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Abstract

We study monopolistic competition with preferences over differentiated goods char-

acterized by a separable indirect utility rather than a separable direct utility as in the

Dixit-Stiglitz model, with the CES case as the only common ground. Examples include

linear and log-linear direct demands. In equilibrium with free entry, an increase of the

number of consumers is neutral on prices, but increases proportionally the number

of firms, just creating pure gains from variety. Contrary to the Dixit-Stiglitz model,

an increase in consumer income increases prices and more than proportionally the

number of varieties if and only if the price elasticity of demand is increasing. We also

discuss extensions to an outside good, heterogeneous consumers, heterogeneous firms

à la Melitz and endogenous quality. Finally, we provide an application to international

trade generating pricing to market in a generalized Krugman model.
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The theory of monopolistic competition introduced by Chamberlin (1933)

analyzes markets in which a large number of monopolistic firms choose prices in-

dependently and entry is free. The formalization proposed by Dixit and Stiglitz

(D-S, 1977: Section I), based on Constant Elasticity of Substitution (CES)

preferences over differentiated goods, has become a workhorse model in mod-

ern economics. As well known, it implies constant markups and an endogenous

number of firms that is proportional to both the number of consumers and their

income (individual expenditure). Moreover, under firm heterogeneity, CES pref-

erences imply that the market size has no selection effects on the efficiency of

the active firms. These features have key consequences, for instance for the

structure of and the gains from trade (Krugman, 1980 and Melitz, 2003) and

for macroeconomics (see Blanchard and Kiyotaki, 1987 and Bilbiie et al., 2012).

From an empirical point of view, however, the CES model has some draw-

backs. Primarily, it cannot account for the variability of markups across coun-

tries and trade conditions, or over the business cycle. There is indeed a consis-

tent evidence that markups are higher in richer countries (see Alexandria and

Kaboski, 2011 and Fieler, 2012), and there is also some evidence that they are

variable over the business cycle (for instance, Nekarda and Ramey, 2013, make a

case for procyclical markups). Although the empirical analysis of the impact of

market size on prices under monopolistic competition has rarely distinguished

income and population effects, a recent work by Simonovska (2013) studies inter-

national pricing of traded goods (online sales of identical goods shipped abroad)

controlling separately for country population and income effects: she estimates

an elasticity of prices to per capita income between 0.05 and 0.11, but does not

find a significant impact of population on prices.2

To account for these facts under monopolistic competition one has to depart

from homothetic preferences. The general version of the additively separable

direct utility function of D-S (1977, Section II) can be used as a source of variable

markups (Krugman, 1979). However, it generates prices that can either decrease

or increase in the number of consumers (Zhelobodko et al., 2012), implying an

ambiguous impact of trade integration on welfare and ambiguous selection effects

under firm heterogeneity (see Dhingra and Morrow, 2012, and Bertoletti and

Epifani, 2012). Moreover, in spite of non-homotheticity, the D-S model with

free entry generates always a (rarely recognized in the literature) neutrality of

the market structure with respect to income: markups and firm selection are

unaffected by changes in consumers’ expenditure. In this paper we propose

an alternative model of monopolistic competition based on a different class of

preferences, and argue that it can easily account for the stylized facts outlined

above.

We assume that consumers’ preferences can be represented by an additively

separable indirect utility function. Such “indirect additivity” amounts to as-

sume that the relative demand of two goods does not depend on the price of

2 It is well known that strategic interactions in concentrated markets can rationalize a com-

petition effect due to an increase in the number of consumers, and the empirical IO literature

has shown this (see Campbell and Hopenhayn, 2005). However, these strategic effects ought

to disappear in markets characterized by many firms and monopolistic competition.
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other goods, while it depends on income unless preferences are homothetic. It

is thus different from the “direct additivity” exploited by D-S, for which the

marginal rate of substitution between any two goods does not depend on the

consumption of other goods. In fact, duality theory (Hicks, 1969; Samuelson,

1969; Blackorby et al., 1978) tell us that the case of CES preferences is the only

common ground (which requires homotheticity) of direct and indirect additivity.

An implication of indirect additivity is that the number of goods provided in

the market does not affect their substitutability and thus the price elasticity of

demand, while income can affect this elasticity with crucial consequences. By

contrast, under direct additivity substitutability and thus demand elasticity are

unaffected by the number of goods conditionally on the size of consumption.

Monopolistic competition with indirect additivity generalizes the neutrality

of the number of consumers on the production structure which emerges in CES

models, thereby yielding pure gains from varieties as in Krugman (1980), as we

confirm in a two-country version of our model.3 Moreover, we obtain markups

that are variable in income/spending, with two appealing consequences. First,

pricing to market emerges as a natural phenomenon: as long as demand is less

elastic for richer consumers, we have higher markups in markets with higher in-

dividual income. Second, markups vary cyclically when demand shocks affect in-

come/spending or supply shocks affect marginal costs (i.e., firms’ productivity).

Similar results hold in a two-sector extension with an outside good representing

the rest of the economy, when consumers are heterogeneous in preferences and

income, and even when firms differ in productivity à la Melitz (2003).

The comparative statics for business creation is also of interest. Consider

the case where demand gets less elastic with income. Richer consumers induce

firms to increase their markups, which triggers more than proportional entry

of firms in the market. When firms are heterogeneous, this establishes a Dar-

winian mechanism that is absent in the Melitz model with CES preferences:

less productive firms enter in booms (when income increases) and exit during

downturns (a sort of “cleansing effect” of recessions). Finally, if firms can invest

in the quality of their products, then, taking advantage of larger market shares,

more productive firms tend to react to an increase in consumers’ income by

offering products of higher quality sold at higher prices.4

The work is organized as follows. In Section 1 we present our baseline model.

In addition to characterizing the endogenous entry equilibrium, we discuss indi-

rect versus direct additivity and present analytically workable examples of the

former (leading to linear and loglinear demand) for which we recover the un-

derlying direct utility functions. In Section 2 we extend the model in various

directions and provide a welfare analysis. In Section 3 we apply our framework

to an international trade model à la Krugman considering both costless trade

between different countries and costly trade between identical countries. We

conclude in Section 4. All the proofs are in the Appendix.

3On the importance of non-homotheticity in trade models see Markusen (2013).
4This is consistent with the so-called Linder hypothesis. For recent empirical support see

Kugler and Verhoogen (2012).
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1 The Model

Consider a market populated by (a number or mass of)  identical agents with

income   0 to be spent in a mass of  differentiated goods under the following

symmetric and separable indirect utility function:

 =

Z 

0


³


´
 (1)

where   0 is the price of variety .5 The expression on the RHS of (1)

exploits the property of homogeneity of degree zero of the indirect utility, and

crucially assumes additive separability, i.e. “indirect additivity”. To satisfy

sufficient conditions for (1) being an indirect utility function (while allowing for

a possibly finite choke-off price  and obtaining well-behaved demand functions),

we assume that the indirect sub-utility  () is at least thrice differentiable, with

 ()  0, 0()  0 and 00 ()  0 for any   , () = 0 for  ≥ , and

lim→ () 
0() = 0. These assumptions imply that demand and extra utility

are zero for a good that is not consumed.

The Roy identity provides the following direct individual demand function

for good :

(  ) =

0 ¡



¢


 (2)

where

 =

Z 

0

0
³


´ 


 (3)

This generates total market demand  = (  ). Notice that   0 is

the negative of the marginal utility of income, times the income level .

Examples of (1) include simple cases such as the isoelastic function () =

1− with   1, the exponential function () = − with   0, or the

“addilog” function () = (− )1+ with    0.6 Note that preferences are

homothetic only if () is isoelastic. Indeed, in such a case they are of the CES

type, with indirect utility  = 
³R


1− 

´1(1−)
, where  is the elasticity

of substitution. By an important duality result (see Hicks, 1969; Samuelson,

1969; Blackorby et al., 1978), CES preferences is the only class of preferences

satisfying both direct and indirect addivitity. That is, it is the only case in which

preferences can also be represented by an additively separable direct utility

function as the one assumed by D-S,  =
R 
0
 ()  for any well-behaved

subutility (·). Therefore, the indirect utility (1) encompasses a different class
of (non-homothetic) preferences whose corresponding direct utility functions are

non-additive (more on this in Section 1.2).

5Using the wage as numeraire,  can be interpreted as the labor endowment of each agent

(in efficiency units).
6Here the choke-off price  =  can be made arbitrary large. Other examples are general-

izations of the isoelastic function such as () = (+ )1−, with   1, or “mixtures” such
as () = 1− + 1− with  6=   1.
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Suppose now that each variety is sold by a firm producing with constant

marginal cost   0 and fixed cost   0. Accordingly, the profits of firm  can

be written as:

(  ) =
( − )

0 ¡


¢



−  (4)

Notice that  is unaffected by the price choice of firm . The most relevant

implication of this functional form is that the elasticity of the direct demand

corresponds to the (absolute value of the) elasticity of 0(·), which we define as

() ≡ −
00()
0()

 0

 depends on the price as a fraction of income, , but is independent from

 and . Instead, in the D-S case, the elasticity of inverse demand is uniquely

determined by the consumption level.7 This difference will be crucial for the

Chamberlinian analysis of monopolistic competition with free entry because

market adjustments (needed to restore the zero-profit condition) take place

through shifts of demand due to changes in the mass of firms, which affect

the marginal utility of income.

1.1 Equilibrium under monopolistic competition

Any firm  maximizes (4) with respect to . The FOC is:

0
³


´
+
( − )00

¡



¢


= 0 (5)

which requires that (locally) 00()+ 0()  0, or equivalently ()  1. More-
over the SOC requires 2()  (), where () ≡ −000()00() is a measure
of demand curvature. Notice that 0()() = ()+1− (), therefore 0  0
if and only if    − 1, in which case the demand becomes more elastic when
the price goes up or income goes down.8

The FOC (5) can be rewritten as follows for the equilibrium price :

 − 


=

1


¡




¢  (6)

where the familiar expression for the Lerner index equates the inverse of our

expression for demand elasticity.9 The pricing rule (6) shows that under indirect

additivity the profit maximizing price is always independent from the mass of

varieties supplied, because the latter does not affect the elasticity of demand.

7 In the general D-S model the (individual) inverse demand of variety  is given by  () =
0 () , where  is the marginal utility of income.

8 If demand is (locally) concave (000  0) the SOC is always satisfied and 0  0. On the
contrary, if demand is convex (000  0) we may have 0  0.

9To guarantee the existence of a solution to (6) we assume that    (so that consumer

willingness to pay is large enough) and that lim→ ()  (− ). Notice that the SOC
guarantees uniqueness of the equilibrium.
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On the contrary, the optimal price grows with income if firms face a less elastic

demand and vice versa, which provides a demand-side rationale for markups

that are variable across markets (or over the business cycle). Consider the

realistic case of 0  0: then, the model is consistent with typical forms of

pricing-to-market, i.e., the same good should be sold at a higher price in richer

(or booming) markets.10 Similarly, under the same assumption a change in the

marginal cost is transmitted (pass-through) to prices in a less than proportional

way (undershifting). Summing up, we have:

Proposition 1. Under indirect additivity and monopolistic competition the
equilibrium prices are independent from the mass of active firms; they increase

in the income of consumers, and less than proportionally in the marginal cost,

if and only if the demand elasticity is increasing in the price.

Since by symmetry the equilibrium profit is the same for all firms, and it is

decreasing in their mass, we can characterize the endogenous market structure

through the zero profit condition (− ) =  . This and the pricing rule

(6) jointly deliver the free-entry mass of firms and the production size of each

firm:

 =



¡




¢ ,  = 

³




´
− 1


 (7)

The following proposition summarizes the comparative statics for :

Proposition 2. Under indirect additivity, in a monopolistic competition
equilibrium with endogenous entry the mass of firms increases proportionally

with the number of consumers; it increases more than proportionally with the

income of consumers and decreases with the marginal cost if and only if the

demand elasticity is increasing in the price.

As a corollary, the equilibrium production of each firm  in (7) is does not

depend on the number of consumers, and it decreases with individual income

and increases with the marginal cost if and only if the demand elasticity is

increasing. To understand these comparative statics and their applications, it

is convenient to think of changes in  as changes in the scale of the economy,

of changes in  as demand shocks on the disposable income of consumers and

of changes in  as supply shocks to firms’ productivity. First of all, the impact

of an increase in the number of consumers is always the same as under CES

preferences: a larger scale of the market does not affect prices and production

per firm, but simply attracts more firms without inducing any external effect

on the market structure. This neutrality result and its key implications for

the Krugman (1980) model extend from CES preferences to the entire class

described by (1).11

An increase in the income/spending of consumers has more complex implica-

tions. Consider the realistic case where higher income makes demand more rigid

10However, it is immediate to verify that  is always decreasing in income.
11As an immediate consequence, increasing the population just induces gains from variety.

This is a remarkable difference compared to the D-S model, where the existence of gains from

variety can be guaranteed only when the equilibrium price is decreasing in the population (see

Zhelobodko et al., 2012, and Dhingra and Morrow, 2012).
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(0  0): then, a positive demand shock induces firms to increase their markups
and to reduce sales accordingly, which in turn promotes business creation and

increases the equilibrium number of active firms in a more than proportional

way. Finally, consider an increase in firms’ productivity associated with a reduc-

tion of the marginal cost (still assuming 0  0): lower costs are translated less
than proportionally to prices, which increases the markups and triggers addi-

tional entry. Accordingly, and contrary to what happens with CES preferences,

our more general model allows demand and supply shocks to generate additional

processes of business creation/destruction. This should alter the dynamics of

macroeconomic models with endogenous entry (see Etro and Colciago, 2010,

and Bilbiie et al., 2012).

It is important to emphasize the differences of our setting with the general

D-S model under non-homothetic preferences. Its free entry equilibrium can be

summarized as follows:

 − 


= 

µ




¶
  =

 ()


and  =

 [1−  ()]

 ()
 (8)

where () = −00()0() is what Zhelobodko et al. (2012) call the “rela-
tive love for variety.” Here both the price and the quantity do depend on the

population , which in turn affects non-linearly the number of firms: the exact

impact depends on the sign of 0 (). A more surprising result (hardly noticed
in the literature) is that the equilibrium price and firm size are independent

from income  (not only with CES).12 In the general D-S model, free entry

eliminates any impact of income in spite of non-homotheticity, and markups

cannot be affected by changes in consumer spending over the business cycle.

In conclusion, we remark that our microfoundation of demand can be applied

to the case of a (finite) small number of firms to analyze Bertrand or Cournot

competition.13 Then, a standard competition effect emerges: in particular, a

larger or richer market attracts new firms, which intensifies competition and

reduces the markups. As a consequence, the production of each firm increases

and the equilibrium number of firms increases less than proportionally with

the market size. This would match the evidence emphasized in the empirical

literature on entry in concentrated markets (see Campbell and Hopenhayn, 2005,

and the application to trade in Etro, 2013).

1.2 Examples and primal utility functions

Our results can be illustrated in simple examples with closed form solutions.

For instance, consider the exponential function () = −, which generates
12The reason of the different results is rooted in the market adjustment process. Since

the profit expression with direct additivity is  = (0 () − ) −  , where  =

0 (), there is a unique (symmetric) equilibrium (zero-profit) value of  =

(0()) . On the contrary, under indirect additivity, there is a unique equilibrium value

of  =  [0 () ].
13The strategic games generated under indirect additivity belong to the general class of

aggregative games analyzed by Acemoglu and Jensen (2011) with fixed number of firms and

Anderson et al. (2012) with endogenous entry.
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the log-linear demand  =  · −. The free-entry equilibrium reads as:

 = +



  =

2

 ( +)
  =




 (9)

Another example is based on the addilog case () = ( − )1+ , that delivers

the linear demand  =  · (− ) when  = 1. In general this leads to:

 =
+ 

1 + 
  =

( − )

 ( + )
  =

 (1 + )

 − 
 (10)

In both examples 0  0: therefore higher income makes demand more rigid,

which leads firms to increase their prices and reduce their production, with a

more than proportional increase in the number of firms. In addition, a marginal

cost reduction is not fully translated on prices, which attracts more business

creation and has a limited impact on firm size.

The Roy identity (2) can be used to recover the inverse demand (  ) =

0−1() for each variety . Employing the budget constraint
R

 = ,

we obtain that  is implicitly defined by 1 ≡ R

0−1 (). Simple expres-

sions for  arise if 0−1 (·) is homogenous or logarithmic (up to a linear trans-
formation). This is the case of our two examples, where closed-form solutions

are available. For the log-linear demand we obtain:

(  ) =



[ln(−)− ln] where  = − exp

Ã
− +

R 
0
 lnR 

0


!
,

and in the addilog example we have:

(  ) = 

"
− 

1


µ −
1 + 

¶1#
where  = −(1+)

⎡⎣ R 0  − 1R 
0

1+


 

⎤⎦ 
In both cases  depends on two simple aggregators of the consumption levels.14

We can finally recover the primal of our indirect utility function by plugging

the inverse demand in the indirect utility (1).15 In general, we have:

 =

Z 

0


¡
0−1()

¢
 ≡

Z 

0

 (| |)  with 1 =

Z 

0

0−1 ()

(11)

where the “subutility”  for each good is increasing in its consumption level. In

spite of an “additive” functional form, this is not a small deviation from the D-S

model because preferences are not directly separable: (11) shows that the mar-

ginal rate of substitution between two varieties is affected by the consumption

14Of course, our previous results could be re-derived by assuming that each firm  chooses

its production level  to maximize  = ((  )− ) −  .
15 Standard results ensure that, under our assumptions, preferences represented by (1) can

be also represented by a well-behaved direct utility: see Blackorby et al., (1978, Section 2.2.1).
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of all the others through . In our two examples we reach:16

 =

Z 

0

 exp

Ã
− +

R 
0
 lnR 

0


!
and  =

¡

R 
0
 − 1

¢1+µR 
0

1+


 

¶ 

1.3 Alternative models of monopolistic competition

To clarify the role of the assumptions on preferences in monopolistic competi-

tion, it is important to understand that they affect the substitutability among

varieties, and that it is the elasticity of substitution17 which ultimately deter-

mines demand elasticity in a symmetric equilibrium (see also Bertoletti and

Epifani, 2012).18 In particular, indirect additivity amounts to assume that the

optimal consumption ratio of any two goods  and ,  , does not depend

on the price of any other good (notice that a similar assumption is implicit in

empirical Logit models). This implies that in case of a common price  = 
the elasticity of substitution between varieties  and  does not depend either

on the number of the other goods or on their prices, while it might depend

on income. Instead, under direct additivity of preferences, it is the marginal

rate of substitution between any two goods 0 () 0 () which is independent
from the consumption of the other goods, leading to the property that their

inverse price ratio,  , is independent from the quantities of the other goods

consumed. As an implication, the elasticity of substitution between varieties 

and  in the case of a common consumption level  =  depends only on this

consumption level.

More generally, notice that in models of monopolistic competition it is stan-

dard to assume that preferences, including non-separable preferences, are sym-

metric with respect to the goods.19 In all cases, the optimal pricing rule is de-

termined by the elasticity of demand, whose symmetric equilibrium value must

be a function of the (common) price-income ratio and of the number of vari-

eties, say ( ). Obviously, alternative assumptions on preferences have

different implications for . As well-known, CES preferences imply that 

is constant. Indirect additivity implies that () does not depend on the

number of goods provided by the market: in other words, the introduction of

a new variety does not affect the substitutability between any of the existing

goods.20 The D-S hypothesis of direct additivity implies that () depends

on the product of the price-income ratio and the number of goods, as it is clear

16Another example generating closed form solutions arises if () = ( + )1−, with
  1. Here the equilibrium price is  = (+ ) ( − 1) and the direct utility is

 =




(−1)
 

(−1) 
1 + 





−1
. Notice that 0 ≷ 0 if  ≷ 0.

17The elasticity of substitution between goods  and  is a logarithmic derivative of 
with respect to  : see Blackorby and Russell (1989) for a formal discussion of the concept.
18Mrázová and Neary (2013) investigate how the assumptions on demand determine the

relevant comparative statics properties.
19A notable exception is D-S (1977: Section III).
20This result may hold beyond indirect additivity. Consider the following non-separable
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from (8) after noticing that in a symmetric equilibrium  = : in other

words,  is equally sensitive to changes in  or . Notice that quasilinear

preferences (linear with respect to an outside good) and homothetic preferences

produce an equilibrium elasticity which is independent from income, ( ).

This is the case of the quadratic preferences adopted by Melitz and Ottaviano

(2008), where  increases with respect to both its arguments, and of the Logit

demand system (see Anderson et al., 2012), where  is actually independent

from . At the other extreme are models in which demand elasticity does not

depend on the price-income ratio but depends on the number of varieties, as

under the homothetic Translog preferences employed by Feenstra (2003), where

 increases with . Which one of these preferences is more plausible remains a

key issue for future empirical research.

2 Extensions

2.1 Outside good and optimum product diversity

In this section we extend the model to an outside good representing the rest

of the economy, as in many general equilibrium models with two sectors. Let

us consider a sector producing a homogenous good under perfect competition

and constant returns to scale, and a sector producing differentiated goods un-

der monopolistic competition. We follow D-S (1977: Section II) and adopt an

indirect utility that has an intersectoral Cobb-Douglas form:21

 =

µ


0

¶ µZ 

0


³


´


¶1−
 (12)

where 0 is the price of the outside good and  ∈ [0 1]: clearly (12) collapses to
(1) for  = 0. In the Appendix we show that the pricing rule for the differentiated

goods remains the same as in (6), but the equilibrium mass of firms also depends

on the elasticity of the indirect sub-utility , defined as () ≡ −0()()  0,
which reflects the relative importance of the differentiated goods.

symmetric indirect utility function:

 =

 

0

(− )
2 − 1



 

0



2


By Roy identity we obtain the demand function:

 =  · [ − ( − ̄)]

where ̄ =


 is the average price. This is essentially the functional form used in the

textbook of Krugman et al. (2012, Ch. 8) to introduce monopolistic competition. However,

here we have  =  and in equilibrium we obtain the price  = +, which is increasing
in income but independent from the number of consumers, with  = 2 (+ ).
21A general specification of intersectoral preferences would not change the pricing rule, but

the equilibrium number of firms would not necessarily be linear in the number of consumers.

Notice that the Cobb-Douglas model can be also reinterpreted as a two-period model where

young agents have income  to be spent in the homogenous good or saved to consume the

differentiated goods when old, with discount factor (1− ) and a zero interest rate.
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Proposition 3. In a Cobb-Douglas two-sector economy with indirect addi-
tivity and monopolistic competition with endogenous entry in the differentiated

sector, an increase in the number of consumers is neutral on prices and increases

linearly the mass of firms, but higher income increases prices if and only if the

demand elasticity is increasing in the price.

It is interesting to evaluate the welfare properties of this generalized equilib-

rium. As well known, firms do not fully internalize the welfare impact of their

entry decision, which may lead to too many or too few firms.22 The constrained

optimal allocation (controlling prices and number of varieties under a zero profit

constraint) is derived in the Appendix and provides a simple comparison with

the decentralized equilibrium for any  ∈ [0 1]:
Proposition 4. In a Cobb-Douglas two-sector economy with indirect addi-

tivity, monopolistic competition with endogenous entry generates excess (insuf-

ficient) entry with too little (much) production by each firm if the elasticity of

the indirect sub-utility (·) is everywhere increasing (decreasing) in the price.
Paralleling D-S, an intuition for this result can be obtained by noticing that

 approximates the ratio between the revenue of each firm and the additional

utility generated by its variety. If 0  () 0 they diverge and at the margin

each firm finds it more profitable to price higher (lower), i.e, to produce less

(more), than what would be socially desirable. This, in turn, attracts too many

(too few) firms.23

2.2 Heterogeneous consumers and income distribution

In this section we generalize our model to the case of consumers with different

preferences and income. The model remains tractable and allows one to draw

implications on the impact of income distribution on the market structure. We

assume that there is a mass  of consumers of different “types”. Types are dis-

tributed across the population according to the cumulative distribution function

() with support [0 1].24 The consumer of type  has income  and indirect

utility function given by:

 =

Z 

0



µ




¶
 (13)

In a symmetric equilibrium, each firm adopts a simple extension of the pricing

rule (6) for homogenous consumers:

 − 


=

1e ( ) with e () ≡ Z 1

0



µ




¶


̄
 ()  (14)

22See the original D-S (1977) paper, Kuhn and Vives (1999) and Dhingra and Morrow (2012)

for key references on this issue. Notice that the first-best allocation would require marginal

cost pricing and subsidies to the firms. Details are available from the authors.
23One may find it more reasonable the case in which the elasticity of the sub-utility decreases

when income gets higher, which requires 0  0. This is the case for the exponential and
addilog cases: accordingly, they both imply excess entry.
24We arrange consumer types in such a way that    implies   , exclude any form

of price discrimination (i.e., there is no market segmentation), and focus on the symmetric

equilibrium.
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where e is a weighted average of demand elasticities , and the weight is the
consumer of type ’s “fraction” of average income ̄. Under free entry, the mass

 of consumer is again neutral, but the distribution of types is not.25

Proposition 5. Under indirect additivity with heterogeneous consumers

and monopolistic competition with endogenous entry, an increase in the mass of

consumers is neutral on prices and increases linearly the number of firms. With

identical preferences: 1) if the demand elasticity is increasing (decreasing) in the

price, an improvement of the income distribution according to the likelihood-ratio

dominance raises (decreases) prices and increases the mass of firms more (less)

than proportionally to average income; 2) a mean preserving spread decreases

prices and the mass of firms if and only if the demand elasticity is convex.

The impact of an improvement of income distribution is in line with the

baseline model, but the impact of inequality is in general ambiguous. Consider

identical preferences with a demand elasticity increasing and convex with respect

to the price, as in our addilog example: in such a case a mean preserving

spread of the income distribution increases the average demand elasticity that

is expected by the firms, which reduces prices and induces business destruction.

2.3 Heterogeneous firms and endogenous quality

Melitz (2003) has shown that under heterogeneous productivity of the firms and

CES preferences there are no selection effects on the set of active firms when a

market expands, for instance in a boom or when the country opens up to costless

trade. However, under more general D-S preferences this neutrality holds for

changes in income but not in the population, whose increase can give raise to

ambiguous effects (depending on the shape of the relative love for variety). In

particular, when prices are increasing with the size of consumption, an expan-

sion of the market scale induces a selection effect, forcing the exit of the least

productive firms, while less productive firms are able to survive during a con-

traction of the market (see Zhelobodko et al., 2012 and Bertoletti and Epifani,

2012). In this section we show that under indirect additivity the number of con-

sumers is always neutral, but it is income growth that has an impact, exerting

an anti-selection effect as long as 0  0: income growth allows less productive
firms to survive, while low-productivity firms exit during downturns.

Following Melitz (2003), we assume that, upon paying a fixed entry cost

, each firm draws its marginal cost  ∈ [∞) from a continuous cumulative

distribution () with   0. In the Appendix we show that the equilibrium

price function () of an active -firm is the same function of the marginal

cost expressed in (6), that high-productivity firms produce more and are more

profitable, and that they also charge lower markups if and only if 0  0. Firms
are active if their variable profits  cover the fixed cost  , that is if they have

25A special case arises if preferences are of the exponential type, i.e.,  = − . In
such a case () =  and therefore  = ̄, where  =



(): the market

structure depends only on  and average income ̄.
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a marginal cost below the cut-off ̂ satisfying:

(̂) =
[(̂)− ̂] 0((̂))


=  (15)

Moreover, the equilibrium must satisfy the endogenous entry condition:Z ̂



[()−  ] () =  (16)

i.e., firms must expect zero profit from entering in the market. The two equa-

tions determine ̂ and  in function of ,  ,  and , but in the Appendix

we show that a change in  produces no selection effects: an increase of the

population is completely neutral on all the prices and on the productivity cut-

off beyond which firms are active, even when preferences are not CES. Instead,

changes in income induce novel effects on the structure of production:

Proposition 6. Under indirect additivity, monopolistic competition with
endogenous entry and cost heterogeneity between firms, an increase in population

is neutral on prices and on the productivities of the active firms (it increases

proportionally their mass), but higher income increases prices of all firms and

makes less productive firms able to survive (an anti-selection effect) if and only

if the demand elasticity is increasing with respect to the price.

This result rationalizes a “cleansing effect” of recessions: these induce the

exit of low-productivity firms leaving the high-productivity firms in the market,

while expansionary shocks associated with higher spending make low-productivity

firms able to survive. Notice that such a cyclical process cannot be reproduced

in the baseline Melitz model or in its extension to directly additive preferences.

The heterogeneous costs model can be easily extended to take into account

endogenous quality choices. This possibility has been recently explored to ac-

count for positive correlations of productivity with both quality and prices (see

for instance Kugler and Verhoogen, 2012), but non-homothetic preferences are

essential to explain a positive association of income with both quality and prices

(the so-called Linder hypothesis). For simplicity, let us suppose that for a variety

 with price  and quality  ≥ 0 the sub-utility is given by  =  ()(),

where , 0  0 (higher quality increases both utility and demand without af-

fecting demand elasticity), and lim→0 () = 0 (to avoid corner solutions).

For simplicity, let us assume that a -firm can produce goods of quality  at

the marginal cost , obtaining variable profits  = (− ) 0()().
Under some regularity conditions,26 the equilibrium choices () and () satisfy

(− )  = 1() and () = 1+(), where () ≡ 0()() is the
elasticity of demand with respect to quality. Price and quality are again inde-

pendent from , but their relation with productivity and consumers’ income is

more complex and can be derived through total differentiation as follows:


n



o
= − {0} and 

n



o
= 

©
0
ª



©



ª
= −©0ª and 

©



ª
= 

©
0
ª


(17)

26The SOCs require 2  ,  ≡ 000  2 ( − 1), and  [ − 2]  ( − 1) [2 − 3].
Accordingly, it must be the case that 0  0 if 0 ≥ 0.
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First, notice that under CES preferences (0 = 0) quality is (endogenously)
independent from productivity and consumers’ income, while when demand

is isoelastic in quality (0 = 0) the price is the same for all firms and more

productive firms invest more in quality. Under the standard assumption 0  0,
more productive firms produce goods of higher quality. Moreover, they can even

invest so much to sell them at higher prices compared to low productivity firms:

this happens when the demand becomes more sensible to quality for products

of higher quality (that is if 0  0).27 Finally, in line with the Linder hypothesis,
higher income induces specialization in high quality, high price goods. Given

the price and quality choices, variable profits are still increasing in productivity

and income, and the free-entry mechanism operates as before.

3 Pricing to Market in a Two-country Model

One of the main limits of the trade models based on monopolistic competition

with CES preferences (Krugman, 1980 and Melitz, 2003) is their inability in

providing simple reasons why firms should adopt different markups in different

countries. It is well known that pricing to market is a pervasive phenomenon:

identical products tend to be sold at different markups in different countries and

in particular prices appear to be positively correlated with per capita income

(Alessandria and Kaboski, 2011) but not with country population (Simonovska,

2013). In this section we generalize the Krugman (1980) model to indirectly

additive preferences and emphasize its implications for the structure of trade.28

We consider trade between two countries sharing the same preferences (1)

and technology, as embedded into the costs  and  , which are given in labor

units, but possibly with different numbers of consumers  and ∗ and different
productivity (i.e., labor endowment in efficiency units). In particular, we assume

that the labor endowments of consumers in the Home and Foreign countries

are respectively  and ∗, so that income levels are  =  and ∗ = ∗∗.
Accordingly, the marginal and fixed costs in the domestic and foreign countries

are respectively  and  and ∗ and ∗ .29 Let us assume that to export
each firm bears an “iceberg” cost  ≥ 1, and, as standard, let us rule out the
possibility of parallel imports aimed at arbitraging away price differentials (i.e.:

international markets are segmented). Consider the profit of a firm , based in

the Home country, which can choose two different prices for domestic sales 
and exports :

27For empirical evidence in this direction see, for instance, Kugler and Verhoogen (2012).
28 Several recent papers have studied trade in multi-country models with non-homothetic

preferences. Bertoletti and Epifani (2012) consider the general D-S model but focus on iden-

tical countries. Behrens and Murata (2012) and Simonovska (2013) use specific types of D-S

preferences: the former paper assumes that market are not segmented while the latter deals

with the case of international price discrimination. Finally, Fajgelbaum et al. (2011) consider

products of different qualities within a Logit demand system.
29 Identical results would emerge assuming different productivities (affecting proportionally

both marginal and fixed cost), and equal labor endowments. This would be reflected on the

equilibrium wages and through this on incomes.
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 =
( − )

0 ¡


¢



+
( − )

0 ¡
∗
¢
∗

∗
−  (18)

where  and ∗ are the Home and Foreign values of (3). A symmetric expression
holds for a Foreign firm , choosing prices ∗ and ∗ .
The optimal price rules for the Home firms are:

− 


=

1


¡



¢   − 


=

1


¡

∗
¢  (19)

and the optimal price rules for the Foreign firms are similarly obtained. There-

fore, four different prices emerge in the symmetric equilibrium, with  = 0
¡



¢


+

∗0
³
∗


´
∗

and ∗ = 0

¡

∗
¢

∗ +

∗0
³
∗

∗

´
∗

∗ . The endogenous entry con-

dition for the firms of the Home country reads as:

(− )
0 ¡ 



¢



+
( − )

0 ¡ 
∗
¢
∗

∗
=  (20)

and a corresponding one holds for the firms of the Foreign country. We can

normalize the home wage to unity,  = 1, and close the model with the domestic

resource constraint (or, equivalently, the labor market clearing condition):

 =  [+ 
∗ +  ]  (21)

where  = 0() and  = 
0
(

∗) ∗. Trade balance holds residually.
This provides a system of seven equation in seven unknowns (, , 

∗, ∗, 
∗,

 and ∗). With non-homothetic preferences, population and productivity of a
country have a distinct impact on the relative wages, with complex implications

for price differentials and the structure of trade. However, we can study the

main insights of the model focusing on the two cases traditionally analyzed

in the literature: costless trade between different countries, and costly trade

between identical countries. The former case is obtained setting  = 1, and is

characterized as follows:

Proposition 7. Under indirect additivity, monopolistic competition with
endogenous entry and costless trade, firms adopt a higher price in the country

with higher per-capita income; opening up to trade reduces (increases) the num-

ber of firms in the country with higher (lower) per-capita income if and only if

the demand elasticity is increasing, and generates pure gains from variety.

Since costless trade induces factor price equalization (otherwise the zero-

profit condition would not be satisfied in both countries), the price rules show

immediately the emergence of pricing to market: under the standard assump-

tion 0  0, prices of identical goods are higher in the country with the higher

per-capita income because demand is more rigid compared to the other country,

and these prices are independent from the population sizes. Consumers enjoy

new varieties produced abroad and bought at the same price of the domes-

tic goods. Nevertheless, opening up to trade induces a redistribution of firms
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and production across countries which is absent in the Krugman (1980) model.

Firms exporting to the country with poorer consumers sell there at a lower

mark up and face entry of foreign firms in the domestic market: accordingly,

they obtain lower variable profits, which leads to business destruction at home.

The country with richer consumers is then characterized by a process of con-

centration in fewer and larger firms. On the contrary, business creation takes

place in the country with poorer consumers, where firms start selling abroad at

higher mark ups and reduce their size. Finally, prices and the total number of

firms across countries remain the same as in autarky, therefore the gains from

trade are always pure gains from variety as in Krugman (1980).30

The second case we consider, the one of costly trade, is obtained by setting

  1 with  = ∗ and  = ∗, and is characterized as follows:
Proposition 8. Under indirect additivity, monopolistic competition with

endogenous entry and costly trade between identical countries, opening up to

trade reduces the markup on the exported goods and the mass of firms in each

country relative to autarky if and only if the demand elasticity is increasing.

Because also transport costs are symmetric, wages and prices are equalized

in both countries. However, the markup applied to goods sold at home and

abroad is not the same when preferences are not homothetic. In particular, the

markup (on the marginal cost ) is lower for the exported goods if 0  0,

because firms undershift transport costs on prices. This shows a different form

of pricing to market, which has the additional consequence of affecting the entry

process compared to the neutrality of the Krugman (1980) model: as long as

the average markup diminishes because of undershifting of the transport costs

on export prices, opening up generates a process of business destruction in both

countries. Welfare gains from trade, therefore, do not derive from pure gains

from variety (as in the Krugman model with transport costs), but potentially

also from a downward pressure on the markup of the imported goods.

Notice that our setting breaks the neutrality of changes in trade costs and

income on the structure of trade which holds in the Krugman (1980) model.

First, a reduction in transport costs reduces the price of exports, but simul-

taneously increases their markups, which affects the number of firms as well.

Second, under some additional conditions, richer countries trade relatively more

between themselves than poorer countries, which is in line with the evidence (for

instance see Fieler, 2011).31 We believe that the assumption of indirect additiv-

30Augmenting the model with strategic interactions would generate a competition effect

of trade on markups leading also to gains from competition (see Etro, 2013, for a related

discussion).
31The export share on GDP can be derived as:




=

0()
0() + 0 () 

where prices satisfy (19). Under CES preferences this ratio is 1(1+−1), therefore the export
share is independent from income. Under non-homotheticity, weak conditions satisfied with

linear and log-linear demand (0  0 is sufficient) guarantee that the export share increases
with income because the relative demand for imported goods becomes more elastic (in line

with the Linder hypothesis).
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ity of preferences will prove useful also to disentangle the impacts of income and

population on other aspects of trade (such as the emergence of multinational

and multiproduct firms, or the role of trade policy).

Finally, it is important to stress that, if preferences are not homothetic, a

sort of pricing to market arises in a multi-country setting also under direct ad-

ditivity (see Markusen, 2013 and Simonovska, 2013). The mechanism is simple:

a larger income implies a larger individual consumption for each variety, which

in turn affects markups. However, exactly for this reason, direct additivity also

preserves the (ambiguous) impact of the number of consumers on markups. For

example, the model of Simonovska (2013) predicts a negative relation between

country population and prices for which she does not find clear support in the

data, making her empirical findings more in line with the model presented here.

4 Conclusion

We have studied monopolistic competition with non-homothetic preferences sat-

isfying indirect additivity, an alternative (and not less plausible) setting com-

pared to Dixit and Stiglitz (1977). Under reasonable conditions (namely more

rigid demand for higher income), it generates two main predictions that are in

contrast with the standard approach and await for additional empirical tests: a

higher individual income should increase markups and more than proportionally

the number of firms, while the number of consumers should be neutral. Our

framework is highly tractable and encompasses a number of analytically solvable

cases as those with linear or log-linear direct demands. Therefore it could be

applied to analyze complex issues usually considered exclusive territory for CES

modeling: in particular, indirect additivity could be useful in building closed-

and open-economy models of imperfect competition with heterogeneous firms

and consumers, possibly in a dynamic general equilibrium framework.
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Appendix

Proof of Proposition 1. By using 0 () = +1−  ≷ 0 if and only if
 + 1 ≷ , the result follows from the total differentiation of (6):

 ln 

 ln
= 0

 ln 

 ln
=

 + 1− 

2 − 
and

 ln 

 ln 
= 1−  + 1− 

2 − 
 (22)

after noticing that 2 −   0 from the SOC. ¤
Proof of Proposition 2. Using the comparative statics in (22) and differen-

tiating (7) we obtain:

 ln

 ln
= 1

 ln

 ln
= 1+

( + 1− ) ( − 1)
2 − 

and
 ln

 ln 
= −( + 1− ) ( − 1)

2 − 
¤

Proof of Proposition 3. By the Roy identity, the demand of each differen-
tiated good is given by:

 =
0 ()R 

0

h
0 ()



− 

1−  ()
i



and the profits of each firm  are given by:

 =
0 () ( − )R 

0

h
0 ()  − 

1−  ()
i

−  (23)

where the denominator is unaffected by . It is immediate to verify that, indepen-

dently from the value of , each firm adopts the same pricing rule as in (6) and the

comparative static properties of the profit-maximizing price  are then the same as

in Proposition 1. The number of goods produced in the free-entry equilibrium can be

derived as:

 =
 (1− )  ()

 () [(1− ) () + ]
 (24)

which now depends on  and both the elasticities  and : changes in income affect

prices and the allocation of expenditure between the differentiated goods and the

outside one. Nevertheless, the number of firms is always proportional to . ¤
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Proof of Proposition 4. We compare the market performance with a con-
strained optimal allocation which maximizes utility under a zero-profit condition for

the firms. The problem boils down to:

max


 ()   = +


 ( )
,

where

 ( ) =
0 ()


h
0 () 


− 

1−  ()
i

is the symmetric demand of a variety. Notice that the zero-profit constraint im-

plictly defines  as a function of  that is continuous on [ ], with () = 0 and

lim→̄ () which is a finite number. Accordingly, the objective function is null

for  =  and  → ̄, and positive for at least some intermediate price due to our

assumptions. Therefore, there must exist an internal optimum satisfying the FOCs:

 () = − 

2





0 ()  = −
∙
1 +



2




¸


where  is the relevant Lagrange multiplier. They imply:

() = −


+

 ln()

 ln 

 ln()

 ln

=


− 
+

 ln ( )

 ln 


It is easily computed that:

0 =
 [1−  + ]


 (25)

Since

 ln ( )

 ln 
=


 ln ()

 ln 

 + (1− ) 
− 1 = (2 − 1)  − 

 + (1− ) 


we obtain:

∗ − 

∗
=

 + (1− ) 

(1− )  (1 + ) + 
 (26)

Finally, the optimal mass of firms is:

∗ =
(1− ) 

 [(1− )  (1 + ) + ]
 (27)

Compare (26) with (6): the RHS of (26) is larger (smaller) than 1 if (everywhere)

 ≷ 1 + . Since it follows from (25) that 0 ≶ 0 is equivalent to 1 (1 + ) ≷ 1,
then (everywhere) 0 ≶ 0 is equivalent to  ≶ ∗, which in turn implies ∗ ≶  by

the zero-profit constraint. Using the fact that the RHS of (27) is larger (smaller) than
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the RHS of (24) if 0 is smaller (larger) than zero we obtain  ≶ ∗, which completes
the proof. ¤
Proof of Proposition 5. The demand of a consumer  for good  can be

written as (  ) = 0 () , where  =
R

0 () () .

The profits of firm  are given by:

() = ( − )

Z 1

0

(  ) ()− 

which implies that the profit-maximizing price  satisfies the FOC:

( − )

Z 1

0

00
³



´


 () +

Z 1

0

0
³



´


 () = 0

Symmetric pricing implies  = 0 (
) (

) and thus:

 − 


=

− R 1
0




 ()R 1
0

00








0


()

 ()

=
1R 1

0


³




´

̄
 ()

=
1e ( ) 

where  ≡ −00 ()  (
0
 ()) and ̄ =

R

 (). The price rule is

thus independent from . Endogenous entry implies the following mass of firms:

 =
̄

e ( ) 
which proves the first part of the proposition since  affects linearly .

To prove the second part, suppose that all consumers share the same preferences. It

is then convenient to rewrite e directly as e ( ) = R 1
0

 () 

(), where  (·)

is the income distribution function implied by  (·). Consider a change in  according
to likelihood ratio dominance: i.e., a change from 0 to 1 such that 1()1( ) ≥
0()0( ) for all    ,   ∈ [0 1], where  (·) =  0 (·) is the relevant
density function. This implies that 1 also (first-order) stochastically dominates 0

(see for instance Shaked and Shanthikumar, 1994): thus, by a well-known result, this

raises the average income (i.e., ̄1  ̄0). We can write:

e ( ) = Z 1

0



µ




¶
Φ(; ) with Φ(; ) =

Z 

0




( )

where the cumulative distribution function Φ has density  = Φ0. Notice that:

(; 1)

( ; 1)
=

1()

1( )
≥ 0()

0( )
=

(; 0)

( ; 0)
for all    ,   ∈ [0 1] 

Accordingly, Φ(; 1) dominates in terms of the likelihood ratio Φ(; 0) and it

must then be the case that Φ(; 1) ≤ Φ(; 0) for all  ∈ [0 1] (i.e., the

21



former distribution first-order stochastically dominates the latter). It follows that

when  () is a decreasing (increasing) function of  an improvement of income

distribution according to likelihood-ratio dominance implies e ¡ 1¢ ≤ (≥)e ¡ 0¢
for all , which in turn decreases (increases) the equilibrium value of e, and thus raises
(decreases) the equilibrium price level and the mass of active firms more (less) than

proportionally to the rise of average income.

Suppose now that 1 is a mean-preserving spread of 0. Then ̄1 = ̄0 = . The

function  () in the definition of e ( ) is a concave (convex) function with
respect to  if and only if 00  ()0. By a standard result it must then be the case
that e ¡ 0¢  ()e ¡ 1¢ when 00  ()0. It follows that a mean-preserving

spread decreases (increase) the equilibrium value of e, and then raises (decreases)
prices and the mass of firms when  is a concave (convex) function of the price. ¤
Proof of Proposition 6. Let us start analyzing the price choices for the

active firms. The variable profits of a -firm are given by  = (− ) 0(),
where  = 

R 

0(())(())()

() is independent of its price choice. There-
fore, the pricing rule (6) applies to all firms. We denote with  = () the profit-

maximizing price of a -firm, with () = 0(()) the individual consumption
of its product, and with:

() = [()− ] 0(())

its variable profit for given . Note that the optimal price of firm  does not depend

upon  and  and follows the same comparative statics as in Proposition 1, with

 ln () ln  ≷ 1 and  ln () ln ≷ 0 if and only if 0 ≷ 0. Moreover, the
FOCs and SOCs for profit maximization imply the following elasticities with respect

to the marginal cost (for given ):

 ln()

 ln 
= − ( () )  ln ()

 ln 
 0 (28)

 ln ()()

 ln 
=

− ( ( () )− 1)2
2 ( () )−  ( () )

 0 (29)

 ln()

 ln 
= 1−  ( () )  0 (30)

Accordingly, high-productivity (low-) firms are larger, make more revenues, and are

more profitable, as in Melitz (2003), but they charge lower (higher) markups if  is

increasing (decreasing). In addition, again for given , we have the following elasticities

with respect to income:

 ln()

 ln
=

 ( () )
2 −  ( () )

2 ( () )−  ( () )
 0 (31)

 ln ()()

 ln
=

 ( () )
2
+ 1−  ( () )

2 ( () )−  ( () )
 1 (32)

 ln()

 ln
=  ( () )  1 (33)
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The size of each firm increases with  (for given ), and revenues and profits increase

more than proportionally. However, each price increases with respect to income only

when 0  0, and decreases otherwise. The set of active firms is the set of firms

productive enough to obtain positive profits. Denote by ̂ the marginal cost cutoff,

namely the value of  satisfying the zero cutoff profit condition (̂) =  , or:

[(̂)− ̂] 0((̂)) =  (34)

The relation (34) implicitly defines ̂ = ̂(). Differentiating it yields:

 ln ̂

 ln
=

 ( (̂) )

 ( (̂) )− 1  0, (35)

̂





̂
=

 ln ̂

 ln
= −  ln ̂

 ln
=

1

1−  ( (̂) )
 0 (36)

Endogenous entry of firms in the market implies that expected profits

 {} =
Z ̂



[()−  ] () (37)

must be equal to the sunk entry cost . The profits decrease when the absolute value

of  increases, that is  {}   0. Accordingly, the condition  {} =  pins

down uniquely the equilibrium value of  as a function  ( ). In particular,

using (34) the free entry condition can be written as:Z ̂



½
[()− ] 0(())
[(̂)− ̂] 0((̂))

− 1
¾
() =




 (38)

The system {(34) (38)} can actually be seen as determining ̂ and  in function of

,  ,  and . The second equation fixes ̂ and is independent from , and the first

one determines  as linear with respect to . The cut-off ̂ is therefore independent of

market scale, because  proportionally adjusts in such a way to keep constant the ratio

 and thus the variable profit of the cut-off firm. As a consequence, as in Melitz

(2003), a change in  produces no selection effect, even when preferences are not CES.

Also notice that a raise of  requires an increase of  less than proportional (otherwise

the value of the expected variable profit would increase more than proportionally), and

this in turn decreases ̂ (a selection effect), while an increase of  by increasing the

equilibrium value of  raises ̂ (an anti-selection effect). The impact of income  is

more complex. Since by (33) and (35) an increase of  raises  {}, it must decrease
the equilibrium value of . In particular:








= −

E[]


E[]






=  (̂)  0 (39)

where

 (̂) =

⎡⎢⎢⎢⎣
Z ̂



1

 ( () )

()()Z ̂



()()()

()

⎤⎥⎥⎥⎦
−1

(40)
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is the harmonic mean of the  values according to  (·) and ̂. Computing the total
derivative of ̂ with respect to  we obtain:

 ln ̂

 ln
=

∙
̂


+

̂







¸



=

 ( (̂) )−  (̂)

 ( (̂) )− 1  (41)

which is positive if and only if (everywhere) 0  0: that is, in addition of increasing
(decreasing) the mark up of the infra-marginal firms, a rise of  creates an anti-

selection (selection) effect if  increases (decreases) with respect to the price. To close

the model, the expected mass of active firms  is determined by the budget constraint,

requiring average expenditure to equal , and thus:

 =
Z ̂



()()
()

(̂)

 (42)

Since an increase of the mass of consumers  affects proportionally , and thus pro-

portionally reduces individual consumption (), it follows from (42) that it also pro-

portionally increases the mass of varieties. ¤
Proof of Proposition 7. Let us assume  = 1. In such a case each firm

faces the same demand functions, independently from the country in which it is based.

However, the firms based in the Home country have a cost advantage (disadvantage)

with respect to firms from the Foreign country if   () ∗. Since a necessary
condition for a monopolistic equilibrium with endogenous entry in both countries is

 = ∗ = 0, it follows that it must be ∗ = 1. Accordingly, we can normalize

the common wage to  = ∗ = 1 (which restores the notation of the baseline model
with  =  and ∗ = ∗), and conclude that in a symmetric equilibrium  = ∗ and
∗ =  . This means that all firms adopt the same price in the same country, with:

− 


=

1


¡



¢  ∗ − 

∗
=

1


¡
∗
∗
¢  (43)

where   ∗ when   ∗ if and only if 0  0 (everywhere). The opening of

costless trade has no impact on prices and mark ups relative to autarky, extending

this property of the Krugman (1980) model to our entire class of indirectly additive

preferences. From symmetry we infer that all firms have the same profit and using the

price rules in (19) the zero-profit constraint provides the total mass of firms as:

+ ∗ =



¡



¢ + ∗∗


¡
∗
∗
¢  (44)

This is the sum of the masses of firms emerging under the autarky equilibrium in each

separate country, say  =  () and ∗ = ∗∗ (∗∗), therefore
the total mass of firms remains the same. This implies that after opening up to trade

welfare unambiguously increases because of the increase in the number of consumed

varieties. However, the mass of firms active in each country is not the same as in

autarky. In fact, by using the resource constraints one can obtain:



∗
=



∗∗
Q 

∗
=

 (∗∗)
∗∗ ()

if   ∗ and 0 R 0 (45)
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where we used the fact that  Q ∗∗ if   ∗ and 0 R 0. Since the

total number of firms is constant, the number of firms in the rich (poor) country must

decrease (increase) if 0  ()0. Finally, the resource constraint of each contry implies
that whenever the domestic mass of firms increases (decreases) their size must decrease

(increase). ¤
Proof of Proposition 8. Let us assume   1 but  = ∗ and  = ∗.

In such a case, all the equilibrium variables must be the same across countries by

symmetry. Therefore we can again normalize  = ∗ = 1, which implies that

 = ∗. The internal prices and the prices of exports must be the same in both
countries, i.e.,  = ∗ and  = ∗. These prices satisfy:

− 


=

1


¡



¢   − 


=

1


¡



¢ 
By Proposition 1 we know that    and ( − ) R ( − )  if and only

if 0 T 0. By symmetry the number of firms in each country is the same, say , but
this does not need to be the same as in autarky,  = (). To find the

number of firms in each country after opening up to trade, let us combine the free

entry condition (20) with the price rules (19) to obtain:




¡



¢ + 


¡

∗
¢ = 

By using  =  (+ ) the number of firms can be derived as follows:

 =




∙

³ 


´−1 

+ 
+ 

³


´−1 

+ 

¸
 (46)

Notice that the parenthesis in (46) is a weighted average of 1 () and 1 ().

Under CES preferences this is a constant: the number of firms is the same as in autarky

(independent from the transport costs). Otherwise, since   , we have  Q  if

and only if 0 T 0. ¤
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