HARD-TO-SOLVE BIMATRIX GAMES

By Rahul Savani and Bernhard von Stengel

Econometrica 74 (2006), 397-429.

The second-to-last paragraph on page 410 should read:

It is easy to see that the shortest path lengths are obtained as follows: If d is divisible by four, that is, $d / 2$ is even, then the shortest path length occurs for missing label $d / 2$, and is given by $L(d, d / 2)=2 a_{d / 4}-2$ according to Theorem 8(c). If $d / 2$ is odd, then the shortest path length occurs for missing label $3 d / 2$, where $L(d, 3 d / 2)=L(d, 3 d / 2+1)=2 b_{(d / 2+1) / 2}$ by Theorem 8 (b) and (d). When $d / 2$ is even, the path when dropping label $3 d / 2$ is only two steps longer than when dropping label $d / 2$ since then $L(d, 3 d / 2)=b_{d / 4}+b_{d / 4+1}=$ $b_{d / 4}+a_{d / 4}+c_{d / 4}=2 a_{d / 4}$. Therefore, the shortest path results essentially when dropping label $3 d / 2$.

