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Motivation

“Quality Game”

H L

B 3,1 0,3

N 1,0 1,2

Traditional game-theoretic analysis:

• utilities taken as given

• “reasonable” beliefs identified

But in decision theory no separation of utils and beliefs:

• utilities and beliefs generated together from prefs

• beliefs not required to be “reasonable”

Aim of this paper: reconcile the two approaches
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Savage’s Omelet

“Your wife has just broken five good eggs into

a bowl when you come in and volunteer to fin-

ish making the omelet. A sixth egg, which for

some reason must either be used for the omelet

or wasted altogether, lies unbroken beside the

bowl. You must decide what to do with this

unbroken egg.” (Savage, 1954)

STATE
ACT Good Rotten
Waste five-egg omelet,

one good egg wasted
five-egg omelet,
no good eggs wasted

Use six-egg omelet,
no good eggs wasted

no omelet,
five good eggs wasted

Who determines the true state is inessential (“Nature”).
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The dominant approach to the problem:

• Acts = functions mapping states into outcomes

• Attach a utility to each outcome

• Attach a probability to each move by Nature

• Choose act with highest expected utility

But: what are subjective probabilities and utilities?

Savage: a mathematization of preference among acts

(You bet the egg is rotten ⇔ You prefer “Waste”)
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Interactive Omelet

“Both you and your wife hate wasting good

eggs, but strongly disagree on the size of the

perfect omelet: you say six eggs, she says five.

Now, your wife took six of the seven eggs in

your fridge. One of the seven was rotten, and

only she knew which one. She has just broken

five good eggs into a bowl when you come in

and volunteer . . . ”

“STATE”
ACT Good Rotten
Waste five-egg omelet,

one good egg wasted
five-egg omelet,
no good eggs wasted

Use six-egg omelet,
no good eggs wasted

no omelet,
five good eggs wasted

Same physical description, but here another de-

cision maker (wife) determines endogenously the

true state. G, R are now acts for her!
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The “textbook” approach to the problem:

• Attach a utility to each outcome

• Attach a probability to each move by wife

• Attach a probability to possible utilities of wife

• Attach a probability to possible probabilities of wife

• . . .

• Choose act with highest expected utility

Can a Savage-like foundation be given here?
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Interactive Omelet – What is Bob’s Ω?

Naive approach: Ω = {G, R}

“I bet she put a rotten egg” not enough!

Bob cannot reasonably guess without precise idea of:

(i) desirability of outcomes to Alice

(ii) Alice’s guess about W, U

Ω must include (i) and (ii), i.e. wife’s attitude towards

her acts G, R (e.g. does she obey Savage’s axioms?)

“I bet she put a rotten egg, as (I bet) she is sure (would

bet) I will throw it away” better, but still not enough!

Problem of infinite regress arises.
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Problem with the “Textbook” Approach

• Infinite regress problem should not be solved assuming

probabilities, because it arises before specification of Ω.

• When asking whether Bob is a Savage decision-maker,

must also assess Bob’s confidence in Alice being so.

Solution: use Harsanyi-like model w/o probabilities:

Alice has “action and preference-type” unknown to Bob.

• Alice’s (Bob’s) possible types: ΩB (ΩA)

• Each ωA ∈ ΩA gives a pref rel <B over XΩB

• Each ωB ∈ ΩB gives a pref rel <A over XΩA

• So <B tells Bob’s confidence in Alice’s confidence

in Bob’s confidence in . . .
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Plan of the Talk and Preview of Results

• Use hierarchies of preferences to define “canonical”

uncertainty spaces for Bob (ΩB) and Alice (ΩA)

• Show that <B on XΩB comprehensively describes

Bob’s prefs and also his belief about Alice’s prefs

(hence about her beliefs)

• Show that a sequence of “simple” preference state-

ments by Bob reveals:

(i) whether Bob is a SEU maximizer

(ii) whether Bob is sure Alice is, too

(iii) whether Bob is sure Alice is sure Bob is, etc.

• Sketch applications and link to existing theory
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Preliminary: Savage’s Theory

• States of the World: a set Ω

• Outcomes: a set X

• Acts: XΩ, the functions f : Ω → X

• Preference Relation < over Acts

If < satisfies Savage’s axioms, it is represented by

• Utility Function: u : X → R

• Subjective Belief : P ∈ ∆(Ω)

f < g ⇔

∫

Ω
u(f(ω))dP (ω) ≥

∫

Ω
u(g(ω))dP (ω)
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Primitives

• Players: A, B

• Strategy Sets: SA, SB

• Outcomes: X

(outcome function: φ : SA × SB → X)
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Construction of Bob’s Space of Uncertainty (I)

(symmetric definitions and results for Alice)

• Ω0
B = SA

• P0
B = all preference relations on XΩ0

B

• Ω1
B = SA × P0

A

• P1
B = all preference relations on XΩ1

B
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Construction of Bob’s Space of Uncertainty (II)

Every act in XΩ0
B can be seen as an act in XΩ1

B

In the omelet example, Bob’s f and f ′ are the “same”:

(x, y, w, z denote outcomes: omelet size, eggs wasted)

R

y

z

G

f Ã x

g Ã w

RG

30
A

x

w

<0
A

f ′ Ã x

g′ Ã w

· · ·

x

w

30
A

y

z

<0
A

y

z

· · ·

y

z

◮ We say <1
B∈ P1

B agrees with <0
B∈ P0

B if

f <0
B g ⇔ f ′ <1

B g′
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Construction of Bob’s Space of Uncertainty (III)

Agreement is all we require. Now add higher-order prefs:

• Ω2
B =

{(

sA, <0
A, <1

A

)

∈ SA×P0
A×P1

A

∣

∣

∣
<1

A agrees with <0
A

}

• P2
B = all preference relations on XΩ2

B

and recursively

• Ωn+1
B =

{(

sA, <0
A, . . . , <

n−1
A , <n

A

)

∈ SA × P0
A × · · · × Pn

A

∣

∣

∣

<n
A agrees with <

n−1
A agrees with . . . <0

A

}

• Pn+1
B = all preference relations on XΩn+1

B
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Bob’s Space of Uncertainty: Definition

Let

Ω∗
B =

{

(

sA, <0
A, <1

A, . . .
)

∈ SA × P0
A × P1

A × · · ·

∣

∣

∣

∣

for

every n ≥ 1,
(

sA, <0
A, . . . , <

n−1
A

)

∈ Ωn
B

}

Let

π
∗,n
B : Ω∗

B → Ωn
B

(

sA, <0
A, <1

A, . . .
)

7→
(

sA, <0
A, . . . , <

n−1
A

)

Then:

A∗
B =

{

(

π
∗,n
B

)−1(
E

)

∣

∣

∣

∣

n ≥ 0, E ⊆ Ωn
B

}

is an algebra on Ω∗
B (events Bob is concerned with)
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Bob’s Space of Uncertainty: Properties

• (Ω∗
B, A∗

B) is Bob’s space of uncertainty

• Associated space of acts:

X(Ω∗
B,A∗

B) =
{

f : Ω∗
B → X

∣

∣

∣
f−1(x) ∈ A∗

B ∀x
}

• P∗
B = all preference relations on X(Ω∗

B,A∗
B)

Proposition 1: X(Ω∗
B,A∗

B)=
{

(

f ◦ π
∗,n
B

)

∣

∣

∣
n ≥ 0, f ∈ XΩn

B

}

Consequence: Given <0
A, <1

A, . . ., a unique <∗
A∈ P∗

A
agrees with all of them, or:

Theorem 1: Ω∗
B

∼= SA × P∗
A
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Spaces of Uncertainty: Discussion

• By the theorem, “preference types” implicitly de-

scribe interactive preferences, just like Harsanyi-types

H A “type” <∗
B of Bob is a pref. relation on X(Ω∗

B,A∗
B),

where Ω∗
B = SA×P∗

A and P∗
A is the “type” space

of Alice.

H Preference relations are without loss of generality,

regardless of which axioms we impose.

• Ω∗
B is uncountable, and A∗

B is countably infinite

• Events in A∗
B have a double role:

H object of thought experiments (bets) by Bob

H describe thought experiments (preference on bets)

of Alice
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SEU Subspaces – Introduction

A sequence of Alice’s preference relations

(

sA, <0
A, <1

A, . . .
)

∈ Ω∗
B

might satisfy Savage’s axioms, but her corresponding

belief might put positive probability on Bob’s prefer-

ences not satisfying them.

Imposing that all preferences in the spaces Ω∗
A and Ω∗

B

satisfy the axioms is not enough.
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Modelling “Sureness”

Given B’s acts f, g ∈ X(Ω∗
B,A∗

B) and an event E ∈ A∗
B,

write fEg for the act that is f on E and g on Ω∗
B \ E.

Following Savage, we say Bob is sure at (sB, <∗
B) ∈ Ω∗

A

that some event E ∈ A∗
B obtains, provided that

fAg ∼∗
B fAh ∀f, g, h ∈ X(Ω∗

B,A∗
B)

Can Bob be sure about some ΩB ⊆ Ω∗
B not in A∗

B?

Yes. If ΩB is projective i.e. completely described by its

projections E0 = π
∗,0
B (ΩB), E1 = π

∗,1
B (ΩB), . . . , or

ωB ∈ ΩB ⇔ π
∗,n
B (ωB) ∈ En ∀n
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Evident Subspaces

Say ΩA ⊆ Ω∗
A and ΩB ⊆ Ω∗

B are evident if

∀ n ∀
(

sB, <∗
B

)

∈ ΩA ∀
(

sA, <∗
A

)

∈ ΩB

Alice is <∗
A-sure about

(

π
∗,n
A

)−1 (

π
∗,n
A (ΩA)

)

Bob is <∗
B-sure about

(

π
∗,n
B

)−1 (

π
∗,n
B (ΩB)

)

Projective, evident subspaces are “autonomous” un-

certainty spaces: at every point inside, both players are

(meaningfully) “commonly sure” they are inside.

Are there projective, evident subspaces where all

Savage’s axioms hold?

NO (but please hold on)
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Savage’s Axioms

P1 (Ordering): < complete, transitive

P2 (Sure-Thing I): fEh < gEh ⇔ fEh′ < gEh′

P3 (Sure-Thing II): E not sure: x < y ⇔ xEf < yEf

P4 (Qualitative Probability): x ≻ y and x′ ≻ y′:

xEy < xFy ⇔ x′Ey′ < x′Fy′

P5 (Nontriviality): x ≻ y for some x, y

P6 (Continuity): Let f, g be acts such that f ≻ g,

and x ∈ X. There exists a (measurable) partition

E1, . . . , EN of Ω such that xEnf ≻ g and f ≻ xEng

for all 1 ≤ n ≤ N .
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Savage’s Axioms: Comment

• In terms of coherent betting,

H P1–P5 express rationality

H P6 does not (better seen as a property)

• Fundamental technical/conceptual difference:

H P1–P5 are satisfied by <∗
B on X(Ω∗

B,A∗
B) iff

they hold for <0
B, <1

B, . . . on XΩ0
B, XΩ1

B, . . .

H This makes no sense for P6

• Justifying P6 usually requires an extraneous
“fair coin” (it is a pure “richness” property)
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The Meaning of P6

P6 has two “parts”:

(i) The algebra or σ-algebra of events must be infinite

(the “coin” must be tossed infinitely many times)

(ii) Every event is made up of arbitrarily “small” events

(the “coin” cannot be totally biased)

Here (i) comes for free, and (ii) means:

◮ Bob cannot be sure about the thought experiments

of Alice when these become “very hypothetical” . . .
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Expected Utility Subspaces (I)

Can players be “commonly sure” about P1–P6? Almost . . . ⋆

Proposition 4: ∃ projective subsets Ωi ⊆ Ω∗
i such that

(i) ΩA, ΩB are evident.

(ii) ∀(si, <0
i , <1

i , . . .) ∈ Ωj ∀n ∃ <∗
i ∈ P∗

i that

satisfies P1–P6 and extends <n
i .

(iii) For any (not nec. proj.) Ω′
i ⊆ Ω∗

i satisfying (i), (ii),

we have Ω′
i ⊆ Ωi.

(iv) ΩA, ΩB are, like Ω∗
A, Ω∗

B, uncountable (they are also

Cantor sets).

⋆ order of quantifiers in (ii) crucial: ∃ <∗
i s.t. ∀n is false
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Expected Utility Subspaces (II)

Proposition 5: Let

Ω
P6

B =
{

(sA, <∗
A) ∈ ΩB

∣

∣ <∗
A satisfies P6

}

.

Then Ω
P6

B and ΩB \ Ω
P6

B have the same projections.

Thus, P1–P5 and extendability to P6 exploit definition
of projective evident subsets to the fullest extent . . .

⇒ from now on work inside ΩA, ΩB with

induced algebras Ai =
{

Ωi ∩ E
∣

∣ E ∈ A∗
i

}

. . . but the scope of the definition does not reach be-
yond that, so . . .

⇒ need σ-algebras F i = σ
(

Ai

)
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Expected Utility Subspaces (III)

Problem: need to extend preferences <i on X(Ωi,Ai)

to the much bigger family X(Ωi,F i). Not possible (in a

unique way) in general, but:

Proposition 6: If (si, <i) ∈ Ω
P6

j , then there is a unique

<P6
i on X(Ωi,F i) that satisfies P1–P6 and extends <∗

i .

Thus, it makes sense to define: i is sure about event

E ∈ F i at (si, <i) ∈ Ω
P6

j , provided that E is <P6
i -null.
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Expected Utility Subspaces (IV)

Fundamental measurability property of common beliefs:

• Ω
P6

j ∈ Fj

• Ω
σ,1
j :=

{

(si, <i) ∈ Ω
P6

j

∣

∣

∣
Ω

P6

i is <i-sure
}

∈ Fj

• Ω
σ,2
j :=

{

(si, <i) ∈ Ω
σ,1
j

∣

∣

∣
Ω

σ,1
i is <i-sure

}

∈ Fj

. . .

• Ω
σ,n+1
j :=

{

(si, <i) ∈ Ω
σ,n
j

∣

∣

∣
Ω

σ,n
i is <i-sure

}

∈ Fj
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Expected Utility Subspaces (V)

Conclude that:

Ωσ
j :=

⋂

n≥1

Ω
σ,n
j ∈ Fj

and finally, putting

Fσ
j :=

{

Ωσ
j ∩ E

∣

∣

∣
E ∈ Fj

}

Pσ
j := all P1–P6 preference relations on X

(Ωσ
j ,Fσ

j )

28



Main Theorem of SEU in Games

Theorem 2: Ωσ
B

∼= SA × Pσ
A

∼= SA × UA × ∆
(

Ωσ
A

)

where:

⊲ UA =
{

u : X → R

∣

∣

∣
u is non-constant

}/

pos.aff.trans.

⊲ ∆
(

Ωσ
A

)

= all non-atomic, countably additive

probability measures on
(

Ωσ
A, Fσ

A

)

⊲ Second ∼= is f <A g ⇔
∫

Ωσ
A
(u◦f)dP ≥

∫

Ωσ
A
(u◦g)dP
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Conclusions

• Harsanyi’s (1967/68) idea generalizes to preference

relations.

• The universal space Ω∗
B answers the question of

what is Bob’s state of the world in the game with

Alice. The construction is prior to all axioms.

• Savage’s P1–P6 give universal Harsanyi-type spaces

Ωσ
A, Ωσ

B (as in Mertens and Zamir (1985)). Foun-

dations for SEU and Harsanyi’s model (nonatomic

case) are thus provided.

• Going back to Harsanyi requires P6, a reasonable

property that is also vital for existence/uniqueness

of SEU representations. Finite-type models are prob-

lematic.
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Topics for Further Research

• Measuring Utility in Games: A simple procedure

• The space Ωσ = Ωσ
A × Ωσ

B is as in Aumann (1974)

H Fσ
A contains the Bob-secret events

H ex-post subjective correlated equilibria

• Complete and incomplete information unified

H finite type-spaces seem inconsistent with SEU

H players cannot be commonly sure about both

utilities and beliefs

H link to purification and higher-order beliefs lit.

• Other axiomatics (e.g. Machina and Schmeidler (1992))
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