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New York University

November 2004

Abstract

The main goal of this paper is to analyze the nature of long-term liquidity contracts that arise
between lenders and borrowers in the absence of perfect enforceability and when both parties
are financially constrained. We study an infinite horizon dynamic contracting model between
a borrower and a lender with the following features: The borrower, is credit-constrained, faces
a stochastic project arrival process every period, can choose to renege each period, and can
save through the lender. Projects are indivisible. The lender is resource-constrained, and can
commit to the terms of the contract as long as it is ex-ante individually rational to do so. We
show that: (i) Enforcement problems and endogenous resource constraints can severely curtail
the possibility of financing projects, (ii) the economy exhibits investment cycles, (iii) credit
is rationed if either the lender has too little capital or the borrower has too little financial
collateral. This paper’s technical contribution is to show the existence and characterization
of financial contracts that are solutions to a non-convex dynamic programming problem.
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1 Introduction

The level of resources of lenders have significant and positive effects on lending and economic
activity. As their capital levels fall, banks become more conservative in their lending. During
the credit crunch of 1990, banks started cutting back on lending immensely. Limited bank
capital relative to the loan demand contributed to restrictive bank lending during the recession
of 1990/91.1 There is a large empirical literature that examines the link between bank capital
and lending (see Sharpe [33] for an extensive survey).2 There is also a theoretical literature that
suggests that higher bank capital tends to increase lending (see Besanko and Kanatas [10], Thakor
[37], Holmström and Tirole [23], and Diamond and Rajan [17]). The analyses in Thakor [37] and
Holmström and Tirole [23] are most consistent with the findings of the empirical literature. Yet,
a proper investigation of these issues necessitates a genuinely dynamic model with endogenous
capital constraints on financial intermediaries.3

There is also empirical evidence that dynamic bank relationships help borrowers through
implicit contracting (see Petersen and Rajan [28], Berger and Udell [7], Hoshi, Kashyap and
Sharsftein [20, 21, 22]). On the theoretical side, Haubrich [19], Boot, Greenbaum and Thakor
[12] are early examples of works to recognize the potential gains from long-term interactions
between banks and borrowers. What is missing though is an explicitly dynamic model of liquidity
provision generating interesting credit dynamics and rationing which could capture the stylized
facts observed in the data.

This paper aims at filling these gaps. We study the nature of long-term liquidity provision
between lenders and borrowers in the absence of perfect enforceability and when both parties are
financially constrained. To this end, we build an infinite horizon model of long-term lending and
borrowing and analyze in what ways liquidity shortages on both sides affect the evolution of the
economy and investment activity in particular.

An infinitely-lived, risk neutral borrower (firm or entrepreneur) receives a project every period
with some probability.4 The project requires a certain amount of funds to be invested and has

1See Bernanke and Lown [9] on ‘The Credit Crunch’. They give anecdotal evidence on Richard Syron, then

president of the Federal Reserve Bank of Boston, calling the crunch a ‘Capital Crunch’. Syron argued in a testimony

before Congress that the credit crunch in New England was due to a shortage in bank capital. Banks in the region

had to write down loans, forced by the real estate bubble. This in turn led to the depletion of their equity capital.

In order to meet regulatory requirements, they had to sell assets and scale down their lending.
2Most of these studies have been conducted for US data inquiring into whether implementation of the 1998 Basel

accords’ capital standards caused a ‘credit crunch’ in the US. Sharpe [33] finds that empirical evidence suggests

that loan losses have a negative and bank profitability has a positive effect on loan growth.
3We quote (emphasis ours) from Holmström and Tirole [23, p.690]: “Limited intermediary capital is a neces-

sary ingredient in the study of credit crunches and cyclical solvency ratios.” They also mention that a proper

investigation of these issues requires endogenous intermediary capital and an explicitly dynamic model.
4This paper is not concerned with consumption smoothing. We are focusing on the asset side of the lenders’

balance sheets to study liquidity provision to borrowers for productive purposes. For a classical treatment of the
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a stochastic return structure. Projects have positive net present value which make them socially
desirable to undertake. Moreover, the projects are indivisible and although the borrower has a
given endowment every period, it is not sufficient to cover the required investment level. There is
limited liability on the part of the borrower; net payments need to be nonnegative. All these in
turn generate a demand for liquidity from the borrower. The problem is that this demand is not
always matched by an associated supply of credit since the contracts are not perfectly enforceable.
It is possible for the borrower to renege on the contractual clauses and run away with the return
on investment. There is no commitment mechanism to prevent the borrower from defaulting. As
a consequence, at the optimum, the lender offers incentive-compatible contracts and the borrower
is credit constrained.

An infinitely-lived, risk neutral lender (bank or financial intermediary) provides the borrower
with liquidity. If the two of them enter into a long-term liquidity provision agreement, the lender
is supposed to extend credit to the borrower in states where the borrower has a demand for
external financing because he wants to implement a project and the project lives for one period
only. The lender can commit to the terms of the contract as long as the net payments from
the contract are non-negative. The lender has a storage technology that makes it possible for
the entrepreneur to accumulate wealth through the lender. We analyze an economy where there
is no other way for the borrower to save. This is not restrictive in the sense that it is the
simplest way to capture the idea that the return on deposits with the lender is higher than the
return on the borrower’s storage technology (self-insurance). Contrary to the common practice
in the literature which takes it for granted that lenders have unlimited resources, we assume that
lenders are resource-constrained. This is to capture in a simple way the fact that lenders also
face financial frictions in raising funds (see Kashyap and Stein [25], Schneider [32]): for example,
they might face liquidity shortfalls due to other financial commitments. Each borrower that a
lender commits to provide liquidity to, has an opportunity cost for the lender when it comes to
dealing with other borrowers. Financial collateral also plays an important role in our framework.
If a borrower chooses to default, what he can confiscate is limited to the returns on the project.
His deposits with the lender are then transferred to the lender.

A dynamic liquidity contract is a mechanism that specifies transfers to and payments from
the lender as a function of the entire history of realizations of the random variables in the model.
We first analyze the benchmark case of contracts in the absence of enforceability problems, i.e.,
the first-best contracts. An efficient contract needs to be efficient after any history. This insight
facilitates the analysis immensely by letting us use recursive methods. In the absence of default,
optimal accumulation and investment decisions are independent of the surplus sharing rule stated
in the contract. All that matters then is how the surplus is shared. Optimal contracts define a

liquidity provision of banks for consumption smoothing purposes, see Diamond and Dybvig [16]. For an analysis

of intertemporal smoothing by long-lived intermediaries, see Allen and Gale [4]
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Pareto frontier between the value to the borrower and the value to the lender, which is strictly
decreasing. A reduction in the value to the lender is an equivalent increase in the value to the
borrower; there is no loss of value because there is no possibility of default. However, it might
happen that for some levels of the resources of the lender, the resource constraint for the lender
binds, and projects will be passed up (although they have positive net present value); so there will
be credit rationing. Nevertheless, if the agents are patient enough, the economy will accumulate
resources and will start investing in those projects in finite time, with probability one.

One of our results is that first-best savings are bounded from above. Since both parties are
risk neutral, saving happens only for productive purposes in this economy. One saves because
one wants to be able to invest when there is a project to be invested in. This is what we call the
first-order effect. There is also the second-order effect stemming from the fact that a sequence of
unlucky draws can lead to drying up of resources. Agents would like to save to insure themselves
against a resource depletion of this sort. However, as the resource level increases, the utility cost
of saving one more dollar outweighs the gain from insurance, leading to savings being bounded.
Clearly, relatively more patient agents save more, since they care about the possibility of a
sequence of bad shocks more. Another feature of the first-best contracts is that the investment
rule is monotonic in the level of resources. The intuition is clear: if investment is undertaken at
a level of resources, it will also be undertaken at higher levels of resources.

A feasible second-best contract needs to be incentive compatible since the borrower has no
other credible way to commit to the terms of the contract. The worst punishment that can be
inflicted upon the borrower in case of default is exclusion from the credit markets. In that case,
the borrower is compelled to consume what he confiscated plus his stream of future endowment:
default leads to autarky. We borrow this assumption from the literature on dynamic contracts
(see Albuquerque and Hopenhayn [2], Alvarez and Jermann [5], Atkeson [6], Kehoe and Levine
[26], Marcet and Marimon [27], Thomas and Worrall [39]) and adopt it as is, since our focus is
rather on liquidity provision and the effect of lender resource constraint on the nature of emerging
contracts.5

Relative to the first-best contracts, second-best contracts feature more interesting properties.
Enforcement problems and endogenous resource constraints can severely reduce the possibility
of financing projects. Investment and savings are functions both of the level of resources and
the surplus sharing rule, in contrast to the first-best contracts. Investment is (weakly) under-
provided. Second-best savings are (weakly) less than first-best savings capturing the intuition
that it does not pay off to postpone consumption/investment to self-insure against a possible
‘credit crunch’.

5Recent work in the aforementioned literature focuses on relaxing that assumption to endogenize the value of

default. Cooley, Marimon and Quadrini [14] present a model where the value of repudiation is endogenous and is

affected by all the general equilibrium conditions. Phelan [29] is an earlier contribution that allows recontracting

in case of default, shows the existence of a default-free equilibrium with trade and characterizes its properties.
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Second-best contracts exhibit interesting dynamics. Any economy where agents are relatively
patient exhibits investment cycles. The fact that lenders are resource-constrained is the reason
why we obtain that result. For any initial level of resources, there is a positive probability that
the economy will go into a ‘credit crunch’ phase. This happens because the lender’s resource con-
straint starts binding. For economies where agents are relatively patient, this is not an absorbing
state. The economy recovers in the long-run, the capital levels are restored and investment activ-
ity goes back to normal. As the economy evolves through time, the aggregate resources increase
on average, which in turn increases the lag between a phase of investment and a phase of no-
investment. However, in economies with relatively impatient agents, this phase is catastrophic.
The aggregate system gets stuck in that phase and we observe constant stagnation.

There is another type of dynamics generated by the incentive compatible nature of the second-
best contracts. Depending on the initial distribution of payoffs, different initial investment be-
haviors are observed. For some economies, if the initial value of the share that the borrower gets
from the surplus is too small, the lender might find it too costly to make sure there is no default.
Hence, initially there is inefficiency in the economy since although the projects have positive net
present value, credit is rationed. This does not lead to the collapse of the relationship though.
As time evolves, the share of the borrower increases (on average) and investment starts to be
undertaken for the same states of resources where initially credit was declined. The intuition
is that, over time there is ‘collateral’ being built and held by the lender in terms of promises
(deposits). Since the lender has no commitment problem, these promises have to be delivered
and the bargaining power of the borrower inside the relationship increases. Eventually, we see
investment being implemented.

A third kind of dynamics are in the spirit of Bernanke and Gertler’s [8] accelerator result.
Worsening aggregate conditions lead to the worsening of the borrower’s worth/financial collateral
(summarized by v), leading to the fact that positive net present value projects are passed up
because it is not incentive compatible to extend credit to the borrower with such little collateral.
Ameliorating aggregate conditions work in the opposite direction.

Bernanke and Gertler [8] study an OLG model of business cycle dynamics where borrowers’
balance sheet positions play an important role. They show that agency costs associated with the
undertaking of physical investment are decreasing in the borrower’s net worth. They, then, pro-
ceed to show that this general insight implies the emergence of accelerator effects on investment.
Strengthened balance sheets of borrowers during good times in turn expand investment demand
which tends to amplify the boom; weakened balance sheets during bad times work in the opposite
direction. Thus, the existence of agency costs exacerbates business cycles.

There are very important distinctions between their model and the present model. Bernanke
and Gertler uses an OLG model whereas the present paper is a full-fledged infinite horizon model
of borrowing and lending, internalizing the gains from long-term relationships. The same kind of
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accelerator effect is exhibited by the dynamics of the second-best contracts in the present paper.
Moreover, it happens that there is a completely different kind of cyclical behavior emerging in
the current model that [8] does not have. Cycles can be efficient, i.e., we can observe investment
cycles not because of agency costs but because lenders’ resources are scarce and the system enters
a ‘capital crunch’ region.

This paper also contributes a technical analysis of the existence and characterization of optimal
financial contracts that are solutions to a non-convex dynamic programming problem. Indivisi-
bility of the projects along with credit constraints make the set of feasible contracts a non-convex
set. The resulting value functions are not everywhere differentiable and exhibit discontinuity
points as shown in Figure 3 below. The standard methods using concave programming and/or
(super)differentiability of the value functions are not of help in this context. We can still use a
rather direct strategy and exploit monotonicity of the resulting operators to prove our charac-
terization results. The problem of the value function entering the constraint set was introduced
in Thomas and Worrall [39]. In our case, the problem is exacerbated by the fact that both the
borrower and the lender have limited liability constraints and the continuation values should be
nonnegative for both.6 We can use an approach similar to the one in [39] to show existence of
the value function. It is a bit more complicated since, in game theoretical terms, the problem in
[39] is a repeated game where the current problem is a dynamic game with an unbounded state
space.

There are close ties between this paper and the literature on dynamic incentives to repay.
Bolton and Scharfstein [11] and Stiglitz and Weiss [35] analyze incentive effects of termination in
credit relationships, in which the threat of termination by the lender provides the right incentives
for the borrower to pay back the loan. The threat of termination in our paper is the indefinite
exclusion from the credit market. However, what the existing literature does not take into account
is the effect of financial frictions on the lender’s part upon the nature of the optimal liquidity
contracts. Capturing this effect is the focus of this paper, what makes it fundamentally different
from the existing literature.

The literature on sovereign debt repayment uses similar ideas and techniques. Allen [3] and
Eaton and Gersovitz [18] are early examples modelling the strategic considerations of a sovereign
debtor. Bulow and Rogoff [13], a critique of reputation models, show that reputation alone is
not enough to ensure debt repayment; default dominates repayment. Again, there are certain
differences that should be noted. Monitoring is an issue in that literature to make sure that loans
are used for the projects they are meant to be used for. There are intricate issues involving what
kind of punishment schemes can be used, stemming from the fact that borrowers are sovereign

6Thomas and Worrall [39] show that the resulting dynamic program is not a standard concave programming

problem and the operator is not a contraction mapping in the supremum metric, despite the presence of strict

discounting. The technical reason for that is the presence of the value function in the constraints.
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countries. Finally, none of these models look at the lender’s side, whereas we are concerned with
the case of a resource-constrained lender.

The dynamic programming approach that we use is similar to the methods in Abreu, Pearce
and Stacchetti [1], Atkeson [6] and Phelan and Stacchetti [30]. The general theme in this body
of research is to use dynamic programming techniques to characterize the equilibrium value set
of the repeated or dynamic game. These methods are especially powerful when it is difficult to
determine what the worst credible punishment that can be inflicted upon the opponent is. For the
purposes of the current paper, that worst punishment is already known and it is autarky. Hence,
the boundary of the equilibrium payoff set (second-best frontier) is supported by the threat
to return to autarky. This is the game theoretical explanation of why we use ‘best-deviation’
constraints to support the second-best strategies.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 analyzes
the efficient contracts when there is no enforceability problems. In section 4, we provide a full
characterization of the optimal financial contracts with limited enforceability and look at their
long-run properties. Section 5 presents a summary and conclusions along with possible future
research. All proofs and technical results are collected in the Appendix.

2 The Model

Time is indexed by t = 0, 1, . . .. There are two agents, a borrower, indexed by E, and a lender,
indexed by L, both infinitely lived. The borrower has a deterministic endowment stream of Y > 0
units of the only consumption good in the economy, every period. Each period, with some prob-
ability p ∈ (0, 1), he has a project that needs to be implemented within that period. Investment
requires I > Y units of the consumption good whose return is D > I units, in the same period,
with probability q, and 0 units with probability (1 − q). The net present value of a project is
strictly positive, i.e., qD − I > 0. This is to make the problem interesting. Projects increase
surplus to be shared in the economy. Let θt be the random variable that takes the value 1 if the
agent has a project at time t, 0 otherwise. Similarly, let µt be the random variable that takes the
value 1 if the project is a success and 0 if it is a failure. The borrower cannot store goods whereas
the lender has a storage technology that brings him one unit of the good next period for every unit
stored in the current one (1 < β−1, hence, storing is costly). Let Ht ≡ {

ht = (θ0, µ0, . . . , θt, µt)
}

be the set of t-period histories of past realizations of the i.i.d. stochastic process (θt, µt), for
t = 0, 1, . . . A contract σ = (σt) = (ct, mt, It, St+1) is a vector of sequences of functions where
after any history ht−1, It(ht−1, θt) is the amount invested, ct(ht−1, θt, µt) is the borrower’s sug-
gested consumption, mt(ht−1, θt, µt) is net payments to the lender, and finally St+1(ht−1, θt, µt)
is the amount transferred to the next period. Figure 1 shows the timing of actions at time t.
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Time t

Nature chooses

θt
E chooses investment
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µt
E chooses transfer

Time t + 1

�
St

�
St+1

E gets ct

L gets mt

Output realizes

Figure 1: Timing of Decisions

The borrower is risk neutral and ranks allocations according to their consumption sequences,
c = (ct)

UE(σ) = (1 − β)
∞∑

t=0

βtct.

The lender is risk neutral and ranks allocations with respect to their sequences of net payments,
m = (mt)

UL(σ) = (1 − β)
∞∑

t=0

βtmt.

and β ∈ (0, 1) is the common discount factor. As it is a common practice in the repeated games
literature, we normalize the utility levels to be able to compare them to period utilities. The
endowment stream of the borrower guarantees him Y on average. So, the autarkic level of a
borrower who does not enter into a long-term contract is defined as vE

aut = Y . The lender owns
the resources amounting to S0 ≥ 0 units of the consumption good, initially. The lender honors all
the promises that he makes whereas the borrower might choose to renege on the current contract
any time she wants to do so. If the borrower chooses to default, he is excluded from the credit
markets forever.

3 First-Best Problem

In this section, we begin first by solving for the efficient contracts. They constitute good bench-
mark cases that let us make welfare comparisons between two different institutional frameworks
and use that comparison to see how the severity of incentive problems change the structure of
the contracts offered in the economy. Assuming that a planner has all the information that the
agents have and there are no incentive problems, an efficient contract should satisfy ∀t, ∀ht

St+1(ht) ≤ St(ht−1) − mt(ht) − ct(ht) + Y

+D1{θt=1, µt=1 and It(ht−1,θt)≥I} − It(ht−1, θt) (1)
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which is an aggregate feasibility constraint. The idea that liquidity might be limited is captured
by the following two constraints, ∀t, ∀ht:

It(ht−1, θt) ≤ St(ht−1) + Y (2)

which are resource constraints, and

ct, mt, It, St+1 ≥ 0 (3)

which are the limited liability constraints (nonnegative net payments): there is a lower bound
on the consumption that can be taken away from the borrower. Technically, these two types of
constraints guarantee that the utility possibility set is bounded from below and above, for a given
initial level of resources S0. The fact that the lender is resource-constrained and there is limited
liability are the reasons why we obtain interesting credit cycles. Figure 2 depicts the sequencing
of events with a decision tree in case the investment decision is made.

A contract is said to be feasible if it is an element of the following set with initial stock level
S,

Definition 1 Let ΛFB(S) = {σ = (ct, mt, It, St+1) that satisfy (1)-(3), with S0 = S}

Remark 1 Note that ΛFB(S) is not convex due to the non-convexity of the production technology;
technically this is due to the presence of the indicator function on the right hand side of (1).
Although this complicates the analysis, the utility possibility set for each agent is nevertheless a
convex interval, which makes the problem manageable on the plane of agents’ utilities.

See Figure 3 for an example of a value function P , given v = 0, i.e., all surplus goes to the
lender. The striking feature is that, there are jumps every Y units on the resource axis. The
first major jump happens at (I − Y ) since that is the threshold level of beginning-of-period level
of resources that makes investment feasible (lender’s resource constraint). The other jumps are
higher-order jumps. For example, P jumps at 2(I − Y ) because if S = 2(I − Y ) − ε for a very
small positive ε, in case of failure, resources fall short of (I − Y ) next period and the lender’s
resource constraint binds. However, if S = 2(I − Y ) + ε, it is feasible to implement projects next
period in case of a liquidity shock. The jumps to the left of (I − Y ) have a similar explanation.
P jumps at (I − 2Y ) because it matters whether S is to the right or left of it when it comes to
saving for the next period at the end of the period. In the former case, the resource constraint
binds next period even if everything is saved; in the latter it does not.

With this machinery at hand, We can characterize the set of efficient allocations in this
economy. Such allocations are solutions to the following parameterized family of problems

P (v, S) = max
σ∈ΛFB(S)

{
EUL(σ) | EUE(σ) ≥ v

}
(4)
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where v is feasible in the sense that there exists a feasible contract σ that gives the borrower an
ex-ante present discounted utility of at least v.

Y

St

q1

q0
p1

p0

I
St + Y + D − I

St + Y − I

St + Y

(ct, mt, St+1)

Figure 2: Decision Tree

An efficient allocation has to be efficient after any history. Otherwise, it would have been
possible to replace the tail of the allocation after some history with a Pareto-improving one. This
would have made the original allocation non-efficient at time t = 0, since all histories are reached
with positive probability. This property of an efficient allocation helps us write (4) as a recursive
first-best problem (RFB). It follows that

(RFB) P (v, S) = max
(cθµ,mθµ,Sθµ,Iθ,vθµ)∈R

18
+

∑
θµ

pθqµ[(1 − β)mθµ + βP (vθµ, Sθµ)]

s.t.
∑
θµ

pθqµ[(1 − β)cθµ + βvθµ] ≥ v (5)

and ∀θ, ∀µ : Sθµ ≤ S + Y + D1{θ=1, µ=1, Iθ≥I} − Iθ − mθµ − cθµ (6)

Iθ ≤ S + Y (7)

vθµ ∈ [0, vSθµ
]. (8)

where we use 1 − p0 = p1 = p and 1 − q0 = q1 = q. The new random variables θ and µ share
the same support and distribution with θt and µt, respectively, for any t. The constraint in (5)
is a promise keeping constraint that guarantees that the borrower receives at least utility v, on
average, from the contract offered by the lender. The one in (8) makes sure that the continuation
values offered to the borrower are feasible. (6) and (7) are the recursive versions of (1) and (2),
respectively. We show in the appendix the equivalence of these two programs and the existence
of the value function as stated in the following proposition, along with some characterization
results.

Proposition 1 1. An optimal first-best contract exists.

2. The optimal investment and saving policies (v, S) → Iθ(v, S) and (v, S) → Sθµ(v, S) are

10



0   (I−Y) 2(I−Y)
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Example of Value Function for Relatively Patient Agents
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(0

,S
)

P(0,S) 

Figure 3: Jumps in the Value Function

independent of v, ∀θ, ∀µ, i.e., Iθ(v, S) = Iθ(v′, S) for any feasible v, v′ given any S ≥ 0.
Similarly for Sθµ.

3. P is strictly increasing in S and strictly decreasing in v. The Pareto Frontier is characterized
by P (v, S) = vS − v with v ∈ [0, vS ], where vS is the highest feasible discounted utility that
an agent can achieve in a feasible contract, given S ≥ 0.

Note that the existence result in Proposition 1 does not mention uniqueness. The reason for that
is that time path of transfers is not uniquely determined as both parties are risk neutral and
have the same discount factor. Second part of Proposition 1 states that in the absence of default,
which party gets what portion of the surplus generated within the relationship, does not have
any bearing on the choice of investment and saving plans. The intuition is clear: If no party has
the power to renege on the contract, the only thing that matters is to maximize the surplus to
be shared first, then to split it according to a predetermined sharing rule, v. This brings about
the last part of Proposition 1: A one unit reduction in v leads to a one unit reduction in P ,
since the optimal investment and saving policies are not affected from this change and that it is
a transferable utility environment.

Proposition 2 1. There exists S such that Sθµ(v, S) ≤ S for all feasible (v, S) and all θ, µ.
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2. The optimal investment rule is to ‘invest’ if and only if S ≥ S and θ = 1, for some
S ≥ I − Y .

First statement says that given any economy, savings are bounded from above. That is because
saving is costly (1 < β−1) and makes sense if it makes the continuation value jump. The intensity
of those jumps decreases as S increases, since they become higher-order. After a while, it is not
worthwhile to save more since the gain from saving more due to the increase in the continuation
value from the jump is less than the cost of consuming less, in the current period.

The second part mainly states that the investment rule is of the threshold nature. If the
contract dictates investment for some level of resources, so does it for higher levels of resources.
Remember that the first-best optimal policies are independent of v. That is why the results in
the Proposition are not dependent on the promise level.

The next Proposition summarizes what we mean by investment cycles generated by the
resource-constrainedness of the lender. These are efficient cycles in the sense that they are not
caused by incentive problems.

Proposition 3 Given any economy, we will observe investment cycles for economies with rel-
atively patient agents, almost surely. For low discount rate economies, the economy gets stuck
in a ‘credit crunch’ region with probability one, in finite time. Conditioning on a state where
productive investment is undertaken in the economy, the expected number of periods it takes to go
into a state of no investment is an increasing function of the discount factor and the likelihood of
investments being productive.

3.1 First-Best Contracts for Two classes of Economies: The case of Low βs

The following will be our working example in this and the next section. The economy consid-
ered is a special case of the general economy outlined above. Propositions 1 and 4 will apply.
Moreover, we will be able to give a more explicit characterization of the optimal contract and use
that to stress the important aspects stemming from the incentive compatibility and the resource
constraint. We begin with providing the full characterization of the first-best contracts for two
classes of economies.

Example 1 Given the values for Y, I, D, p, q, there exist two threshold levels of the discount
factor, β1 and β2, where 0 < β1 < β2 < 1 such that

1. For any β ∈ (0, β1), a first-best contract exists and is characterized by:

• I1(v, S) = I iff S ≥ (I − Y ).

• Do never save.

2. For any β ∈ [β1, β2), a first-best contract exists and is characterized by:
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Figure 4: Maximum Surplus for Two Classes of Discount Factors

• I1(v, S) = I iff S ≥ (I − Y ).

• Save (I − Y ) if feasible, otherwise save 0

Notice that v is not part of the characterization since from Proposition 1.2, the optimal investment
and saving decisions are independent of the promise level. Moreover, consumption paths are not
part of the characterization either. As mentioned before, that is because they are indeterminate
due to the risk neutrality of the agents and that they have the same time preference.

First part of the example gives a characterization of the first-best contracts for the case of
extremely impatient agents. The continuation value of the partnership is too small for these
agents to save at all. The threshold discount factor β1 = (I−Y )

(I−Y )+p1(q1D−I) , as we show it in the
proof, is the one that makes the agents indifferent between saving and not saving. The problem,
de facto, becomes one of one-period project funding. Since investing is socially optimal, barring
any incentive problems, investment is undertaken whenever it is feasible to do so. A close look
at the threshold discount factor provides further insights. β1 is an increasing function of I and a
decreasing function of p1, q1, D and Y . The intuition is clear: as the probability of project arrival
and the probability of success of investments increase, the marginal types start saving. That’s
because the continuation value of the partnership increases. Similarly for D. If Y increases, the
number of periods that the agents should accumulate before they start investing decreases, which
makes it worthwhile for some non-savers to start saving. A decrease in the value of I works
exactly in the same direction. Hence, the set of types (discount rates) who will save becomes
larger.

Second part of the example characterizes the first-best contracts for agents who are “just
patient” enough to save for the next period that amount, (I − Y ), that will make it feasible
to invest in case of a productive shock. The added value of saving more than this amount to
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self-insure for more than one period, is not enough to compensate for the utility cost incurred.
Similarly, it is not worth building the necessary stock to be able to invest in case of a liquidity
shock in the future, if the initial resources are too small. The same comparative statics exercise
that we did above for β1 can be undertaken for β2 and shown that β2 behaves the same way.7

3.1.1 Dynamics

Let the following be the set of states for the Markov aggregate system of our economy, generated
by the optimal investment and saving rules.

S ≡ {S∗ | S∗ is the optimal saving level for some level of end-of-period resources}

Optimal savings are at the discontinuity points of the value function P . This is because saving
is relatively costly and if savings are at a continuity point of P , there is always the temptation
of cutting them down since the gain from saving one unit less is (1 − β) > β(1 − β), the cost of
continuing with one unit less (P has constant slope (1 − β) at continuity points). Hence, in the
case of the first class of economies, S = {0}, since saving zero is the optimal strategy for any
S. This is an ‘absorbing state’ and the economy will be in that state forever at the period-ends,
from second period on. From the second period on, no investment projects will be undertaken.
Capital will be depleted and the economy will be in a constant state of stagnation.

For the second class of economies, the transitions are a bit more interesting. In this case,
S = {0, (I − Y )}. The Markov transition matrix, R, can be computed easily, by referring to
Figure 2.

R ≡
[

1 0
p1q0 1 − p1q0

]

Let the first row denote state 0 and the second row represent state (I − Y ). For example, the
probability of moving from state (I − Y ) to state 0 is given by R21 = p1q0. The probability of
ending up in the absorbing state in finite time is

1 − lim
n→∞(p1q0)n = 1

since it is simply the complement of the event ‘always in state (I−Y )’. Once again, the dynamics
are simple. From the second period on, if the initial resources are sufficient to implement projects,
the economy stays in state (I −Y ), for some time, with positive probability. This is a very fragile
state since one bad shock (project failure) is sufficient to move the economy into the state of capital
crunch where it stays forever. The lender’s resource constraint binds; lender cannot provide the

7Although we don’t have a clear explicit form for β2, a look at Figure 7 reveals that an increase in p1, q1, D and

Y pulls up the intersection of the function with the vertical axis, C, whereas a decrease in I takes the function

down by taking its value at β = 1 = −F , down. Both these movements make the intersection of the function with

the horizontal axis, β2, move to the left.
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borrower with any liquidity since he has no funds available. Positive net present value projects
are passed up. The interesting feature is that these are ‘efficient dynamics’.

4 Second-Best Contracts

From now on, we are dropping the perfect commitment assumption on the part of the borrower.
The lender can commit to the clauses of the current contract as long as his ex-ante participation
constraint is satisfied at t = 0. In contrast, the borrower has the opportunity to renege on the
agreement after the investment is taken and can run away with the return on investment that he
confiscates. Remember that the borrower goes back to autarky, in case he defaults. A contract,
then, analogously to the first-best, is said to be feasible if it is an element of the following set
with initial stock level S,

Definition 2 Let ΛSB(S) = {σ = (ct, mt, It, St+1) that satisfy (1)-(3), with S0 = S and an
incentive compatibility constraint (IC), i.e.,

∀t, ∀ht, (1 − β)ct(ht) + βEUE(σ | ht) ≥ (1 − β)D1{θt=1, µt=1 and It(ht−1,θt)≥I} + βY }

Taking these constraints into account, second-best contracts will be the solutions to the following
program

Q(v, S) = max
σ∈ΛSB(S)

{
EUL(σ) | EUE(σ) ≥ v

}
(9)

where v is feasible in the sense that there exists a feasible contract σ that gives the borrower at
least an ex-ante utility level of v. Notice that feasible contracts for this program are the ones
coming from the set of efficient contracts, ΛFB(S), that satisfy one extra condition, namely, the
no-deviation constraint.

Notice that the above constraints are the “best deviation” constraints for the borrower. In
general, the borrower might deviate from what the allocation prescribes in many different ways;
none of these would bring him a higher payoff then the best deviation strategy would. It is in
this sense that if the allocation satisfies the best-deviation constraints, then it will be incentive
feasible.

The program above can be written recursively, using v and S as state variables. These two
are good “summary statistics” for our program, giving all the necessary information required to
be able to solve for the second-best. Hence, the recursive second-best program (RSB) is:

(RSB) Q(v, S) = max
(cθµ,mθµ,Sθµ,Iθ)∈R

14
+

∑
θµ

pθqµ[(1 − β)mθµ + βQ(vθµ, Sθµ)] (10)

s.t.
∑
θµ

pθqµ[(1 − β)cθµ + βvθµ] ≥ v (11)

Sθµ ≤ S + Y + D1{θ=1, µ=1, Iθ≥I} − Iθ − mθµ − cθµ (12)
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Iθ ≤ S + Y (13)

(1 − β)cθµ + βvθµ ≥ (1 − β)D1{θ=1, µ=1, Iθ≥I} + βY (14)

vθµ ∈ [Y, vSθµ
]. (15)

The only addition to the set of constraints is (14), which makes sure that the borrower gets
a utility level at least as high as he would get by defaulting, on the path where investment is
undertaken and it is a success. On the other realization paths, the constraint is redundant since
continuation values, for the borrower, need to be at least as large as Y , for the borrower to accept
staying in the relationship. Otherwise, he can always go back to autarky and guarantee himself
Y , on average.

The following Proposition is the heart and core of our entire analysis. It first states that a
solution to the above program exists and then it proceeds with giving a full characterization of the
second-best contracts that arise between the parties given the parametrization of the economy.

Proposition 4 1. An optimal second-best contract exists.

2. There exists an S ≥ (I − Y ) such that for all S ≥ S, there are two promise values 0 ≤
v∗(S) ≤ v∗(S) ≤ vS such that

(a) I1(v, S) = 0, for v ∈ [Y, v∗(S)],

(b) I1(v, S) = I, for v ∈ [v∗(S), vS ]

(c) The value function in (RSB) is given by

Q(v, S) =

⎧⎪⎨
⎪⎩

vS − v if v ≥ v∗(S)
vS − v∗(S) if v ∈ [v∗(S), v∗(S)]
vS − [v∗(S) − v∗(S)] − v if v ∈ [Y, v∗(S)]

(d) v∗(S) is nondecreasing in S.

The statements in Proposition 4 , which are also depicted in Figure 5 have a very nice, sound
economic intuition. For each level of v and S, the number of ways the incentives can affect the
first-best utility levels is two. What distinguishes the figure on the left from the one on the right
is the fact that, first-best optimal policies are also second-best optimal on the left. On the right,
below a level of v, investment is not undertaken under the second-best rule although it is under
the first-best rule. Notice that, both these cases refer to the first-best optimal ‘Invest’ regime.
When the first-best rule is not to invest in the current period, there is no distributional conflicts
arising from incentive compatibility; hence first-best and second-best utility levels coincide, which
is the case in Figure 6.

Proposition 5 1. Second-best savings are less than or equal to the first-best savings.
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2. The optimal investment rule, (v, S) → Iθ(v, S), is a nondecreasing function of v.

Now, a couple of comments are in order. Second-best savings are less than or equal to first-
best savings capturing the intuition that it does not pay off to over-save relative to the first-best
level to self-insure against the possibility of ending up in a “credit crunch” regime, where there are
not enough resources to undertake projects in case of a liquidity shock. The result that savings
are bounded from above for a given economy is trivially implied by this statement.

vS

vS

0

P (v, S) = vS − v

Q(v, S)

Y v∗(S) vS

vS

0

P (v, S) = vS − v

Q(v, S)

Y v∗(S)v∗(S)

Figure 5: Second-Best Frontier for S ≥ S.

Depending on the parametrization of the economy, we have either of these two figures for the
second-best frontier. For each S, v∗(S) is the minimum promise level below which (11) holds
with inequality. The reason is first that you have to make sure that the borrower doesn’t default.
Hence you need to provide him with at least the default utility, on the success realization path.
Second, the continuation promise levels must be accepted by the borrower. Hence, even if the
initial level of v is below v∗(S), the de facto payment, on average is equal to v∗(S). For some
parameterizations, there is another threshold level v∗(S) below which “rationing the credit” is
optimal although it is socially optimal to undertake the investment in the absence of incentive
problems. The idea is that, if investment is undertaken, the cost of making sure that the borrower
does not default might be so high that the lender prefers not extending the credit although first-
best requires him to do so.

4.1 Second-Best Contracts for Two Classes of Economies: The Case of Low

β’s

Here, we take it from where we left in the previous section’s Example 1 and analyze the behavior
of the second-best contracts and compare it to the benchmark case of first-best contracts. The
explicit characterization of the former for both economies makes it clear what kind of distortions
the enforceability problems cause to the socially optimal allocations and utility levels.
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vS

vS

0

Q(v, S) = vS − v

Figure 6: Second-Best Frontier for S < S.

Example 2 1. For any β ∈ (0, β1), a stationary second-best contract exists and is character-
ized by:

(a) For S ≥ I − Y , there exist 0 ≤ v∗ ≤ v∗ ≤ vS such that

i. I1(v, S) = 0, for v ∈ [Y, v∗],

ii. I1(v, S) = I, for v ∈ [v∗, vS ]

(b) Do never save

(c) We have the figure on the right iff p1 > Y
I .

2. For any β ∈ [β1, β2), a stationary second-best contract exists and is characterized by:

(a) For S ≥ I − Y , there exist 0 ≤ v∗(S) ≤ v∗(S) ≤ vS such that

i. I1(v, S) = 0, for v ∈ [Y, v∗(S)],

ii. I1(v, S) = I, for v ∈ [v∗(S), vS ]

(b) Save (I − Y ) if feasible, otherwise save 0

One interesting feature of the first class of economies is the fact that we have the second-best
frontier on the right hand side of Figure 5 if p1 > Y

I . So, if the probability of a liquidity shock
is high, the lender does not extend credit because it is too costly to ensure no-default in case
investment is undertaken; an increase in p1 raises the weight of that state in the expected utility
computation.

5 Conclusion

In this paper, we studied the nature of long-term liquidity provision between lenders and borrowers
in the absence of perfect enforceability and when both parties are financially constrained. To this
end, we built an infinite horizon model of long-term lending and borrowing and analyzed in what
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ways liquidity shortages on both sides affect the evolution of the economy and investment activity
in particular.

Stylized facts about episodes of credit crunches and financial distress in general tell us that
banks become wary of lending in case their capital levels start to decrease. This in turn leads
borrowers with positive net present value projects to be denied credit. The current model captures
these stylized facts in a compelling way.

Relative to the first-best contracts, second-best contracts feature more interesting properties.
Enforcement problems and endogenous resource constraints can severely reduce the possibility
of financing projects. Investment and savings are functions both of the level of resources and
the surplus sharing rule, in contrast to the first-best contracts. Investment is (weakly) under-
provided. Second-best savings are (weakly) less than first-best savings capturing the intuition
that it does not pay off to postpone consumption/investment to self-insure against a possible
‘credit crunch’.

We also show that the economy exhibits investment cycles of two different natures. First type
of cycles happen because the lenders are resource constrained; these are efficient cycles. The
second type of cycles are due to incentive compatibility. The punchline is: credit is rationed if
either the lender has too little capital or the borrower has too little financial collateral.

The present work’s technical contribution is to show the existence and characterization of
financial contracts that are solutions to a non-convex dynamic programming problem.

The next step should be to build and analyze a model in which the opportunity cost (capital
constraint) of lenders is endogenized by explicitly modelling the credit markets as a dynamic
game between lenders for loanable funds. The introduction of competition among banks not only
enriches the story but also makes it possible to analyze in a realistic way renegotiation issues,
reputation building on the part of the lender/borrower, and endogenous opportunity costs and
credit rationing due to locking-up with a current set of borrowers.

There are a couple of other points that should not be left out: One should look at economies
where there are both aggregate and micro level liquidity shocks and consider heterogeneity among
lenders and borrowers. Heterogeneity and aggregate uncertainty introduces the possibility of in-
trainstitutional arrangements in a dynamic setting, that the present model cannot capture. Of
course, all of this is for future work.

6 Appendix

As we mentioned before, this section contains the proofs to all propositions and technical results
contained in the main body of the paper.
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Proof of Proposition 1

In the first-best program, period utility functions and the space of feasible resources are un-
bounded. We first show that at the optimum, the set

{
EUL(σ) | EUE(σ) ≥ v, σ ∈ ΛFB(S)

}
is

bounded from above by the value of a relaxed program. This allows us to show that the supre-
mum function exists for (4) and is finite-valued. This latter defines a set, F , of feasible (v, S)
pairs. We define a functional space, B(F ), on that and an operator, T , on that functional space,
which is associated with the (RFB) problem. The idea behind this construction is that ‘limited
liability’ requires that the value function be non-negative for any feasible value of v in the first-
best program. So, the value function itself enters the constraint set of the problem. This brings
up the question ‘what is the set of feasible values of v’ for any given S. We will first prove a series
of Lemmas which, put together, will deliver the result we are interested in.

Let P ∗(v, S) be the value of the supremum in the first-best problem in (4) parameterized
by S0 = S ≥ 0 and a feasible v. We first show that the supremum of the sequence problem
exists and is attained by a contract. Then, we proceed to show that the unique fixed point of
the operator T , associated with the (RFB) problem, defined on the ‘right’ space of candidate
value functions, is actually P ∗. We then proceed to further characterize the first-best frontier
and first-best contracts.

Lemma 1 P ∗(v, S) exists and is attained by an optimal contract. P ∗(v, S) ≤ (1 − β)S + Y +
p1q1(D − I). In particular, (1 − β)S + Y ≤ P ∗(0, S) ≤ (1 − β)S + Y + p1q1(D − I).

Proof: The following program is a relaxed version of the first-best problem in (4) with v = 0,
where the economy generates Y for sure plus (D − I) with probability p1q1, every period.

sup
(mt,St+1)∞t=0

E(1 − β)
∞∑

t=0

βtmt

s.t. ∀t, ∀ht St+1(ht) ≤ St(ht−1) − mt(ht) + Y + (D − I)1{θt=1, µt=1} (16)

mt, St+1 ≥ 0 and S0 = S ≥ 0 is given.

Objective is linear, constraint set is convex. So, this is a concave programming problem. Hence,
the first-order conditions are necessary and sufficient for a maximum. Partially differentiating
the objective with respect to St+1(ht) gives

−Prob(ht)βt(1 − β) + Prob(ht)βt+1(1 − β) < 0

which implies that St+1(ht) = 0 for all ht. This means that the agent consumes all his wealth at
the end of each period. Then, the supremum is achieved and by simple algebra, is equal to

(1 − β)S + Y + p1q1(D − I)
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Clearly, any contract that is feasible for the original problem is also feasible for the relaxed problem
making (1 − β)S + Y + p1q1(D − I) an upper bound for the set of expected discounted utilities
that the agent can get from feasible contracts. Hence, the supremum to the original problem
exists and P ∗(0, S) ≤ (1− β)S + Y + p1q1(D − I). A similar argument shows that P ∗(0, S) is an
upper bound to the set of expected discounted utilities with v �= 0, since the constraint set of the
latter problem is smaller than that of the problem with v = 0. Hence, supremum is well-defined
and P ∗(v, S) ≤ P ∗(0, S) for any (v, S) feasible. Supremum is attained by an optimal contract
because the constraint set is a closed set defined by a sequence of weak inequalities. Hence the
sup in the statement of the problem can be replaced by a max and an optimal contract can be
computed for each S and v.

One feasible strategy in the original problem is to ‘never invest’ after any history. Conditioning
on ‘never investing’, the optimal strategy solves

max
(mt,St+1)∞t=0

E(1 − β)
∞∑

t=0

βtmt

s.t. ∀t, ∀ht St+1(ht) ≤ St(ht−1) − mt(ht) + Y

mt, St+1 ≥ 0 and S0 = S ≥ 0 is given.

By the same token as above, the maximum is achieved and is equal to

(1 − β)S + Y

Since this is a possibly suboptimal strategy, we have

(1 − β)S + Y ≤ P ∗(0, S)

Gathering both sides of the inequalities together, we obtain the stated result. �

Now, we are ready to lay down the functional equation and show that P ∗ is the only fixed
point of the operator defining the functional equation. The important thing is to find the ‘right’
functional space for the recursive problem. Let F be the set of (v, S) pairs for which a feasible
contract exists; namely

F ≡ {
(v, S) ∈ R

2
+ | v ≤ P ∗(0, S)

}
It turns out that the ‘right’ space for our problem is the space of non-negative valued functions
on F , that are non-increasing in v, non-decreasing in S and bounded above by the function
(1 − β)S + Y + p1q1(D − I). Namely,

B(F ) = {f : F → R+ | s.t. (i) − (iii) hold where}
(i) f(v′, S) ≤ f(v, S) for v′ > v

(ii) f(v, S) ≤ f(v, S′) for S′ > S

(iii) 0 ≤ f(v, S) ≤ (1 − β)S + Y + p1q1(D − I)
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Let the operator T be defined on B(F ) for any (v, S) ∈ F and any P ∈ B(F ) by:

(TP )(v, S) = max
(cθµ,mθµ,Sθµ,Iθ,vθµ)∈R

18
+

∑
θµ

pθqµ[(1 − β)mθµ + βP (vθµ, Sθµ)]

s.t. ∀θ, ∀µ (vθµ, Sθµ) ∈ F (17)

Sθµ ≤ S + Y + D1{θ=1, µ=1, Iθ≥I} − Iθ − mθµ − cθµ

Iθ ≤ S + Y∑
θµ

pθqµ[(1 − β)cθµ + βvθµ] ≥ v

Lemma 2 T : B(F ) → B(F ) and P ∗ is its unique fixed point.

Proof: (TP )(v, S) ≥ 0 for any (v, S) ∈ F and P ∈ B(F ) due to limited liability and the
non-negativity of P . Let P (v, S) ≡ (1− β)S + Y + p1q1(D − I) be the upper bound function for
elements of B(F ). P trivially is an element of B(F ). With P being the continuation function,
the optimal consumption/saving decision is to consume everything at the end of the period.
Conditioning on that, the optimal investment strategy is to invest whenever it is feasible. But
then,

(TP )(v, S) ≤ (TP )(0, S) =

{
(1 − β)S + Y + p1q1D − (1 − βq0)p1I, if S ≥ I − Y

(1 − β)S + Y + βp1q1(D − I), if S < I − Y.

≤ P (v, S)

Clearly, T is monotonic in P and (TP ) is non-increasing in v and nondecreasing in S which makes
the latter an element of B(F ). Hence, 0 ≤ (TP )(v, S) ≤ (TP )(v, S) ≤ P (v, S) for any (v, S) ∈ F

and P ∈ B(F ). This establishes that T is a self-map.
P ∗ ∈ B(F ) and by the standard arguments (see [36] Theorem 4.2), TP ∗ = P ∗. The next step

is to show that this is the only fixed point of the operator T . What is required is a boundedness
condition, lim

n→∞βnP (vn, Sn) = 0, where (vn, Sn)∞n=0 is a particular realization path of a feasible
contract from (S0, v0). So, this condition requires the value function to be bounded on any realized
path from (v0, S0) for a feasible contract, and is sufficient to guarantee that any P that satisfies
this condition is actually the supremum function. We will show that lim

n→∞βnP (vn, Sn) = 0 for
any fixed point P of T . Since there is a finite number of states of nature each period, Theorem
4.3 in ([36]) can be modified to argue that any fixed point P of (17) that satisfies the boundedness
condition is actually the supremum function P ∗.

The fastest accumulation path for the problem in (16) is S1 = S0 + Y + p1q1(D − I), S2 =
S1 +Y +p1q1(D− I) = S0 +2(Y +p1q1(D− I)), . . . , Sn = S0 +n(Y +p1q1(D− I)), . . . Clearly, it
is so for the original problem, too. Hence for any realized feasible path (v∗n, S∗

n)∞n=0 of the original
problem, we have

P (v∗n, S∗
n) ≤ P (0, S∗

n) ≤ P (v∗n, Sn)
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The discounted versions respect the same ordering

βnP (v∗n, S∗
n) ≤ βnP (0, S∗

n) ≤ βnP (v∗n, Sn)

Substituting for P (v∗n, Sn), we have

βnP (v∗n, Sn) = βn [(1 − β)(S0 + n(Y + p1q1(D − I)) + Y + p1q1(D − I)]

which goes to zero as n goes to infinity. Therefore, so does βnP (v∗n, S∗
n). By the above argument,

P = P ∗. �

We will use P for the supremum function which is also the unique fixed point of (17) by
Lemma 2. P (0, S) is the maximum surplus that can be generated in an economy parameterized
by S. This latter follows from the fact that, the best first-best contract for the borrower would
solve the same problem, modulo a relabelling of the variables and the following Lemma.

Lemma 3 The optimal investment and saving strategies (It, St+1)∞t=0 depend only on S, not on
v. Moreover, P (v, S) = P (0, S) − v for v ∈ [0, P (0, S)].

Proof: Let (m∗
t , I

∗
t , S∗

t+1)
∞
t=0 be the optimal contract that achieves the supremum in the first-

best with v = 0 and S0 = S. Let v ∈ [0, P (0, S)]. We will first construct (c∗∗t , m∗∗
t , I∗∗t , S∗∗

t+1)
∞
t=0

where c∗∗t = αm∗
t and m∗∗

t = (1 − α)m∗
t , where α ∈ (0, 1) is s.t.

v = E(1 − β)
∞∑

t=0

βtc∗∗t = αE(1 − β)
∞∑

t=0

βtm∗
t

and S∗∗
t+1 = S∗

t+1, I∗∗t = I∗t as before. Clearly, this new contract is feasible and achieves the
utility level v for the borrower. Now, suppose for a contradiction that the new contract is Pareto
dominated by (c′t, m′

t, I
′
t, S

′
t+1)

∞
t=0, the new optimizer. Therefore,

v = E(1 − β)
∞∑

t=0

βtc′t

since the IR constraint for the borrower binds necessarily at the optimum and

P (v, S) = E(1 − β)
∞∑

t=0

βtm′
t > E(1 − β)

∞∑
t=0

βtm∗∗
t = E(1 − β)

∞∑
t=0

βtm∗
t (1 − α)

But this is going to imply that the original contract for v = 0 could not have been optimal. Let’s
define the contract (c′′t , m′′

t , I
′′
t , S′′

t+1)
∞
t=0 by c′′t (ht) = 0, m′′

t (h
t) = (m′

t(h
t) + c′t(ht)) with I ′′t = I ′t

and S′′
t+1 = S′

t+1. This is clearly feasible for the problem with v = 0 and
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P (0, S) ≥ E(1 − β)
∞∑

t=0

βtm′′
t = E(1 − β)

∞∑
t=0

βt(c′t + m′
t)

> E(1 − β)
∞∑

t=0

βtc′t + E(1 − β)
∞∑

t=0

βtm∗
t (1 − α)

= αP (0, S) + (1 − α)P (0, S)

= P (0, S)

a contradiction.
As to the second claim, the contract (c∗∗t , m∗∗

t , I∗∗t , S∗∗
t+1)

∞
t=0 is shown to be feasible and achieve

the supremum for the first-best program with v ∈ (0, P (0, S)). Hence,

P (v, S) = E(1 − β)
∞∑

t=0

βtm∗∗
t

= E(1 − β)
∞∑

t=0

βt(1 − α)m∗
t

= (1 − α)E(1 − β)
∞∑

t=0

βtm∗
t

= P (0, S) − v

from the definition of α. �

1. Lemma 1 with Lemma 2 proves this part.
2. Lemma 2 with Lemma 3 provides the proof.
3. That P is strictly decreasing in S is obvious from the definition of the program. The rest is
by Lemma 3. �

Proof of Proposition 2

1. Suppose for a contradiction that for any S, there is an S′ such that for some (v, S) and (θ, µ),
S′ = Sθµ(v, S) > S. Then, we can construct a nondecreasing sequence (S′

n):

S′
n = Sθnµn(vn, Sn) > n , for n ∈ N

for some (vn, Sn) feasible, and (θn, µn) for each n. Let Wn be the end-of-period wealth on the
realized path corresponding to (vn, Sn) and (θn, µn). Clearly, this sequence is unbounded and for
each consecutive terms, we have (since first-best decisions are independent of v)

(1 − β)[Wn+1 − S′
n] + βP (0, S′

n) ≤ (1 − β)[Wn+1 − S′
n+1] + βP (0, S′

n+1)
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due to optimality, with at least one strict inequality. But, then this ordering is independent of
the particular wealth level since we can just get rid of those from both sides of the inequality.
Hence,

(1 − β)[−S1] + βP (0, S1) < (1 − β)[−Sn+1] + βP (0, Sn+1)

for large n. This in turn implies that

P (0, Sn+1) − P (0, S1)
Sn+1 − S1

>
(1 − β)

β
> (1 − β)

Hence, P should increase, on average, with a slope larger than (1 − β)/β, greater than (1 − β).
This would imply that P should intersect the line (1 − β)S + Y + p1q1(D − I) eventually, which
is a contradiction since that is an upper bound for P . Moreover, this level S is achieved by the
same token above. For large levels of W , S and everything less than that will be available. Since
P is bounded above and P is clearly right-continuous, there is a threshold level of end-of-period
wealth after which optimal savings are S. �

Proof of Proposition 3

Let the following be the set of states for the Markov aggregate system of our economy, generated
by the optimal investment and saving rules.

S ≡ {S∗ | S∗ is the optimal saving level for some level of end-of-period resources}

Optimal savings are at the discontinuity points of the value function P as we point out in the
Proof of Example 1. We know from Proposition 2.1 that this set is bounded. Clearly, | S | < ∞,
due to the discreteness of the problem. Given an economy, we obtain an optimal saving policy
which defines a Markov transition matrix R, for our aggregate system. Clearly, the savings policy
is monotonically nondecreasing (with more than one best response for some levels of resources for
which case we use the convention of picking the smallest one). Let the states in S be ordered in
an increasing fashion, i.e., S =

{
S1 < S2 < · · · < SN = S

}
where N = | S |. Hence our economy

is going to be in one of these states at the end of each period with some probability. For small
discount factors, β ∈ [ 0, β2), we show in section 3.1 that the economy gets stuck in the absorbing
state S1 = 0, in finite time. We can observe implementation of projects before the system gets
absorbed by that state, if the initial resources are large.

For larger discount factors, there is no absorbing state. For any n, with probability 1 − p1q0,
the system moves to a state S′ ≥ Sn (S′ > Sn, with probability at least p1q1, for n < N) and to
a lower state with probability p1q0. Hence, for high discount factors, the state space is very fine.
Hence, the probability of going from one state to the other is always positive which guarantees
that the system will hit each state with probability one.
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As the discount factor increases, the set of states becomes finer which makes it harder to fall
down into the region where resource constraint of the lender binds. Second, trivially, the proba-
bility of going down to a lower state is p1q0 from second period on. This probability decreases if
q1 goes up (q0 goes down), which increases the expected number of periods that takes the system
to go down to the ‘capital crunch’ region. �

Proof of Example 1

We know from Proposition 1 that P exists, that there exists σ = (cθµ, mθµ, Iθµ, Sθµ), an opti-
mal stationary contract and the optimal saving and investment strategies are independent of v,
meaning that P (v, S) = P (0, S) − v. W will be used to denote end-of-period wealth.
1. We first conjecture that for any β ∈ (0, β1), where β1 ≡ (I−Y )

(I−Y )+p1(q1D−I) , P (0, S) is given by

P (0, S) =

{
(1 − β)S + Y , if S < I − Y

(1 − β) [S + p1(q1D − I)] + Y , if S ≥ I − Y

It will be shown, next, that the conjectured function P is indeed the value function and the
optimal policy functions are as specified in the proposition. The proof proceeds in two steps:
First, we check if deviations from the savings strategy pay off; second, we look for an improved
investment policy.

Savings: A simple arbitrage argument shows that the optimal savings need to be at the points
of discontinuity: At a point of differentiability, the derivative of

max
0≤S′≤S

(1 − β)(W − S′) + βP (0, S′)

with respect to S′ is −(1 − β) + β(1 − β) < 0, which implies that it pays-off to decrease S′, if
possible. This means that the only possible saving strategy would be to save I −Y when feasible.
We claim that saving 0 is optimal. To this end, we look at the difference of the maximum surpluses
from saving I − Y and not saving at all, in that order

(1 − β) [W − (I − Y )] + βP (0, I − Y ) − (1 − β)W − βP (0, 0)

which is

= −(1 − β)(I − Y ) + β (P (0, I − Y ) − P (0, 0))

= −(1 − β)(I − Y ) + β(1 − β) ((I − Y ) + p1(q1D − I)) (18)

= (1 − β) [−(I − Y )(1 − β) + βp1(q1D − I)] < 0

⇐⇒ β < β1 =
(I − Y )

(I − Y ) + p1(q1D − I)
(19)
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which is true by hypothesis. All we needed was to show that there was no one-shot profitable
deviation from the conjectured saving strategy, which we did.

Investment: Conditioning on the fact that θ = 1 (productive shock), we need to show that
∀ S ≥ (I − Y ), investing gives a higher payoff than not investing does. Given the optimal saving
policy, investing brings:

(1 − β) (S + Y + q1D − I) + βP (0, 0)

where not investing brings:
(1 − β) (S + Y ) + βP (0, 0)

whose difference is
(1 − β)(q1D − I) > 0

Hence, investing is optimal. It is easy to see that, this saving/investment strategy yields the
conjectured maximum surplus function. Then, Proposition 1 implies that any first-best optimal
contract, independent of v, will necessarily have this saving/investment strategy pair, as part of it.

2. We first conjecture that for any β ∈ [β1, β2), where β2 will be computed below, P (0, S) is
given by8

P (0, S) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − β)S + Y if S < I − 2Y

(1 − β) [S − (I − 2Y )] + βP (0, I − Y ) if I − 2Y ≤ S < I − Y

(1 − β)∆ [(I − Y )p1q0 + p1(q1D − I)] + Y if I − Y ≤ S < 2(I − Y )
(1 − β) [S + Y − (I − Y ) + p1(q1D − I)] + βP (0, I − Y ) if S ≥ 2(I − Y )

with ∆ ≡ [1 − β (1 − p1q0)]−1. Once again, we need to show that the conjectured value function
is indeed the correct one. To that effect, we show that the stated saving and investment rules are
the optimal ones given P .

Savings: We know that savings need to be at the discontinuity points of the value function, by the
arbitrage argument that we provided before. Hence, the candidates are: I − 2Y , I − Y , 2(I − Y )
and not saving at all. The idea is to make sure that saving I − Y does better than all the other
possibilities:

• ∀ W ≥ I − Y , saving 0 is not a better policy which translates into

(1 − β) [W − (I − Y )] + βP (0, I − Y ) − (1 − β)W − βP (0, 0) ≥ 0
8This is the proof for the case 0 < Y < I − Y , which is more interesting since it is harder to self-finance. The

proof for the case of Y ≥ I − Y is similar.
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the left hand side of which is equivalent to

= −(1 − β)(I − Y ) + β [P (0, I − Y ) − P (0, 0)]

= −(1 − β)(I − Y ) + β∆(1 − β) [(I − Y )p1q0 + p1(q1D − I)] (20)

= (1 − β) [−(I − Y )(1 − β∆p1q0) + β∆p1(q1D − I)]

By algebra, (1 − β∆p1q0) = (1 − β)∆, which implies that the last line can be written as:

= (1 − β)∆ [−(I − Y )(1 − β) + βp1(q1D − I)] ≥ 0

⇐⇒ −(I − Y )(1 − β) + βp1(q1D − I) ≥ 0

⇐⇒ β ≥ β1

which is the case by hypothesis.

• ∀ W ≥ I − Y , saving I − 2Y is not a better policy. Same line of argument yields

= (1 − β) (W − (I − Y )) + βP (0, I − Y ) − (1 − β) (W − (I − 2Y )) − βP (0, (I − 2Y ))

= −(1 − β)Y + β[P (0, I − Y ) − P (0, (I − 2Y ))]

= −(1 − β)Y + β(1 − β)P (0, I − Y )

= (1 − β) [−(1 − β)Y + β∆(1 − β) [(I − Y )p1q0 + p1(q1D − I)]]

> (1 − β) [−(1 − β)(I − Y ) + β∆(1 − β) [(I − Y )p1q0 + p1(q1D − I)]]

≥ 0

where the last inequality follows from (20).

• ∀ W ≥ 2(I − Y ), saving 2(I − Y ) is not a better policy.

= (1 − β) (W − (I − Y )) + βP (0, I − Y ) − (1 − β) (W − 2(I − Y )) − βP (0, 2(I − Y ))

= (1 − β)(I − Y ) + β[P (0, I − Y ) − P (0, 2(I − Y ))]

= (1 − β)(I − Y ) + β[P (0, I − Y ) − (1 − β)[(I − Y ) + p1(q1D − I) + Y ] − βP (0, I − Y )]

= (1 − β)(I − Y ) + β [P (0, I − Y )(1 − β) − (1 − β) [(I − Y ) + p1(q1D − I) + Y ]]

= (1 − β)2(I − Y ) + β(1 − β) [P (0, I − Y ) − Y − p1(q1D − I)]

= (1 − β)2(I − Y ) + β(1 − β) [[(I − Y )p1q0 + p1(q1D − I)](1 − β)∆ − p1(q1D − I)]

= (1 − β)2(I − Y ) + β(1 − β)2∆p1q0(I − Y ) + β(1 − β)2∆p1(q1D − I)

−β(1 − β)p1(q1D − I)

= (I − Y )(1 − β)2[1 + βp1q0∆] − β(1 − β)[1 − ∆(1 − β)]p1(q1D − I)

= (I − Y )(1 − β)2[1 + βp1q0∆] − β(1 − β)βp1q0∆p1(q1D − I)

= (1 − β)
[
(I − Y )(1 − β)(1 + βp1q0∆) − β2p1q0∆p1(q1D − I)

]
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Now, let

r := p1q0

C := I − Y > 0

F := rp1(q1D − I) > 0

which makes the last line into

= (1 − β)
[
C(1 − β)(1 +

βr

1 − β(1 − r)
) − β2F

1 − β(1 − r)

]

=
(1 − β)

1 − β(1 − r)
[
C(1 − β)(1 − β + 2βr) − β2F

]
=

(1 − β)
1 − β(1 − r)

[
β2 (C(1 − 2r) − F ) − 2βC(1 − r) + C

]
Set

A :=
(1 − β)

1 − β(1 − r)
[
β2 (C(1 − 2r) − F ) − 2βC(1 − r) + C

]
B := β2 (C(1 − 2r) − F ) − 2βC(1 − r) + C

We have B, a quadratic function of β, whose determinant is

[2C(1 − r)]2 − 4C [C(1 − 2r) − F ]

= 4C2r2 + 4CF > 0

Hence the equation has two real roots. Call them x1 and x2 and assume wlog that x1 < x2.
Here are some facts that we use:

1. B evaluated at β = 1 is

B | β=1 = C(1 − 2r) − F − 2C(1 − r) + C = −F < 0

2. A evaluated at the first threshold β1 is

A | β=β1 = (1 − β1)
[
(I − Y )(1 − β1)(1 + β1r∆) − β2

1r∆p1(q1D − I)
]

> (1 − β1) [(I − Y )(1 − β1) − β1p1(q1D − I)]

= 0

the inequality due to the fact that (1 + β1r∆) > β1r∆; the last equality from the
definition of the threshold β1.

3. A and B evaluated at β = 0 give

A | β=0 = C > 0 = B | β=0
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Figure 7: Three Different Cases for β2

4. The sign of A is determined by B since

∂

∂β

(
1 − β

1 − β(1 − r)

)
< 0

and
1 − β

1 − β(1 − r)
| β=0 = 1 and

1 − β

1 − β(1 − r)
| β=1 = 0

We have three cases to consider, depending on the coefficient of the highest exponent. The
task in each of them is to show that 0 < β1 < β2 < 1. The listed facts combined with the
restriction on the coefficient of the highest order term in each case delivers the result.

– Case 1: C(1 − 2r) − F > 0. This is the case where the product of the roots x1x2 =
C

C(1−2r)−F > 0, the sum of the roots x1 + x2 = 2C(1−r)
C(1−2r)−F > 0 and the quadratic

troughs at β = 2C(1−r)
2[C(1−2r)−F ] > 1. Hence, we have two positive roots, 0 < x1 < 1 < x2.

– Case 2: C(1 − 2r) − F < 0. The product of the roots x1x2 < 0, the sum of the roots
x1 + x2 < 0 and the function peaks at β = 2C(1−r)

2[C(1−2r)−F ] < 0. So, we have 1 positive
and 1 negative root, x1 < 0 < x2 < 1.

– Case 3: C(1−2r)−F = 0. This is the linear case. B becomes −β2C(1− r)+C which
assumes the value −C(1 − 2r) = −F < 0 at β = 1. Hence the intersection of the line
with the horizontal axis happens in the interval (0, 1).

The pictures corresponding to each case are as follows.

As depicted in the figures associated with each case, B is positive for β ∈ (0, β2) where
0 < β1 < β2. This implies that the original difference between maximum surpluses from
saving I−Y and saving 2(I−Y ) is positive. Hence, saving I−Y pays more than the latter.

We showed that saving I − Y dominates all of the other saving policies, hence it is optimal.

Investment: There are two different regimes to consider:
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• ∀ S ≥ 2(I − Y ), Investing brings

q1 [(1 − β) (S + Y + D − I − (I − Y )) + βP (0, I − Y )] +

q0 [(1 − β) (S + Y − I − (I − Y )) + βP (0, I − Y )]

where not investing brings:

(1 − β) (S + Y − (I − Y )) + βP (0, I − Y )

whose difference is
(1 − β)(q1D − I) > 0

Hence, investing is the optimal strategy in that range, given the optimal saving strategy.

• ∀ S ∈ [I − Y, 2(I − Y )], investing gives

q1 [(1 − β) (S + Y + D − I − (I − Y )) + βP (0, I − Y )] +

q0 [(1 − β) (S + Y − I)) + βP (0, 0)]

where not investing brings:

(1 − β) (S + Y − (I − Y )) + βP (0, I − Y )

whose difference is

(1 − β)[(q1D − I) − βq0∆p1(q1D − I) +

(I − Y )q0 − β∆p1q
2
0(I − Y ) > 0

Hence, investing is optimal in this range, too.

Therefore, investment policy is the threshold rule stated in the proposition. �

Proof of Proposition 4

The existence of the second-best recursive contract is a little involved. The reason is that the
value function has to be non-negative for any feasible value of v in the second-best program. So,
the value function itself enters the constraint set of the problem which makes it into a nonstandard
dynamic programming problem.
1. Let F and B(F ) be defined as they are in the proof of Proposition 1. Let the operator T be
defined on B(F ) for any (v, S) ∈ F and any Q ∈ B(F ) by:

(TQ)(v, S) = max
(cθµ,mθµ,Sθµ,Iθ,vθµ)∈R

18
+

∑
θµ

pθqµ[(1 − β)mθµ + βQ(vθµ, Sθµ)]
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s.t. ∀θ, ∀µ Q(vθµ, Sθµ) ≥ 0 (21)

Sθµ ≤ S + Y + D1{θ=1, µ=1, Iθ≥I} − Iθ − mθµ − cθµ

Iθ ≤ S + Y∑
θµ

pθqµ[(1 − β)cθµ + βvθµ] ≥ v

(1 − β)cθµ + βvθµ ≥ (1 − β)D1{θ=1, µ=1, Iθ≥I} + βY

We know from before that the first-best value function, P ∈ B(F ). With one extra constraint
to consider, the feasible set for the above problem is smaller than that of the first-best problem;
hence TP ≤ P . Clearly, T is a monotone operator which implies that TnP ≤ Tn−1P , all n, by a
simple induction argument. Hence, for each (v, S), ((TnP )(v, S)) is a decreasing sequence which
is bounded from below by 0. So, it should converge pointwise to a limit value, say, to P∞(v, S).

• We need to show that P∞ is a fixed point of the operator T . For any given (v, S), consider the
sequence of optimal actions taken at each iteration of the operator T , (cn

θµ, mn
θµ, Sn

θµ, In
θ , vn

θµ).
Since (Tn(P )(v, S)) is a decreasing sequence, the constraint in (21) is not going to relax as
n increases, which makes the feasible set of values that the sequence of optimal actions live
in, a compact set. Hence, (cn

θµ, mn
θµ, Sn

θµ, In
θ , vn

θµ) has a convergent subsequence, converging
to (cθµ, mθµ, Sθµ, Iθ, vθµ). The sequence satisfies all the constraints of the problem, for each
n; so, the limit contract should do so too since these are all inequality constraints. In
particular, Tn(P )(v, S) ≥ 0, for all n and Tn(P )(v, S) → P∞(v, S) hence P∞(v, S) ≥ 0,
too. So, this limit contract is feasible and provides the borrower with an ex-ante discounted
utility of at least v. The actual optimal contract should do at least as good which implies
that (TP∞)(v, S) ≥ P∞(v, S). We also know, from the monotonicity of the operator T ,
that, for all n, (TnP )(v, S) ≤ (Tn−1P )(v, S) hence (Tn−1P )(v, S) ≥ P∞(v, S). Therefore,
(TnP )(v, S) ≥ (TP∞)(v, S) for all n which implies that the limit of that sequence admits
the same ordering: (TnP )(v, S) → P∞(v, S) ≥ (TP∞)(v, S). We showed that P∞(v, S) ≥
(TP∞)(v, S) and P∞(v, S) ≤ (TP∞)(v, S) which implies that P∞(v, S) = (TP∞)(v, S)
hence P∞ is a fixed point of the operator T .

• Clearly, each fixed point Q of the operator T corresponds to a second-best contract. It is
the standard unravelling idea. Start with an initial (v, S); the optimal actions in period 1
are given by (cθµ, mθµ, Sθµ, Iθ, vθµ). Let σ1 be defined as c1(θ, µ) = cθµ, m1(θ, µ) = mθµ,
S2(θ, µ) = Sθµ and I1(θ) = Iθ. The second period contract conditional on the realization
of θ, µ in the first period is the optimal action vector starting with an initial (vθµ, S2(θ, µ)),
and so on by repeatedly applying the operator T . The contract σ constructed this way
satisfies all the constraints of the original second-best problem and delivers the borrower
and the lender the utility levels v and Q(v, S), respectively. Moreover, it is optimal from
each history on; hence it is a second-best contract.
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• We know that P ≥ Q where Q is a fixed point of T , from above, which leads to TnP ≥
TnQ = Q. But then, the latter also holds in the limit: P∞ ≥ TnQ = Q. Since every fixed
point of T corresponds to a second-best contract and by the optimality of Q, we also have
P∞ ≤ Q. Hence P∞ = Q.

In summary, we showed that a fixed point, Q, of the operator T exists and can be computed by
an iterative application of T , starting initially with the first-best value function P . In addition, a
second-best contract exists that is associated with that value function which delivers the borrower
and the lender the utility levels v and Q(v, S), respectively.

2. The existence of S follows from Proposition 2.2. The idea is that if v = vS , i.e., the whole
surplus goes to the borrower, then the first-best rules are implemented. So, for v = vS and
S ≥ S, ‘invest’ is the optimal strategy. Now, the sketch of the proof is as follows: as we know
from the existence proof, starting from the first-best value function P , repeated application of
the operator T on P leads to the second-best value function Q. At each iteration, we will show
that the optimal policy rules are of the monotonic nature and that in the limit, they converge to
the stated form. So, initially, we assume the continuations are given by P and solve

(TP )(v, S) = max
(cθµ,mθµ,Sθµ,Iθ,vθµ)∈R

18
+

∑
θµ

pθqµ[(1 − β)mθµ + βP (vθµ, Sθµ)]

s.t. ∀θ, ∀µ P (vθµ, Sθµ) ≥ 0 (22)

Sθµ ≤ S + Y + D1{θ=1, µ=1, Iθ≥I} − Iθ − mθµ − cθµ

Iθ ≤ S + Y∑
θµ

pθqµ[(1 − β)cθµ + βvθµ] ≥ v

(1 − β)cθµ + βvθµ ≥ (1 − β)D1{θ=1, µ=1, Iθ≥I} + βY

where P (v, S) = vS − v. So, the above program can be written as

(TP )(v, S) = max
(cθµ,mθµ,Sθµ,Iθ,vθµ)∈R

18
+

∑
θµ

pθqµ[(1 − β)
(
S + Y + D1{θ=1, µ=1, Iθ≥I} − Iθ − Sθµ

)
+βvS − (1 − β)cθµ − βvθµ]

s.t. ∀θ, ∀µ P (vθµ, Sθµ) ≥ 0

Iθ ≤ S + Y∑
θµ

pθqµ[(1 − β)cθµ + βvθµ] ≥ v (23)

(1 − β)cθµ + βvθµ ≥ (1 − β)D1{θ=1, µ=1, Iθ≥I} + βY (24)

Savings: Now, the first-best saving rule maximizes the first part of the lender’s objective and is
independent of the optimal choice of (cθµ, vθµ).
Investment : There are two different regimes. Let v∗1(S) := (1 − β)p1q1D + βY .
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1. If v ≥ v∗1(S): The (IR) constraint (23) binds. The reason is that, if the investment is
undertaken, this is the minimum amount that the borrower needs to be provided with, ex-
ante, in order to prevent default. If it does not bind, you can always lower some continuation
values without violating any of the incentive compatibility constraints. So, EUE = v. The
alternative is not to invest. But the comparison is exactly that of the first-best investment
decision whose answer is to ‘invest’.

2. If v < v∗1(S): The constraint (23) holds with strict inequality. EUE = v∗1(S). If there is
no investment, EUE = v. So, the comparison is between

P (v, S) − v∗1(S)

which is the first-best level of surplus minus the average ex-ante payment to E, in case of
investment and

(1 − β)(S + Y − S′
FB) + βvS′

FB
− v

in case of ‘not investing’, where S′
FB is the first-best level of savings. Hence, there is a level

v∗1(S) > Y (v∗1(S) = Y if it is optimal to invest always) such that it is optimal to invest
for v ≥ v∗1(S) and not to invest for v ≤ v∗1(S). 9

So, we have a full characterization of TP , i.e.,

1. Do not invest for v ∈ [Y, v∗1(S)]; Invest for v ∈ [v∗1(S), vS ]

2. Save according to the first-best rule.

3. TP is given by

TP (v, S) =

⎧⎪⎨
⎪⎩

vS − v if v ≥ v∗1(S)
vS − v∗1(S) if v ∈ [v∗1(S), v∗1(S)]
vS − [v∗1(S) − v∗1(S)] − v if v ∈ [Y, v∗1(S)]

We know that if the whole surplus goes to the borrower , i.e., v = vS , the first-best rule is
implemented. In the second iteration of the above problem (T 2P ), for the same S, there is a
nonempty interval of values of v (including vS) for which the optimal rule is to invest. That is
because of the continuity of the problem w.r.t. v and the fact that P and TP coincide for high
values of v. Similar reasoning guarantees that if there is an interval of values for which the optimal
rule is ‘not to invest’ for the first iteration, there is such an interval for the second iteration, since
the continuation value is lower than the original continuation value (TP ≤ P ). Then, we need
to show two things: (i) TnP has the same shape as TP and (ii) v∗(S) is nondecreasing. These
two combined will deliver the result. For n = 1, it is trivially true. For n > 1, assume that it is

9It is not always the case that investing is the optimal decision no matter what v is, as Example 2 shows.
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true for n − 1. We know that the optimal rule is to invest for v ≥ v∗n−1(S) since the first-best
and second-best values coincide for that interval. TnP ≤ Tn−1P from the existence part, hence
v∗n(S) ≥ v∗n−1(S) since otherwise TnP (v∗n(S), S) > Tn−1P (v∗n(S), S), a contradiction. For
v < v∗n−1(S), EUE = v∗n(S) from the same token as above. We know from above that vn−1∗ (S)
is such that

(1 − β)(S + Y − S′
FB) + βvS′

FB
− vn−1

∗ (S) = P (v, S) − v∗n−1(S)

Since v∗n(S) ≥ v∗n−1(S), there is a vn∗ (S) ≥ vn−1∗ (S) (where vn∗ (S)−vn−1∗ (S) = v∗n(S)−v∗n−1(S))
such that the equality still holds and it is optimal to invest for v ≥ v∗n(S) and not to invest for
v ≤ v∗n(S). Hence, TnP has the same shape as TP . Now, (v∗n(S)) forms a monotonically non-
decreasing sequence of thresholds, bounded from above by vS . So, it should converge to v∗(S) as
n → ∞. But, trivially then, (v∗n(S)) → v∗(S).
Let S′ > S. So, vS′ > vS since P is strictly increasing from Proposition 1.3. The fact that the
individual rationality constraint is tight means that, conditioning on investing today, a constraint
will be violated if you do not deliver at least v∗(S) to the borrower. For S′ > S, the same contract
will violate that same constraint, since the constraints are stationary. Hence, v∗(S′) ≥ v∗(S).
That concludes the proof. �

Proof of Proposition 5

1. Suppose for a contradiction that Sθµ > SFB,θµ. Let (cθµ, vθµ, Sθµ) be the optimal second-best
contract given (v, S) is the state variable. On a realized path (θµ), utility to L is

(1 − β) [W − cθµ − Sθµ] + βQ(vθµ, Sθµ)

which can be written as

(1 − β) [W − cθµ − Sθµ] + β

⎧⎪⎨
⎪⎩

vSθµ
− vθµ if vθµ ≥ v∗(Sθµ)

vSθµ
− v∗(Sθµ) if vθµ ∈ [v∗(Sθµ), v∗(Sθµ)]

vSθµ
− [v∗(Sθµ) − v∗(Sθµ)] − vθµ if vθµ ∈ [Y, v∗(Sθµ)]

which is equivalent to

(1 − β) [W − Sθµ] + β

⎧⎪⎨
⎪⎩

vSθµ

vSθµ

vSθµ
− [v∗(Sθµ) − v∗(Sθµ)]

−

⎧⎪⎨
⎪⎩

(1 − β)cθµ + βvθµ

(1 − β)cθµ + βv∗(Sθµ)
(1 − β)cθµ + βvθµ

(25)

Necessary condition for optimality requires that either

vθµ ≥ v∗(Sθµ) ≥ v∗(SFB,θµ)
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or
vθµ ≤ v∗(SFB,θµ) ≤ v∗(SFB,θµ) ≤ v∗(Sθµ)

which implies that (cθµ, vθµ) is feasible also under the first-best saving rule SFB,θµ since Sθµ >

SFB,θµ. So, the payoff to the lender on the realized path from saving according to the first-best
rule and paying the borrower (cθµ, vθµ), is better than the original scheme since the LHS of (25)
is maximized at Sθµ = SFB,θµ, i.e.,

(1 − β) [W − Sθµ] + β

⎧⎪⎨
⎪⎩

vSθµ

vSθµ

vSθµ
− [v∗(Sθµ) − v∗(Sθµ)]

−

⎧⎪⎨
⎪⎩

(1 − β)cθµ + βvθµ

(1 − β)cθµ + βv∗(Sθµ)
(1 − β)cθµ + βvθµ

< (1 − β) [W − SFB,θµ] + β

⎧⎪⎨
⎪⎩

vSFB,θµ

vSFB,θµ

vSFB,θµ
− [v∗(SFB,θµ) − v∗(SFB,θµ)]

−

⎧⎪⎨
⎪⎩

(1 − β)cθµ + βvθµ

(1 − β)cθµ + βv∗(SFB,θµ)
(1 − β)cθµ + βvθµ

if vθµ ≤ v∗(Sθµ), or

(1 − β) [W − Sθµ] + β

⎧⎪⎨
⎪⎩

vSθµ

vSθµ

vSθµ
− [v∗(Sθµ) − v∗(Sθµ)]

−

⎧⎪⎨
⎪⎩

(1 − β)cθµ + βvθµ

(1 − β)cθµ + βv∗(Sθµ)
(1 − β)cθµ + βvθµ

< (1 − β) [W − SFB,θµ] + β

⎧⎪⎨
⎪⎩

vSFB,θµ

vSFB,θµ

vSFB,θµ

−

⎧⎪⎨
⎪⎩

(1 − β)cθµ + βvθµ

(1 − β)cθµ + βv∗(SFB,θµ)
(1 − β)cθµ + βv∗(SFB,θµ)

if vθµ > v∗(Sθµ) since Q is strictly increasing in S. Therefore, saving more than the first-best rule
makes L strictly worse off, which concludes the proof.

2. This is implied by Proposition 4.2. Assuming the latter is true, pick a feasible (v, S) pair.
I0(v, S) = 0 trivially for any feasible (v, S) since it does not pay off to allocate resources to
investment when there is no project. For a given S, I1 is trivially monotonically increasing in v,
since it is a step function from Proposition 4.4.

Proof of Example 2

We know that both P and Q exist and that 0 ≤ Q(v, S) ≤ P (v, S) for any feasible (v, S).

1. It will be shown first that the saving strategy is as in the first-best case. Then, the optimal
threshold-investment behavior will be characterized fully.
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Savings: The ‘trick’ here is to solve the alternate program where the continuation is replaced
by P , then go back and show that one achieves the same utility level with that solution in the
original problem, as well. On a realized path, optimal contract, on this path, should solve

max
(cθµ,vθµ,Sθµ)

(1 − β) [W − cθµ − Sθµ] + βQ(vθµ, Sθµ)

s.t. (1 − β)cθµ + βvθµ ≥ (1 − β)D1{θ=1,µ=1,Iθ≥Y } + βY (∗)∑
θµ

pθqµ[(1 − β)cθµ + βvθµ] ≥ v ∈ [Y, vS ] (∗∗)

given the optimal choices for the other paths. Let’s first consider the alternate program where
we continue with the first-best value function, P , given that both (∗) and (∗∗) are satisfied

max(1 − β) [W − cθµ − Sθµ] + βP (vθµ, Sθµ)

= max(1 − β) [W − cθµ − Sθµ] + β [P (0, Sθµ) − vθµ]

= max(1 − β) [W − Sθµ] + βP (0, Sθµ) − (1 − β)cθµ − βvθµ

LHS of this problem is maximized at Sθµ = 0, independently of the RHS. That’s because any
utility level arising from an optimal (cθµ, vθµ) pair that is feasible under an alternative saving
strategy can be replicated by a corresponding contract (c′, v′) under the surplus-maximizing
saving strategy. Since there is no saving, the only incentive compatible continuation value is
vθµ = Y (P (0, 0) = Y from Proposition 1). This scheme is feasible under the original program
too. Since

0 ≤ Q(Y, 0) ≤ P (Y, 0) = 0

the first inequality from the definition of second-best and the second from Proposition 1, we
achieve the same utility under the original second-best program that we do under the alternate
program. Hence, the necessary condition for optimality for a second-best contract is not saving
at all as in the first-best case.

Investment: Given the optimal saving rule, there are two possible investment strategies:

1. If there is no investment (I1(v, S) = 0), second-best problem solves

max
v,c

(1 − β) [S + Y − c]

s.t. (1 − β)c + βY ≥ v ∈ [Y, vS ]

In the second-best optimum, the constraint should bind and

c =
(

v − βY

1 − β

)
≤ vS − βY

1 − β
≤ vS

1 − β
=

(1 − β)[S + Y ]
1 − β

= S + Y
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Moreover, c ≥ 0 clearly, which makes it feasible. Notice that we are assuming that cθµ = c

here. This is just one of the solutions because of the linearity of the problem. However, all
solutions leave L and E with the same utility levels. Hence,

EUL = (1 − β)
[
S + Y − v − βY

1 − β

]
= (1 − β)S + (Y − v)

2. If there is investment (I1(v, S) = I ≤ S + Y ), since the optimal saving rule implies Sθµ = 0
and vθµ = Y , L’s program becomes

max
∑
θµ

pθqµ(1 − β)
(
S + Y + D1{θ=1, µ=1, Iθ≥I} − Iθ − cθµ

)
s.t.

∑
θµ

pθqµ[(1 − β)cθµ + βY ] ≥ v (26)

cθµ ≥ D1{θ=1, µ=1, Iθ≥I} (27)

Let λ and γ be the Lagrange multipliers for the IR constraint, in (26), and the IC constraint
c11 ≥ D, in (27), respectively. First order conditions for c11, cθµ for θµ �= 1, are, in that
order

−1 + λ +
γ

(1 − β)p1q1
≤ 0, c11 ≥ 0,

[
−1 + λ +

γ

(1 − β)p1q1

]
c11 = 0 (28)

−1 + λ ≤ 0, cθµ ≥ 0, [−1 + λ] cθµ = 0 (29)

Let v∗ ≡ max{ Y, (1 − β)p1q1D + βY }. This quantity is crucial in determining whether
(26) binds or not.

(a) If v ∈ [Y, v∗], (26) is an inequality, which implies that λ = 0. Then, (29) implies that
cθµ = 0 for θµ �= 1. Finally, c11 = D since otherwise, decreasing c11 would increase
the objective without violating any constraints, which would be a contradiction to
optimality. Therefore, the expected utility to L from investing is

EUL
I = (1 − β) [S + p1(q1D − I)] + Y − v∗

where the corresponding level from non-investing is

EUL
NI = (1 − β)S + Y − v.

Now, EUL
I −EUL

NI → (1− β)p1(q1D − I) > 0 as v → v∗. As v → Y , EUL
I −EUL

NI →
(1 − β) (Y − p1I). If the latter is negative (p1 > Y

I ), by the Intermediate Value
Theorem, there exists a v∗ = (1 − β)p1I + βY ∈ [Y, v∗) such that EUL

I − EUL
NI < 0

for v ∈ [Y, v∗). If it is nonnegative (p1 ≤ Y
I ), it means that investing is optimal for all

v ∈ [Y, v∗), i.e., v∗ = Y .
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(b) If v ∈ (v∗, vS ], (26) binds. λ = 1, hence the slope of the second-best frontier is -1. If
λ < 1, (28) and (29) imply that cθµ = 0 for θµ �= 1 and c11 = D, which would imply, in
turn, that v = v∗. But, this latter is a contradiction. Therefore, the expected utility
to L from investing is

EUL
I = (1 − β) [S + p1(q1D − I)] + Y − v

where the corresponding level from non-investing is

EUL
NI = (1 − β)S + Y − v.

So, EUL
I −EUL

NI = (1−β)p1(q1D−I) > 0 which makes investing the optimal decision
for all v ∈ (v∗, vS ]

2. The proof of the second part follows the same reasoning and machinery that the first one does.
For that reason, it will be omitted. �
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