. In the first case, stability 

in trade patterns arises as a consequence of technological progress being path-dependent and subject to 

localized knowledge spillovers, whereas in the second case knowledge spillovers are pervasive and 

persistence is generated by stability in relative factor endowments. Understanding which of the two 

explanations applies is of primary importance, not least because they have different theoretical and 

normative implications.  

If the actual specialization profile of a country is determined by its past strengths and 

weaknesses, industrial and technology policies targeted at selected industries and technologies in order 

to change the sectoral distribution of the country’s comparative advantages would have lasting effects. 

Under the assumption that the government can identify the more promising technological trajectories, 

it can then pursue the deepening of specialization along those technologies, by shifting resources 

towards them. Empirically, if the explanation of the stability in trade specialization were based on the 

nature of technology, then persistence should be particularly pronounced in technological 

specialization, where the positive external effects in the form of knowledge spillovers from R&D have 

their most direct and strongest impact6. 

In order to find evidence in favor or against the persistence of a country’s technological 

specialization profile, this study applies the dynamic tools offered by distribution dynamics modeling 

to the analysis of  the evolution of the technological specialization profile of industrial countries in the 

last two decades. As the empirical findings will make clear, there is no evidence of strong tendency 

towards persistence, with the exception of situations of initial complete or high de-specialization. The 

relative stability in the degree of specialization of most countries hides significant intra-distribution 

                                                 
4 If a country acquires a temporary advantage in an R&D intensive sector, it can innovate in that sector at a faster 
rate than other countries. This is because the knowledge base on which domestic firms build their innovations 
grows faster than anywhere else, given that it cannot quickly spread to foreign competitors. Hence the country 
can build on an initial advantage, eventually developing a position of enduring comparative advantage. 
5 See Proudman and Redding (1998, 2000) and Brasili et al. (2000). 
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mobility. In particular, high specialization levels are not persistent in time; rather, they revert towards 

lower levels, the reversion being faster and more pronounced for smaller countries (i.e. countries with 

higher overall degree of specialization). This is not at all in line with a theory of technological 

accumulation and is consistent with the findings in Stolpe (1995), which cast doubt on the often 

alleged causality from hysteresis in technology to hysteresis in trade specialization. 

The paper is organized as follows. Section II defines the technological specialization profile of 

a country and explains how it can be measured. Section III studies the evolution of the overall degree 

of technological specialization through an inequality index and the non-parametric estimation of the 

density functions representing the specialization patterns of ten OECD countries. Section IV then 

studies intra-distribution movements (i.e. changes in time of a country’s specialization in a particular 

technology field) through the estimation of Markov stochastic kernels and transition probability 

matrices. Section V concludes. 

 

 

II TECHNOLOGICAL SPECIALISATION PROFILE: MEASUREMENT AND EVOLUTION 

 

To evaluate the extent of mobility and persistence in patterns of international technological 

specialization I employ the CESPRI patent database, which covers all the patent applications filed at 

the European Patent Office (EPO hereafter) between 1978 and 1996.  

The main reason to use patents to measure a country’s specialization profile is that they are the 

only available indirect evidence of technological activity offering a detailed break down by sector for 

a large number of countries and for long time series7. Hence, they will be taken here as an indicator of 

countries’ sectoral distribution of research output: their distribution across technological sectors will 

summarize the technological frontier of a country and its pattern of technological specialization8 at a 

specific point in time. 

                                                                                                                                                         
6 See also Stolpe (1995). 
7 A detailed discussion on the advantages and the problems related to the use of patent data can be found in 
Griliches (1990). 
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It is usually claimed that international patents are characterized by higher average quality than 

national patents9. Using patenting at the EPO to explore a country specialization profile has an 

additional advantage: all the firms patenting at the EPO are patenting abroad10, so that, in principle, the 

analysis on this data is not greatly affected by “domestic market bias”11. This is likely to have 

adversely affected the analyses on the specialization pattern of the United States, because of the 

widespread use of US patent data for studies on the technological specialization profile of advanced 

countries. For this reason, the specialization profile of the United States emerging from previous 

studies does not appear as an accurate description of the areas of technological strength and weakness 

of the US in international markets12. Finally, in the Cespri database all individual applicants have been 

eliminated: this avoids distortions in the representation of a country's specialization profile due to 

individual inventors bursting specialization with low average quality applications in those sectors 

where they are particularly active. 

To characterize the extent of specialization in a technological field, previous studies13 have 

employed the so called Technological Revealed Comparative Advantage (TRCA) index, computed in 

the same way as Balassa’s (1965) index of Revealed Comparative Advantage (RCA) used in trade 

theory. The TRCA index is defined as a country’s share of all EPO patenting in a technological field, 

relative to its share of all EPO patenting in all fields, 

 

                                                                                                                                                         
8 See Jaffe (1986) for a similar use of patent data. 
9 Eaton et al. (1999) mention a study by Putnam that uses micro-level data on a set of countries to estimate a 
model of patent filing decision. He estimates that over 95 percent of the total value of patent rights world-wide is 
contained in inventions that are filed in at least one country outside their home country. 
10 The EPO was founded on the basis of an agreement among 13 European countries: Austria, Belgium, France, 
West Germany, Greece, Italy, Liechtenstein, Luxembourg, the Netherlands, Spain, Sweden, Switzerland and the 
United Kingdom. Seven more states have become members later (Cyprus, Denmark, Finland, Ireland, Monaco, 
Portugal and Turkey). A single application at the EPO can potentially be extended to all the member countries, 
and on average, the number of contracting states designated for protection is about 8 per patent. 
11 Since the EPO is located in Germany, German firms show a higher propensity to apply for a patent there in the 
first years. However, as it will be specified later on, the first years of operation of the EPO will not be used in the 
analysis. 
12 The specific sectoral strengths and weaknesses of the US differ substantially in domestic and in external 
patenting, with no correlation emerging between data from the US patent office on the one hand and from the 
EPO, France and Germany patent offices on the other. The specialization profiles emerging from different 
foreign markets are consistent, however, with correlation coefficients always higher than 0.7 (Archibugi and 
Pianta 1992b: 52). 
13 See, for example, Soete (1981) and Patel and Pavitt (1991). 
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where Pij denotes the number of EPO patents of country i in the technological sector j. 

The TRCA yields information about the pattern of international technological specialization 

insofar as it evaluates a country’s patenting share in an individual sector, relative to some benchmark: 

the country’s share of total patenting. A value of TRCAij above unity indicates that country i is 

comparatively advantaged or specialized in technological sector j. 

Proudman and Redding (1998 and 2000), have recently adopted a modified version of that 

index, according to which an economy’s share of patenting in a given technological field is evaluated 

relative to a different benchmark, which is its average patenting share in all fields: 
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where N is the total number of technological fields. 

By construction, for each country the mean value of RTA across sectors is constant and equal 

to one14. Again, a value of RTAij above unity indicates that the country i’s share of patenting in field j 

exceeds its average share in all fields: that is, country i specializes in field j. Note that the index ranges 

between 0 and N15, hence it is asymmetric as the TRCA index, with which it is perfectly correlated. 

The pattern of international technological specialization at any one point in time can be 

                                                 
14 It can be easily shown that: 

∑=
j ijijij TRCA

N
TRCARTA 1/     (3) 

The TRCA measure is normalized by its cross-sectional mean in order to abstract from the changes in the 
average extent of specialization that it is subject to. In this way, it is always possible to follow movements of a 
country's specialization in a field with respect to its average specialization level. 
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characterized by the distribution of RTA across sectors. Hence, evaluating the dynamics of patterns of 

international technological specialization over time requires an analysis of the evolution of the entire 

cross-section distribution of RTA. This involves two different, but related issues. On one hand, there is 

the issue of the changes in the overall degree of international technological specialization, which may 

be evaluated by analyzing the evolution of the external shape of the RTA distribution. Do we observe 

an increasing specialization in a limited subset of technology fields (a polarization of the RTA 

distribution towards extreme values), or has the degree of specialization remained broadly unchanged? 

On the other hand, there is the issue of persistence versus mobility in international 

technological activities. This addresses questions of intra-distribution dynamics, such as: what is the 

probability that a technological sector moves from one quartile of the RTA distribution to another? 

Are all the sectors in which RTAij > (<) 1 at time t, still specialized (de-specialized) at time t+k (k ≥ 

1)? If not, at what level of specialization is the greatest degree of mobility observed, and how far are 

those sectors moving towards low (high) values of RTA? 

The present study mostly differs from previous empirical studies on technological 

specialization in that it directly addresses these two fundamental issues16. 

The evolution of RTA distribution over time is here modelled adopting a distribution 

dynamics approach, a technique recently developed by Quah (1993a, 1996a, 1996b, 1996c) to analyze 

income convergence in the cross-country growth literature. This empirical methodology is more 

informative than the ones adopted in previous empirical studies because it exploits both the cross-

sectional and the time series variability in the data. 

The analysis presented in the following pages will address the first issue above (changes in the 

external shape of the distribution) by estimating the distribution of RTA across technology fields for 

                                                                                                                                                         

∑ij ijij PP /)

15 Note that the maximum value TRCAij can take varies both in time and across countries. TRCAij is highest 
when country i only applies for patents in sector j and no other country does. In this particular case, TRCAij 
reduces to ( , which differs among countries, while RTAij is equal to N. 
16 Cantwell (1989), Amendola, Guerrieri and Padoan (1998) and Laursen (2000) employ the Galtonian 
regression model, which may suffer of the well-known Galton’s fallacy (Hotelling 1932; Friedman 1992; and 
Quah 1993b). In Archibugi and Pianta (1992a, 1992b, and 1994) changes over time of the profile and degree of 
specialization are analyzed by looking, respectively, at the correlation coefficients of the TRCA vectors at 
different time periods and at the evolution of the chi-square index over time. Only Stolpe (1995) uses the same 
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each country. It will then shed light on the persistence vs. mobility issue, where persistence will be 

interpreted as a measure of the probability of remaining in the state in which a country initially is. 

Namely, if a country is specialized in a sector, we are interested in knowing what is the probability 

that it remains specialized as time passes by. All the probability density functions, Markov stochastic 

kernels and transition probability matrices, presented in the following sections, have been estimated 

from EPO data on 118 3-digit technology classes, classified according to the International Patent 

Classification (IPC) system, using Danny Quah's econometric shell TSRF.  

 

 

III CHANGES IN THE DEGREE OF TECHNOLOGICAL SPECIALISATION 

 

In what follows we shall restrict the analysis to the period 1982-1996, thus dropping the very 

first years of activity of the EPO, which were characterized by a relatively low number of applications. 

The countries analyzed here include the first ten countries for number of applications at the EPO: 

Austria, France, Germany, Italy, Japan, Netherlands, Sweden, Switzerland, United Kingdom, United 

States. 

The number of patent applications filed each year at the EPO varies widely across countries. 

On average, each year US firms apply for 13629 patents, a number well above the average number of 

applications coming from each of the other countries. The other countries with a relatively high level 

of patenting activity are: Germany (9094 applications each year, on average), Japan (8724), France 

(3600), the UK (2719), Switzerland (1684), Netherlands (1554), Italy (1467), Sweden (765) and 

Austria (397). These numbers imply a share of about 30 percent of all the applications at the EPO for 

the US throughout the whole period. Germany and Japan have a share fluctuating around 20%; France 

has a constant 8% share, while the UK has a share declining from 8% in 1982 to 4% in 1996. All the 

remaining countries have a share lower than 5 percent. 

 A measure of specialization that can be borrowed from the inequality literature is the widely 

                                                                                                                                                         
methodology employed here to assess the evolution of patterns of technological specialization in OECD 
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used Gini coefficient. To derive the country specialization Gini, first rewrite the TRCA index in 

country i and technological sector j as the ratio of sector j’s patenting share in country i over sector j’s 

share of total patenting17. Then construct the Lorenz curve as follows: rank the TRCA index in 

ascending order, then plot the cumulative of the numerator on the vertical axis against the cumulative 

of the denominator on the horizontal axis18. The Gini is equal to twice the area between the 45-degree 

line and the Lorenz curve. If the technological structure of country i matches the world technological 

structure, the Lorenz curve will coincide with the 45-degree line and the Gini coefficient will be zero. 

The higher the Gini the more specialized is a country. 

 The evolution of the Gini coefficient for the analyzed countries is reported in Figure 1. The 

G5 countries have a lower degree of specialization (the Gini coefficient is always below 0.3 except, 

but only occasionally, for Japan) compared to that of the other countries, which is also characterized 

by wider fluctuations19. 

 Note, that the analysis on patent applications at the EPO shows a tendency towards a declining 

degree of technological specialization in OECD countries, contrary to previous findings based on US 

patent data (e.g. Cantwell 1989). This tendency appearing stronger for countries with higher initial 

degree of specialization. Indeed, a simple cross-section linear regression of the change in the Gini 

coefficient during the sample period on its initial value reveals a strong and significant negative effect 

(see regression (3) in Table 3). This result is confirmed when the sample size is extended to include 

other countries with fewer patent applications at the EPO than the countries analyzed here. Hence, 

small countries, might be highly specialized in the development of new knowledge and products, but 

their degree of specialization is declining over time. 

 

                                                                                                                                                         
countries, albeit with an emphasis on the distinct dynamics within individual industries. 
17 Hence: 

TRCAij = 
∑∑
∑

ij iji ij

j ijij

PP

PP

/

/
    (4) 

18 Note that by constructing the Lorenz curve in this way we are comparing the distribution of country i’s 
patenting across technological sectors to the distribution of the total patenting across sectors and not to the 
uniform distribution, as it is usually the case (see Amiti, 1999). 
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Figure 1. The evolution of the Gini coefficient for country specialization 
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 However interesting, the analysis on the Gini coefficient can give us a first insight into the 

degree of specialization of the different countries and its evolution in time, but it is not fully 

satisfactory. Suppose that there is a transfer in terms of shares from one technological field to another, 

how does this affect the inequality measures obtained above? The Gini coefficient places a rather 

curious relative value on changes that may occur in different parts of the distribution. Hence, a transfer 

from a more specialized class to a less specialized one has a much greater effect if the two classes are 

near the middle rather than at either end of the spectrum20. In both cases, the main problem relates to 

the difficulties in identifying and evaluating intra-distribution movements, which might also generate 

changes in the shape of the overall distribution. 

To take care of this problem, recall that the pattern of technological specialization can be 

represented by the distribution of the RTA index across technological fields; hence we can estimate 

from the data this cross sectional distribution for each country at different time periods. This has been 

done for all the countries by pooling the observations into three sub-periods: 1982-1986, 1987-1991, 

                                                                                                                                                         
19 Note, however, the significant change in the Gini coefficient for Germany between 1989 and 1991, as a 
consequence of the unification with East Germany. 
20 The origin and destination class must be the same distance apart. For further details, see Cowell (1995). 
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1992-1996 (Figure 2). All the densities are estimated by Gaussian kernel smoothing, taking non-

negativity into account and following the procedure and automatic bandwidth choice from Silverman 

(1986: 2.10 and 3.4.2). 

The US, Germany, France and the UK, as expected, show a low degree of specialization: they 

are characterized by a cross sectional distribution centered around 1. For all the countries belonging to 

this group, the distribution function shows a quite remarkable stability over the three periods21. 

Japan is somewhat different in that it shows a much higher weight of very de-specialized 

sectors and a consequently higher weight of sectors with high specialization. In other words, Japan 

shows a greater degree of specialization than that of the above countries (as in Cantwell 1989). This 

tendency appears less pronounced in the last period, when Japan experiences a widening degree of 

technological specialization: the evolution of the cross sectional distribution being characterized by a 

decreasing weight of the very de-specialized sectors and a slight movement towards the right. 

 

Figure 2. Estimated cross-sectional distributions 

 

          US 1982-1986     US 1987-1991            US 1992-1996 

 

                                                 
21 To save space, in Figure 2 the evolving pattern of the cross sectional RTA distribution is reported only for the 
most representative countries. Density estimation results for the remaining countries can be obtained from the 
author upon request. 
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The remaining countries are definitely more specialized than the G5: the cross-sectional 

distribution of the specialization index has a declining pattern. These countries have a large number of 

de-specialized sectors, but also values around and above 1 appear to have significant weight. 

All these countries, except Italy, appear quite stable with regard to the shape of the cross-

sectional density function. Italy, however, seems to evolve differently: the weight of highly de-

specialized sectors becomes progressively lower and the distribution moves to the right, showing a 

peak at 0.5 in the last period. This confirms what has happened in the past decades, during which Italy 

has moved from a specialization pattern similar to that of small countries towards one more similar to 

that of the large countries22.  

Large countries could, however, display a low degree of specialization simply because they 

themselves make a considerable part of the total world patenting. Since this is especially true for the 

US, I checked whether the US is really characterized by a low degree of specialization or this property 

results from the US having an extremely large share of patent applications at the EPO. I calculated the 

revealed comparative advantage index, excluding US patents from the world technology fields and 

grand totals, and then estimated again the cross-sectional densities. The resulting cross-sectional 

distributions, although with heavier tails, were still centered on one, the mean value of the index, thus 

signaling a low overall degree of technological specialization23. 

 

 

IV INTRA-DISTRIBUTION DYNAMICS 

 

Intra-distribution dynamics include information on switches in ranks and on the distance 

traversed when such switches happen. A way to quantify this phenomenon in a sequence of 

distributions is to obtain Markov stochastic kernels, which give the conditional distribution of a 

continuous variable at time t, given its value at time t+k. More precisely, assume that the process 

                                                 
22 A finding that contrasts with the apparent stability of the pattern of Italy emerging from the analysis of 
Laursen (2000). 
23 Again, the estimated cross sectional densities can be obtained from the author upon request. 
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governing the evolution of the specialization level of a country in a technology field (i.e. RTAt
ij = Xt) 

is a General Markov Chain: 

 

)Pr(,...),Pr(  :  }{ 111111 xXAXAXxXAXX ttttttttt =∈=∈=∈ ++−−++   (5) 

 

The law of motion of the sequence of measures { }0: ≥ttφ  can then be described by a first order time-

invariant autoregressive process: 

)(*
1 tt T φφ =+     (6) 

 

T* is a Stochastic Kernel and can be estimated non-parametrically from the data. 

 For each country, two Markov stochastic kernels have been estimated to represent the 

conditional probability distributions of the RTA index for one-year and ten-year transition periods. For 

each cross-sectional unit (i.e. each 3-digit IPC class) a time series from 1982 to 1996 is available. The 

stochastic kernels here presented were estimated considering every time series as an independent 

realization of the same process and by pooling all the observations on the transitions between period t 

and period t+k (where k is equal to 1 and 10). 

 The estimation procedure adopted is the following. First, an Epanechnikov kernel is used to 

non-parametrically estimate the joint density of the comparative advantage of a given country in field j 

at dates t and t+k, choosing window width optimally, as suggested in Silverman (1986: 4.3.2). This 

estimated joint density implies a current period marginal density, which is calculated by numerical 

integration. Dividing the joint density by the estimated marginal gives the conditional density of the 

specialization index at time t+k, given the value it has at time t, i.e. the stochastic kernel graphed in 

Figure 3. 

 For presentation, the kernels in Figure 3 have been drawn such that the grid lines become 

more finely spaced where more data were available for estimation. The graphs are obtained for ranges 

including the 95% of the distribution of observations (i.e. cutting off the right tail), so to avoid the 
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problem of over-smoothing and spikes for very disperse and isolated observations. Contour plots are 

obtained by projecting vertically onto the floor the stochastic kernels: the contour levels have been 

chosen to be informative of some of the fine structure in those kernels. 

 Under assumptions giving consistency for the joint density estimator, the implied marginal is 

also consistently estimated. Provided then that the true marginal is bounded away from zero, the 

stochastic kernel is consistently estimated as well24. 

 Figure 3 shows the stochastic kernels for 1-year and 10-year transitions in the RTA data 

between 1982 and 199625. Imagine cutting the one year transition stochastic kernel perpendicularly to 

the (Period t, Period t+k) plane, starting from any point on the axis marked Period t and extending 

parallel to the axis marked Period t+k. Saying that the stochastic kernel is a conditional probability 

density function means precisely that the projection traced out is non-negative and integrates to unity. 

That projection is the equivalent of a row of the transition probability matrix, with non-negative 

entries summing to 1. This probability density describes transitions over k year(s) from a given RTA 

value in period t and the whole graph shows how the cross-sectional distribution at time t evolves into 

that at time t+k. 

 If most of the graph were concentrated along the 45-degree diagonal, then the elements of the 

distribution tend to remain around the values where they started. Of course, the greater the dispersion 

around the diagonal, the heavier the tails of the conditional distribution, and the farther an observation 

can move away from its initial value (ceteris paribus). If, on the contrary, most of the mass in the 

graph were rotated 90 degrees counter-clockwise from that 45-degree diagonal, then substantial 

overtaking occurs (specialized sectors tend to become de-specialized and vice-versa). If most of the 

graph were concentrated around the 1-value of the Period t+k axis -extending parallel to the Period t 

axis- then the cross-section distribution converges towards equality to the world specialization pattern 

over a k-year horizon. More generally, if the conditional distributions appear to be the same regardless 

of the starting (Period t) value, then the stochastic kernel is one where a k-year transition takes any 

                                                 
24 The literature on large-sample properties for density estimation is quite vast: the best reference is Silverman 
(1986: 3.7) and the references given there. 
25 The same remark reported in footnote 21 applies here. 
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initial distribution to the same long- run cross-sectional distribution. 

For the United States, 95% of all the observations in the panel lie between 0 and 1.889, hence 

the range is quite narrow. Looking at the one-year transition stochastic kernel, innovation production 

activities in the US appear significantly and quite equally persistent through the whole range, as most 

of the mass of the stochastic kernel is concentrated around the 45-degree line26. On the contrary, but as 

expected, a greater dispersion signals persistence is less strong over a 10-year horizon. 

The range that contains the lower 95% of the RTA values for Germany is (0, 1.859), hence 

very similar to that of the US. Also the 1-year transition kernel is quite similar to the US one, 

suggesting a significant tendency to persistence for Germany as well. The two countries differ as for 

the 10-year transition kernel: for Germany, it is characterized by regression towards the mean for 

values of the specialization index above 1, an interesting feature that characterizes other countries. 

France and the UK show similar features. The ranges including the lower 95% of the 

observations are (0, 2.31) and (0, 2.259), respectively, hence larger than for the US and Germany. This 

is also true for the dispersion, as confirmed by the height of both the estimated kernels, which are 

flatter for the UK. Still, as the US and Germany, France and the UK are characterized by persistence, 

especially for values around the mean of the index (slightly below for the UK). There is, again, a 

tendency to regression towards the mean for high specialization values, more pronounced over a 10-

year horizon. 

The lower 95% percent of observations for Japan lies below 2.649, hence the range is of the 

same order of magnitude as that of UK and France, but the dispersion is somewhat lower for the 1-

year transition kernel. Persistence is significant throughout the whole range, even if this time the mass 

is concentrated just above the diagonal. The 10-year transition kernel is, again, characterized by 

relatively strong persistence and regression towards the mean for values above 1.5. 

                                                 
26 Note how the conclusions about the US emerging from the cross-sectional distribution and the stochastic 
kernels analyses do not agree with those of Cantwell (1989), Laursen (2000) and Amendola et al. (1998). This 
study does not show any tendency of the US towards increasing specialization; rather this country appears as the 
most remarkable example of stability. Most likely, the reason of the different result lies in the different data sets 
employed rather than in the different estimation techniques used. As mentioned at the beginning, the home 
country bias problem may adversely affect the results for the United States if US patent data are employed. This 
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For the remaining countries, the upper limit of the lower 95% range lies between 2.908 

(Switzerland) and 4.169 (Austria); hence, the ranges are wider than those of the first group. The 1-year 

and 10-year transition kernels of four countries (Switzerland, the Netherlands, Italy, and Sweden) have 

common characteristics. The 1-year kernel's pick follows the 45-degree line, remaining right above it, 

except for very low values. In other words, over one year, the specialization index shows some sign of 

persistence around (maybe slightly below) its initial value, when this is not too low. When it is, there 

is, instead, a tendency to move a little to the right (i.e. to increase), but not very far. This tendency is 

confirmed in the 10-year transition kernels, while medium and high values are characterized by 

regression towards the mean. This phenomenon appears stronger for Sweden and Switzerland than for 

Italy and the Netherlands27. Note that for Italy, over ten years, there's a higher probability of very 

disadvantaged sectors to improve specialization: at very low values the kernel is much more centered 

around 0.5 on the Period t+10 axis. Note also that Italy is the only country of the group showing in the 

10-year transition kernel a dispersion similar to (and not higher than) that in the 1-year transition. Both 

these findings are consistent with the different evolution of Italy's cross-sectional distribution, shown 

in the previous section. 

Once again, the stochastic kernels for the US have been estimated excluding US patents from 

the totals to check for the robustness of the lower mobility (higher persistence) result for large 

countries. As expected, the estimated stochastic kernels are characterized by higher dispersion. 

Nevertheless, the one-year transition stochastic kernel is still centered around the main diagonal and so 

is the ten-year transition one for the range of values of the RTA index above 0.5 and below 1.5, that is 

in the range where most of the values are observed. Outside this range, the shape of the estimated 

stochastic kernel is consistent with the asymmetry result28. 

 However informative, the estimation of Markov stochastic kernels leaves us with the 

fundamental problem of evaluating the extent of mobility within a country and comparing it to that of 

                                                                                                                                                         
would go in favor of a greater reliability of the results obtained here in comparison with those of the earlier 
studies. 
27 Austria is somewhat particular in that the 1-year transition kernel is similar to the 10-year transition one; i.e. it 
already shows strong regression towards the mean from above. 
28 Also these estimated stochastic kernels and contour plots are available from the author upon request. 
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the other countries. A way towards quantifying mobility and checking for similarities in the dynamics 

of different countries is to discretize the state space of specialization index values. The discrete cells 

obtained span the space of all possible realizations (the interval [0,N] in our case) and can be used to 

estimate a transition probability matrix by Maximum Likelihood. This is simply done by counting the 

observed transitions out of each discrete cell into itself or the other cells, and then normalizing this 

count by the total number of observations starting from that particular cell (Basawa and Prakasa Rao 

1980)29. 

 Table 2 presents estimates of the probability of transiting between different grid cells of a 

country’s distribution of RTA. This is done for both one-year and ten-year’s transition period. In each 

case, boundaries between the cells have been chosen such that class-year observations are divided 

roughly equally between the grid cells. 

 Each panel in the table has to be interpreted as follows. The numbers in the first column are 

the total numbers of class-year observations beginning in a particular cell, while the first row of 

numbers denotes the upper point of the corresponding grid cell30. Row j includes the estimated 

probability of remaining in state j (i.e. the element (j,j) of the matrix) and of moving from state j to 

state s. The final row of each panel gives the implied ergodic distribution. 

Estimated values of transition probabilities close to one along the diagonal are indicative of 

persistence in a country’s pattern of RTA, while large off-diagonal terms imply greater mobility. The 

results of Table 2 for the one-year transition period suggest a significantly high degree of mobility in 

patterns of international technological specialization in all the countries. This finding is consistent with 

the visual evidence presented earlier: the stochastic kernels were indeed all characterized by quite a 

high spread. 

The table does not reveal any particular striking difference between the two different groups 

                                                 
29 It should be mentioned that, when underlying observations are, as in this case, continuous variables, such a 
discretization could distort dynamics in possibly important ways. The most extreme consequence of this would 
be a failure of the fundamental Markov property that the state occupied by the system in period t depends only 
on the state the system occupied in period t-1 and not on the previous ones (see Bulli 2001). However, this 
potential problem is not considered to have a dramatic effect on the estimation results, as the widespread use of 
transition probability matrices testifies.  
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of countries identified before. Even for the US all the intermediate grid cells along the main diagonal 

have values below 0.5, and this is almost always true for all the other countries31. Mobility is 

somewhat lower at the bottom of the distribution: it is more difficult for a country to improve its level 

of specialization in those technological fields where it is very de-specialized32. 

The difficulty to move out of a situation of strong relative disadvantage signals the importance 

of own research for the ability of a country to innovate. A country that today does not have enough 

experience (i.e. accumulated knowledge) and capabilities in a technology area to be an innovator will 

find it increasingly difficult to innovate in the future. Even if R&D output can be transferred 

intentionally (through international patents and licenses) or unintentionally (through spillovers), it is 

not necessarily adopted and further improved in a country unless it has developed itself some previous 

knowledge in the field, i.e. unless the country has reached some threshold level of knowledge33.  

The ergodic distribution of RTA implied by the estimated one-year transition probability 

matrix was obtained and reported in the last row of each country’s panel. Recall the ergodic 

distribution provides the asymptotic unconditional probability of being in one state, that is the 

probability of being in one state regardless of the initial state. In each case the ergodic distribution is 

close to a uniform distribution as a consequence of the discretization criterion adopted (i.e. because the 

estimated matrices are approximately a fractile)34. 

The second half of Table 2 shows that, as expected, the degree of mobility is even higher over 

a ten-year transition period. Still, the same tendencies that characterize the one-year dynamics appear 

                                                                                                                                                         
30 Note how for Austria the first cell is not an interval, but a single point at zero. This happens because of the 
great number of zero observations, a clear sign of high degree of specialization 
31 Such a generally high level of mobility should not come as a surprise. Innovation is an activity whose outcome 
is subject to randomness: jumps in the percentage number of patents applied for by a country in a given sector 
are to be expected. 
32 Mobility appears lower also at the top, even if to a lesser extent compared to what happens at the bottom of the 
distribution. Note, however, that the grid cell at the top is defined by a very wide range, whereas the others are 
not. Given the results of the stochastic kernel analysis, it should be it clear that this could hide possibly relevant 
dynamics. For this reason, it is preferable not to draw conclusions from the apparently high persistence rate in 
the top state. 
33 Cohen and Levinthal (1990) first recognized the ability to exploit external knowledge as a critical component 
of innovative ability and named it “absorptive capacity”. 
34 Note that for the stability of the transition probability matrix and the existence of the ergodic distribution the 
highest eigenvalue has to be equal to 1 and all the others need to be smaller than 1 in absolute value. This 
happens for all the countries, the first eigenvalue being equal to 1 within a two-digit approximation. 
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also here35. The results for Italy are peculiar in that they show a probability of transition out of the 

bottom grid cell much higher than that of the other countries. This is consistent with the findings about 

the changing shape of the cross-sectional distribution in section 336. 

 

Table 1. Some mobility indices. 

 
1

)(
1 −

−
=

n
PtrnM  ∑ ∑ −=

k l klk lkpM π2
 

13 −

−
= ∑

n
n

M m mλ  )det(14 PM −=  
25 1 λ−=M  

US 0.598 0.665 0.598 0.987 0.292 
Germany 0.645 0.740 0.645 0.994 0.321 
France 0.710 0.906 0.710 0.998 0.474 
UK 0.770 1.012 0.770 0.999 0.556 
Japan 0.545 0.574 0.545 0.974 0.232 
Italy 0.700 0.869 0.700 0.997 0.431 
Switzerland 0.665 0.824 0.665 0.993 0.416 
Netherlands 0.645 0.808 0.645 0.992 0.393 
Sweden 0.648 0.867 0.648 0.996 0.410 
Austria 0.668 0.930 0.667 1.000 0.403 

 

Table 1 calculates a variety of mobility indices (following Shorrocks 1978; Geweke et al. 

1986; Quah 1996b) for each of the countries. Each of these indices attempts to reduce information 

about mobility from the matrix of stationary one-year transition probabilities P to a single statistic. 

Thus, M1 evaluates the trace of the matrix (tr(P)), M4 analyses the determinant (det(P)), and M3 and M5 

are based on the eigenvalues λj of the matrix. Finally, M2 presents information on the average number 

of class boundaries crossed by an observation originally in state k, weighted by the corresponding 

proportion πk of the ergodic distribution. 

 The results in Table 1 confirm that the overall degree of mobility is quite high. Among the 

countries in the sample, Japan has the lowest value of all the indices: its specialization pattern appears 

as the least subject to shifts from one year to the next, as measured by the cross boundaries transitions 

under the stationarity assumption. The US comes right after and seems to be somewhat equally distant 

from Japan and Germany, which follows. Moving towards higher values of the mobility indices, we 

                                                 
35 Note that the probabilities estimated over ten-year transition periods differ from the one-year transition 
probabilities iterated ten times, suggesting that the evolution of the vector of RTA is not fully characterized by a 
first-order, time homogeneous model, as the one employed here. However, again, explicitly adopting a higher 
order auto-regression is not considered to influence the estimation results dramatically. 
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then find a group of three countries very close to each other (the Netherlands, Sweden and 

Switzerland), followed by Italy and then, surprisingly, by France and the UK. The evidence on Austria 

is rather mixed. 

The asymptotic properties of first-order Markov chains derived in Anderson and Goodman 

(1957) can be used to test for the statistical significance of the similarities between the dynamics of 

different countries37. The test has been implemented for each pair of countries in both directions (i.e. 

using alternatively the transition probability matrix of each of the country in the pair as the null). The 

null is almost invariantly rejected38, that is idiosyncratic elements are quite strong and do affect the 

dynamics of countries’ specialization patterns. This result is somewhat more striking since it emerges 

from the comparison of the most advanced countries, hence of those countries we would think as 

being more similar because of their industrialization level and the intense relations they have with 

each other. As the literature on national systems of innovation39 claims, those specificities could 

originate from the institutions and mechanisms supporting technological innovation, which might 

greatly differ among countries. 

 

 

V CONCLUDING REMARKS 

 

 The results emerging from the econometric analysis clearly emphasize the existence of two 

strong country size effects: one static and one dynamic. The first one is well known and has been 

accounted for in previous analyses40: economically “large” countries are less specialized and spread 

their innovation activities across a wider range of technological fields. The analysis on the shape of 

the specialization index distribution has shown that this is fairly symmetric around one for the most 

                                                                                                                                                         
36 Cefis and Orsenigo (2001) had already found that Italy appears to be less persistent than the G5 countries; this 
analysis has further shown that this country has been characterized by a probability of moving out of the de-
specialization state higher than the other countries and increasing with time. 
37 See Proudman and Redding (1998 and 2000) for an analogous application of the Anderson and Goodman test. 
38 The only exception is the Italy-Switzerland pair, for which the two hypotheses specified above cannot be 
rejected at the 95% confidence level. 
39 See Nelson (1993). 
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industrialized countries, with the partial exception of Japan whose distribution is more skewed to the 

right, but less and less so in time. This static size effect is also confirmed by a simple cross-country 

linear regression of the degree of specialization, as measured by the Gini coefficient, on the 

manufacturing output, a proxy for size (Table 3)41. 

 

Table 3. Some simple cross-sectional regressions 

 (1) (2) (3) 
Variable Gini1982 M2 Gini1996/Gini1982 

C 0.411** 
(7.403) 

0.916** 
(19.22) 

1.255** 
(10.409) 

Isic300_82_US -0.28* 
(-2.035) 

-0.328** 
(-2.77) 

 

Gini1982   -0.745* 
(-2.25) 

Note: 
(1) Regression for the static size effect. The Gini coefficient is regressed on a constant and each country’s 

manufacturing output (ISIC 300) measured in dollars and relative to US. 
(2) Regression for the dynamic size effect. The M2 mobility index (the one also measuring mobility outside the 

main diagonal) is regressed on a constant and each country’s manufacturing output (ISIC 300) measured in 
dollars and relative to US. 

(3) Regression of the change in the Gini coefficient over the sample period on a constant and its initial value. 
* Significant at the 10 percent level. ** Significant at the 5 percent level. 
Data on manufacturing output and the exchange rate are taken from the OECD STAN database (note that 
manufacturing output is not available for Switzerland, which had to be excluded from the sample when that 
variable was involved). 
 
 

 

There is then a second size effect, which could not emerge from previous studies. Because the 

approaches adopted in those studies are fundamentally static in nature and are averaging across 

observations in various ways, they have difficulties in capturing the genuine dynamic forces 

characterizing the evolution of countries’ technological specialization patterns. The distribution 

dynamics analysis performed in this study has shown that economically “large” countries are also 

characterized by a higher degree of persistence (i.e. lower degree of mobility), this result being less 

                                                                                                                                                         
40 See, for example, Archibugi and Pianta (1992b). 
41 The regressions reported in Table 3 are performed on a relatively small sample size. However, the results are 
confirmed and even reinforced when the sample size is extended to include other countries with fewer patent 
applications at the EPO than the countries analyzed here. Regressions (1) and (2) are also relative to the initial 
year of the sample: the same results are obtained when the regressions are performed, for example on the cross-
section of countries in any other year of the sample period. 
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strong for France and the UK42. This means that the specialization level of large countries in individual 

technology fields displays lower probability of moving around and far from its initial level. Again, this 

result is confirmed by a simple linear regression of a mobility index on the size of a country (see Table 

3, column (2)).  

Regardless of the distinction between “large” and “small” countries, the tendency towards persistence 

is never pronounced: technological specialization in advanced countries displays fluctuations around 

and far from its initial level with a probability almost always higher than 0.5 or more43. Furthermore, 

mobility in technology appears higher than that emerging from trade analyses44, thus weakening the 

case for causality from hysteresis in technological development to hysteresis in trade specialization 

patterns45. 

In other words, this result seems to undermine the theory of technological accumulation, and 

more specifically the proposition that international patterns of technological advantage, having been 

established, will remain relatively stable over periods of ten or even twenty years, under the 

assumption that only the emergence of new technological paradigms and industries can, in the long 

term, generate important changes in the specialization trajectories of both firms and countries 

(Cantwell 1989).  

Mobility is also asymmetric: it seems to be mostly difficult for a country to improve the 

specialization level of very de-specialized technology fields, while highly specialized fields show a 

fairly general tendency to revert towards lower specialization levels. From both the estimated 

stochastic kernels and transition probability matrices it emerges a tendency of observations to revert 

towards the mean, but only from one side of the distribution. Furthermore, on average, but with the 

exception of Italy, the probability of remaining a highly specialized country declines more than that of 

remaining an occasional innovator as time passes by. This clearly explains the decline in persistence 

                                                 
42 Recall the results on the mobility indices for France and the UK, which rank them as the most mobile 
countries among the ten analyzed in detail. 
43 Mobility is also invariantly higher over ten than over one year transition period (Italy being the only exception 
among the countries here examined), a result consistent with those of Cefis and Orsenigo (2001), who find that 
persistence in firms’ patenting activity declines significantly as the transition period lengthens. 
44 See, again, Proudman and Redding (1998 and 2000) and Brasili et al. (2000). 
45 Recall that localized spillovers should have their most direct effect on technological specialization. 
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(i.e. the increased mobility) as the transition period lengthens. 

Asymmetry in technology dynamics suggests that even if R&D spillovers were international 

in scope, countries need to have some prior level of knowledge, R&D investment, or complementary 

assets in the relevant field to be able to understand and employ knowledge produced elsewhere. In the 

absence of a sufficiently high absorptive capacity (Cohen and Levinthal 1990), originated from 

previous experience in a technology field, countries are not likely to overcome their weaknesses. Since 

the speed of reversion to the mean from above is inversely related to country size, this result, again, 

does not support the existence of self-enforcing mechanisms deepening initial specialization patterns, 

or even locking them in. If that were the case, not only a country should retain its initial comparative 

advantage in a field and possibly reinforce it, but also this persistence effect should be stronger the 

more the country's initial specialization pattern is skewed. 

In sum, none of the empirical dynamics of technological specialization emerging from the 

analysis of industrial countries seems to support the idea that there are cumulative and reinforcing 

mechanisms at work, which could then generate path-dependence in the original technology and trade 

specialization patterns. These results are complementary to the conclusions drawn in Stolpe (1995), 

who found that countries’ patenting activity in individual industries is less persistent than indicators of 

trade related specialization in industrial production, thus casting doubt on the often alleged causality 

from hysteresis in technology to hysteresis in trade specialization. 

If then there is, as it seems, persistence in the trade patterns of industrial countries, this must 

then be the consequence of these countries occupying a relatively stable position in the international 

economy in terms of factor endowments. Furthermore, the immediate normative implication of this 

result is that targeted industrial and technology policies might not be effective, because an initial 

comparative advantage can be eroded by the knowledge on which it is based flowing to foreign 

competitors. There is, however, one notable exception: policies aimed at building competitive ability 

in very disadvantaged sectors may take a country out of an otherwise enduring weak position in the 

international arena. 
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Table 2. Five states transition probability matrices
  
  

One year transition Ten years transition 
  
  

US Upper endpoint 
Number 0.59 0.87 1.11 1.38 118 
332 0.65 0.24 0.06 0.02 0.03 
344 0.21 0.44 0.22 0.09 0.04 
320 0.06 0.25 0.41 0.21 0.08 
333 0.04 0.08 0.20 0.48 0.20 
323 0.04 0.03 0.08 0.22 0.63 
Ergodic 0.199 0.212 0.193 0.206 0.190 

US Upper endpoint 
Number 0.59 0.87 1.11 1.38 118 
123 0.53 0.22 0.08 0.11 0.06 
115 0.23 0.39 0.20 0.10 0.08 
118 0.10 0.29 0.36 0.19 0.06 
112 0.05 0.12 0.23 0.43 0.17 
122 0.04 0.06 0.11 0.32 0.47 
      

  
  

Germany Upper endpoint 
Number 0.62 0.88 1.085 1.32 118 
330 0.66 0.22 0.04 0.03 0.04 
338 0.22 0.39 0.23 0.10 0.06 
322 0.06 0.24 0.38 0.21 0.11 
341 0.03 0.09 0.20 0.45 0.24 
321 0.05 0.06 0.10 0.25 0.54 
Ergodic 0.206 0.199 0.186 0.210 0.199 

Germany Upper endpoint 
Number 0.62 0.88 1.085 1.32 118 
104 0.56 0.17 0.12 0.04 0.11 
141 0.27 0.30 0.20 0.15 0.08 
135 0.09 0.18 0.30 0.27 0.16 
106 0.04 0.15 0.19 0.31 0.31 
104 0.12 0.05 0.15 0.24 0.43 
      

  
  

France Upper endpoint 
Number 0.51 0.75 1.02 1.38 118 
324 0.54 0.20 0.08 0.09 0.08 
333 0.20 0.37 0.24 0.16 0.04 
335 0.07 0.25 0.38 0.22 0.07 
337 0.11 0.13 0.23 0.32 0.22 
323 0.09 0.05 0.09 0.22 0.55 
Ergodic 0.203 0.202 0.206 0.202 0.188 

France Upper endpoint 
Number 0.51 0.75 1.02 1.38 118 
115 0.55 0.21 0.06 0.08 0.10 
114 0.20 0.29 0.27 0.16 0.08 
111 0.10 0.25 0.32 0.22 0.11 
130 0.11 0.18 0.26 0.22 0.22 
120 0.12 0.09 0.13 0.25 0.40 
      

  
  

UK Upper endpoint 
Number 0.52 0.8 1.07 1.4 118 
332 0.48 0.22 0.10 0.09 0.11 
329 0.20 0.35 0.24 0.13 0.07 
342 0.11 0.23 0.32 0.23 0.11 
320 0.10 0.13 0.24 0.30 0.22 
329 0.11 0.07 0.10 0.25 0.47 
Ergodic 0.202 0.204 0.201 0.200 0.194 

UK Upper endpoint 
Number 0.52 0.8 1.07 1.4 118 
124 0.40 0.20 0.06 0.19 0.14 
111 0.15 0.34 0.19 0.21 0.11 
131 0.17 0.21 0.21 0.27 0.15 
92 0.18 0.18 0.17 0.27 0.18 
132 0.09 0.13 0.17 0.27 0.33 
      

  
  

Japan Upper endpoint 
Number 0.34 0.71 1.06 1.52 118 
335 0.63 0.24 0.07 0.04 0.01 
335 0.21 0.51 0.21 0.06 0.02 
333 0.08 0.21 0.45 0.21 0.05 
319 0.03 0.05 0.22 0.51 0.19 
330 0.02 0.02 0.06 0.18 0.72 
Ergodic 0.185 0.207 0.206 0.203 0.200 

Japan Upper endpoint 
Number 0.34 0.71 1.06 1.52 118 
141 0.52 0.30 0.11 0.04 0.04 
99 0.19 0.35 0.25 0.17 0.03 
116 0.09 0.24 0.33 0.26 0.08 
104 0.03 0.09 0.18 0.46 0.24 
130 0.03 0.05 0.15 0.26 0.51 
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Table 3 (cont.)  
  
  

Ten years transition (cont.) One year transition (cont.) 
  
  

Italy Upper endpoint 
Number 0.27 0.56 0.89 1.49 118 
154 0.26 0.30 0.17 0.18 0.09 
107 0.16 0.36 0.29 0.17 0.02 
107 0.10 0.21 0.29 0.31 0.09 
98 0.09 0.11 0.29 0.26 0.26 
124 0.07 0.06 0.14 0.26 0.47 
      

Italy Upper endpoint 
Number 0.27 0.56 0.89 1.49 118 
338 0.47 0.22 0.12 0.09 0.09 
330 0.21 0.42 0.25 0.08 0.03 
328 0.12 0.21 0.34 0.23 0.09 
320 0.08 0.13 0.23 0.38 0.18 
336 0.09 0.02 0.07 0.23 0.59 
Ergodic 0.187 0.201 0.207 0.206 0.199 

  
  

Switzerland Upper endpoint 
Number 0.24 0.55 0.85 1.47 118 
118 0.52 0.14 0.09 0.17 0.08 
115 0.17 0.41 0.23 0.11 0.09 
120 0.17 0.27 0.27 0.20 0.10 
110 0.09 0.13 0.26 0.26 0.25 
127 0.10 0.07 0.14 0.29 0.39 
      

Switzerland Upper endpoint 
Number 0.24 0.55 0.85 1.47 118 
332 0.51 0.20 0.11 0.09 0.08 
333 0.23 0.45 0.20 0.06 0.05 
329 0.12 0.21 0.38 0.21 0.08 
329 0.07 0.08 0.24 0.41 0.19 
329 0.07 0.05 0.07 0.22 0.59 
Ergodic 0.203 0.203 0.202 0.196 0.196 

  
  

Netherlands Upper endpoint 
Number 0.15 0.57 0.95 1.53 118 
136 0.53 0.18 0.10 0.09 0.10 
115 0.19 0.43 0.23 0.11 0.04 
123 0.06 0.17 0.31 0.28 0.18 
107 0.09 0.12 0.18 0.28 0.33 
109 0.08 0.08 0.10 0.21 0.52 
      

Netherlands Upper endpoint 
Number 0.15 0.57 0.95 1.53 118 
335 0.56 0.19 0.09 0.09 0.07 
328 0.19 0.46 0.23 0.09 0.03 
340 0.09 0.24 0.38 0.21 0.08 
324 0.10 0.07 0.22 0.40 0.21 
325 0.07 0.03 0.11 0.18 0.62 
Ergodic 0.198 0.197 0.205 0.196 0.205 

  
  

Sweden Upper endpoint 
Number 0.03 0.45 0.9 1.55 118 
120 0.58 0.10 0.10 0.10 0.12 
118 0.04 0.50 0.24 0.18 0.04 
111 0.11 0.22 0.35 0.23 0.10 
113 0.14 0.11 0.25 0.27 0.24 
128 0.16 0.05 0.14 0.30 0.36 
      

Sweden Upper endpoint 
Number 0.03 0.45 0.9 1.55 118 
326 0.61 0.08 0.09 0.11 0.11 
335 0.08 0.61 0.21 0.06 0.03 
335 0.07 0.21 0.37 0.25 0.10 
320 0.11 0.09 0.24 0.32 0.24 
336 0.12 0.03 0.11 0.24 0.50 
Ergodic 0.199 0.204 0.205 0.195 0.197 

  
  

Austria Upper endpoint 
Number 0 0.26 0.69 1.57 118 
213 0.55 0.04 0.09 0.16 0.16 
47 0.13 0.32 0.49 0.06 0.00 
101 0.14 0.18 0.41 0.22 0.06 
105 0.21 0.07 0.24 0.30 0.18 
124 0.20 0.00 0.11 0.31 0.38 
      

Austria Upper endpoint 
Number 0 0.26 0.69 1.57 118 
517 0.66 0.04 0.08 0.11 0.12 
145 0.18 0.31 0.42 0.08 0.01 
330 0.11 0.22 0.41 0.22 0.05 
330 0.15 0.02 0.27 0.38 0.18 
330 0.19 0.00 0.04 0.20 0.57 
Ergodic 0.307 0.089 0.208 0.202 0.194 
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Figure 3. Estimated stochastic kernels 
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